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Abstract

In this paper, we propose a fast primal-dual algorithm for solving bilaterally constrained to-
tal variation minimization problems which subsume the bilaterally constrained total variation
image deblurring model and the two-phase piecewise constant Mumford-Shah image segmen-
tation model. The presence of the bilateral constraints makes the optimality conditions of the
primal-dual problem semi-smooth which can be solved by a semi-smooth Newton’s method
superlinearly. But the linear system to solve at each iteration is very large and difficult to
precondition. Using a primal-dual active-set strategy, we reduce the linear system to a much
smaller and better structured one so that it can be solved efficiently by conjugate gradient with
an approximating inverse preconditioner. Locally superlinear convergence results are derived
for the proposed algorithm. Numerical experiments are also provided for both deblurring and
segmentation problems. In particular, for the deblurring problem, we show that the addition
of the bilateral constraints to the total variation model improves the quality of the solutions.

1 Introduction

Image deblurring and image segmentation are two fundamental problems in image processing.
The goal of image deblurring is to recover a sharp image from a blurred and noisy observed
image. The goal of image segmentation is to partition the image into homogeneous regions so
that pixels within a region belong to the same object.

Among the many approaches, variational and partial differential equation (PDE) methods
have been very successful [9, 10]. These methods allow us to impose geometric constraints such
as regularity of solutions conveniently. Moreover, existing theory, models and computational
methods are available for variational problems and PDEs in various contexts. Two of the most
well-known and influential examples are the total variation (TV) image deblurring model [22] and
the Mumford-Shah image segmentation model [20].

1.1 The Total Variation Deblurring Model

In image deblurring, the degradation model we use is the linear shift-invariant (LSI) model:

f = k ∗ u + η,
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where f = (fij) is an observed m-by-n blurred and noisy image, k is a known shift-invariant point
spread function (PSF), u = (uij) is the unknown data to be recovered, η is an unknown noise, and
∗ is the discrete convolution operator. The indices i and j refer to the pixel location in the image.
By rearranging f , u and η into vectors using lexicographical ordering, the model can be expressed
in the matrix form f = Ku+ η where K is an mn-by-mn blurring matrix. The matrix K is often
very ill-conditioned so that the straightforward inverse filtering (K−1f) gives poor results due to
severe noise amplification. Hence, regularization is needed.

The discrete total variation deblurring model seeks for the minimizer of the following Tikhonov-
type functional:

FTV
0 (u) =

1
2
‖Ku− f‖2 + β‖u‖TV,

where β > 0 is a regularization parameter, ‖ · ‖ is the l2 norm, and ‖ · ‖TV is the discrete TV
norm. The regularization parameter β controls the tradeoff between the goodness-of-fit of the
LSI model and the regularity of the solution. The discrete TV norm is defined by

‖u‖TV =
m−1∑

i=1

n−1∑

i=1

|(∇u)i,j |, (1)

where

(∇u)i,j =
[

ui+1,j − ui,j

ui,j+1 − ui,j

]
,

and | · | is the Euclidean norm for R2. The matrix ∇ can be expressed as

∇ =
[

In ⊗∇1

∇1 ⊗ Im

]
,

where ∇1 is the 1-dimensional forward difference operator, and Im and In are identity matrices
of order m and n respectively. The main advantage of the TV model is the ability to preserve
edges in the image. This is due to the piecewise smooth regularization property of the TV norm.

Image values which represent physical quantities such as photon count or energies are not only
non-negative, but they often have an upper bound as well, owing to finite number of bits being
used for image representation. For example, pixel values in digital images are often bounded by
0 ≤ u ≤ 255. Several studies have shown that imposing non-negativity constraints on image
values can improve the quality of restoration results [18, 23]. We show in our experiments that
adding an upper bound can further improve the quality.

In this paper, we consider the bilaterally constrained problem

min
u∈Rmn

l≤u≤h

FTV(u), (2)

where
FTV(u) =

1
2
‖Ku− f‖2 + β‖u‖TV +

α

2
‖u‖2.

The constraints are understood componentwise. We include the third term to the model so that
it can be applied to a larger class of problems. When α = 0, this problem is convex for all K and
is strictly convex when K is of full rank. When α > 0, the problem is strictly convex. We assume
that either K is of full rank or α > 0 so that the problem has a unique solution. In deblurring
problems, even if the observed data fall within the bounds l and h, the deblurred result from the
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unconstrained deblurring model may contain values outside these bounds. Therefore, imposing
the bounds is non-redundant.

While the addition of the bilateral constraints can improve the solution quality, the resulting
optimization problem is harder to solve than its unconstrained counterpart. Bertsekas [1] presents
a Projected Newton’s algorithm which can be used to solve the primal problem Eq. (2). This
algorithm has been used in [25, 26] to solve TV deblurring problems with non-negativity con-
straints. We compare the performance of our proposed algorithm to this method. The proposed
algorithm here is a generalization of our previous work in [15] which works for non-negativity
constrained deblurring problems only. But the generalized method presented here can be applied
to segmentation problems as well.

1.2 The Piecewise Constant Mumford-Shah Image Segmentation Model

Given an observed image f on an image domain Ω, the piecewise constant Mumford-Shah model
seeks a set of curves C and a set of constants c = (c1, c2, . . . , cL) which minimize an energy
functional given by:

FMS(C, c) =
L∑

l=1

∫

Ωl

[f(x)− cl]2dx + β · Length(C). (3)

The curves in C partition the image into L mutually exclusive segments Ωl for l = 1, 2, . . . , L. The
idea is to partition the image so that the intensity of f in each segment Ωl is well-approximated
by a constant cl. The goodness-of-fit is measured by the L2 difference between f and cl. On the
other hand, a minimum description length principle is employed which requires the curves C to
be as short as possible. This increases the robustness to noise and avoids spurious segments. The
parameter β > 0 controls the trade-off between the goodness-of-fit and the length of the curves C.

The Mumford-Shah objective is non-trivial to optimize especially when the curves need to
be split and merged. Chan and Vese [11] proposed a level set-based method which can handle
topological change effectively. In the two-phase version of this method, the curves are represented
by the zero level set of a Lipschitz level set function φ defined on the image domain. The objective
function then becomes

FCV(φ, c1, c2) =
∫

Ω
H(φ(x))[f(x)− c1]2dx +

∫

Ω
[1−H(φ(x))][f(x)− c2]2dx

+β · Length({φ = 0}).
The function H is the Heaviside function defined by H(x) = 1 if x ≥ 0, H(x) = 0 otherwise.

In practice, we replace H by a smooth approximation Hε, for example,

Hε(x) =
1
2

[
1 +

2
π

arctan
(x

ε

)]
.

Although this method makes splitting and merging of curves a simple matter, the energy func-
tional is non-convex which possesses many local minima. These local minima often correspond to
undesirable segmentations, see [16].

Interestingly, Chan et al. showed in [7] that for fixed c1 and c2, then the above non-convex
objective can be reformulated as a convex problem so that a global minimum can be easily
computed. The globalized objective is given by

FCEN(u, c1, c2) =
∫

Ω

{
[f(x)− c1]2 − [f(x)− c2]2

}
u(x)dx + β

∫

Ω
|∇u(x)|dx, (4)
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which is minimized over all u satisfying 0 ≤ u ≤ 1, c1 and c2. The last term is the continuous
version of the TV norm. After a solution u is obtained, a global solution to the original two-phase
Mumford-Shah objective can be obtained by thresholding u with µ for almost every µ ∈ [0, 1],
see [7]. Some other proposals for computing global solutions can be found in [14,16].

In this paper, we consider the discrete version given by

FCEN(u, c1, c2) = 〈s, u〉+ β‖u‖TV +
α

2
‖u− 1

2‖2, (5)

where 〈·, ·〉 is the l2 inner product, s = (si,j) and

si,j = (fi,j − c1)2 − (fi,j − c2)2.

The variable u is bounded by the bilateral constraints 0 ≤ u ≤ 1. When α = 0, this problem is
convex but not strictly convex. When α > 0, this problem is strictly convex. We therefore assume
that α > 0 so that solution is unique. The additive constant 1

2 is introduced in the third term so
that the minimizer does not bias towards 0 or 1.

To optimize the globalized objective function (4), Chan et al. proposed to use an exact penalty
method to convert the bilaterally constrained problem to an unconstrained problem. Then the
gradient descent method is applied. It is well-known that gradient descent is very slow. This can
cause some practical problems. The final segmentation is obtained by thresholding the solution
u. In many practical cases, the exact solution u should be close to a binary function (see [6] for
some exceptions though). Thus if it is computed with a high accuracy, then it is also very close
to binary so that a large range of thresholds in [0, 1] can be used. However, if u is not computed
with a high accuracy, then there could be significantly many values of u spread over [0, 1]. In this
case, choosing different thresholds can lead to significantly different segmentations.

In [3], a dual method which is a variant of Chambolle’s dual method for denoising [5] has been
proposed. It is a gradient descent-like method applied to the dual objective function. A splitting
strategy is also used so that the terms in the objective are optimized individually and alternatively.
This method is very fast to obtain a good segmentation. We found that u converges to a close-
to-binary function quickly after which it slows down significantly. This is because of the gradient
descent nature of the method. But since the final segmentation is obtained by thresholding, the
slowness at the later stage causes no problem at all. However, the dual method of [5] is unsuitable
for solving deblurring problems since the step size is restricted by the reciprocal of the condition
number of the blurring matrix K [15].

In this paper, we propose a primal-dual active-set method to solve a class of bilaterally
constrained TV minimization problems which include TV deblurring and two-phase piecewise
constant Mumford-Shah segmentation models as special cases. The main idea is to apply the
semi-smooth Newton’s method to solve the optimality conditions which are semi-smooth (due
to the presence of the bilateral constraints) and to use the active-set strategy to simplify the
Newton’s equation to a much smaller and better structured system to facilitate preconditioning.
The convergence of the semi-smooth Newton’s method is locally superlinear. For deblurring, our
primal-dual method is much faster than the (primal) projected Newton’s method. For segmen-
tation, our method is much faster than the (primal) gradient descent method and is competitive
with the dual gradient descent method.

The rest of the paper is organized as follows: Section 2 presents the derivation of our proposed
primal-dual method (which we call BCGM) for solving a general class of bilaterally constrained
TV minimization problems. Local superlinear convergence is established in Section 3. In Section
4, the numerical performance of our algorithm for solving deblurring and segmentation problems
is compared to some state-of-the-art algorithms.
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2 Main Results

2.1 The Dual Problem

In this subsection, we derive the dual problem for a general class of bilaterally constrained TV
minimization problems.

It is easy to see that the TV deblurring problem (2) and the Mumford-Shah segmentation
problem (3) are special cases of the following bilaterally constrained problem:

min
u∈Cu

1
2
‖Ku‖2 + 〈b, u〉+

α

2
‖u‖2 + β‖u‖TV, (6)

where
Cu = {u ∈ Rmn : l ≤ u ≤ h}

is the feasible set for u.
A difficulty to optimize objective functions with a TV norm is that the TV norm is non-

differentiable. A commonly used remedy is to regularize the TV norm by replacing |(∇u)i,j | in
(1) with

|(∇u)i,j |ε =
√
|(∇u)i,j |2 + ε,

which is a smooth function. The trade-off in choosing this smoothing parameter ε is the solution
accuracy error versus the speed of convergence.

An alternative way studied by Chan et al. [8], Carter [4] and Chambolle [5] is to introduce a
Fenchel dual variable p of u. This is done using the Fenchel transform to obtain

‖u‖TV = sup
p∈Cp

〈u,−divp〉.

Here p = (pi,j) is the dual variable with

pi,j =
[

px
i,j

py
i,j

]
∈ R2,

Cp = {p ∈ R2mn : |pi,j | ≤ 1 ∀i, j},
and div is the discrete divergence matrix defined by

(divp)i,j = px
i,j − px

i−1,j + py
i,j − py

i,j−1.

It can be verified that
div =

[
In ⊗ div1 div1 ⊗ Im

]
= −∇T ,

where div1 is the 1-dimensional backward difference operator. An advantage of solving the dual
problem is that the extra smoothing parameter ε is not needed and it is therefore more faithful
to the original TV model.

Using the Fenchel transform, we derive the dual problem in the following proposition. Due to
the presence of the bilateral constraints, some Lagrange dual variables are introduced.

Proposition 1 The dual problem to (6) is given by

min
p∈Cp

min
λl∈Rmn

+

min
λh∈Rmn

+

{
1
2
‖B1/2(βdivp + λl − λh − b)‖2 − 〈l, λl〉+ 〈h, λh〉

}
, (7)

where B := (KT K + αI)−1.
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Proof: Using the Fenchel transform, the problem (6) becomes

min
u∈Cu

max
p∈Cp

{
1
2
‖Ku‖2 +

α

2
‖u‖2 + 〈u, b− βdivp〉

}
.

Since the objective is convex in u and concave in p and the constraints are convex, the strong
max-min property holds [2]. Therefore, we can change the order of the min and max terms to
arrive at:

max
p∈Cp

min
u∈Cu

{
1
2
‖B−1/2u‖2 + 〈u, b− βdivp〉

}
. (8)

Here B = (KT K + αI)−1.
Consider the inner minimization for a fixed p. The Lagrangian for this problem is given by

L(u, λl, λh) :=
1
2
‖B−1/2u‖2 + 〈u, b− βdivp〉 − 〈u− l, λl〉+ 〈u− h, λh〉

=
1
2
‖B−1/2u‖2 + 〈u, b− βdivp− λl + λh〉+ 〈l, λl〉 − 〈h, λh〉, (9)

where λl ≥ 0 is the Lagrange multiplier for the constraint u ≥ l and λh ≥ 0 is the Lagrange
multiplier for the constraint u ≤ h. Then,

∇uL = B−1u + b− βdivp− λl + λh.

Solving ∇uL(u∗, λ∗l , λ
∗
h) = 0 gives

u∗ = B(βdivp− b + λ∗l − λ∗h).

To derive the dual problem, we substitute u = B(βdivp− b+λl−λh) into the Lagrangian (9).
Then we have

L(λl, λh) = −1
2
‖B1/2(βdivp− b + λl − λh)‖2 + 〈l, λl〉 − 〈h, λh〉.

This is the Lagrange dual objective function [2] satisfying

max
λl∈Rmn

+

max
λh∈Rmn

+

L(λl, λh) = min
u∈Cu

{
1
2
‖B−1/2u‖2 + 〈u, b− βdivp〉

}
.

Therefore, the problem in (8) becomes (7) after multiplying the objective by −1 and changing
the max functions to min.

For TV minimization without constraints, Carter [4], Chambolle [5], Hintermüller and Stadler
[13] and Ng et al. [21] studied methods for solving the dual problem directly. These methods
work well for denoising problems where K = I. But when K is ill-conditioned, the matrix
B = (KT K + αI)−1 in the quadratic term causes numerical difficulty. This is owing to the fact
that values of α that are used are usually small. As a result, the matrix B is ill-conditioned for
reasonable values of α. Therefore, we adopt the primal-dual approach proposed by Chan et al.
in [8] for solving unconstrained problems.
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2.2 The Primal-dual Problem

In this subsection, we present the proposed primal-dual system for the problem (6). The optimality
conditions (KKT conditions [2]) for the problem (7) are as follows

−β∇B(βdivp− b + λl − λh) + µ¯ p = 0, (10)
B(βdivp− b + λl − λh)− l − νl = 0, (11)

−B(βdivp− b + λl − λh) + h− νh = 0, (12)
µ¯ (|p|2 − 1) = 0, (13)

νl ¯ λl = 0, (14)
νh ¯ λh = 0, (15)

together with the inequality constraints p ∈ Cp and λl, λh, νl, νh, µ ∈ Rmn
+ . The equations νl¯λl =

0 and νh¯λh = 0 are understood as component-wise multiplication. The equation µ¯(|p|2−1) = 0
is understood as µi,j(|pi,j |2 − 1) = 0 for each i, j. The expression µ ¯ p is understood as µi,jpi,j

for each i, j.
Next, we show that the above KKT system can be reduced to a set of equalities. The reduced

system has the advantages of

1. not involving matrix-vector product of the form Bx which can be difficult or inaccurate to
compute since B = (KT K + αI)−1;

2. no inequalities are involved.

But it involves max and min functions which are semi-smooth. Compared to the optimality
conditions of the primal problem (2), the singularity in ∇u/|∇u| is removed [8].

Proposition 2 The KKT system (10)–(15) (including the constraints p ∈ Cp and λl, λh, νl, νh ∈
Rmn

+ ) is equivalent to the following system:

0 = F1(p, u, λ) = |∇u| ¯ p−∇u, (16)
0 = F2(p, u, λ) = −βdivp + b− λ + Au, (17)
0 = F3(p, u, λ) = λ−min{0, λ− c(u− h)} −max{0, λ− c(u− l)}, (18)

where A = B−1 = KT K + αI.

Proof: By setting u = B(βdivp− b + λl − λh), the system (10)–(15) becomes

−β∇u + µ¯ p = 0, (19)
µ¯ (|p|2 − 1) = 0, (20)

Au− (βdivp− b + λl − λh) = 0, (21)
(u− l)¯ λl = 0, (22)

(h− u)¯ λh = 0, (23)

together with the constraints u ∈ Cu, p ∈ Cp and λl, λh, µ ∈ Rmn
+ . In the third equation (21), we

have multiplied both sides with A to cancel B.
The fourth and fifth equations (22)–(23) together with the constraints u ∈ Cu and λl, λh ∈ Rmn

+

imply the following equality:

λl − λh −min{0, λl − λh − c(u− h)} −max{0, λl − λh − c(u− l)} = 0,
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where c > 0 is an arbitrary constant. By letting λ = λl − λh, we have

λ−min{0, λ− c(u− h)} −max{0, λ− c(u− l)} = 0.

From the second equation (20), if |pi,j | < 1, then we must have µi,j = 0, and therefore, µi,j =
(∇u)i,j = 0. If |pi,j | = 1, then the first equation (20) and µi,j ∈ R+ implies that µi,j = β|(∇u)i,j |.
In any case, we have µ = β|∇u|. Thus, the first and second equations (19)–(20) together with
p ∈ Cp and µ ∈ Rmn

+ imply that
|∇u| ¯ p−∇u = 0.

Therefore, we have the system (19)–(23).
By reversing the above arguments, it can be shown that the system (19)–(23) imply the KKT

system (10)–(15) together with the inequality constraints. Here, the variables λl and λh are
recovered from λ via λl = max{λ, 0} and λh = max{−λ, 0}. We omit the details.

When solving the reduced system, an ε-regularization is added to the term |∇u| in F1 owing
to the possibility that ∇u = 0. The addition of this ε-regularization also ensures a unique solution
for p, thereby avoiding numerical difficulties in the solution of the system.

2.3 The Primal-dual Active-set Strategy

To solve the system (16)–(18), it is natural to consider Newton’s method to aim for superlinear
(or even quadratic) convergence. The Newton’s update for our system is given by the following:



|∇u|ε −

(
I − p(∇u)T

|∇u|ε

)
∇ 0

−βdiv A −I

0 ∂F3
∂u

∂F3
∂λ







δp
δu
δλ


 = −




F1

F2

F3


 . (24)

Here, |∇u|ε denotes a diagonal matrix such that

(|∇u|εδp)i,j = |(∇u)i,j |ε(δp)i,j ,

and p(∇u)T

|∇u|ε ∇ denotes a matrix such that

(
p(∇u)T

|∇u|ε ∇δu

)

i,j

=
1

|(∇u)i,j |ε pi,j(∇u)T
i,j(∇δu)i,j .

The function F3 is strongly semi-smooth and the derivatives ∂F2/∂u and ∂F3/∂λ are defined
in the sense of slant differentiability which is a generalized derivative, see [12]. We can solve the
above system directly to obtain the updates. However, it is non-symmetric and the blocks have
diverse characteristics. Thus, it is difficult to construct an effective preconditioner for it. We use
an active-set strategy to reduce the system.

For an optimization problem with primal variables y = (yi) and constraints y ≥ ψ where
ψ = (ψi) are given constants, the primal-dual active-set (PDAS) method [12] divides the variables
into two sets, the “active set” A and the “inactive set” I. If a primal variable is predicted to
be “active” (but yi is not necessarily ψi), then yi is set to ψi in the next iteration. If a primal
variable is predicted to ‘inactive”, then the corresponding dual variable is set to 0 in the next
iteration. The remaining variables are updated according to some optimality conditions, usually
∇yL = 0 where L is the Lagrangian. The effectiveness of such a method depends on the accuracy
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of the prediction at each iteration. The prediction scheme we use is based on [12]. This scheme
is presented next.

Motivated by the piecewise linearity of F3 in Eq. (18) and the analysis in [12], it is natural to
consider the following definition of active and inactive based on the primal and dual variables:

I := {(i, j) : λi,j − c(ui,j − h) ≥ 0, λi,j − c(ui,j − l) ≤ 0},
Al := {(i, j) : λi,j − c(ui,j − h) ≥ 0, λi,j − c(ui,j − l) > 0},
Ah := {(i, j) : λi,j − c(ui,j − h) < 0, λi,j − c(ui,j − l) ≤ 0}.

The fourth situation of λi,j−c(ui,j−h) < 0 and λi,j−c(ui,j− l) > 0 contradicts to the assumption
that l ≤ h. These sets define regions in which F3 is linear.

Let DI , DAl
and DAh

be the down-sampling matrix with relation to the inactive set I and
active sets Al and Ah respectively. Then the components of u in I, Al and Ah are given by
uI = DIu, uAl

= DAl
u and uAh

= DAh
u respectively. The components λI , λAl

and λAh
can be

obtained similarly. We also let AX = DXADT
X and AXY = DXADT

Y for X ,Y ∈ {I,Al,Ah}.
We are now in position to derive a simple system to compute the Newton’s update in (24).

Only δuI , the update for uI requires solving a linear system. Other variables can be computed
directly.

Proposition 3 The Newton’s update are given by

δλI = −λI , (25)
δuAl

= l − uAl
, (26)

δuAh
= h− uAh

, (27)

δuI =
[
DI

(
−βdiv

1
|∇u|ε H∇+ A

)
DT
I

]−1

g, (28)

δp =
1

|∇u|ε
{
H∇ [

DT
I δuI + DT

Al
(l − uAl

) + DT
Ah

(h− uAh
)
]− F1

}
, (29)

δλAl
= DAl

F2 − βDAl
divδp + AAlIδuI + AAl

(l − uAl
) + AAlAh

(h− uAh
), (30)

δλAh
= DAh

F2 − βDAh
divδp + AAhIδuI + AAhAl

(l − uAl
) + AAh

(h− uAh
), (31)

where

g = βDIdiv
1

|∇u|ε
{
H∇ [

DT
Al

(l − uAl
) + DT

Ah
(h− uAh

)
]− F1

}−DIF2

−AIAl
(l − uAl

)−AIAh
(h− uAh

)− λI ,

and

H = I − p(∇u)T

|∇u|ε .

Proof: By splitting the variables u and λ into active and inactive sets, the Newton’s system (24)
is given by



|∇u|ε −H∇DT
I −H∇DT

Al
−H∇DT

Ah
0 0 0

−βDIdiv AI AIAl
AIAh

−I 0 0
−βDAl

div AAlI AAl
AAlAh

0 −I 0
−βDAh

div AAhI AAhAl
AAh

0 0 −I
0 0 0 0 I 0 0
0 0 cI 0 0 0 0
0 0 0 cI 0 0 0







δp
δuI
δuAl

δuAh

δλI
δλAl

δλAh




= −




F1

DIF2

DAl
F2

DAh
F2

DIF3

DAl
F3

DAh
F3




.(32)
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We note from Eq. (18) that

DIF3 = λI ,
DAl

F3 = c(uAl
− l),

DAh
F3 = c(uAh

− h).

Thus, the fifth row in Eq. (32) reads

δλI = −DIF3 = −λI .

The sixth row in Eq. (32) reads

cδuAl
= −DAl

F3 = −c(uAl
− l),

and therefore,
δuAl

= l − uAl
.

The seventh row Eq. (32) reads

cδuAh
= −DAh

F3 = −c(uAh
− h),

so that
δuAh

= h− uAh
.

Hence, we have proved Eq. (25)–(27).
The third and fourth rows in Eq. (32) read

−βDAl
divδp + AAlIδuI + AAl

δuAl
+ AAlAh

δuAh
− δλAl

= −DAl
F2,

−βDAh
divδp + AAhIδuI + AAhAl

δuAl
+ AAh

δuAh
− δλAh

= −DAh
F2,

respectively. They give Eq. (30)–(31) immediately after replacing δuAl
with l − uAl

and δuAh

with h− uAh
.

The first row in Eq. (32) reads

|∇u|εδp = H∇ [
DT
I δuI + DT

Al
δuAl

+ DT
Ah

δuAh

]− F1.

Notice that |∇u|ε is a diagonal matrix with inverse 1/|∇u|ε. We obtain Eq. (29).
Finally, the second row in Eq. (32) reads

−βDIdivδp + AIδuI + AIAl
δuAl

+ AIAh
δuAh

− δλI = −DIF2.

Eliminating δp from the above equation using Eq. (29), we obtain (28).

We note that this proposition shows that the next value of λI , uAl
and uAh

is 0, l and h
respectively. This is exactly the same as the PDAS algorithm presented in [12]. Thus our method
can be thought of a PDAS algorithm.

The linear system (28) is non-symmetric and so CG cannot be applied. Chan et al. [8] proposed
to symmetrize the matrix so that CG could be applied. Following this suggestion, we symmetrize
the system as:

DI

[
−βdiv

1
|∇u|ε

(
I − p(∇u)T + (∇u)pT

2|∇u|ε

)
∇+ A

]
DT
I δuI = g. (33)
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In the next proposition, we show that this linear system is symmetric positive definite. In Section
2.5, we will discuss the use preconditioners for solving this system. We may regard the resulting
iteration as a quasi-Newton’s method with the coefficient matrix of the quasi-Newton’s equation
given by:




|∇u|ε −1
2(H + HT )∇DT

I −H∇DT
Al

−H∇DT
Ah

0 0 0
−βDIdiv AI AIAl

AIAh
−I 0 0

−βDAl
div AAlI AAl

AAlAh
0 −I 0

−βDAh
div AAhI AAhAl

AAh
0 0 −I

0 0 0 0 I 0 0
0 0 cI 0 0 0 0
0 0 0 cI 0 0 0







δp
δuI
δuAl

δuAh

δλI
δλAl

δλAh




= −




F1

DIF2

DAl
F2

DAh
F2

DIF3

DAl
F3

DAh
F3




. (34)

The convergence of the quasi-Newton’s method is studied in Section 3.

Proposition 4 The system (33) is symmetric positive definite if |pi,j | ≤ 1 for all i, j.

Proof: Let

M =
1

|∇u|ε

(
I − p(∇u)T + (∇u)pT

2|∇u|ε

)
,

and let y = (yi,j) ∈ R2mn. Clearly, M is symmetric since it is the symmetrization of the matrix

1
|(∇u)|ε

(
I − p(∇u)T

|(∇u)|ε

)
.

Note that by definition of M

yT My =
∑

i,j

yT
i,j

1
|(∇u)i,j |ε

(
I − pi,j(∇u)T

i,j + (∇u)i,jp
T
i,j

2|(∇u)i,j |ε

)
yi,j

=
∑

i,j

1
|(∇u)i,j |ε

(
|yi,j |2 −

yT
i,jpi,j(∇u)T

i,jyi,j + yT
i,jpi,j(∇u)T

i,jyi,j

2|(∇u)i,j |ε

)

=
∑

i,j

1
|(∇u)i,j |ε

(
|yi,j |2 −

yT
i,jpi,j(∇u)T

i,jyi,j

|(∇u)i,j |ε

)

≥
∑

i,j

1
|(∇u)i,j |ε

(
|yi,j |2 − |yi,j ||pi,j ||(∇u)i,j ||yi,j |

|(∇u)i,j |ε

)
≥ 0.

The last inequality is due to |pi,j | ≤ 1 and |(∇u)i,j | ≤ |(∇u)i,j |ε. Thus, M is symmetric positive
semi-definite. Since A = KT K + αI is symmetric positive definite, so is β∇T M∇ + A. Finally,
The principal submatrix DI(∇T M∇+A)DT

I of a symmetric positive definite matrix is symmetric
positive definite.
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2.4 The BCGM Algorithm

The full BCGM algorithm for image deblurring and segmentation can now be described as follows:

1. Initialize p0, u0, λ0 and set k = 0
2. Set the active and inactive sets:

Ik = {(i, j) : λk
i,j − c(uk

i,j − h) ≥ 0, λk
i,j − c(uk

i,j − l) ≤ 0}
Ak

l = {(i, j) : λk
i,j − c(uk

i,j − h) ≥ 0, λk
i,j − c(uk

i,j − l) > 0}
Ak

h = {(i, j) : λk
i,j − c(uk

i,j − h) < 0, λk
i,j − c(uk

i,j − l) ≤ 0}
3. Compute δuk

I by solving the linear system (33) using PCG
4. Compute δpk, δλk

Al
and δλk

Ah
by applying (29)–(31)

5. Compute the step size τ :
τ = ρ supγ>0{|pk

i,j + γδpk
i,j | ≤ 1 ∀ i, j}

6. Update the variables:
pk+1 = pk + τδpk

uk+1
I = uk

I + δuk
I

uk+1
Al

= l

uk+1
Ah

= h

λk+1
I = 0

λk+1
Al

= λk
Al

+ δλk
Al

λk+1
Ah

= λk
Ah

+ δλk
Ah

7. Check for convergence. Stop if converges; otherwise set k = k + 1 and go to Step 2

To check convergence, we use the residual of the optimality system (16)–(18):

rk =
√
‖F1(pk, uk, λk)‖2 + ‖F2(pk, uk, λk)‖2 + ‖F3(pk, uk, λk)‖2.

Although the system (16)–(18) is not the original KKT system (10)–(15), we shall still call its
residual rk the KKT residual for convenience. We terminate the iterations if the relative KKT
residual rk+1/r0 is less than a predefined tolerance.

A line search is only required in Step 5, for p. This is to ensure positive definiteness of
Eq. (33). The algorithm requires the specification of several parameters. The parameter c is used
to determine the active and inactive sets at every iteration, see Step 3 above. As shown in [12]
the performance of the algorithm is largely independent of its value. Thus, we simply fix c to
be 104. The parameter ρ is merely used to make the step size a little conservative. Setting it to
0.99 worked for all our numerical tests. The parameter ε is to be selected at a reasonably small
value to achieve a trade-off between reconstruction error and time for convergence. In general,
the choice of ε may be resolution dependent, but we found that setting it to 10−2 provided a good
trade-off between quality and speed for all the cases that we tested. Reducing it further did not
significantly reduce the reconstruction error.

The regularization parameter β decides the trade-off between the reconstruction error and
noise amplification. It is a part of the deblurring model, rather than our algorithm. The value
of β must be selected carefully for any TV deblurring algorithm. Section 3 provides a (local)
convergence analysis of the BCGM algorithm based on the quasi-Newton approach of Eq. (33).
The numerical results of Section 4 show a locally superlinear rate of convergence.
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2.5 Preconditioners

The most computationally intensive step of the BCGM algorithm is Step 3 which involves solving
the linear system in Eq. (33). Though significantly smaller than the original linear system (24)
obtained by linearizing Eq. (16)–(18), it is still a large system. We determined that the Factorized
Banded Inverse Preconditioner (FBIP) [17] worked well to speed up the solution of the linear
system. Using the FBIP preconditioner to solve the linear system requires essentially O(N log N)
operations, where N is the total number of pixels in the image. This is including the use of FFT’s
for computations involving the matrix A = KT K + αI.

The original system Eq. (24) has different characteristics in each of its blocks. It is therefore
harder to construct an effective preconditioner. In contrast, the reduced system Eq. (33) has a
simpler structure so that standard preconditioners work well.

3 Convergence Analysis

In this section, we prove the locally superlinear convergence of the quasi-Newton’s iteration (34)
to the unique solution of the KKT system (16)–(18).

Let k be the iteration number. We denote the system (16)–(18) by F (p, u, λ) = 0 and denote
the residual at iteration k by F k = F (pk, uk, λk). We first note that the system F = 0 has a
solution x∗ = (p∗, u∗, λ∗) because the original primal problem (6) (with the regularized TV norm)
has a solution. Moreover, the solution to F = 0 is unique because the primal problem is strictly
convex and the dual variable p∗ is uniquely determined by u∗ via p∗ = ∇u∗/|∇u∗|ε.

We denote the Newton’s system (32) and quasi-Newton’s system (34) by

Wkδ
k = −F k

and
Vkδ

k = −F k

respectively. We will use Theorems 4.1 and 4.2 from [24] to prove the superlinear convergence.
For convenience, we combine the two theorems and restate them here:

Theorem 1 Suppose that F : Rn → Rn is a locally Lipschitzian function in an open convex
set D ⊂ Rn and x∗ ∈ D is a solution of F (x) = 0. Suppose that F is semi-smooth at x∗ and
all W ∈ ∂bF (x∗) are non-singular. Let β be a positive constant such that ‖W−1‖ ≤ β for all
W ∈ ∂bF (x∗). Let ∆ = 1/(6β). Then there exists a γ1 > 0 such that for any x0 ∈ D∩Bγ1(x

∗) the
sequence generated by quasi-Newton’s iteration xk+1 = xk − V −1

k F (xk) with Vk ∈ {V ∈ B∆(Wk) :
Wk ∈ ∂bF (xk)} is well-defined (i.e. Vk is non-singular for each k) and converges to x∗ linearly.

Furthermore, if there exists a sequence {Wk} with Wk ∈ ∂bF (xk) for each k such that

lim
k→∞

‖(Vk −Wk)(xk+1 − xk)‖
‖xk+1 − xk‖ = 0,

then the convergence is superlinear.

Here ∂bF (x) is defined as
∂bF (x) = lim

xk→x
xk∈DF

F ′(xk), (35)

DF is the set where F is differentiable, F ′(x) is the Jacobian of F at a point x ∈ DF , and
Bγ(x) is the closed ball centered at x with radius γ. Regarding the constant β, it has been
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shown in [24, Lemma 2.2] that if all W ∈ ∂bF (x∗) are non-singular, then ‖W−1‖2 ≤ β for all
W ∈ ∂bF (x∗) for some β > 0. Moreover, there exists a neighborhood N(x∗) of x∗ such that
‖V −1‖ ≤ (10/9)β for all V ∈ ∂bF (x) for all x ∈ N(x∗).

In view of the above theorem, to establish the superlinear convergence of the quasi-Newton’s
iteration, it suffices to verify that the assumptions in the theorem are satisfied. More precisely,
we show in the next five lemmas that the followings hold:

1. F is locally Lipschitzian;

2. F is semi-smooth at x∗ = (p∗, u∗, λ∗);

3. all W ∈ ∂bF (x∗) are non-singular;

4. Vk ∈ {V ∈ B∆(Wk) : Wk ∈ ∂bF (xk)} for all k;

5. ‖(Vk −Wk)(xk+1 − xk)‖/‖xk+1 − xk‖ → 0 as k →∞.

Lemma 1 The function F is locally Lipschitzian.

Proof: Both F1 (regularized) and F2 are differentiable everywhere. Thus they are locally Lip-
schtizian. The F3 is a continuous piecewise linear function which is locally Lipschtizian. Thus,
F = (F1, F2, F3) is locally Lipschitizian.

Lemma 2 The function F is semi-smooth everywhere.

Proof: Since the components of F1 and F2 are differentiable everywhere, they are semi-smooth
everywhere. The pointwise maximum or minimum of a compact family of continuously differen-
tiable functions is semi-smooth [19]. The sum of semi-smooth functions is semi-smooth. Thus, the
components of F3 are semi-smooth everywhere. Finally, a vector-valued function is semi-smooth
if and only if all of its components are semi-smooth. Hence, F is semi-smooth everywhere.

Lemma 3 All W ∈ ∂bF (x∗) are non-singular.

Proof: We first compute ∂bF (x∗). For the sake of simplicity, we assume l < h. The case l = h
can be handled easily. The functions F1 and F2 are differentiable, and therefore, their derivatives
with respect to p, u, λ are well-defined and unique. The function F3 is independent of p and is
piecewise linear with respect to u and λ. Consider a typical component of F3:

f(u, λ) = λ−min{0, λ− c(u− h)} −max{0, λ− c(u− l)}

where u ∈ R and λ ∈ R. The classical derivative exists in the regions {λ < c(u−h)}, {λ > c(u−l)}
and {c(u− h) < λ < c(u− l)}. In fact, we have

(
∂f

∂u
,

∂f

∂λ

)
=





(c, 0) if λ < c(u− h),
(0, 1) if c(u− h) < λ < c(u− l),
(c, 0) if λ > c(u− l).

When λ = c(u− h) or λ = c(u− l), by taking one-sided limits, it is seen that the derivative can
be chosen to be either (c, 0) or (0, 1).
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Coming back to F3, if d number of components of (u∗, λ∗) satisfy λ∗i,j = c(u∗i,j − h) or λ∗i,j =
c(u∗i,j − l), then each corresponding pair (∂F3/∂ui,j , ∂F3/∂λi,j) has two possible values and thus
∂bF (x∗) contains 2d elements.

In any case, each W ∈ ∂bF (x∗) has exactly the form in Eq. (32) but the definition of the active
and inactive sets need to be adjusted according to the chosen value of (∂F3/∂ui,j , ∂F3/∂λi,j).
Indeed, we have

I := {(i, j) : λi,j − c(ui,j − h) > 0, λi,j − c(ui,j − l) < 0}
∪

{
(i, j) : λi,j − c(ui,j − h) = 0,

(
∂F3

∂ui,j
,

∂F3

∂λi,j

)
= (0, 1)

}

∪
{

(i, j) : λi,j − c(ui,j − l) = 0,
(

∂F3

∂ui,j
,

∂F3

∂λi,j

)
= (0, 1)

}
,

Al := {(i, j) : λi,j − c(ui,j − h) ≥ 0, λi,j − c(ui,j − l) > 0}
∪

{
(i, j) : λi,j − c(ui,j − l) = 0,

(
∂F3

∂ui,j
,

∂F3

∂λi,j

)
= (c, 0)

}
,

Ah := {(i, j) : λi,j − c(ui,j − h) < 0, λi,j − c(ui,j − l) ≤ 0}
∪

{
(i, j) : λi,j − c(ui,j − h) = 0,

(
∂F3

∂ui,j
,

∂F3

∂λi,j

)
= (c, 0)

}
.

Based on this splitting into active and inactive sets, we can use the same proof for Proposition 3 to
show that the equation Wδ = −F can be reduced to Eq. (25)–Eq. (31). Thus, W is non-singular
if and only if the matrix in Eq. (28) is non-singular. To see this, we let

M = −DIβdiv
1

|∇u∗|ε

(
I − p∗(∇u∗)T

|∇u∗|ε

)
∇DT

I .

The coefficient matrix in Eq. (28) is thus given by M + DIADT
I . If I is empty, then W is non-

singular since the equations (25)–(27) and (29)–(31) define the unique solution. We assume that
I is non-empty.

Using the fact that |p∗i,j | = |∇u∗|/|∇u∗|ε ≤ 1 for each i, j, it can be shown that yT My ≥ 0 for
all y. Since A is symmetric positive definite, the principal submatrix DIADT

I is also symmetric
positive definite. Thus, yT DIADT

I y > 0 for all y 6= 0. Suppose that y 6= 0 is in the null space of
the coefficient matrix in (28). Then, we have My+DIADT

I y = 0. Thus, yT My+yT DIADT
I y = 0.

But this contradicts to yT DIADT
I y > 0 and yT My ≥ 0. Hence the coefficient matrix M +DIADT

I
is non-singular. This implies W ∈ ∂bF (x∗) is also non-singular.

Lemma 4 For each x = (p, u, λ), let V = V (x) be the coefficient matrix in the quasi-Newton’s
equation (34). Then, there exists a γ2 > 0 such that for each x ∈ Bγ2(x

∗) we have V ∈ {V ∈
B∆(W ) : W ∈ ∂bF (x)}.

Proof: For each x = (p, u, λ), we let W be the coefficient matrix in the Newton’s equation (32).
Then we have W ∈ ∂bF (x). It remains to show that ‖V −W‖ ≤ ∆ when x is close enough to x∗.

We first note that p∗i,j = (∇u∗)i,j/|(∇u∗)i,j |ε so that |p∗i,j | < 1 for all i, j. Thus, there exists
a ξ > 0 such that |pi,j | < 1 for all i, j for x ∈ Bξ(x∗). In this rest of the proof, we assume that
x ∈ Bξ(x∗). Consider the continuously differentiable function f(u) = ∇u/|∇u|ε. Using the Mean
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Value Theorem, we have
∥∥∥∥
∇u

|∇u|ε −
∇u∗

|∇u∗|ε

∥∥∥∥ = ‖f(u)− f(u∗)‖

≤ sup
v
‖f ′(v)‖‖u− u∗‖

= sup
v

∥∥∥∥
1

|∇v|ε

(
I − (∇v)(∇v)T

|∇v|2ε

)
∇

∥∥∥∥ ‖u− u∗‖

= sup
v

∥∥∥∥
1

|∇v|ε

∥∥∥∥
∥∥∥∥I − (∇v)(∇v)T

|∇v|2ε

∥∥∥∥ ‖∇‖ ‖u− u∗‖

≤ 1√
ε
· 1 ·

√
8‖u− u∗‖.

Here, ‖∇‖ ≤
√
‖∇‖1‖∇‖∞ =

√
8. Thus we have

∥∥∥∥p− ∇u

|∇u|ε

∥∥∥∥ ≤ ‖p− p∗‖+ ‖ ∇u

|∇u|ε −
∇u∗

|∇u∗|ε ‖+ ‖p∗ − ∇u∗

|∇u∗|ε ‖

≤ ‖p− p∗‖+

√
8
ε
‖u− u∗‖

≤
√

1 +
(

8
ε

)2

‖x− x∗‖. (36)

From (32), (34) and the facts that ‖∇‖ ≤ √
8 and ‖DT

I ‖ = 1, we have

‖V −W‖ =
∥∥∥∥
1
2
(H −HT )∇DT

I

∥∥∥∥ ≤
√

2‖H −HT ‖. (37)

Here we assumed that I is non-empty. If I is empty, then V = W so that assertion of the lemma
is trivial. Let y 6= 0. Then,

‖(H −HT )y‖2 =
∑

i,j

|[(H −HT )y]i,j |2

=
∑

i,j

∣∣∣∣∣
pi,j(∇u)T

i,jyi,j

|(∇u)i,j |ε − (∇u)i,jp
T
i,jyi,j

|(∇u)i,j |ε

∣∣∣∣∣
2

=
∑

i,j

∣∣∣∣∣
[
pi,j − (∇u)i,j

|(∇u)i,j |ε

] (∇u)T
i,jyi,j

|(∇u)i,j |ε +
(∇u)i,j

|(∇u)i,j |ε

[
(∇u)i,j

|(∇u)i,j |ε − pi,j

]T

yi,j

∣∣∣∣∣
2

≤ 2
∑

i,j

∣∣∣∣∣
[
pi,j − (∇u)i,j

|(∇u)i,j |ε

] (∇u)T
i,jyi,j

|(∇u)i,j |ε

∣∣∣∣∣
2

+

∣∣∣∣∣
(∇u)i,j

|(∇u)i,j |ε

[
(∇u)i,j

|(∇u)i,j |ε − pi,j

]T

yi,j

∣∣∣∣∣
2

≤ 4
∑

i,j

∣∣∣∣pi,j − (∇u)i,j

|(∇u)i,j |ε

∣∣∣∣
2

|yi,j |2

≤ 4(1 + 64ε−2)‖x− x∗‖2‖y‖2. (38)

The last inequality follows from (36). Therefore, combining (37) and (38), we have

‖V −W‖ ≤ 2
√

2
√

1 + 64ε−2‖x− x∗‖ (39)
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for all x ∈ Bξ(x∗). Let

γ2 = min
{

ξ,
∆

2
√

2
√

1 + 64ε−2

}
.

Then ‖V −W‖ ≤ ∆ for all x ∈ Bγ2(x
∗).

Lemma 5 Let {xk} be a sequence converging to x∗, the solution to F = 0. Let Wk and Vk be
the coefficient matrix of the Newton’s and quasi-Newton’s equation in (32) and (34) respectively.
Then,

lim
k

‖(Vk −Wk)(xk+1 − xk)‖
‖xk+1 − xk‖ = 0.

Proof: From (39), we have

‖Vk −Wk‖ ≤ 4max{1,
√

8ε−1}‖xk − x∗‖

for all k large enough so that xk ∈ Bγ2(x
∗). Thus ‖Vk −Wk‖ → 0 as k →∞.

We are now in position to state the convergence theorem for the quasi-Newton’s iteration (34).

Theorem 2 The quasi-Newton’s iteration (34) converges locally superlinearly.

Proof: By Lemmas 1–4 and the first part of Theorem 1, the quasi-Newton’s iteration converges
linearly in the region Bγ(x∗) where γ = min{γ1, γ2}. Then by Lemma 5 and the second part of
Theorem 1, the convergence is superlinear.

We remark that Theorem 1 only applies to the quasi-Newton’s iteration without a line search.
However, our BCGM algorithm uses a line search on p to guarantee |pi,j | ≤ 1 for all i, j. Fortu-
nately, the exact solution satisfies the strict inequality |p∗i,j | < 1 so that the line search becomes
obsolete as the iterates approach the optimal solution. Therefore, the local convergence theory
can be applied.

4 Numerical Results

4.1 Deblurring

In this subsection, we present numerical results to demonstrate the performance of the BCGM
algorithm for solving deblurring problems.

We compare the performance of BCGM with a primal-only Projected Newton’s (PN) algo-
rithm. The PN algorithm is based on that presented in [1]. At each outer iteration, active and
inactive sets are identified based on the primal variable u. Then a Newton step is taken for the
inactive variables whereas a projected steepest descent step is taken for the active ones. A line
search ensures that the step size taken in the inactive variables is such that they do not violate the
bilateral constraints. A few parameters have to be modified to tune the line search. The method
is quite slow, for only a few inactive variables (usually as little as one) are updated at each step.
Active variables which are already at the boundary of the feasible set, cannot be updated. Theo-
retically, once all the active variables are identified, the convergence is quadratic. However, it takes
many iterations to find all the active variables. In all our experiments, a quadratic convergence
has not been observed within the limit of 300 iterations.
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Fig. 1 compares unconstrained, non-negatively constrained and bilaterally constrained de-
blurring for an artificially generated binary checkerboard image. This is an extreme example
constructed for the purpose of demonstrating the usefulness of bilateral constraints. The original
image consists of values of either 0 or 255. Therefore, the values of l and h were set to 0 and 255
respectively. The unconstrained reconstruction Fig. 1(c) is derived by resetting the solution u to
max{min{u, h}, l}. The non-negatively constrained result was derived by first solving the problem
using the algorithm in [15], followed by resetting u to min{u, h}. It is seen that the number of
spurious oscillations is least for the bilaterally constrained solution. This is also seen from the
significantly higher PSNR (Peak Signal-to-Noise Ratio) of the bilaterally constrained solution.
The histograms of the deblurred images also show that the recovered data is closely clustered
around 0 and 255 for the bilaterally constrained deblurring, but closely clustered only around 0
for the nonnegatively constrained deblurring. For the unconstrained deblurring, the data is much
less closely clustered around 0 or 255.

Fig. 2 shows the performance of BCGM in recovering a blurred and noisy image of text. The
bilateral constraints are useful in recovering a readable version of the text.

Fig. 3(a) compares the convergence of the BCGM and PN methods for the Text image of
Fig. 2. The image is degraded with a Gaussian blur of size 5× 5 and a SNR of 20dB and 30dB
respectively. The value of β is fixed at 0.2. It is seen that the progress of the PN method
slows down significantly after around 50 iterations. For the BCGM method, the CPU times for
convergence are 155 seconds (20dB) and 167 seconds (30dB). For the PN method, the CPU times
for 300 iterations are 280 seconds (20dB) and 282 seconds (30dB).

Fig. 3(b) demonstrates the robustness of the BCGM method for small values of the regular-
ization parameter ε. The number of outer iterations increases with decreasing ε, but not by a
large amount.

Next, we numerically demonstrate the locally superlinear convergence of the BCGM algorithm.
Define

qk =
‖uk+1 − u∗‖
‖uk − u∗‖

where uk refers to the primal variable u at iteration k, and u∗ is the pre-computed solution at
convergence. Fig. 3(c) shows the values of qk for the Text image with a Gaussian blur of size 5×5
and noise of SNR 30dB. It is seen qk → 0 in the last 16 iterations out of a total of 33 iterations.
Thus a superlinear convergence is achieved. This confirms the results of Section 3.

4.2 Segmentation

In this subsection, we demonstrate the usefulness of our algorithm for solving segmentation prob-
lems and compare our algorithm with the primal and dual gradient descent (GD) algorithms of [7]
and [3] respectively. The constants c1 and c2 are updated after every 100 iterations for the primal
and dual GD algorithms and are updated after every iteration for the BCGM algorithm. In all
cases, we set β = 0.4.

Fig. 4 presents the segmentation results of the BCGM algorithm. It is observed that the
solution u is very close to a binary function. The final segmentation is obtained by thresholding
u with µ = 0.5.

Fig. 5 presents the segmentation results of the BCGM algorithm with respect to various
thresholds. We observe that the segmentation is very robust to the threshold due to the fast
convergence of the proposed algorithm to a close-to-binary function.

Fig. 6 show the convergence profile of various methods in terms of the relative residual of
the respective optimality conditions. Fig. 6(a) and (b) show that the convergence of the BCGM
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Figure 1: Comparison of bilaterally constrained, non-negatively constrained, and unconstrained
deblurring. The value of β is set to 0.2. (a) Original Checker image (128 × 128). (b) Blurred
and noisy data with a Gaussian PSF of size 7 × 7 and noise of SNR 25dB. (c) Unconstrained
deblurring followed by clipping out-of-bound components. PSNR = 19.18dB. (d) Non-negatively
constrained deblurring followed by clipping out-of-bound components. PSNR = 20.33dB. (e)
Bilaterally constrained deblurring. PSNR = 24.78dB. (f) Contour plot of the result in (c). (g)
Contour plot of the result in (d). (h) Contour plot of the result in (e). (i) Histogram of the result
in (c). (j) Histogram of the result in (d). (k) Histogram of the result in (e).
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(a) (b) (c)

Figure 2: (a) Original Text image (128× 128). (b) Degraded with a Gaussian PSF of size 5× 5
and noise of SNR 30dB. (c) TV deblurring results with BCGM with β = 0.2.
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Figure 3: (a) Comparison of convergence of BCGM and PN for different SNRs with a fixed PSF
of size 5 × 5 and β = 0.2. (b) Convergence of BCGM for varying values of ε, with SNR=30dB,
PSF=5× 5. For both (a) and (b), the relative KKT residual versus iteration number is plotted.
(c) Plot of qk for PSF 5× 5, β = 0.2, SNR=30dB.
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Figure 4: Segmentation results of the BCGM algorithm. (a) Original image. (b) The solution u
obtained by minimizing the globalized objective (5). (c) The segmentation obtained by thresh-
olding u with µ = 0.5. (d) The histogram of the values of u. The parameters are set to β = 0.4,
α = 0.01, ε = 10−3.

algorithm is very robust to various parameters. In all cases, the BCGM algorithm achieves a
relative residual of 10−10 within 8 iterations. But Fig. 6(c) shows that the primal and dual GD
do not achieve such a high accuracy in 3000 iterations. The BCGM algorithm (with α = 0.01
and ε = 10−3) takes about 16 seconds. The primal and dual GD take about 10 seconds for every
1000 iterations.

For the primal GD, it takes about 5000 iterations to obtain a segmentation similar to the one
by BCGM. For the dual GD, it takes about 800 iterations. This shows that the dual GD converges
to a close-to-binary function very quickly. Then it slows down and makes small adjustments in
fine details which have little effect on the final segmentation. This explains why the residual of the
dual GD is still relative large even when the segmentation stabilizes. However, this is not the case
for the primal GD. After the progress slows down, the segmentation may still change significantly
in a long run. Thus it suggests that the convergence of large scale features is much slower in the
primal GD than that in the dual GD. Duality suggests that the convergence of fine scale features
is faster in the primal GD than that in the dual GD, but we did not conduct experiments on
this aspect. The proposed primal-dual BCGM algorithm appears to have a fast convergence for
features in all different scales.
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Figure 5: Segmentation results of the BCGM algorithm with respect to various thresholds. (a)
µ = 0.2; (b) µ = 0.4; (c) µ = 0.6; (d) µ = 0.8.
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Figure 6: Convergence profile of various methods (the relative residual of the respective optimality
conditions versus iteration number). The value of β is fixed at 0.4. (a) Various α’s with ε = 10−3.
(b) Various ε’s with α = 0.01. (c) Results of primal gradient descent with ε = 10−3 and dual
gradient descent with θ = 0.04.
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5 Conclusion

In this paper, we propose a unified primal-dual active-set algorithm for solving a class of bilater-
ally constrained total variation minimization problems including constrained TV deblurring and
piecewise constant Mumford-Shah segmentation problems. The convergence of our algorithm is
locally superlinear. We also found experimentally that a simple line search in the dual variable
p results in global convergence. By splitting the variables into suitable “active” and “inactive”
sets, the Newton’s equation is greatly simplified and can be effectively preconditioned by the
FBIP preconditioners. Our algorithm inherits the advantages of the primal-dual method by Chan
et al. [8]. Compared to primal-only methods, the singularity of the term ∇u/|∇u| is overcome
by introducing a dual variable. Compared to dual-only methods, our optimality equations do not
involve the usually highly ill-conditioned term (KT K +αI)−1 and is therefore more suitable when
solving deblurring problems. But for segmentation and denoising problems, both dual and our
primal-dual methods converge very fast. Our algorithm is also very robust to various parameters.
On the other hand, we also provide empirical evidence to show that the use of the bilateral con-
straints can greatly improve the quality of restoration results. Due to the improved speed and
quality, our algorithm is of great practical interest.
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