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Abstract

A marker-controlled and regularized watershed segmentation is pro-

posed for cell segmentation. Only a few previous studies address the task

of regularizing the obtained watershed lines from the traditional marker-

controlled watershed segmentation. In the present formulation, the topo-

graphical distance function is applied in a level set formulation to per-

form the segmentation, and the regularization is easily accomplished by

regularizing the level set functions. Based on the well-known Four-Color

theorem, a mathematical model is developed for the proposed ideas. With

this model, it is possible to segment any 2D image with arbitrary number

of phases with as few as one or two level set functions. The algorithm

has been tested on real 2D fluorescence microscopy images displaying rat

cancer cells, and the algorithm has also been compared to a standard wa-

tershed segmentation as it is implemented in MATLAB. For a fixed set

of markers and a fixed set of challenging images, the comparison of these

two methods shows that the present level set formulation performs better

than a standard watershed segmentation.

1 Introduction

Segmentation is a major challenge in image analysis, referring to the task of de-
tecting boundaries of objects of interest in an image. Several approaches have
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been proposed. Two important classes of segmentation approaches are the so-
called energy-driven segmentation [4, 35, 11, 26, 27, 47, 13, 23] and watershed-
based [33, 31, 48, 49]. Energy-driven segmentation normally uses an energy
functional consisting of two parts, i.e. a data term and a regularizer. The
data term assures a solution which is sufficiently close to the desired bound-
aries and the regularizer controls the smoothness of the obtained contours. A
smoothing is often required due to noise and artifacts in real images. Water-
shed segmentation [33, 31, 48, 49] is a region growing technique belonging to the
class of morphological operations. Traditionally, the watershed techniques have
been conducted without a smoothing term, but recent progress has resulted in
energy-based watershed segmentations that contain regularizers. In the follow-
ing the energy-driven and the watershed based segmentation approaches are
described more carefully.

The energy-driven segmentation methods are mainly divided into two classes,
contour-based (snakes) and region-based. The contour based methods rely on
strong edges or ridges as a stopping term in a curve evolution which is bal-
anced between a data term and a smoothness term. The snake approach has
been studied in [23, 4]. Cremers [13] included statistical shape knowledge to
the Mumford-Shah functional and Xu [52] introduced the gradient vector flow
(GVF) incorporating a global and external force which improved the capture
range of their parametrical snake. One of the most well-known region-based
method is the Mumford and Shah model [32]. In Chan-Vese [47, 6], the Osher-
Sethian level set idea [37] was combined with the Mumford-Shah model to solve
the region-based segmentation. Recently, some variants of the Osher-Sethian
level set idea was proposed by Tai et al. [28, 26, 27]. A good survey of varia-
tional segmentation methods can be found in [7].

The watershed segmentation has proven to be a powerful and fast technique
for both contour detection and region-based segmentation. In principal, wa-
tershed segmentation depends on ridges to perform a proper segmentation, a
property which is often fulfilled in contour detection where the boundaries of the
objects are expressed as ridges. For region-based segmentation it is possible to
convert the edges of the objects into ridges by calculating an edge map of the im-
age. The watershed transform algorithms can be divided into two groups, either
based on the recursive flooding algorithm Vincent & Soille [49, 39, 10, 15, 33]
or by different distance functions by Meyer [31, 34, 20, 38]. The former can be
understood as a landscape which is flooded recursively and the watershed lines
appear where the water from two different basins meet. The latter is computed
from variants of the topographical distance, which can be implemented as a
priority queue. Among these, different watershed methods use slightly differ-
ent distance measures, but they all share the property that the watershed lines
appear as the points of equidistance between two adjacent minima. A review
on different watershed approaches can be found in Roerdink & Meijster [41]. A
common problem for the watershed transform is over-segmentation. However,
watershed implemented by region growing based on a set of markers can avoid
severe over-segmentation[49, 48, 15]. For the present work we use the topo-
graphical distance function as the method of choice, and we also create markers
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to reduce over-segmentation.
The success of a watershed segmentation relies on the fact that the desired

boundaries are ridges. Unfortunately, the standard watershed framework has a
very limited flexibility on optimization parameters, for example, there exists no
possibility to smooth the boundaries. However, recent progress allows a regu-
larization of the watershed lines [34] with an energy-based watershed algorithm
(watersnakes). In contrast to the standard watershed and the watersnakes, our
work is based on partial differential equations which easily allow a regularization
of the watershed lines. Moreover, the method is flexible with regard to several
optimization parameters. It could allow optimization on the Euler numbers to
avoid internal holes inside the segmented regions. Furthermore, it is possible
to develop methods which could optimize the number of markers in addition
to our implemented smoothing of the watersheds. This property is important
since creating markers automatically often results in severe over-segmentation
due to superfluous markers. Our method would permit an optimization on the
number of markers.

It seems that level set methods have never been used for watershed seg-
mentation. In this work, we shall combine the traditional level set methods
[47] and the new variants [28, 26, 27] with watershed segmentation ideas. In
§2, the foundation of our methods including the creation of the markers, the
needed distance function and the four-color theorem are introduced. In §3, sev-
eral level set methods are combined with the watershed segmentation idea using
the topographical distance function. Details are given for the level set models.
Combined with the Four-Color theorem, only one or two level set functions are
needed to segment arbitrary numbers of regions. Implementation and numerical
details are supplied in §5. Experiments with real data are given to demonstrate
the performance of the proposed algorithms compared to the traditional water-
shed methods. It is shown that the methods can identify arbitrary number of
regions just with one level set function.

2 Marker-controlled watershed segmentation by

level set

2.1 Active contours and cell segmentation

The active contour models are able to perform segmentation of real cells when
properly initialized [16, 3, 18]. In the active contour model, each seed point (or
marker region) gives rise to a closed contour (snake) evolving until convergence.
Then, the boundary of the cell should be captured. This process is repeated
for all markers. However, boundary information between separate snakes from
the different markers is mostly not connected to each other and therefore the
resulting segmentation can result in regions of either vacuum or overlap. To deal
with this problem, different conflict measures or restrictions of movement for the
snakes to avoid overlap have to be implemented [16, 3]. Our level set watershed,
which shall be introduced in §3, is implicitly defined in such way that vacuum or
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overlap will never occur. This property is important in cell segmentation since
cells are individual compartments, and the final segmentation should define
every pixel either as part of one and only one cell, or as part of the background.
Furthermore, a parametrical snake requires often one snake per object, or for the
implicit snake, the number of level set functions is proportional to the number
of objects as ∝ logn when n is the number of objects or phases. Thus, the
complexity increases swiftly for images containing a high number of cells. Due
to the Four-Color theorem, c.f. §3, we are able to keep the number of level
set functions at a very low level, independent of the number of objects to be
segmented.

2.2 Creating Markers

Marker-controlled watershed segmentation is a robust and flexible method for
segmentation of objects with closed contours where the boundaries are expressed
as ridges. The marker image used for watershed segmentation is a binary image
consisting of either single marker points or larger marker regions where each
connected marker is placed inside an object of interest. Thus, each initial marker
has a one-to-one relationship to the specific watershed region surrounded by the
watershed lines. The final watershed segmentation is strictly depending on the
markers, both the proposed watershed by level set and the standard watershed.
This dependency is a consequence of both the one-to-one relationship as well as
the size and position of the markers. Region-markers generally create results of
higher quality than point-markers since their boundaries are closer to the desired
boundaries and therefore there is a smaller probability of the flooding converging
too early. The markers can be manually or automatically constructed, but high-
throughput experiments often require automatically generated markers to save
human time and resources. After segmentation, the boundaries of the watershed
regions (watersheds) are arranged on the ridges, thus separating each object
from its neighbors.

For the current project, the markers were automatically generated. The al-
gorithm is sketched in the following and some detailed explanations are given
afterward.

Flow scheme for creating markers.

1. u = ridge enhancement(u)
2. ub = adaptive thresholding(u)
3. ub = remove small objects(ub)
4. for i = 1 to (step = 1) 10

a) se = get structural element(radius = i)
b) closed = close(ub,se)
c) filled = fill(closed)
d) label = label filled regions(filled)
e) for j = 1 to (step = 1) number objects(label)

if empty(intersection(object(j),markers))
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markers(object(j)) = 1
5. markers = remove small objects(markers)

First, a Hessian ridge enhancement [17] was applied to enhance the ridges of
the image f (#1 in flow scheme). The ridges are of special interest since the cell
boundaries appear as ridges. The ridge enhancement is based on the eigenvalue
decomposition of a Gaussian smoothed Hessian matrix

H = Gσ,δ





uxx uxy uxz
uyx uyy uyz
uzx uzy uzz





where the parameters σ and δ are the standard deviation and the height of the
filter in the Gaussian. The eigenvector corresponding to the largest eigenvalue
λ1 points along the ridge, and the other points perpendicular to the ridge. A
ridge is characterized by λ1 < 0 and λ2 ≈ 0 [17], and is thus highlighted using a
transfer function defined as H(λ1, λ2) = −λ1 −λ2

2, taking the highest values on
the ridges. An example of a Hessian ridge enhancement is given in Fig 1 where
the image (A) was used for Hessian ridge enhancement (B). For this example,
σ = 2 and δ = 5 were used. Clearly, the ridges are enhanced compared to other
structures.

Adaptive thresholding [9, 19] was used to automatically create binary marker
regions from the ridge enhanced image (#2 in flow scheme). The adaptive
thresholding has a much higher resistance against noise and inhomogeneous
illumination than global thresholding for labeling of high intensity objects, in
our case the ridges. The adaptive thresholding image fb was computed as

ub(x, y) =

{

1 if f(x, y) > µmax(f) +Aδ(f, x, y)
0 else

where µ is a user-defined scalar threshold with typical values of [0.01 → 0.2]
and δ is the filter dimension of the average filter Aδ. Aδ(f, x, y) is the average
values of f in a δ-neighborhood of (x, y). The image in Fig 1 (C) is an example
of the adaptive thresholding with δ = 20 and µ = 0.06. Then, all small objects
in ub were removed since they were considered to be insignificant due to their
size (D in Fig 1, #3 in the flow scheme). To be able to close minor gaps in the
binary structures outlining the approximate boundaries, an iterative morpho-
logical closing was conducted (E in Fig 1, #4a-b in the flow scheme). For each
iterative closing step, a larger structural element was applied to facilitate the
closing of incrementally larger gaps. Directly after each closing step the func-
tion imfill.m in MATLAB was used to detect all holes in ub that were not
accessed from the image boundary (#4 in the flow scheme). All regions with
a size within an interval and that had no intersection with earlier filled regions
were then assigned to the marker image as a marker (F in Fig 1, #4e in the
flow scheme). The closing was repeated iteratively with increasing radius r of
the circular structural element (se), ri(se) < ri+1(se). This process is performed
iteratively in order to obtain markers with boundaries as close as possible to the
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desired cell boundaries, and it was repeated a predefined number of steps. Fi-
nally, removal of the smallest markers was necessary, using a threshold specified
by the user (#5 in the flow scheme).

This marker-creation technique is important for the automated high-throughput
experiments. It is fully automatic and requires a minimal use of human re-
sources. The quality of the created marker is high in all the experiments we
have performed.

2.3 Topographical distance function

We shall use the topographical distance function [31], closely related to the
framework of minima paths [2], for our watershed segmentation. In addition,
level set methods will be incorporated into this segmentation framework. The
topographical distance function between two points x and y is defined as [34]:

Definition 1. For a smooth function f(x) : R
n → R the topographical distance

between two points x and y is the smallest integral of the gradient |∇f | over
any path γ from x to y in Ω, i.e.

L(x,y) = inf
γ∈[x→y]

∫

γ

|∇f(γ(s))|ds. (1)

In addition, we define Li(x) = infy∈Mi
L(x,y). Therefore ∃ y∗

i ∈ Mi such
that Li(x) = L(x,y∗

i ). Furthermore, let K be the number of markers and let
αi = f(y∗

i ). Using Li(x), the definition of the catchment basin CB(Mi) is given
as below:

Definition 2. The catchment basin CBi of a regional minimum Mi is defined
by:

CB(Mi) = {x ∈ Ω | ∀j 6= i, 1 ≤ j ≤ K : αi + Li(x) < αj + Lj(x)} . (2)

The parameter αi works as a scaling of each minima to enable a comparison
of the topographical distance functions between different minima. The water-
shed lines are closely related to the the catchment basins, and they are defined
as the set of all points not belonging to any catchment basin.

Definition 3. The watershed line of the function f is the set of points not
belonging to any catchment basin:

W (f) = Ω\
⋃

i

CB(Mi) (3)

As Li(x) is continuous, W (f) is equivalent to the points where αi+Li(x) =
αj +Lj(x), i 6= j, i, j = {1, . . .K}. Thus, the watershed lines are given as the
points where αi + Li(x) are equal over two adjacent regions.

As an illustration, Figure 2 shows an example of two adjacent marker-points
M1 and M2 and their corresponding biased topographical distance functions
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C.  Adaptive thresholding 

E.  Close gaps iteratively

F.  Filling and extraction

D.  Removal small objects

B.  Ridge enhancement

A.  Raw image before processing

r
i
(se) < r

i+1
(se)

Figure 1: Automated construction of markers. The image (A) was used for ridge
enhancement (B) to improve the signal intensity of the ridges. An adaptive
thresholding was applied to detect the ridges and convert them into binary
structures (C). The smallest objects were removed due their size (D) and a
morphological closing was performed to close gaps in the binary structure (E).
The closing was repeated iteratively with increasing radius r of the circular
structural element (se), ri(se) < ri+1(se). A binary filling was computed after
the closing at each iterative step (F) and all binary objects of the size within
a user-defined interval were selected and used as marker regions. However, the
objects were only selected if they had no intersection to previously selected
objects. This enables larger marker regions with their boundaries closer to the
true boundaries of the desired objects.
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α1 + L1(x) and α2 + L2(x). In the figure, the biased topographical distance
functions are indistinguishable in the convex regions around the markers since
they are aligned with the function value (solid line). Note that α1 + L1(x) =
α2 + L2(x) on the ridge between the markers, α1 + L1(x) < α2 + L2(x) for
x ∈ CB(M1) and α2 + L2(x) < α1 + L1(x) for x ∈ CB(M2). This reflects
that among all markers Mi and their associated biased topographical distance
functions αi + Li, the biased topographical distance function αi + Li(x) ≤
αj + Lj(x) for x ∈ CB(Mi), i, j = 1 . . .K.
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Figure 2: The biased topographical distance functions α1 + L1 (dashed) and
α2 + L2 (dotted) around two adjacent marker-points M1 and M2, respectively.
The underlying function is given by the solid line. Note that among all markers
M1 and M2, the biased topographical distance function αi + Li(x) possesses
the smallest value inside the catchment basin of Mi. On the ridge between two
adjacent markers M1 and M2, α1 + L1(x) = α2 + L2(x).

In 1D the topographical distance function is straightforward to compute
since there is only one possible path between any two points x and y. For
2D and 3D, the topographical distance function can be calculated using the
iterative forest transform (IFT) [15] which computes the shortest path energy
between any two points. The algorithm has a low cost with a complexity of
O(m + n logn) where n = n1n2 is the number of pixels in the image and m =
n1(n2 − 1) + (n1 − 1)n2, defined by a 4-connectivity neighborhood. For the
present study, we have used the IFT algorithm to calculate the topographical
distance function Li(x) and the flow scheme is given below:
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1. Initialization
a) for all nodes p

flag(p) = TEMP;
b) for all non marker nodes p do

C(p) = infinity;
c) for all marker nodes p do

C(p) = f(p);
d) for all boundary marker nodes p do

EnQueue(p,0);
2. Propagation

while QueueNotEmpty() do
a) v = DeQueueMin;
b) flag(v) = DONE;
c) for each p neighbor of v with

flag(p) == TEMP do
if C(v) + w(v,p) < C(p) then

A) C(p) = C(v) + w(v,p);
B) if IsInQueue(p) then

DeQueue(p);
C) EnQueue(p,C(p));

The IFT algorithm has two steps. In the initialization phase (1), every pixel
in an image f is assigned a flag as temporary TEMP (1a) and all non-marker
pixels are assigned the cost infinity (1b). All marker pixels are assigned the cost
of the image f (1c) and all the boundary pixels of the markers are added to the
priority queue (1d) with a cost equal to zero. The loop in the propagation phase
(2) runs as long as the priority queue is not empty. For each iteration, the pixel
v with the lowest cost is removed from the queue (2a) and the pixel is assigned as
DONE (2b). The neighbors around pixel v are detected, but only those labeled
with TEMP are considered as candidates for the priority queue (2c) since the
pixels labeled DONE are finished and already assigned the final cost value. If
the cost of reaching pixel p from the pixel v is lower than previously assigned
costs C(p), pixel p is given the new and lower cost C(p) = C(v) +w(v, p) (2cA)

where w(v, p) is the absolute value of the gradient, w(v, p) = |f(v)−f(p)|
d(v,p) , d(v, p)

is the Euclidean distance between v and p. If the neighbor p already was in
the priority queue, it is removed from the queue (2cB) and returned with the
new and lower cost C(p) (2cC). If p was not in the queue, it is queued for the
first time with the corresponding cost C(p) (2cC). The algorithm is designed
such that only the front pixels of FLAG are inside the queue at any time, which
ensures connectivity in the path. The fact that the pixel at each iteration with
the lowest cost in the queue is removed, ensures that the path with the minimum
cost is found.
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2.4 Four-Color theorem

We shall use the Four-Color theorem in our watershed segmentation combined
with level set methods. The Four-Color theorem, c.f. [1], states that it is possible
to label any 2D planar graph with as few as four colors such that no neighbors
have the same color. The Four-Color theorem was proven first by Appel and
Haken in 1976 [1], and it has been validated again by different approaches in
recent years [40]. Consider a set of regions (or countries) and select an arbitrary
point inside each region (a capital). Join the points of every pair of neighboring
regions with a line. Then, one arrives at the definition of a planar graph G. It
consists of a finite number of vertices V (G) and a finite set of edges E(G).

: V(G)

: E(G)

: Boundaries1
2

3

4

1

u

v

Figure 3: The Four-Color theorem. A planar graph consists of one arbitrar-
ily selected vertice V (G) (black dots) per region (solid line), and edges E(G)
(dashed lines) connecting the vertices of neighboring regions. Each edge has
two ends, u and v. The Four-Color theorem states it is possible to label every
u and v with different colors, using at most four colors. The number above the
vertices indicate one possible Four-Color labeling.

Figure 3 shows the boundaries of the regions (solid lines) and the arbitrary
points V (G) inside each region (black spots, vertices) which are connected with
the edges E(G). Every edge must have two distinct ends u and v (Fig 3) which
coincide with two distinct vertices. Thus, loops are not permitted. The Four-
Color theorem states:

Definition 4. Every loopless plane graph G can be divided into 4 colors, that
is a mapping c : V (G) → {1, 2, 3, 4} such that c(u) 6= c(v) for every edge of G
with ends u and v [40].

Therefore, we could associate each watershed region with a vertex and use
no more than four colors to mark the watershed regions. By doing so, adjacent
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objects can be labeled among four colors and they are thus uniquely distinguish-
able since any two neighboring watershed regions will be labeled with different
colors. Using the Four-Color theorem it is therefore possible to segment an ar-
bitrary number of objects with as few as four phases. Chan and Vese [47] noted
that the Four-Color theorem can be used in image segmentation in the piecewise
smooth case to distinguish between any number of objects with as few as four
phases.

3 The algorithm

3.1 Euclidean influence zones

The four-color coding must be applied to a planar graph with no vacuum be-
tween the regions. Therefore, it can not be applied directly to the markers
which are objects with gaps in between. To overcome this problem, an ap-
proximation of the final object partition based on the markers is computed.
Ideally, this partition should capture information about the final boundaries of
the objects, reflecting the assumed neighborship between the regions. If this
approximation is accomplished, a coding can be achieved which contains a true
four-color coding to distinguish the adjacent objects. To obtain the approxima-
tion of the final boundaries, the Euclidean distance transform from each marker
is computed. To improve the chances of success in determining the neighborship
between the regions, larger marker regions are preferred instead of small. Using
large marker regions, it is a higher chance of obtaining a good approximation
of the boundaries since the outer periphery of the markers is closer to the true
object boundaries. Every pixel in the image is assigned to one influence zone of
a marker such that each point from this zone has the smallest distance to the
marker.

Mathematically, considerK markers and label all markers {Mi}
K
i=1. The Eu-

clidean distance function di(x) = dist(x,Mi) is calculated around each marker
Mi using bwdist.m in MATLAB. Thus, K distance functions are obtained,
{di(x)}Ki=1. The Euclidean influence zone image fIZ is a function defined as:

fIZ(x) = {i | dist(x,Mi) ≤ dist(x,Mj), ∀j}. (4)

Thus, fIZ = i if x has the shortest distance to make Mi. So, fIZ is a piecewise
constant function taking values from 1 to K. The region where fIZ(x) = i is
called the Euclidean influence zone of markerMi. This representation has a high
computational speed and divides the image into K disjoint regions suitable for
a further labeling within the Four-Color theorem. Figure 4 is an example of the
Euclidean influence zones fIZ . Using the method described in §2.2, the image
in Fig. 4(a) was used to automatically construct the markers in (b). From these
markers the Euclidean influence zones fIZ were obtained using Eq. 4. Thus,
a piecewise constant image fIZ is constructed where each region is uniquely
labeled by an integer from {1, 2, . . . ,K}, see (c).
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(a) (b)

(c) (d)

Figure 4: Euclidean influence zones and the Four-Color theorem. The image in
(a) was used to automatically create markers (b) using the method described
in §2.2. The Euclidean influence zones fIZ were computed around the markers,
shown in (c) where each region has a unique integer. The Four-Color theorem
was applied to fIZ , resulting in fc (d) where no neighboring regions have the
same color (black : 1, dark grey : 2, light grey : 3, white : 4).

Associated with the K markers, we have obtained K Euclidean influence
zones. These zones are suitable for a color coding using the Four-Color theorem.
Figure 4(d) shows one possible Four-Color coding of (c), where each zone has
been labeled by an integer value from {1, 2, 3, 4} and no region has a neighbor
with the same integer value.

4 Level set methods for watershed segmentation

After applying the Four-Color theorem to the Euclidean influence zones fIZ = i,
we get an approximation to the final boundaries for the segmentation. For the
images in this paper, the painting of the regions was done by an automated code
where various combinations were tried and faulty ones eliminated to achieve
a true partition according to the Four-Color theorem. Thus, a final coloring
fc(x) ∈ {1, 2, 3, 4} was obtained where adjacent influence zones and their corre-
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sponding markers are always assigned different colors, see an example of this in
Fig 4(d). Empty colors will not influence the performance of the algorithm.

Once each marker has been painted with one of the four colors, the markers
can be grouped into four groups, i.e., we define the group of markers Ci =
∪fc(Mj)=iMj and the boundaries of these, ∂Ci, i = 1, 2, 3, 4. The method of
[15] is then used to compute up to four topographical distance functions from
each of the marker groups Ci, i.e., Li(x) = infy∈Ci

L(x,y), i = 1, 2, 3, 4. It is
true that there exists a y∗

i ∈ ∂Ci such that Li(x) = L(x,y∗
i ). Correspondingly,

we also take αi = f(y∗
i ). As was proven in [44], a partition {Ωi}

4
i=1 minimizes

the functional

E(Ω1, . . . ,Ω4) =

4
∑

i=1

∫

Ωi

{αi + Li(x)}dx (5)

if and if it is a watershed segmentation around the group markers defined by
the four colors. The proof is essentially the same as given in [34].

In the following, we propose to use level set methods to solve the above
watershed segmentation problem. We shall use three different variants of the
level set idea to accomplish the watershed segmentation based on the function
Li, i = 1, 2, 3, 4. These are the Chan-Vese level set [6], the Binary level set [35]
and a variant of the Piecewise constant level set (PCLS) [28, 27].

4.1 Watersheds and the Chan-Vese model

First, we propose to use the level set idea [37] as in Chan-Vese [6] for the
segmentation. Let φ1(x), φ2(x) : R

2 → R be two continuous level set functions
defined on the domain Ω. Normally, φ1, φ2 are required to be distance functions
to some curves, but this is not needed for our method here. We just need
them to be continuous functions. These functions will partition the domain
into four (possibly disconnected) sub-regions. The characteristic functions for
these sub-regions are ψi, i = {1, 2, 3, 4} given as

ψ1(φ1, φ2) = H(φ1)H(φ2), ψ2(φ1, φ2) = (1 −H(φ1))H(φ2),

ψ3(φ1, φ2) = H(φ1)(1 −H(φ2)), ψ4(φ1, φ2) = (1 −H(φ1))(1 −H(φ2)).

The sub-regions are Ωi = {x| ψi(x) = 1}, i = 1, 2, 3, 4. This partition of the do-
main has no vacuum and no overlaps. In the above, H(·) denotes the Heaviside
function, i.e. H(x) = 1 if x ≥ 0, H(x) = 0 if x < 0. For the numerical ex-
periments, a regularized Heaviside was used, i.e., Hǫ(x) = 1

2

(

1 + 2
π

arctan(x
ǫ
)
)

where ǫ > 0 is small, see [6]. The relation H ′(x) = δ(x) was used for differ-
entiation of ψi, and a smooth δǫ(x) was used in the numerical experiments by
calculating the derivative of the smooth Heaviside.

Assume that the sub-regions Ωi, i = 1, 2, 3, 4 are related to φi, i = 1, 2 as
above, then we see that

4
∑

i=1

∫

Ωi

{αi + Li(x)}dx =

∫

Ω

4
∑

i=1

{αi + Li(x)}ψi(φ1, φ2)dx. (6)
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Based on this observation, we can try to solve the following minimization prob-
lem:

min
φ1,φ2

∫

Ω

4
∑

i=1

{αi + Li(x)}ψidx. (7)

If {φi}
2
i=1 is a minimizer of the above problem, then the corresponding sub-

regions {Ωi}
4
i=1 is a watershed segmentation. In order to regularize the bound-

aries of the watershed regions, we shall add a regularization term into the min-
imization functional. Instead of solving (7), we try to minimize

min
φ1,φ2

F (φ1, φ2), F =

∫

Ω

4
∑

i=1

{αi + Li(x)}ψidx + λ

∫

Ω

4
∑

i=1

|∇ψi|dx. (8)

The first term is the data term providing the watershed segmentation and the
second term is the regularization to ensure a sufficiently smooth boundary for
the watershed segmentation. The regularization is performed on {ψi}

4
i=1 which

is different from [6] where the regularization is performed directly on {φi}
2
i=1.

The difference between these two approaches is discussed in more details in
§5.7. A minimization of (8) with regard to φ1 and φ2 produces the following
Euler-Lagrange equations

4
∑

i=1

(αi + Li(x))
∂ψi
∂φ1

− λ

4
∑

i=1

∇ ·

(

∇ψi
|∇ψi|

)

∂ψi
∂φ1

= 0

4
∑

i=1

(αi + Li(x))
∂ψi
∂φ2

− λ

4
∑

i=1

∇ ·

(

∇ψi
|∇ψi|

)

∂ψi
∂φ2

= 0.

In order to get the above results, we need to use the chain-rule as in [43, p.29]
and [8, p.45]. The terms ∂ψi

∂φ1

and ∂ψi

∂φ2

are calculated as

∂ψ1

∂φ1
= δ(φ1)H(φ2),

∂ψ1

∂φ2
= H(φ1)δ(φ2)

∂ψ2

∂φ1
= −δ(φ1)H(φ2),

∂ψ2

∂φ2
= (1 −H(φ1))δ(φ2)

∂ψ3

∂φ1
= δ(φ1)(1 −H(φ2)),

∂ψ3

∂φ2
= −H(φ1)δ(φ2)

∂ψ4

∂φ1
= −δ(φ1)(1 −H(φ2),

∂ψ4

∂φ2
= −(1 −H(φ1))δ(φ2).

In numerical simulations, δ and H are replaced by their smoothed counter parts
δǫ and Hǫ respectively. As usual, we can use the gradient descent method to
solve these equations. With some initial conditions for {φi}

2
i=1, the gradient
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flow equations are:

∂φ1

∂t
= −

4
∑

i=1

(αi + Li(x))
∂ψi
∂φ1

+ λ

4
∑

i=1

∇ ·

(

∇ψi
|∇ψi|

)

∂ψi
∂φ1

∂φ2

∂t
= −

4
∑

i=1

(αi + Li(x))
∂ψi
∂φ2

+ λ

4
∑

i=1

∇ ·

(

∇ψi
|∇ψi|

)

∂ψi
∂φ2

. (9)

The following explicit scheme will be used in our numerical experiments. Note
that faster methods can be used to solve these equations. For example, the
AOS scheme proposed in [29, 30] and re-discoverted in [51] can be used for the
equations (9) similarly as in [25]; The dual algorithm of [5] can also be used
to get fast algorithms. In addition, the graph-cut techniques [14] could also be
a powerful tool for these equations. For simplicity, we have only tested on the
following explicit scheme so far:

φn+1
1 − φn1

τ
= −

4
∑

i=1

(αi + Li(x))
∂ψni
∂φn1

+ λ
4
∑

i=1

∇ ·

(

∇ψni
|∇ψni |

)

∂ψni
∂φn1

φn+1
2 − φn2

τ
= −

4
∑

i=1

(αi + Li(x))
∂ψni
∂φn2

+ λ
4
∑

i=1

∇ ·

(

∇ψni
|∇ψni |

)

∂ψni
∂φn2

where ψni = ψi(φ
n
1 , φ

n
2 ). This iteration is not the fastest algorithm. However, it

often converges in less than 200 iterations for our experiments.

4.2 Watersheds and the Binary level set

The second level set method we propose to use is the so-called Binary level
set [26, 42, 27]. This method has been used for image segmentation and in-
verse problems in [36, 46]. For this method, we need to find two functions
φ1(x), φ2(x) : R

2 → R satisfying φi(x)2 = 1, i = 1, 2. These functions can also
partition Ω into four sub-regions with the characteristic functions given by

ψi+1+2∗j =
1

4

(

1 + (−1)i
φ1

|φ1|

)(

1 + (−1)j
φ2

|φ2|

)

, i, j = 0, 1.

This sub-regions associated with the characteristic functions ψi, i = 1, 2, 3, 4
have no overlaps and vacuum. This method is closely related to the Chan-Vese
model using two level set functions creating four sub-regions. However, the
signum function is used instead of the Heaviside function. In the numerical
experiments, φ/|φ| are replaced by φ/

√

|φ|2 + ǫ with a small ǫ > 0.
Similar to (8), we solve the following minimization problem:

min
φ1,φ2

F (φ1, φ2) (10)

F =

∫

Ω

4
∑

i=1

{αi + Li(x)}ψidx + λ

∫

Ω

4
∑

i=1

|∇ψi|dx + σ
2
∑

i=1

∫

Ω

(φ2
i − 1)2dx. (11)
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Once the minimizer is obtained, the corresponding characteristic functions will
give us the watershed sub-regions. In the above, the constant σ > 0 is a penal-
ization constant to enforce φ2

i = 1 and λ is the regularization parameter which
influences the smoothness of the watershed lines. Due to the special construc-
tions of the characteristic functions ψi, we can choose any σ > 0 in the above
minimization functional. We need to use a large σ if the characteristic functions
ψi are replaced by ψi+1+2∗j = 1

4 (1+(−1)iφ1)(1+(−1)jφ2). The Euler-Lagrange
equations for minimization problem(11) with respect to φ1 and φ2 are:

4
∑

i=1

(αi + Li(x))
∂ψi
∂φ1

− λ
4
∑

i=1

∇ ·

(

∇ψi
|∇ψi|

)

∂ψi
∂φ1

+ 4σφ1(φ
2
1 − 1) = 0

4
∑

i=1

(αi + Li(x))
∂ψi
∂φ2

− λ
4
∑

i=1

∇ ·

(

∇ψi
|∇ψi|

)

∂ψi
∂φ2

+ 4σφ2(φ
2
2 − 1) = 0

Again, we use the following explicit scheme to solve the corresponding gradient
flow equations:

φn+1
1 − φn1

τ
= −

4
∑

i=1

(αi + Li(x))
∂ψni
∂φn1

+

+ λ

4
∑

i=1

∇ ·

(

∇ψni
|∇ψni |

)

∂ψni
∂φn1

− 4σφn1 ((φn1 )2 − 1),

φn+1
1 − φn1

τ
= −

4
∑

i=1

(αi + Li(x))
∂ψni
∂φn2

+

+ λ

4
∑

i=1

∇ ·

(

∇ψni
|∇ψni |

)

∂ψni
∂φn2

− 4σφn2 ((φn2 )2 − 1).

This algorithm is not sensitive to the values of σ and ǫ. We have always used
σ = 1. Some discussions about the value of ǫ will be given later. The algorithm
often converges in less than 200 iterations. It is also expected that some other
discrete minimization method will accelerate the convergence [14].

4.3 Watersheds and the piecewise constant level set (PCLS)

The third level set method we propose to use is a variant of the ”Piecewise
Constant Level Set (PCLS)” method [28, 27]. This method has been used for
image segmentation [46], inverse problems [45, 24] and optimal shape design
problems [50, 25]. For this method, only one level set function φ : R

2 → R is
needed, satisfying

κ(φ) = (φ− 1)(φ− 2)(φ− 3)(φ− 4) = 0 in Ω, (12)

which ensures that φ takes piecewise constant values φ = {1, 2, 3, 4}. In [45,
24, 25, 46, 28, 11, 27], penalization or Augmented Lagrangian methods were
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used to deal with the constraint (12). In [21], it was shown that penalization
methods can be connected with Modica-Mortola phase transition model to get
even a rigorous convergence analysis.

In this work, we shall use the PCLS method more like a multi-layer level set
method of [12]. Associated with φ, we define the characteristic functions for the
sub-regions by

ψi(φ) =
1

2

(

φ− i+ 0.5
√

(φ− i+ 0.5)2 + ǫ
−

φ− i− 0.5
√

(φ − i− 0.5)2 + ǫ

)

(13)

The first term is an approximation of a step function around i − 0.5 and the
second term approximates a step function around i+ 0.5. Fig. 5 illustrates the
characteristic functions ψi for i = {1, 2, 3, 4} (a) and their derivatives (b).
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Figure 5: The characteristic functions ψi (a) for ǫ = 0.005, i = {1, 2, 3, 4} and
the corresponding derivatives (b). Note how the derivatives are overlapping
with their neighbors.

As noted, the characteristic functions are constructed to ensure that there
are overlaps between the support of the derivatives. In order to use this method
for the watershed segmentation, we need to solve the following minimization
problem:

min
φ

∫

Ω

4
∑

i=1

{αi + Li(x)}ψi(φ)dx + λ

∫

Ω

4
∑

i=1

|∇ψi(φ)|dx + γ

∫

Ω

κ(φ)2dx. (14)

As in [45, 24, 25, 46, 28, 11, 27], augmented Lagrangian can be used to solve
the above minimization problem. Here, we have just used the penalization
method for the constraint κ(φ) = 0. Due to the special construction for the
characteristic functions ψi used in (13), it is not necessary to use large values
for the penalization constant γ.
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For minimization problem (14), the Euler-Lagrange equation is, c.f. [43]

4
∑

i=1

{αi + Li(x)}
∂ψi
∂φ

− λ

4
∑

i=1

∇ ·

(

∇ψi
|∇ψi|

)

∂ψi
∂φ

+ 2γκ
∂κ

∂φ
= 0, (15)

where the term ∂ψi/∂φ is given as

∂ψi
∂φ

=
1

2

(

ǫ

((φ− i+ 0.5)2 + ǫ)
3

2

−
ǫ

((φ − i− 0.5)2 + ǫ)
3

2

)

. (16)

The following explicit gradient flow problem must be solved to steady state:

φn+1 − φn

τ
= −

4
∑

i=1

{αi+Li(x)}
∂ψni
∂φn

+λ
4
∑

i=1

∇·

(

∇ψni
|∇ψni |

)

∂ψni
∂φn

−2γκn
∂κn

∂φn
(17)

where ψni = ψi(φ
n) and κn = κ(φn).

4.4 Differences between the level set methods

We have proposed three different level set methods with different advantages
and weak points, producing slightly different results which are complementary
to each other. All three methods produce good results. The Binary level set
has several similarities to the Chan-Vese model in the way it produces a fixed
number of 2n phases where n is the number of level set functions. The Piecewise
constant level set differs from the Chan-Vese and the Binary level set in several
aspects. It only requires a single level set function. Furthermore, it is possible
to define the desired number of phases without being limited to a fixed number
which is the case for the Chan-Vese model and the Binary level set.

From our numerical experiences, it seems that the binary level set method is
fast and stable for some examples, while the piecewise constant level set method
is faster and stable for some other examples. Generally, when the structure of the
object is complicated and the number of objects is large, the piecewise constant
level set method seems to be advantageous. With three different methods at
our disposal, it is really an advantage that we can use them to confirm that the
obtained results are correct.

5 Numerical experiments

5.1 Numerical implementation

All three models have in common the biased topographical distance function,
αi + Li(x). The values of the topographical distance function inside the mark-
ers were approximated by the image values, and αi was approximated as αi ≈
min f(∂Ci), where ∂Ci is the boundary of marker group of color i. The second
term Li(x) was computed as described in §2.3, one topographical distance func-
tion for each group of markers that are inside the same color i. The functions
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Li(x) only need to be computed once for the whole computation. The regu-

larization term ∇ ·
(

∇ψ
|∇ψ|

)

was computed according to the following scheme.

Consider forward, backward and central differences for x and y,

D+
x (ψni,j) =

ψni+1,j − ψni,j
h

, D+
y (ψni,j) =

ψni,j+1 − ψni,j
h

D−
x (ψni,j) =

ψni,j − ψni−1,j

h
, D−

y (ψni,j) =
ψni,j − ψni,j−1

h

Dx(ψ
n
i,j) =

ψni+1,j − ψni−1,j

2h
, Dy(ψ

n
i,j) =

ψni,j+1 − ψni,j−1

2h

where h is the stepsize. Using forward differences for the gradient and backward
differences for the divergence,

∇ ·

(

∇ψni,j
|∇ψni,j |

)

=

D−
x





D+
x (ψni,j)

√

Dx(ψni,j)
2 +Dy(ψni,j)

2 + ǫ



+D−
y





D+
y (ψni,j)

√

Dx(ψni,j)
2 +Dy(ψni,j)

2 + ǫ



 ,

where ǫ is a small parameter to avoid singularities in regions where the gradient
is zero. For the Chan-Vese model and the Binary level set, φ1 and φ2 were
initialized as zero everywhere which enabled a fast convergence to the correct
solution. For the PCLS, it was necessary to initialize the level set function φ in
a special way, i.e.

φ(x, t = 0) =

{

2 fIZ(x) ≤ 2
3 fIZ(x) ≥ 3.

where fIZ is the image for the Euclidean influence zones (§3.1). This initializa-
tion increased the computational speed.

The watershed lines (watersheds) appear at convergence as the interface
between the regions of different colors. To obtain the watersheds, the charac-
teristic functions ψi were computed with high accuracy after convergence. For
the Chan-Vese model, the exact Heaviside was used in these calculations. For
the Binary level set and the PCLS a very small ǫ = 10−10 was used. Then,
the characteristic functions ψi for all three models were converted into binary
functions ψbi by thresholding,

ψbi (x) =

{

1 ψi(x) ≥ 0.5
0 ψi(x) < 0.5.

The outer boundary of the four binary functions ψbi (x) were used as the final
watersheds of the image f ,

WS(f) = ∪4
i=1∂ψ

b
i (x). (18)

In all experiments values of λ = [0.01, 0.1] were chosen for the regularization
parameter, depending on the amount of endocytoced particles in the image.
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A higher amount of noise requires larger λ. The largest possible time-step
supporting a stable solution was ∆t = 0.1. A smaller time-step does not change
the minimizer in the Chan-Vese model or the Binary level set, but a large
number of iterations is required to reach a steady state. For the PCLS, it is
critical to use suitable associated settings of ∆t, γ and ǫ. Empirically, values
of ∆t = 0.05, ǫ = 0.1 and γ = 0.05 were appropriate as a global setting to
converge toward a global minimizer. The same setting for ǫ also applied to the
Binary level set. The number of iterations at convergence was between 200 and
400. All numerical code was written in MATLAB R©, and the selected images
used as examples were processed using one of the three proposed methods in
§4.1-4.3. Additionally a standard marker-controlled watershed segmentation as
implemented in MATLAB R© [49] was calculated for comparison of performance
between the two methods. Equal and automatically generated markers were
applied to the compared methods in each example.

5.2 Synthetic data

The level set watershed method was applied to a synthetic image with mul-
tiplicative Gaussian noise and a linear gradient to test the robustness of the
method. The original image free from noise is shown in Fig 6(a), and the same
image after addition of Gaussian multiplicative noise and a linear gradient is
displayed in (b). The obtained noisy image has a SNR = 3.4. The standard
watershed segmentation and the PCLS level set watershed segmentation are
shown in (c) and (d), respectively. Apparently, the level set watershed has a
better ability to deal with the noise.
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(a) (b)

(c) (d)

Figure 6: Segmentation of a synthetic, noisy image. Gaussian multiplicative
noise and a linear gradient was add to the original image in (a) and the obtained
noisy image (b) was segmented using the standard watershed (c) and the PCLS
level set watershed (d). Note that the level set watershed has a higher capacity
to deal with the noise and the linear gradient than the standard watershed.

5.3 Real data

This section contains experiments involving real cell images taken by fluores-
cence microscopy showing rat pheochromocytoma PC12 cells [22]. The im-
ages are optical planes extracted from 3D stacks. The cells are stained with
Wheat Germ Agglutinine (WGA-Alexa Fluor R©) which is a lectin that binds
N-glycosylated proteins, thus high-lighting the cell membrane. WGA-Alexa
Fluor R© creates a strong signal from the cell membrane but appears shortly af-
ter administration inside the cells due to constitutive endocytosis of the plasma
membrane. This causes a significant decrease in the desired signal from the
cell membrane and creates correspondingly an increase in undesired signal from
inside the cell. Figure 7 shows an example of a PC12 cell shortly (a) after
administration of WGA-Alexa Fluor R© and the same cell one hour later (b).
Clearly, the signal from the cell border decreases and simultaneously a brighter
signal from internalized vesicles emerges. Endocytosis is the underlying reason
for a vast majority of all mis-segmentations in our images, in contrast to the
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Gaussian noise which represents a minor problem. In this work, we shall use
these real images to test the ability of our proposed algorithms.

(a) (b)

Figure 7: Endocytosis of WGA. Shortly after administration of WGA-Alexa
Fluor R© there is a sharp and clear signal from the cell border (a). One hour later,
WGA-Alexa Fluor R©-stained intracellular vesicles, deriving from endocytosis of
small portions of the plasma membrane, create a strong signal from inside the
cell and at the same time depleting the signal strength from the desired cell
border (b). These processes of endocytosis are responsible for demanding tasks
of segmentation.

5.4 Convergence in time, t → ∞

This example contains one cell in addition to background, and it demonstrates
the influence of endocytosis on the segmentation. The image in Fig 8(a) was used
for segmentation. The method described §2.2 was used to obtain the marker
image (b). The white regions are the markers. Based on the marker image (b),
the segmentation using the standard watershed (c) has oscillating boundaries,
particularly where the endocytosed particles in the original image are close to
the boundary. A segmentation was also performed using the PCLS method. The
evolution of the level set function is shown for t = 0 (d), t = 10 (e) t = 50 (f) and
t = 100 (g). Note that the level set function approaches two piecewise constant
regions φ → {1 (dark) , 2 (bright)} at convergence. The interface labels the
watershed lines (h). The watershed lines in the level set watershed approach are
smoother than in (c). Evidently this method is more resistant to the influence
of endocytoced high intensity particles than the standard watershed. The panel
in (i) shows the convergence of the energy functional versus the number of
iterations (time t).
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(a) Image (b) Marker image (c) Watershed lines from
standard watershed

(d) Initially, φ(x, t = 0) = 2
everywhere.

(e) φ(x, t = 5) (f) φ(x, t = 10)

(g) φ(x, t = 100) (h) The watershed lines from
level set watershed, 100 iter-
ations
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(i) The energy functional as
a function of iterations

Figure 8: Watershed segmentation of one cell and a background region. The
image in (a) was used to create the marker image (b) which was used for a
standard watershed segmentation (c) and a level set watershed segmentation
using the Piecewise constant level set (PCLS). The level set function φ is shown
at different times in (d) t = 0) (e) t = 5, (f) t = 20 and (g) t = 100, showing
that the level set function approaches piecewise constant values. In this case,
φ → {1 (dark) , 2 (bright)}. The obtained watershed lines from the PCLS are
displayed in (h), apparently smoother than the watershed lines obtained for the
standard watershed (c). The panel (i) shows the energy functional (Eq. 14)
of the PCLS versus the iterations. The parameter settings for the level set
watershed are λ = 0.05, ∆t = 0.1, γ = 0.1, ǫ = 0.1.

5.5 The regularization parameter λ

The image in Fig 9(a) represents a challenging task of segmentation where the
signal from the cell membrane partly disappears or becomes blurry. It shows two
attached cells with an inhomogeneously distributed membrane marker, which is
the reason for the inhomogeneous signal. The automatically generated marker
image in (b) was used for segmentation by the standard watershed (c) and
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the Piecewise constant level set watershed (PCLS) (d-f). The regularization
parameter λ in the level set watershed was given different values (d) λ = 0,
(e) λ = 0.01 and (f) λ = 0.1, to demonstrate how λ affects the smoothness
of the final watershed lines. Apparently, higher values of λ produce smoother
watershed lines, which is to be expected. For a suitably chosen value of λ in
(f), the level set watershed segmentation produces smoother boundaries than
the standard watershed (c). Generally, a smooth solution is closer to the true
boundaries of the cells than an oscillating solution.

(a) (b) (c)

(d) (e) (f)

Figure 9: Watershed segmentation of two cells and a background region. The
image in (a) was used to automatically obtain the markers in (b) using the
method of §2.2. The marker was used for a standard watershed segmentation
(c) and a level set watershed segmentation (d-f). The PCLS watershed segmen-
tation was performed with increasing values of the regularization parameter λ
in (d) λ = 0, (e) λ = 0.01 and (f) λ = 0.1 to demonstrate the effect of λ.
Note how increasing values of λ create smoother watershed lines. It is also clear
that the level set watershed in (f) creates smoother watershed lines than the
standard watershed in (c). This example was created using parameter settings
of ∆t = 0.1, γ = 0.1, ǫ = 0.1, t = 300.

5.6 Comparing the three level set models

The three level set approaches and the standard watershed segmentation pro-
duce similar results applied to images with weak noise. This is shown in Fig 10,
where the high-quality image in (a) was used to automatically create the marker
image (b). Based on the marker image, a standard watershed segmentation was
performed (c) and also the three level set approaches, the Chan-Vese model (d),
the Binary level set (e) and the PCLS (f). Evidently, all four models produce
very similar segmentation results.
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(a) (b) (c)

(d) (e) (f)

Figure 10: Watershed segmentation of four cells and a background region. The
high-quality image in (a) with only weak noise was used to create the marker
image (b). The marker image was used as input for a standard watershed
segmentation (c) and for level set watershed segmentation (d-f) using the Chan-
Vese model (d), the Binary level set (e) and the PCLS (f). Apparently, applied
to images of high quality containing weak noise signals, all four models behave
very similar. The examples were run with parameter settings of (d) ∆t =
0.05, λ = 0.1, t = 200, (e) ∆t = 0.1, λ = 0.05, σ = 0.1, t = 200 and (f)
∆t = 0.1, λ = 0.1, γ = 0.02, ǫ = 0.5, t = 300.

5.7 Regularization applied to the level set function(s) or
the characteristic functions

The regularization term enables a smoothing of the watershed lines. This is
normally useful for segmentation of real images. However, a smoothing of the
watershed lines could also smooth junctions between cells, which is not always
appropriate.

In (8), we have used

R1(φ1, φ2) =

∫

Ω

4
∑

i=1

|∇ψi|dx. (19)

as the regularization functional. At convergence,
∫

Ω |∇ψi|dx is the length of the
boundary of region Ωi. In the original paper [47, 6], the regularization functional
was different, i.e.

R2(φ1, φ2) =

∫

Ω

2
∑

i=1

|∇φi|dx. (20)

From our numerical experiments, we have observed some interesting phenomena
with these two different regularizations. When we increase the regularization
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parameter λ, we would expect that the watershed lines are getting smoother.
This is observed in the experiments, especially see Fig. 11 which is segmented in
Fig. 12 for different values of λ and using two different regularization functionals
R1 and R2. However, the junctions behave differently. For R2, the corner of
the junction in the upper part of the watershed line is getting sharper when the
values of λ is getting bigger. While for R1, the junction is getting smoother
when the values of λ is getting bigger. For the PCLS, we can also replace R1

by

R2(φ) =

∫

Ω

|∇φ|dx. (21)

These two functionals produce different results. In [25], it was observed that
R1 can treat triple-junctions in a proper manner. It is known that R2 given
in (20) and (21) are not able to get symmetric triple junctions. Historically,
regularization functional R2 was first proposed in [6], while R1 was first proposed
in [28, 26, 27].

Oscillating watershed lines are not preferred for segmentation. However,
sharp corner may be preferred in some situations. These experiments show that
R1 should be used for these applications.

Figure 11: The image used in Fig. 12 to demonstrate the difference between
regularization functionals R1 and R2.

5.8 Challenging situations in real images

This example shows three PC12 cells with partly inhomogeneously labeled cell
membrane. Therefore, it represents a challenging segmentation, approaching the
limits of both the standard watershed and the level set watershed segmentation.
The image in Fig 13(a) was used to create markers automatically (b). The
marker image was then applied as input for the standard watershed (c) and
also the Binary watershed level set (d-f). The level set functions φ1 and φ2

are displayed in (d) and (e), respectively. The sign of the level set functions is
responsible for creating the four phases. The boundaries of the four phases are
drawn in (f), showing the final segmentation. Clearly, the watershed level set
(f) produces a better segmentation than the standard watershed (c), although
none of them is perfect.
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(a) λ = 0.01 (b) λ = 0.1 (c) λ = 1

(d) λ = 0.002 (e) λ = 0.02 (f) λ = 0.2

(g) λ = 0.07 (h) λ = 0.7 (i) λ = 7

(j) λ = 0.005 (k) λ = 0.05 (l) λ = 0.5

Figure 12: The difference between regularization functionals R1 and R2, demon-
strated on the image in Fig. 11. From left to right, the regularization parameter
λ was multiplied by 10. Pictures (a-c) were created using the Chan-Vese method
(see §4.1) with the regularization functional R2(φ1, φ2), and (d-f) were created
using regularization functional R1(φ1, φ2). Pictures (g-i) were computed us-
ing the Binary level set (see §4.2) with the regularization functional R2(φ1, φ2)
and and (j-l) were created using regularization functional R1(φ1, φ2). The right
column (largest λ) clearly shows the difference between the regularization func-
tionals. R2(φ1, φ2) creates sharper corners with the junctions than the regular-
ization functional R1(φ1, φ2). In the test, ∆t = 0.005 for all examples (a-l).
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(a) (b) (c)

(d) (e) (f)

Figure 13: The image in (a) was applied to create markers (b) for a standard
watershed segmentation (c) and also a watershed level set segmentation (d-f).
The four combinations of the sign of the level set functions φ1 (d) and φ2 (e)
settle the boundaries (f) of the characteristic functions ψi. Note that the level set
watershed (f) obtains a better segmentation result than the standard watershed
(c). These examples were executed with parameter settings of ∆t = 0.1, t = 200
and λ = 0.1.

5.9 Multiple objects and the Four-Color theorem

Selecting high-quality images in high-throughput experiments may involve a too
high degree of effort. Consequently, segmentation of lower quality images is often
a necessity. Therefore it is important to validate the segmentation protocol for
such images as well, and not solely for high-quality images. The image in Fig 14
(a) shows one optical plane from an image stack. It represents a severe challenge
for segmentation since the boundaries are partly blurred, broken and there exists
a significant amount of endocytosed particles. This image also demonstrates the
use of the Four-Color coding since this example requires the use of all four colors.
The image in Fig 14(a) was used to automatically construct the marker image
Fig 14(b) which was used as input for the standard watershed segmentation.
The obtained watershed lines are shown in Fig 14(c).

To compute the level set watershed segmentation, the Euclidean influence
zones fIZ (§3.1) were constructed based on the marker image in Fig 14(b).
The Euclidean influence zones were computed with the purpose of grouping
the markers in at most four groups according to the Four-Color theorem. The
result of this grouping is shown in Fig 15(a), where all markers are assigned
an integer from 1 → 4. The markers possessing the same integer value belong
to the same group. Note that all markers within each group are non-adjacent,
which is the crucial point. If they were adjacent, it would not be possible to
separate all markers within the same color. The topographical distance function
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was calculated around the set of all markers inside each color, and the level set
watershed was computed using the Binary level set. The obtained level set
functions φ1 and φ2 are shown in Fig 15(b) and Fig 15(c), respectively. The
two level set functions approach binary values of 0 (black) and 1 (white). The
watershed lines from the level set watershed are shown in Fig 15(d). Note how
the level set watershed (Fig 15(d)) produces smoother watershed lines than the
standard watershed (Fig 14(c)). The level set watershed also captures more of
the cells than the standard watershed, selected cells are indicated with asterisks.

(a)
 

 

0

0.2

0.4

0.6

0.8

1

(b)

(c)

Figure 14: An optical plane from an image stack (a) and the automatically
generated binary marker image (b) which was used for a standard watershed
segmentation (c).
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Figure 15: Segmentation of a high number of cells and demonstration of the
Four-Color coding. To compute the level set watershed, the Euclidean influence
zones fIZ were calculated around the marker regions in Fig 14 (b), where each
region in fIZ represents a specific marker region. The Four-Color theorem was
applied to fIZ , grouping the corresponding markers into four groups {1, 2, 3, 4},
shown in (a) where the background has the value zero and all markers belonging
to the same group have the same integer value. The Binary level set watershed
segmentation was calculated, and the level set functions φ1 and φ2 → {0, 1} at
convergence are displayed in (b) and (c). The watershed lines from the level
set watershed are shown in (d). Note how the level set watershed (d) produces
a smoother result than the standard watershed in Fig 14(c). The asterisks
indicate selected cells where the level set watershed captures more of the true
cell than the standard watershed. The level set watershed in this example was
executed with parameter settings ∆t = 0.1, t = 200, λ = 0.2, σ = 0.01, and the
regularization was applied to the characteristic functions ψi.

6 Conclusion

In this work we have combined the level set method [37, 47, 6, 28, 26, 27]
and the marker-controlled watershed segmentation [33, 31, 48, 49] to develop
a method for segmentation of real cells and other structures of similar nature.
A set of markers, also called initialization regions, were automatically created

30



by adaptive thresholding and iterative filling (§2.2). Such automated methods
are of high value in high-throughput experiments and other experimental setups
producing large amount of data. Based on the markers, the watershed distance
transform was computed from the topographical distance function [31]. We
then used the Four-Color theorem to group the markers into a maximum of
four groups, thus reducing the complexity of the problem. Inspired by [34], we
propose to compute the watershed lines around each group of markers using
three different level set approaches, §4.1 - §4.3. These level set methods were
tested for real and synthetic images of different complexity, and containing a
large number of cells. The experimental results show that all three level set
methods are able to perform a good segmentation of the given images.
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