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Abstract In this paper, we propose to investigate the
asymmetric version of the Unbiased registration and,
for the first time, analyze unbiased models with mutual
information based matching functionals. Most impor-
tantly, this paper examines the reproducibility and the
power to detect real changes of different computational
techniques in TBM. In particular, we compare match-
ing functionals (sum of squared differences and mutual
information), as well as large deformation registration
schemes (symmetric and asymmetric unbiased registra-
tion and viscous fluid registration) using serial MRI
scans of ten normal elderly patients from the prepara-
tory phase of the Alzheimer’s Disease Neuroimaging

This work was supported in part by NIH Grants U54 RR021813
and U01 AG024904. Igor Yanovsky was also supported by
NSF VIGRE Grant DMS-0601395 and CCB-NIH Grant 30886.
Paul Thompson was also supported by Grants R21 RR019771,
EB01651, AG016570, NS049194, and P41 RR13642.

I. Yanovsky
University of California, Los Angeles
Department of Mathematics
Los Angeles, CA 90095
E-mail: yanovsky@math.ucla.edu

P. Thompson
UCLA School of Medicine
Laboratory of Neuro Imaging
Los Angeles, CA 90095
E-mail: thompson@loni.ucla.edu

S. Osher
University of California, Los Angeles
Department of Mathematics
Los Angeles, CA 90095
E-mail: sjo@math.ucla.edu

A. Leow
UCLA School of Medicine
Laboratory of Neuro Imaging
Los Angeles, CA 90095
E-mail: feuillet@ucla.edu

Initiative (ADNI) and ten Alzheimer’s subjects from
the ADNI follow-up phase. Our results show that the
unbiased methods, both symmetric and asymmetric,
have higher reproducibility. The unbiased methods are
less likely to produce changes in the absence of any real
physiological change. Moreover, they are also better in
detecting biological deformations by penalizing any bias
in the corresponding statistical maps.

Keywords Mutual information · image registration ·
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1 Introduction

In recent years, computational neuroimaging has be-
come an exciting interdisciplinary field with many ap-
plications in functional and anatomic brain mapping,
image-guided surgery, and multimodality image fusion
[1–9]. The goal of image registration is to align, or spa-
tially normalize, one image to another. In multi-subject
studies, this reduces subject-specific anatomic differ-
ences by deforming individual images onto a popula-
tion average brain template. When applied to serial
scans of human brain, image registration offers tremen-
dous power in detecting the earliest signs of illness, un-
derstanding normal brain development or aging, and
monitoring disease progression [10–13]. Recently, there
has been an expanding literature on various nonrigid
registration techniques, with different image matching
functionals, regularization schemes, and numerical im-
plementations. In [14,15] our group systematically ex-
amined the statistical properties of Jacobian maps (the
determinant of the local Jacobian operator applied to
the deformations), and proposed an unbiased large -
deformation image registration approach. In this con-
text, unbiased means that the Jacobian determinants
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of the deformations recovered between a pair of im-
ages follow a log-normal distribution, with zero mean
after log-transformation. We argued that this distri-
bution is beneficial when recovering change in regions
of homogeneous intensity, and in ensuring symmetri-
cal results when the order of two images being regis-
tered is switched. We applied this method to a longi-
tudinal MRI dataset from a single subject, and showed
promising results in eliminating spurious signals. We
also noticed that different registration techniques, when
applied to the same longitudinal dataset, may some-
times yield visually very different Jacobian maps, caus-
ing problems in interpreting local structural changes.
Given this ambiguity and the increasing use of registra-
tion methods to measure brain change, more informa-
tion is required concerning the baseline stability, repro-
ducibility, and statistical properties of signals generated
by different nonrigid registration techniques.

In this paper, we introduce a novel Asymmetric Un-
biased model (by contrast with the Symmetric Unbi-
ased model) and, for the first time, we analyze unbi-
ased models with mutual information based matching
functionals (prior work has focused on the case where
the summed squared intensity difference is used as the
criterion for registration). Most importantly, we aim to
provide quality calibrations for different non-rigid reg-
istration techniques in TBM. In particular, we com-
pare two common matching functionals: L2, or the sum
of squared intensity differences, versus mutual informa-
tion, and three regularization techniques (fluid registra-
tion versus the Asymmetric Unbiased and Symmetric
Unbiased techniques). Our experiments are designed to
decide which registration method is more reproducible,
more reliable, and offers less artifactual variability in
regions of homogeneous image intensity. Following our
analyses in the preparatory phase of the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) [16], the foun-
dation of our calibrations is based on the assumption
that, by scanning healthy normal human subjects twice
over a 2-week period using the same protocol, serial
MRI scan pairs should not show any systematic bio-
logical change. Therefore, any regional structural dif-
ferences detected using TBM over such a short inter-
val may be assumed to be errors. We apply statistical
analysis to the profile of these errors, providing infor-
mation on the reliability, reproducibility and variabil-
ity of different registration techniques. Moreover, serial
images of 10 subjects from the ADNI follow-up phase
(images acquired one year apart) were analyzed in a
similar fashion and compared to the ADNI baseline
data. In images collected one year apart, real anatom-
ical changes are present; neurobiological changes due
to aging and dementia include widespread cell shrink-

age, regional gray and white matter atrophy and ex-
pansion of fluid-filled spaces in the brain. Thus, a good
computational technique should be able to differenti-
ate between longitudinal image pairs collected for the
ADNI baseline (2-week) and follow-up (1-year) phases.
We refer to prior papers for details of the ADNI acqui-
sition protocol, but briefly, all subjects were scanned
with a standardized MRI protocol, developed after a
major effort evaluating and comparing 3D T1-weighted
sequences for morphometric analyses [17].

In the experiments that follow, all scans were col-
lected according to the standard ADNI MRI protocol
(http://www.loni.ucla.edu/ADNI/Research/Cores/),
which acquires a high-resolution sagittal T1-weighted
3D MP-RAGE sequence for each subject, with a re-
constructed voxel size of 0.9375 × 0.9375 × 1.2 mm3.
Additional image corrections were also applied, using
a processing pipeline at the Mayo Clinic, consisting
of: (1) a procedure termed GradWarp for correction
of geometric distortion due to gradient non-linearity
[18], (2) a “B1-correction”, to adjust for image inten-
sity non-uniformity using B1 calibration scans [17], (3)
“N3” bias field correction, for reducing intensity inho-
mogeneity [19], and (4) geometrical scaling, according
to a phantom scan acquired for each subject [17], to ad-
just for scanner- and session-specific calibration errors.
Additional phantom-based geometric corrections were
applied to ensure spatial calibration was kept within a
specific tolerance level for each scanner involved in the
ADNI study [20].

At this point, we would like to motivate the unbi-
ased approach, which couples the computation of defor-
mations with statistical analyses on the resulting Jaco-
bian maps. As a result, the unbiased approach ensures
that deformations have intuitive axiomatic properties
by penalizing any bias in the corresponding statisti-
cal maps. In the following sections, we describe the
mathematical foundations of this approach, define en-
ergy functionals for minimization, and perform thor-
ough statistical analyses to demonstrate the advantages
of the unbiased registration models.

2 Unbiased Large-Deformation Image
Registration

We first introduce the notation used in this paper. Through-
out this paper, we denote the vectors by bold fonts and
scalars by regular fonts. Let Ω be an open and bounded
domain in Rn, for arbitrary n. Without loss of gener-
ality, assume that the volume of Ω is 1, i.e. |Ω| = 1.
Let I1 : Ω → R and I2 : Ω → R be the two images
to be registered. We seek to estimate a transformation
g : Ω → Ω such that I2 matches I1 when deformed
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by g. In this paper, we will restrict this mapping to be
differentiable, one-to-one, and onto. We denote the Ja-
cobian matrix of a deformation g to be Dg. The inverse
mapping of g is denoted by g−1.

The displacement field u(x) from the position x in
the deformed image I2 ◦ g(x) back to I2(x) is defined
in terms of the deformation g(x) by the expression
g(x) = x − u(x) at every point x ∈ Ω. Thus, we con-
sider the problems of finding g and u to be equivalent.
It is sometimes more convenient to write expressions in
terms of either g or u. For instance, we can denote the
determinant of the Jacobian matrix of deformation g
as either |Dg(x)| or |D(x− u(x))|.

We now describe the construction of the Unbiased
Large-Deformation Image Registration. We associate
three probability density functions (PDFs) to g, g−1,
and the identity mapping id:

Pg(x) = |Dg(x)|, (1)

Pg−1(x) = |Dg−1(x)|, (2)

Pid(x) = 1. (3)

By associating deformations with their corresponding
global density maps, we can now apply information the-
ory to quantify the magnitude of deformations. In our
approach, we choose the Kullback-Leibler (KL) diver-
gence and symmetric Kullback-Leibler (SKL) distance.
The KL divergence between two probability density
functions, X and Y , is defined as

KL(X,Y ) =
∫

Ω

X log
X

Y
dx ≥ 0. (4)

We define the SKL distance as

SKL(X, Y ) = KL(X,Y ) + KL(Y, X). (5)

The Unbiased method solves for the deformation g (or,
equivalently, for the displacement u) minimizing the
energy functional E, consisting of the image matching
term F and the regularizing term R which is based on
KL divergence or SKL distance. The fidelity term F

dependents on I2 and I1, as well as the displacement u.
The general minimization problem can be written as

E(I1, I2,u) = F (I1, I2,u) + λR(u),

inf
u

E(I1, I2,u).
(6)

Here, λ > 0 is a weighting parameter.

2.1 Asymmetric Unbiased Registration

To quantify the magnitude of deformation g, in this pa-
per we introduce a new regularization term RKL, which
is an asymmetric measure between Pid and Pg:

RKL(g) = KL(Pid, Pg). (7)

This regularization term can be shown to be

RKL(g) =
∫

Ω

Pid log
Pid

Pg
dx =

∫

Ω

− log |Dg(x)|dx

=
∫

Ω

|Dg−1(y)| log |Dg−1(y)|dy.
(8)

Thus, the energy functional in (6) implementing Asym-
metric Unbiased registration can be written as

E(I1, I2,u) = F (I1, I2,u)

−λ

∫

Ω

log |D(x− u(x))|dx,
(9)

for some distance measure F between I2(x − u) and
I1(x).

2.2 Symmetric Unbiased Registration

In this section, we describe the regularization functional
based on the symmetric KL distance between Pid and
Pg:

RSKL(g) = SKL(Pid, Pg). (10)

As shown in [14,15] the regularization term is linked to
statistics on Jacobian maps as follows

RSKL(g) = KL(Pg, Pid) + KL(Pg−1 , Pid)
= KL(Pg, Pid) + KL(Pid, Pg)
= KL(Pid, Pg−1) + KL(Pid, Pg)
= KL(Pid, Pg−1) + KL(Pg−1 , Pid)

=
∫

Ω

(|Dg(x)| − 1
)
log |Dg(x)|dx

=
∫

Ω

(|Dg−1(y)| − 1
)
log |Dg−1(y)|dy.

(11)

The energy functional employing Symmetric Unbiased
registration can be rewritten as

E(I1, I2,u) = F (I1, I2,u)

+λ

∫

Ω

(|D(x− u(x))| − 1
)
log |D(x− u(x))|dx,

(12)

for some distance measure F . Notice that the symmetric
unbiased regularizing functional is pointwise nonnega-
tive, while the asymmetric unbiased regularizer in (8)
can take either positive or negative values locally.

3 Fidelity Metrics

In this paper, the matching functional F takes two
forms: the L2 norm (the sum of squared intensity differ-
ences) and MI (mutual information). These functionals
have each been widely used in the past for nonrigid reg-
istration, to measure the intensity agreement between
a deforming image and the target image. We briefly
describe both distances in this section.



4

L2-Fluid

L2-Asymmetric Unbiased

L2-Symmetric Unbiased

time 2 to time 1 time 1 to time 2 products of Jacobians

Fig. 1 Nonrigid registration was performed on an image pair from one of the subjects from the ADNI Baseline study (serial MRI images
acquired two weeks apart) using L2-Fluid (row 1), L2-Asymmetric Unbiased (row 2), and L2-Symmetric Unbiased (row 3) registration
methods. Jacobian maps of deformations from time 2 to time 1 (column 1) and time 1 to time 2 (column 2) are superimposed on the
target volumes. The unbiased methods generate less noisy Jacobian maps with values closer to 1; this shows the greater stability of
the approach when no volumetric change is present. Column 3 examines the inverse consistency of deformation models. Products of
Jacobian maps generated using all three models are shown, for forward direction (time 1 to time 2) and backward direction (time 2 to
time 1). For the L2-based unbiased methods, the products of the Jacobian maps are less noisy, with values closer to 1, showing better
inverse consistency.

3.1 L2-norm

The L2-norm matching functional is suitable when the
images have been acquired through similar sensors and
thus are expected to present the same intensity range
and distribution. The L2 distance between the deformed
image I2(x− u) and target image I1(x) is defined as

FL2(I1, I2,u) =
1
2

∫

Ω

(
I2(x− u(x))− I1(x)

)2
dx. (13)

Computing the first variation of functional FL2 gives
the following gradient

∂uFL2(I1, I2,u) = −[I2(x− u(x))− I1(x)]∇I2|x−u.

(14)

3.2 Mutual Information

Mutual information is a measure of how much informa-
tion one random variable has about another. The use
of mutual information for image registration was first
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Fig. 2 (a) KL divergence and (b) SKL distance per iteration are
shown for L2-Fluid (solid red), L2-Asymmetric Unbiased (solid
blue), and L2-Symmetric Unbiased (dashed green) methods. For
L2-Fluid, both KL and SKL measures increase. Even though the
Asymmetric Unbiased method explicitly minimizes the KL dis-
tance, and the Symmetric Unbiased model minimizes the SKL
distance, both of the KL and SKL measures stabilize for both
unbiased methods.

introduced in [21] and [22]. One of the main advantages
of using mutual information is that it can be used to
align images of different modalities, without requiring
knowledge of the relationship (joint intensity distribu-
tion) of the two registered images. We refer the readers
to [23–25] for relevant discussions on mutual informa-
tion.

To define the mutual information between the de-
formed image I2(x−u) and the target image I1(x), we
follow the notations in [23], where pI1 and pI2

u are used
to denote the intensity distributions estimated from
I1(x) and I2(x− u), respectively. An estimate of their
joint intensity distribution is denoted as pI1,I2

u . In this
probabilistic framework, the link between two modali-
ties is fully characterized by a joint density.

We let i1 = I1(x), i2 = I2(x−u(x)) denote intensity
values at point x ∈ Ω. Given the displacement field u,
the mutual information computed from I1 and I2 is
provided by

MII1,I2
u =

∫

R2
pI1,I2
u (i1, i2) log

pI1,I2
u (i1, i2)

pI1(i1)pI2
u (i2)

di1di2.

(15)

We seek to maximize the mutual information between
I2(x−u) and I1(x), or equivalently, minimize the neg-
ative of MII1,I2

u :

FMI(I1, I2,u) = −MII1,I2
u . (16)

The gradient of (16) is derived in Appendix C and is
given by

∂uFMI(u) =
1
|Ω|

[
Qu∗ ∂ψ

∂ξ2

]
(I1(x), I2(x−u))∇I2(x−u),

(17)
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Fig. 3 Histograms of voxel-wise deviation gains (a) L2-Fluid
over L2-Asymmetric Unbiased and (b) L2-Fluid over L2-
Symmetric Unbiased for one of the subjects for the forward di-
rection (time 2 to time 1) and backward direction (time 1 to time
2). The histograms are skewed to the right, indicating the supe-
riority of Asymmetric Unbiased and Symmetric Unbiased regis-
tration methods over Fluid registration. A paired t test shows
significance (p < 0.0001).

where |Ω| is the volume of Ω, Qu is defined as

Qu(i1, i2) = 1 + log
pI1,I2
u (i1, i2)

pI1(i1)pI2
u (i2)

, (18)

and ψ(ξ1, ξ2) is a two-dimensional Parzen windowing
kernel, which is used to estimate the joint intensity dis-
tribution from I2(x − u) and I1(x). Here, we use the
Gaussian kernel with variance σ2:

ψ(ξ1, ξ2) = Gσ(ξ1, ξ2) =
1

2πσ2
e
−(ξ2

1+ξ2
2)

2σ2 . (19)

4 Minimization of Energy Functionals

In general, we expect minimizers of the energy func-
tional E(u) to exist. Computing the first variation of
the functional in (6), we obtain the gradient of E(I1, I2,u),
namely ∂uE(I1, I2,u). We define the force field f , which
drives I2 into registration with I1, as

f(x,u) = ∂uE(I1, I2,u)
= ∂uF (I1, I2,u) + λ∂uR(u).

(20)

Here, R(u) is either RKL(u) or RSKL(u). Explicit ex-
pressions for components of ∂uR(u), in both cases, are
derived in Appendices A and B for two and three dimen-
sional cases, respectively. Also, the gradient ∂uF (I1, I2,u)
depends on the choice of the fidelity term.
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MI-Fluid

MI-Asymmetric Unbiased

MI-Symmetric Unbiased

time 2 to time 1 time 1 to time 2 products of Jacobians

Fig. 4 Nonrigid registration was performed on an image pair from one of the subjects from the ADNI Baseline study (serial MRI
images acquired two weeks apart) using MI-Fluid (row 1), MI-Asymmetric Unbiased (row 2), and MI-Symmetric Unbiased (row
3) registration methods. Jacobian maps of deformations from time 2 to time 1 (column 1) and time 1 to time 2 (column 2) are
superimposed on the target volumes. The unbiased methods generate less noisy Jacobian maps with values closer to 1; this shows the
greater stability of the approach when no volumetric change is present. Column 3 examines the inverse consistency of deformation
models. Products of Jacobian maps generated using all three models are shown, for the forward direction (time 1 to time 2) and
backward direction (time 2 to time 1). For the mutual information-based unbiased methods, the products of the Jacobian maps are
less noisy, with values closer to 1, showing better inverse consistency.

Given the force field, the most straightforward way
to minimize (6) might seem to involve parameterizing
the descent direction by an artificial time τ ,

∂u(x, τ)
∂τ

= −f(x,u(x, τ)). (21)

However, in our case, we do not solve Euler-Lagrange
equations using the gradient descent method. In order
to regularize the flow, we employ the fluid regulariza-
tion proposed in [6]. Given the velocity field v, the fol-
lowing partial differential equation can be solved to ob-

tain the displacement field u:

∂u
∂τ

= v − v · ∇u. (22)

The instantaneous velocity as in [25] is obtained by con-
volving f with Gaussian kernel Gσ of variance σ2:

v = Gσ ∗ (−f(x,u)). (23)

This equation can be solved efficiently using the Fast
Fourier transform (FFT).

To avoid possible confusion, we summarize the meth-
ods we will be referring to in our subsequent analyses.
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Fig. 5 (a) KL divergence and (b) SKL distance per iteration
are shown for the MI-Fluid (solid red), MI-Asymmetric Unbiased
(solid blue), and MI-Symmetric Unbiased (dashed green) meth-
ods. For MI-Fluid, both KL and SKL measures increase. Even
though the Asymmetric Unbiased method explicitly minimizes
the KL distance, and the Symmetric Unbiased model minimizes
the SKL distance, both the KL and SKL measures stabilize for
both unbiased methods.

In later discussions, minimization of the following en-
ergies

E(I1, I2,u) = FL2(I1, I2,u) + λRKL(u) (24)

and

E(I1, I2,u) = FL2(I1, I2,u) + λRSKL(u) (25)

using equations (20), (23), (22) will be referred to as
L2-Asymmetric Unbiased and L2-Symmetric Unbiased
models, respectively. The model above, provided λ = 0,
will be referred to as the L2-Fluid model.

Similarly, minimization of

E(I1, I2,u) = FMI(I1, I2,u) + λRKL(u) (26)

and

E(I1, I2,u) = FMI(I1, I2,u) + λRSKL(u) (27)

will be referred to as the MI-Asymmetric Unbiased and
MI-Symmetric Unbiased models, respectively. Such mod-
els, with λ = 0, define the MI-Fluid model.

5 Statistical Analysis

5.1 Statistical testing on the deviation of log Jacobian
maps in the absence of changes

Based on the authors’ approach in [14], we observe
that, given that there is no systematic structural change
within two weeks, any deviation of the Jacobian map
from one should be considered error. Thus, we expect
that a better registration technique would yield log |Dg|
values closer to 0 (i.e., smaller log Jacobian deviation
translates into better methodology). Mathematically speak-
ing, one way to test the performance is to consider the
deviation map dev of the logged (i.e., logarithmically
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Fig. 6 Histograms of voxel-wise deviation gains (a) MI-Fluid
over MI-Asymmetric Unbiased and (b) MI-Fluid over MI-
Symmetric Unbiased for one of the subjects, for the forward direc-
tion (time 2 to time 1) and backward direction (time 1 to time 2).
The histograms are skewed to the right, indicating the superiority
of Asymmetric Unbiased and Symmetric Unbiased registration
methods over Fluid registration. Paired t test shows significance
(p < 0.0001).

transformed) Jacobian away from zero, defined at each
voxel as

dev(x) =
∣∣ log |Dg(x)|

∣∣. (28)

For two different registration methods A and B, we de-
fine the voxel-wise deviation gain of A over B (denoted
by SA,B) as

SA,B(x) = devA(x)− devB(x). (29)

For the ADNI baseline dataset (in which patients are
scanned twice with MRI, two weeks apart), two distinct
types of t tests are used, a within-subject paired t test
and a group paired t test. A within-subject paired t test
is conducted for each subject by pooling all voxels inside
a region of interest, as defined by the ICBM whole brain
mask (the ICBM brain is a standardized population
average image, defined by the International Consortium
for Brain Mapping [26]). This determines whether two
methods differ significantly inside the whole brain (for
each subject). A group paired t test, on the other hand,
is performed across subjects, by computing a voxel-wise
t-map of deviation gains. In this case, to statistically
compare the performance of two registration methods,
we rely on the standard t test on the voxel mean of S. To
construct a suitable null hypothesis, we notice that the
following relation would hold, assuming B outperforms
A

SA,B > 0. (30)
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Thus, the null hypothesis in this case would be testing
if the mean deviation gain is zero

H0 : µSA,B = 0. (31)

To determine the ranking of A and B, we have to con-
sider one-sided alternative hypotheses. For example, when
testing if B outperforms A, we use the following alter-
native hypothesis

H1 : µSA,B > 0. (32)

The voxel-wise T statistic, defined as

TSA,B (x) =
√

n · SA,B(x)
σSA,B (x)

, (33)

where

SA,B(x) =
∑

i SA,B
i (x)
n

, (34)

and

(
σSA,B (x)

)2 =
∑

i

(
SA,B

i (x)− SA,B(x)
)2

n− 1
, (35)

thus follows the Student’s t distribution under the null
hypothesis and may be used to determine the p-value
that the null hypothesis is true. If the alternative hy-
pothesis is accepted, we confirm that sequence B out-
performs A at point x. Otherwise, we would rank A and
B equally if the null hypothesis is not rejected.

5.2 Detecting Real Changes - Statistical testing on the
mean log Jacobian

For both the ADNI follow-up dataset (in which patients
are scanned twice with MRI, one year apart) and ADNI
baseline dataset, we create a voxel-wise t map using the
local log Jacobian values of the ten subjects, allowing
us to test the validity of the zero mean assumption. To
simplify the notation, we introduce J to denote J =
|Dg|. The following voxel-wise T statistic compared to
a two-tailed Student’s t distribution may then be used
to test the above null hypothesis

Tlog J (x) =
√

n · log J(x)
σlog J(x)

, (36)

where

log J(x) =
∑

i log Ji(x)
n

, (37)

and

(
σlog J(x)

)2 =
∑

i

(
log Ji(x)− log J(x)

)2

n− 1
. (38)

We reject the null hypothesis if the p value calculated
above exceeds a pre-set threshold based on a suitable
confidence interval. Notice the voxel-wise variance of
log J provides us with a way to assess the repeatability
of a deformation method, i.e., measuring the voxel-wise
spread of the given multiple observations (with higher
variance corresponding to lower repeatability).

5.3 Permutation Testing to Correct Multiple
Comparisons

To determine the overall global effects of different regis-
tration methods on the deviation of log Jacobian maps
throughout the brain, we performed permutation tests
to adjust for multiple comparisons [27,28]. Following
the analyses in [16], we resampled the observations by
randomly flipping the sign of SA,B

i (i = 1, 2, ..., n) un-
der the null hypothesis. For each permutation, voxel-
wise t tests are computed. We then compute the per-
centage of voxels inside the chosen ROI (in this case
the ICBM mask) with T statistics exceeding a certain
threshold. The multiple comparisons corrected p value
may be determined by counting the number of permu-
tations whose above-defined percentage exceeds that of
the un-permuted observed data. This is comparable to
‘set-level inference’ in the widely-used SPM (Statistical
Parametric Mapping) functional image analysis pack-
age [29]. For example, we say that sequence B outper-
forms A on the whole brain if this corrected p value is
smaller than 0.05 (that is, less than 5% of all permu-
tations have the above-defined percentage greater than
that of the original data). All possible (210 = 1024)
permutations were considered in determining the final
corrected p value.

5.4 Cumulative Distribution Function (CDF)

To visually assess the global significance level of the
voxel-wise t tests on deviation gains and log-Jacobian
values, we also employed the cumulative distribution
function (CDF) plot, as in several prior studies [30–
33]. In brief, we plot observed cumulative probabilities
against the theoretical distribution under the null hy-
pothesis. These CDF plots are commonly created as
an intermediate step, when using the false discovery
rate (FDR) method to assign overall significance values
to statistical maps [34–37]. As they show the propor-
tion of supra-threshold voxels in a statistical map, for a
range of thresholds, these CDF plots (sometimes called
Q-Q plots) offer a measure of the effect size in a sta-
tistical map. They also may be used to demonstrate
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Baseline Study

(a) Volume (b) L2-Fluid (c) L2-Asym.Unbiased (d) L2-Sym.Unbiased

Fig. 7 Nonrigid registration was performed on the ADNI Baseline study (serial MRI images acquired two weeks apart) of ten normal
elderly subjects using L2-Fluid (column 2), L2-Asymmetric Unbiased (column 3), L2-Symmetric Unbiased (column 4) registration
methods. For each method, the mean of the resulting 10 Jacobian maps is superimposed on one of the brain volumes. Visually, L2-
Fluid generates a noisy mean map, while maps generated using L2-Asymmetric Unbiased and L2-Symmetric Unbiased methods are
less noisy with values closer to 1. For all deformation models, regions with least stability, due to both spatial distortion and intensity
inhomogeneity, are the brain stem, thalamus, and ventricles.

Table 1 Global T statistics for all ten subjects testing whether Symmetric Unbiased registration (method B) outperforms Fluid
registration (method A) when coupled with L2.

Subject # 1 2 3 4 5 6 7 8 9 10

SA,B 0.0639 0.0337 0.0758 0.101 0.0968 0.0581 0.473 0.583 0.288 0.238

σ2
SA,B 0.00342 0.00102 0.00567 0.00906 0.00926 0.00416 0.185 0.386 0.0618 0.0515

TSA,B 542 524 499 525 499 447 546 465 575 520

Table 2 Global T statistics for all ten subjects testing whether Symmetric Unbiased registration (method B) outperforms Fluid
registration (method A) when coupled with mutual information.

Subject # 1 2 3 4 5 6 7 8 9 10

SA,B 0.0697 0.0262 0.0399 0.0342 0.0379 0.0820 0.0853 0.0774 0.0489 0.0773

σ2
SA,B 0.00579 0.000774 0.00156 0.00138 0.00138 0.00708 0.00845 0.00698 0.00232 0.00529

TSA,B 455 468 501 456 505 484 460 460 504 527

which methodological choices influence the effect size
in a method that creates statistical maps [30,32,31].

In the case of deviation gains S of a worse technique
A over a better technique B in the ADNI baseline data,
we expect a CDF curve to lie above the Null line, in the
sense that a better technique exhibits less systematic
changes. In the case of log-Jacobian values, a better
registration technique, on the other hand, should be
able to separate the CDF curves between ADNI base-
line and follow-up phases (this is what we refer to as
the separation of CDF curves in the presence of real
physiological changes).

6 Results

In this section, we tested the Asymmetric Unbiased and
Symmetric Unbiased models and compared the results
to those obtained using the Fluid registration model [6,
25]. Of note, even though Asymmetric Unbiased and
Symmetric Unbiased methods minimize different en-
ergy functionals, our experiments showed that they gen-
erate very similar maps. For each regularization tech-
nique, we employed both L2 and mutual information
matching functionals (see equations (24)-(27)).
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To obtain a fair comparison, re-gridding was not
employed. Re-gridding is a method to relax the energy
computed from the linear elasticity prior after a certain
number of iterations, which allows large-deformation
mappings to be recovered without any absolute penalty
on the displacement field (other than via the smooth-
ness constraint on the velocity field which is integrated
to give the displacement) [6]. It is essentially a memory-
less procedure, as how images are matched after each
re-gridding is independent of the final deformation be-
fore the re-gridding, rendering the comparison of final
Jacobian fields and cost functionals problematic. More-
over, we consider the strategy of re-gridding, through
the relaxation of deformation fields over time, to be less
rigorous from a theoretical standpoint, as the imposi-
tion of a regularizer can be used to secure distributional
properties in the resulting statistics (e.g., symmetric
log-Jacobian).

6.1 ADNI Baseline Scans

In this section, nonlinear registration was performed
on a dataset that we shall refer to as the “ADNI Base-
line” dataset, collected during the preparatory phase
of the ADNI project, which includes serial MRI im-
ages of ten normal elderly subjects acquired two weeks
apart. Each of the ten pairs of scans is represented on
a 128 × 160 × 128 grid. Here, the foundation of cali-
brations is based on the assumption that, by scanning
normal control human subjects serially within a two-
week period using the same MRI protocol, no system-
atic structural changes should be recovered.

In our first experiment, we compared methods based
on L2 matching (L2-Fluid, L2-Asymmetric Unbiased,
and L2-Symmetric Unbiased). Uniform values of λ =
500 and λ = 1000 were used for all deformations using
L2-Symmetric Unbiased and L2-Asymmetric Unbiased
algorithms, respectively. Since the Asymmetric Unbi-
ased model quantifies only the forward deformation, the
weight of the corresponding regularization functional is
half the magnitude of that of the Symmetric Unbiased
model, and hence, a weighting parameter twice as large
should be used.

Figures 1-3 show the results of registering a pair
of serial MRI images for one of the subjects (subject
3). The deformation was computed in both directions
(time 2 to time 1, and time 1 to time 2) using meth-
ods based on L2 matching. In Figure 1, Jacobian maps
of deformations are superimposed on brain volumes.
Both Asymmetric Unbiased and Symmetric Unbiased
methods generate less noisy Jacobian maps with val-
ues closer to the identity mapping, which shows the

Baseline Study

L2-Fluid vs. L2-Asym.Unbiased L2-Fluid vs. L2-Sym.Unbiased

Fig. 8 Voxel-wise paired t test for the deviation gain S empiri-
cally thresholded at 2.82 (p = 0.005 on the voxel level with 9 de-
grees of freedom), showing where L2-Asymmetric Unbiased and
L2-Symmetric Unbiased registration outperform L2-Fluid regis-
tration (regions in red) with statistical significance on a voxel
level. In contrast, there are no voxels with T values smaller than
-2.82, indicating that Fluid registration does not outperform un-
biased methods at any voxel. Hence, the visualization of voxel-
wise paired t test with a threshold of -2.82 is omitted.

superior stability of the Unbiased approach in the ab-
sence of physiological changes. We also visually assessed
the inverse consistency of the mappings [38] by con-
catenating forward and backward Jacobian maps (in
an ideal situation, this operation should yield the iden-
tity). Again, we observe noticeable visual differences
between the results obtained using the unbiased meth-
ods and Fluid registration. Figure 2 plots the KL di-
vergence and SKL distance measures for each of the
L2-based methods. For L2-Fluid method, both KL and
SKL measures increase with increasing numbers of it-
erations. On the other hand, even though the Asym-
metric Unbiased method minimizes the KL divergence
and the Symmetric Unbiased model minimizes the SKL
distance, these two measures stabilize for both unbiased
methods. Figure 3 shows the histograms of voxel-wise
deviation gains of L2-Fluid over L2-Asymmetric Unbi-
ased as well as L2-Fluid over L2-Symmetric Unbiased.
The histograms are skewed to the right, indicating the
superiority of both unbiased registration methods over
Fluid registration.

Of note, we have also considered a different devia-
tion map, defined as dev2(x) =

∣∣|Dg(x)| − 1
∣∣, in place

of (28). We performed statistical analyses with this def-
inition of deviation gain, which yielded very similar re-
sults. These results are therefore not shown in this pa-
per.

In Table 1, we compared L2-Fluid and L2-Symmetric
Unbiased methods, conducting a within-subject paired
t test inside the ICBM mask for each of the ten sub-
jects. In this case, p < 0.0001 for all subjects, indicating
that the Symmetric Unbiased registration, when cou-
pled with L2 matching cost functional, produces more
reproducible maps with less variability.
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Baseline Study

(a) MI-Fluid (b) MI-Sym.Unbiased

Fig. 9 Nonrigid registration was performed on the ADNI Base-
line study (serial MRI images acquired two weeks apart) of
ten normal elderly subjects using MI-Fluid (column 1) and MI-
Symmetric Unbiased (column 2) registration methods. For each
method, the mean of the resulting 10 Jacobian maps is superim-
posed on one of the brain volumes. Visually, MI-Fluid generates a
noisy mean map, while map generated using MI-Symmetric Un-
biased method is less noisy with values closer to 1. For both
deformation models, regions with least stability, due to both
spatial distortion and intensity inhomogeneity, are the brain
stem, thalamus, and ventricles. The results obtained using MI-
Asymmetric Unbiased method are similar to those obtained using
MI-Symmetric Unbiased method, and are therefore omitted.

Figure 7 shows the mean Jacobian maps obtained
using L2-Fluid, L2-Asymmetric Unbiased, and L2- Sym-
metric Unbiased registration algorithms. Jacobian maps
generated using unbiased models have values closer to
1, whereas L2-Fluid model generated noisy mean maps.
Figure 8, shows the results when performing 3D voxel-
wise paired t tests for the deviation gain of L2-Fluid
over L2-Asymmetric Unbiased and L2-Fluid over L2-
Symmetric Unbiased. T maps for the deviation gains
are empirically thresholded at 2.28 (p = 0.005 on the
voxel level with 9 degrees of freedom) to show statistical
significance.

Figure 11(a) shows results obtained using Multiple
Comparison Analysis using permutation testing on de-
viation gains of L2-Fluid over L2-Symmetric Unbiased.
The results indicate that out of 1024 permutations, no
permutation yields a larger percentage of voxels with
p < 0.05 than the observed data, which indicates that
L2-Symmetric Unbiased method outperforms L2-Fluid
with p < 0.001.

Baseline Study

MI-Fluid vs. MI-Asym.Unbiased MI-Fluid vs. MI-Sym.Unbiased

Fig. 10 Voxel-wise paired t test for the deviation gain S empiri-
cally thresholded at 2.82 (p = 0.005 on the voxel level with 9 de-
grees of freedom), showing where MI-Asymmetric Unbiased and
MI-Symmetric Unbiased registration outperform MI-Fluid reg-
istration (regions in red) with statistical significance on a voxel
level. In contrast, there are no voxels with T values smaller than -
2.82, indicating that Fluid registration does not outperform unbi-
ased methods at any voxel. Hence, the visualization of voxel-wise
paired t test with a threshold of -2.82 is omitted.

To emphasize the differences between the distribu-
tions of log Jacobian values for Fluid and unbiased
(both asymmetric and symmetric) methods, in Figure
12, we plotted the cumulative distribution function of
the p-values in deviation gains as defined in (29). In
these plots, the interval p ∈ [0, 0.05] is the most impor-
tant. For a null distribution, this cumulative plot falls
along the line y = x in xy-plane, as represented by the
dashed black line. Larger upward inflections of the CDF
curve near the origin are associated with significant
deviation gains, indicating that both Asymmetric Un-
biased and Symmetric Unbiased methods outperform
Fluid method in being less likely to exhibit structural
changes in the absence of systematic biological changes.

In our second experiment, we compared the perfor-
mance of methods based on mutual information match-
ing (MI-Fluid, MI-Asymmetric Unbiased, and MI- Sym-
metric Unbiased). As for methods based on L2 match-
ing, Figures 4-6 demonstrate MI-Asymmetric Unbiased
and MI-Symmetric Unbiased methods to produce in-
verse consistent maps with less variability. Table 2 shows
the results of within-subject paired t test for all ten sub-
jects. The results, based on mean Jacobian maps for all
subjects, show that the Unbiased regularization tech-
nique outperforms Fluid registration with confirmed
statistical significance (Figures 9, 10, 11(b), and 13).

Lastly, we compared L2 and mutual information
cost functionals for both Fluid and Symmetric Unbi-
ased regularization. (Since Asymmetric Unbiased and
Symmetric Unbiased regularizations produce similar re-
sults, we do not show the results for the asymmetric
version). We again conducted within-subject paired t

tests (Tables 3 and 4) as well as group paired t tests
(Figure 14) on the voxel-wise deviation gains for all
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(a) L2-Fluid vs. L2-Symmetric Unbiased (b) MI-Fluid vs. MI-Symmetric Unbiased

Fig. 11 Multiple Comparison Analysis using permutation testing on the deviation gain S of (a) L2-Fluid over L2-Symmetric Unbiased
and (b) MI-Fluid over MI-Symmetric Unbiased, both for baseline ADNI dataset. Each permutation randomly assigns a positive or
negative sign to each of the 10 log-Jacobian maps. Here, results are plotted with respect to the number of positive signs (from 0 to
10) with 10 positive signs indicating the observed data. Dark blue, light blue, and green colors indicate the minimum, average, and
maximum percentage of voxels with p < 0.05 of all possible permutations with a given number of positive signs. There is only one
observation for the observed data, and thus, minimum, maximum, and average values are equal for the rightmost bar. The result
indicates that out of 1024 permutations, no permutation gives a greater percentage of voxels with p < 0.05 than the observed data
does. This indicates that unbiased regularization technique outperforms Fluid methods with p < 0.001. Since the results obtained
using Asymmetric Unbiased method are similar to those obtained using Symmetric Unbiased method, they are not shown here.

voxels inside the ICBM brain mask. We showed that
MI-Fluid outperforms L2-Fluid with p < 0.0001. How-
ever, the result of the comparison of L2-Symmetric Un-
biased and MI-Symmetric Unbiased is inconclusive. In
other words, mutual information performs better when
coupled with Fluid registration, but there is no statisti-
cal difference between mutual information and L2 when
the Symmetric Unbiased method is used.

To explain this result, we postulate that by con-
straining the deformations less (i.e., as in Fluid regis-
tration), assuming intensity 1-to-1 correspondence (i.e.,
matching using L2) may lead to local oscillations of
the deformation maps, as minimizing L2 forces a lo-
cal search for the smallest intensity differences. One re-
sult of this is a Jacobian map with locally extreme val-
ues, translating into spurious signals and, in our case,
less reproducibility. On the other hand, the Symmetric
Unbiased method eliminates local oscillations, allowing
globally better matching when intensity 1-to-1 corre-
spondence can be assumed (i.e., when L2 is applicable
as a data fidelity term).

6.2 ADNI Follow-up Scans

In this section, we analyze a dataset we shall call the
“ADNI Follow-up” phase dataset, which includes serial
MRI images (220× 220× 220) of ten subjects acquired
one year apart. These data were collected as part of a
larger study to track degenerative brain changes in MRI
in 800 subjects, ages 55 to 90, including 200 elderly

controls, 400 subjects with mild cognitive impairment,
and 200 patients with AD. As the images are now one
year apart, real anatomical changes are present, which
allows methods to be compared in the presence of true
biological changes.

In Figure 15, nonlinear registration was performed
using Fluid, Asymmetric Unbiased, and Symmetric Un-
biased methods coupled with L2 matching. Visually,
the Fluid method generates noisy mean Jacobian maps,
while maps generated using unbiased methods suggest
a volume reduction in gray matter as well as ventricu-
lar enlargement. Here, both Asymmetric Unbiased and
Symmetric Unbiased methods perform equally well. Fig-
ure 17 displays the cumulative distribution of p-values
for the voxel-wise log Jacobian t-maps for both ADNI
Baseline and ADNI Follow-up datasets. We expect a
better method to separate these two CDF curves, in-
dicating that a real biological change has occurred be-
tween the two time points. A greater separation is ac-
complished when Asymmetric Unbiased and Symmetric
Unbiased methods are used, while the Fluid method
does not differentiate between the two datasets. Simi-
lar results are obtained using mutual information based
methods (Figure 16).

7 Conclusion

This paper introduced a novel asymmetric unbiased
registration model (the Asymmetric Unbiased model),
which produces results that are very similar to those ob-
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L2−Fluid vs. L2−Unbiased
Null

(a) L2-Fluid vs. L2-Asym.Unbiased (b) L2-Fluid vs. L2-Sym.Unbiased

Fig. 12 Cumulative distribution of p-values for the deviation gain S of (a) L2-Fluid over L2-Asymmetric Unbiased and (b) L2-Fluid
over L2-Symmetric Unbiased. Here, the ADNI baseline dataset is used. In both (a) and (b), the CDF line is well above the Null line
(y = x), indicating that both asymmetric and symmetric unbiased methods outperform Fluid method (i.e. less deviation) in being less
likely to exhibit structural change in the absence of biological change. Note that the interval p ∈ [0, 0.05] is of most importance for
observation.
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MI−Fluid vs. MI−Unbiased
Null

(a) MI-Fluid vs. MI-Asym.Unbiased (b) MI-Fluid vs. MI-Sym.Unbiased

Fig. 13 Cumulative distribution of p-values for the deviation gain S of (a) MI-Fluid over MI-Asymmetric Unbiased and (b) MI-Fluid
over MI-Symmetric Unbiased. Here, ADNI baseline dataset is used. In both (a) and (b), the CDF line is well above the Null line,
indicating that both asymmetric and symmetric unbiased methods outperform Fluid method in being less likely to exhibit structural
change in the absence of biological change. Note that the interval p ∈ [0, 0.05] is of most importance for observation.

Table 3 Global T statistics for all ten subjects testing whether MI-Fluid (method B) outperforms L2-Fluid (method A).

Subject # 1 2 3 4 5 6 7 8 9 10

SA,B 0.000997 0.00435 0.0520 0.0971 0.0721 0.0269 0.445 0.566 0.274 0.196

σ2
SA,B 0.00819 0.00121 0.00529 0.0156 0.0118 0.00406 0.190 0.372 0.0694 0.0457

TSA,B 5 62 355 385 329 210 506 461 516 454

tained using the previously introduced Symmetric Un-
biased model. This work has also, for the first time, an-
alyzed unbiased models with mutual information based
matching functionals. It is the first paper to system-
atically investigate the reproducibility and variability
of different registration methods in TBM. We showed
that Asymmetric Unbiased and Symmetric Unbiased
models perform significantly better than the fluid reg-
istration technique. When applied to serial scans ob-

tained using the same protocol, inconclusive results are
obtained when comparing the stability of L2-Unbiased
and MI-Unbiased (both asymmetric and symmetric)
models. However, L2-Fluid performs less favorably than
MI-Fluid. Although various techniques have been ex-
tensively applied to detect disease effects and monitor
brain changes with TBM, this paper is the first calibra-
tion study to compare registration models for tensor-
based morphometry. We believe our results are impor-
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Table 4 Global T statistics for all ten subjects testing whether L2-Symmetric Unbiased (method B) outperforms MI-Symmetric
Unbiased (method A).

Subject # 1 2 3 4 5 6 7 8 9 10

SA,B 0.00648 0.00314 -0.0161 -0.0244 -0.0132 0.0101 -0.0568 -0.0746 -0.0352 -0.0347

σ2
SA,B 0.000458 0.000111 0.000424 0.00155 0.000593 0.000262 0.00323 0.00367 0.00133 0.00121

TSA,B 150 148 -387 -307 -269 309 -497 -611 -478 -495
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(a) L2-Fluid vs. MI-Fluid (b) MI-Sym.Unbiased vs. L2-Sym.Unbiased

Fig. 14 Multiple Comparison Analysis using permutation testing on the deviation gain S of (a) L2-Fluid over MI-Fluid and (b)
MI-Symmetric Unbiased over L2-Symmetric Unbiased, both for baseline ADNI dataset. Each permutation randomly assigns positive
or negative sign to each of the 10 log-Jacobian maps. Here, results are plotted with respect to the number of positive signs (from 0 to
10) with 10 positive signs indicating the observed data. Dark blue, light blue, and green colors indicate the minimum, average, and
maximum percentage of voxels with p < 0.05 of all possible permutations with a given number of positive signs. There is only one
observation for the observed data, and thus, minimum, maximum, and average values are equal for the rightmost bar. The result in
(a) indicates that out of 1024 permutations, no permutation gives a greater percentage of voxels with p < 0.05 than the observed data
does. This indicates that MI-Fluid method outperforms L2-Fluid method with p < 0.001. However, the comparison of MI-Symmetric
Unbiased and L2-Symmetric Unbiased in (b) is inconclusive. Since the results obtained using Asymmetric Unbiased method are similar
to those obtained using Symmetric Unbiased method, they are not shown here.

tant, as they provide greater insight into the interpre-
tation of TBM results in the future.

A Derivations of Gradient of R(u) in Two
Spatial Dimensions

In this Appendix, we derive explicit expressions for ∂uR(u) in
(20) when Ω ⊂ R2. Let us denote the components of vector x to
be (x1, x2) and the components of vector u be (u1, u2). We also
denote ∂jui = ∂ui/∂xj .

To simplify the notation, we let J = |Dg| = |D(x − u)|.
Also, denote L(J) = LKL(J) = − log J , when R = RKL and
L(J) = LSKL(J) = (J − 1) log J , when R = RSKL. Note that
J : M2×2(R) → R, where M2×2(R) is the set of 2 × 2 matrices
with real elements, and L : R → R. Jacobian J is a function of
∂jui, for i, j = 1, 2, and is given by

J
(
∂1u1, ∂2u1, ∂1u2, ∂2u2

)
= (1− ∂1u1)(1− ∂2u2)− ∂2u1 ∂1u2.

We would like to minimize the functional

R(u) =

∫

Ω
L

(
∂1u1, ∂2u1, ∂1u2, ∂2u2

)
dx.

We find the first Euler-Lagrange equation. For some η ∈ C1
c (Ω):

dR

dε
(u1 + εη, u2)

∣∣
ε=0

=

∫

Ω

[
dL

dJ

∂J

∂(∂1u1)
∂x1η +

dL

dJ

∂J

∂(∂2u1)
∂x2η

]
dx

= −
∫

Ω

[
∂

∂x1

(
dL

dJ

∂J

∂(∂1u1)

)
+

∂

∂x2

(
dL

dJ

∂J

∂(∂2u1)

)]
η dx.

(39)

With notation L′ = dL/dJ , the first Euler-Lagrange equation
becomes:

− ∂

∂x1

(
L′

∂J

∂(∂1u1)

)
− ∂

∂x2

(
L′

∂J

∂(∂2u1)

)
= 0. (40)

Thus, minimizing the energy R(u) with respect to u1, for fixed
u2, yields the first component of ∂uR(u):

∂u1R(u) =
∂

∂x1

((
1− ∂2u2

)
L′

)
+

∂

∂x2

(
∂1u2 L′

)
. (41)

Note that L′KL(J) = −1/J and L′SKL(J) = 1 + log J − 1/J .
Similarly, the Euler-Lagrange equation for the second component
of ∂uR(u) can be found to be:

∂u2R(u) =
∂

∂x1

(
∂2u1 L′

)
+

∂

∂x2

((
1− ∂1u1

)
L′

)
. (42)
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Follow-up Study

(a) Volume (b) L2-Fluid (c) L2-Asym.Unbiased (d) L2-Sym.Unbiased

Fig. 15 Nonrigid registration was performed on the ADNI Follow-up study (serial MRI images acquired 12 months apart) using
L2-Fluid (column 2), L2-Asymmetric Unbiased (column 3), and L2-Symmetric Unbiased (column 4) registration methods. For each
method, the mean of the resulting 10 Jacobian maps is superimposed on one of the brain volumes. Visually, L2-Fluid generates a
noisy mean map, while maps generated using the L2-Asymmetric Unbiased and L2-Symmetric Unbiased methods suggest a volume
reduction in gray matter as well as ventricular enlargement.

B Derivations of Gradient of R(u) in Three
Spatial Dimensions

In this Appendix, we derive an explicit expression for ∂uR(u) in
(20) when Ω ⊂ R3. Let us denote the components of vector x to
be (x1, x2, x3) and the components of vector u be (u1, u2, u3).
Here, we will use the same notation we used in Appendix A.

Jacobian J is a function of ∂jui, for i, j = 1, 2, 3, and is given
by

J
(
∂1u1, ∂2u1, ∂3u1, ∂1u2, ∂2u2, ∂3u2, ∂1u3, ∂2u3, ∂3u3

)
= (1− ∂1u1)(1− ∂2u2)(1− ∂3u3) − ∂1u2 ∂2u3 ∂3u1

− ∂2u1 ∂3u2 ∂1u3 − ∂3u1(1− ∂2u2)∂1u3

− ∂2u1 ∂1u2(1− ∂3u3) − ∂3u2 ∂2u3(1− ∂1u1).

(43)

We would like to minimize the functional

R(u) =

∫

Ω
L

(
J(∂jui)

)
dx, 1 ≤ i, j ≤ 3.

For some η, we have

dR

dε
(u1 + εη, u2, u3)

∣∣
ε=0

=

∫

Ω

[
dL

dJ

∂J

∂(∂1u1)
∂x1η

+
dL

dJ

∂J

∂(∂2u1)
∂x2η +

dL

dJ

∂J

∂(∂3u1)
∂x3η

]
dx

= −
∫

Ω

[
∂

∂x1

(
dL

dJ

∂J

∂(∂1u1)

)
+

∂

∂x2

(
dL

dJ

∂J

∂(∂2u1)

)

+
∂

∂x3

(
dL

dJ

∂J

∂(∂3u1)

)]
η dx.

(44)

Hence, the first Euler-Lagrange equation becomes:

− ∂

∂x1

(
L′

∂J

∂(∂1u1)

)
− ∂

∂x2

(
L′

∂J

∂(∂2u1)

)

− ∂

∂x3

(
L′

∂J

∂(∂3u1)

)
= 0.

(45)

Thus, minimizing the energy R(u) with respect to u1, for fixed
u2 and u3, yields the first component of ∂uR(u):

∂u1R(u) =
∂

∂x1

((
(1− ∂2u2)(1− ∂3u3)− ∂3u2 ∂2u3

)
L′

)

+
∂

∂x2

((
∂3u2 ∂1u3 + ∂1u2(1− ∂3u3)

)
L′

)

+
∂

∂x3

((
∂1u2 ∂2u3 + (1− ∂2u2)∂1u3

)
L′

)
.

(46)

Similarly, the other two Euler-Lagrange equations can be found
to be:

∂u2R(u) =
∂

∂x1

((
∂2u3 ∂3u1 + ∂2u1(1− ∂3u3)

)
L′

)

+
∂

∂x2

((
(1− ∂1u1)(1− ∂3u3)− ∂3u1 ∂1u3

)
L′

)

+
∂

∂x3

((
∂2u1 ∂1u3 + ∂2u3(1− ∂1u1)

)
L′

)
,

(47)

and

∂u3R(u) =
∂

∂x1

((
∂2u1 ∂3u2 + ∂3u1(1− ∂2u2)

)
L′

)

+
∂

∂x2

((
∂1u2 ∂3u1 + ∂3u2(1− ∂1u1)

)
L′

)

+
∂

∂x3

((
(1− ∂1u1)(1− ∂2u2)− ∂2u1 ∂1u2

)
L′

)
.

(48)

C Derivation of equations for maximization of
Mutual Information

In this Appendix, we derive the gradient ∂uFMI(u) of the mutual
information matching functional in (16), adopting the approach

of [23,39], modeling the joint intensity distribution pI1,I2
u+εη(i1, i2)

of deformed image I2(x − u) and image I1(x) as a continuous
function using the Parzen windowing method.
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Follow-up Study

(a) MI-Fluid (b) MI-Sym.Unbiased

Fig. 16 Nonrigid registration was performed on the ADNI
Follow-up study (serial MRI images of patients with Alzheimer’s
disease acquired 12 months apart) using MI-Fluid (column 1) and
MI-Unbiased (column 2) registration methods. For each method,
the mean of the resulting 10 Jacobian maps is superimposed on
one of the brain volumes. Visually, MI-Fluid generates a noisy
mean map, while the map generated using MI-Unbiased method
suggests a volume reduction in gray matter as well as ventricu-
lar enlargement. The results obtained using the MI-Asymmetric
Unbiased method are similar to those obtained using the MI-
Unbiased method, and are therefore omitted.

We compute the first variation of FMI(u) by perturbing u in
the following way

dFMI(u + εη)

dε

= − d

dε

∫

R2
pI1,I2
u+εη(i1, i2) log

pI1,I2
u+εη(i1, i2)

pI1 (i1)pI2
u+εη(i2)

di1di2.
(49)

Thus, we have

dFMI(u + εη)

dε

= −
∫

R2

(
1 + log

pI1,I2
u+εη(i1, i2)

pI1 (i1)pI2
u+εη(i2)

)
dpI1,I2

u+εη(i1, i2)

dε
di1di2

+

∫

R2

pI1,I2
u+εη(i1, i2)

pI2
u+εη(i2)

dpI2
u+εη(i2)

dε
di1di2.

(50)

However, note that

∫

R
pI1,I2
u+εη(i1, i2) di1 = pI2

u+εη(i2) (51)

and

∫

R
pI2
u+εη(i2) di2 = 1. (52)

Hence, the second term on the right hand side of the equality in
(50) reduces to

∫

R2

pI1,I2
u+εη(i1, i2)

pI2
u+εη(i2)

dpI2
u+εη(i2)

dε
di1di2

=

∫

R

dpI2
u+εη(i2)

dε

1

pI2
u+εη(i2)

( ∫

R
pI1,I2
u+εη(i1, i2) di1

)
di2

=

∫

R

dpI2
u+εη(i2)

dε

1

pI2
u+εη(i2)

pI2
u+εη(i2) di2

=
d

dε

∫

R
pI2
u+εη(i2) di2 = 0.

(53)

Equation (49) becomes

dFMI(u + εη)

dε
= −

∫

R2

[(
1 + log

pI1,I2
u+εη(i1, i2)

pI1 (i1)pI2
u+εη(i2)

)

×
dpI1,I2

u+εη(i1, i2)

dε

]
di1di2.

(54)

The joint intensity distribution estimated from I2(x − u) and
I1(x) is given by

pI1,I2
u+εη(i1, i2) =
1

|Ω|
∫

Ω
ψ

(
I1

(
x
)− i1, I2

(
x− u(x)− εη(x)

)− i2
)

dx,
(55)

where |Ω| is a volume of Ω and ψ(ξ1, ξ2) is a two-dimensional
Parzen windowing kernel.

The derivative of (55) can also be computed:

dpI1,I2
u+εη(i1, i2)

dε

= − 1

|Ω|
∫

Ω

∂ψ

∂ξ2

(
I1

(
x
)− i1, I2

(
x− u(x)− εη(x)

)− i2
)

×∇I2
(
x− u(x)− εη(x)

) · η(x) dx.

(56)

Let us denote

Qu(i1, i2) = 1 + log
pI1,I2
u (i1, i2)

pI1 (i1)pI2
u (i2)

. (57)

If we let ε = 0, equation (54) gives the first variation of FMI(u):

dFMI(u + εη)

dε

∣∣∣∣
ε=0

=

∫

R2
Qu(i1, i2)

1

|Ω|
∫

Ω

∂ψ

∂ξ2

(
I1(x)− i1, I2(x− u(x))− i2

)

×∇I2(x− u(x)) · η(x) dx di1di2

=
1

|Ω|
∫

Ω

[
Qu ∗ ∂ψ

∂ξ2

](
I1(x), I2(x− u(x))

)

×∇I2(x− u(x)) · η(x) dx.

(58)

Here, ∗ denotes a convolution. Thus,

∂uFMI(u) =
1

|Ω|

[
Qu ∗ ∂ψ

∂ξ2

]
(I1(x), I2(x− u))∇I2(x− u). (59)
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