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Abstract. A variational PDE based model is presented for natural image matting. Given
an input image with a trimap guess, we search for BV solutions for the α − matte, and the fore-
ground/background intensities. Additionally, regularity conditions that comes naturally from the
image formation model are imposed for the α−matte. Our model has two advantages. Firstly, the
geometry based TV regularization is better (for non texture images with sharp edges) at inpaint-
ing F and B from known regions than nearest neighbour based approaches (used by many matting
algorithms). Secondly, the additional conditions on α gives our model robustness with respect to
the initial trimap guess (another issue in current algorithms). We demonstrate our approach by
experiments on real and synthetic data.

1. Introduction. Digital Image Composition is commonly used by the graphics
community to create various scenario for objects by extracting them from their original
background scene and pasting them realistically to new background scenes. The above
technique has been popularly used by the movie industry to transport images of actors
captured in a controlled studio environment to novel locations [5]. A crucial step that
precedes compositing images is extracting the object in question from its original
background scene realistically (i.e. preserving the fractional nature of the object
boundary). The above step is referred to as Image Matting, and additionally as in
our work, if the background is unknown, referred to as Natural Image Matting.

Given an image I : Ω → R containing the object of interest, natural image
matting aims to recover (α, F , B), where F and B are the foreground and background
intensities, and α is the soft-segmentation (i.e. α-matte) of the object that reflects
the proportion of foreground and background [13]. The image I is related to (α, F ,
B) through the commonly used matting equation I = αF + (1 − α)B. Recovery of
(α, F , B) from such an I is an inherently ill-posed problem that requires further
constraints. A variety of matting algorithms have been introduced using different
number of images and different a priori assumptions on F , B and α.

One of the initial approaches for image matting is blue screen matting where F
and α are to be estimated while B is a known constant [16]. The known constant
background condition simplifies the problem, yet is still insufficient to fully constrain
the problem [12]. Further such an assumption on the background is generally not
applicable to natural images, and hence requires a controlled environment or imaging
scenario. Recently, a number of natural image matting algorithms have been proposed
to estimate the alpha matte from a single image based on a manually partitioned
trimap that consists of definitely foreground F , definitely background B, and unknown
regions where statistics of intensity distributions of the known regions are propagated
into the unknown regions [2, 15, 8, 4, 17, 1]. In Knockout [2], F and B are assumed
to be smooth and the estimated α is obtained as a weighted average of F and B.
Instead of simple weighted sum as the estimation of a local intensity distribution,
a mixture of un-oriented Gaussians has beed used in [15] and principal component
analysis (PCA) has been used in [8]. In [4], Chuang et al. proposed Bayesian matting
algorithm where a mixture of oriented Gaussians is employed to estimate the local
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distribution and F , B and α are estimated by a maximum a posterior (MAP) in a
Bayesian framework. The Poisson matting algorithm was proposed in [17], where the
alpha matte is obtained from its gradient field by solving a Poisson equation using the
boundary information provided by a trimap. These methods generally produce good
results, however the major drawback is their considerable dependency on the initial
condition that is given by a user specified trimap. For a good matte, the unknown
region in the trimap has to be as narrow as possible. However, it is intractable to
provide optimal and consistent trimap manually.

This naturally leads to introduce the combination of image segmentation and
matting as in [3, 11, 14, 10] where a hard binary segmentation based on graph-cut
framework is initially performed followed by estimating a fractional α matte from
the segmentation results. Another approach is based on a few user-specified strokes
rather than trimap using Belief Propagation techniques [19] and Markov Random
Field (MRF) [6] for modeling unknown regions. These methods generally involve
computationally expensive iterations in the opimization of non-linear systems that
might converge to local minima. There are also several works that incorporate tem-
poral information or optical flow using multiple images of the object of interest in
order to constrain the matting equation in [20, 21, 7, 18].

Even though one can see excellent matte results in recent works, we believe that
the root ill-posed nature of the matting problem is still not completely tackled, which
primarily contributes to stability issues such as the above trimap dependency problem.
To counter the above mentioned issues, the main focus of our paper is to properly
regularize the recovery of α, F , and B. We make two simplifying assumptions which
allows us to choose appropriate regularizers for α, F , and B. Firstly the images that
we deal with are non-texture, thus we model F and B as functions in BV space.
Geometry based (TV) regularization has been used before for matting [9], and does
not give artifacts in the matte, especially for images with sharp edges. Secondly
we assume that the foreground object is in focus, and we regularize α in a manner
consistent with such an image formation model. The above choice of α-regularization
is primarily responsible for the stability of computed solutions w.r.t the initial trimap
guess and is demonstrated within our experiments. The usual way of regularizing just
the gradient of α (used by many matting algorithms) does not guarantee stability of
the computed solution, and can result in a noisy matte even for simple images with
sharp edges.

Briefly, in this work, we first consider the image formation model for an object
in focus. This is easily shown to give the commonly used matting equation. The
matte α is seen to be the fractional area of the object region within a square shaped
region of fixed size (a camera parameter). This form of α results in some necessary
conditions which an α solution has to satisfy. We formulate a variational energy that
uses a search space BV (Ω) for α, F , and B, additionally constraining α to satisfy the
above conditions.

2. Image Formation Model. Suppose that O is the object of interest assumed
to be in focus in a 3D scene. Let I : Ω → R represent the image of the above scene.
Since the object O is in focus, we can approximate the projection of O by a binary
function u defined on Ω. Then the intensity recorded at each point x after considering
blurring effects due to pixel averaging and camera optics is given by:

I(x) =
1

4ε2

∫
Sx

(
u(t)f(t) + (1− u(t))b(t)

)
η(x− t) dt. (2.1)

2



η is the blurring function with compact support within S0. Here, Sx denotes a square
shaped region centered at x and width 2ε, ε > 0. f and b are the observed intensities
of the object and the background scene. The above equation can further be simplified
into the commonly used matting equation

I = αF + (1− α)B (2.2)

Here α(x) is the fractional area of the object-region within Sx,

α(x) =
1

4ε2

∫
Sx

u dt,

Henceforth, we will refer to such functions as transition functions. Also,

F (x) =

∫
Sx

ufη dt∫
Sx

u dt
, and B(x) =

∫
Sx

(1− u)bη dt∫
Sx

1− u dt

whenever well-defined, are the average intensities of the object and the background
recorded within Sx.

Thus given an image I as described above with additive gaussian noise, we wish
to recover α, F and B. Once α, F and B are solved for, we can combine α and F with
a novel background B̂ = b̂ ∗ η to form the composite image,

Î = αF + (1− α)B̂

≈ 1
4ε2

∫
Sx

(
u(t)f(t) + (1− u(t))b̂(t)

)
η(x− t) dt.

The above composition is realistic in the sense that it is close to the image of the
object O in the novel background, assuming similar lighting conditions.

We use a variational framework to formulate the above inverse problem along
with appropriate regularization terms for the unknowns. It is to be noted that α
within the matting equation (2.2) takes the special form of a transition function, i.e.
α(x) = 1

4ε2

∫
Sx

u dt. In contrast to current matting models that regularize only ∇α,

we specifically search for α-solutions that are transition functions. We have found
that such a restrictive search space is essential for the stability of computed solutions.
Since α is related to some object region u, one possibility is to directly search for
a solution u, that gave rise to I in (2.2). But this is computationally challenging,
since one has to resolve u to within subpixel accuracy for natural images. Also, it
seems to be unnecessary for the problem, since all that is needed to composite the
foreground object to a different background scene is the matte, α. As a result, we
will search for an α-solution in a suitable space, additionally constrained by some
necessary conditions which a transition function has to satisfy.

2.1. Necessary Conditions for a α-solution. Here we look at some of the
properties that an α estimate has to necessarily satisfy. We further assume that the
object region defined by u has finite perimeter, thus u : Ω → {0, 1} is in the space
BV (Ω). Firstly we note that α = 1

4ε2

∫
S

u dt is in the Sobolev space H1(Ω).
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To motivate the discussion, we will first consider the 1D case, i.e Ω ⊂ R and

α(x) = 1
2ε

x+ε∫
x−ε

u(y)dy. We see that α′(x) = 1
2ε [u(x + ε)− u(x− ε)]. Thus

α′ ∈ BV (Ω) and α′ ∈ {0,± 1
2ε
}. (2.3)

Hence for the 1D matting problem, we search for α in H1(Ω), with additional
constraints on α′ given above.

For the 2D case, we have α(x, y) = 1
4ε2

x+ε∫
x−ε

y+ε∫
y−ε

u(s, t) dsdt. From the form of α,

it is straightforward to show that there exists a band (transition region D) of width
2ε, where

0 < α(x) < 1, x ∈ D, and
α(x) ∈ {0, 1}, x ∈ Dc (2.4)

Differentiating α gives αx(x, y) = 1
4ε2

y+ε∫
y−ε

u(x+ε, t)−u(x−ε, t) dt, and αy(x, y) =

1
4ε2

x+ε∫
x−ε

u(s, y + ε)− u(s, y − ε) ds. A necessary bound

|∇α| ≤
√

2
2ε

(2.5)

follows from the above equations. We further notice from αxy(x, y) = 1
4ε2 [u(x+ ε, y +

ε)− u(x− ε, y + ε)− u(x + ε, y + ε) + u(x− ε, y − ε)] that

αxy ∈ BV (Ω) and specifically

αxy ∈ {0,± 1
4ε2

,± 1
2ε2

} (2.6)

Thus for the 2D matting problem, we search for solutions of α ∈ H1(Ω), additionally
constrained by the above properties (2.4)-(2.6). Henceforth we will refer to the above
properties as transition-function conditions.

3. Well Posedness. In this section, we wish to compare the stability of solutions
computed using our α-regularization, with the usual choice of regularizing ∇α used in
many matting algorithms. We will look at illustrative examples for the 1D (Fig 2.1)
and 2D (Fig 2.2) cases for the inverse problem corresponding to the forward model
I = αF . Here we have ignored the background component B in (2.2), and only look
at recovering (F , α) from a given I.

3.1. 1D case. In Fig 2.1 (a) is shown a 1D image I, and the corresponding
ground truth α (red curve in (b)) and F (blue curve in (b)). As described previously,

α is a transition function, i.e α(x) = 1
2ε

x+ε∫
x−ε

u(y)dy for a binary valued u(x) and a

window size ε. The values of F were chosen from a known gaussian distribution.
Given such an I, we consider the inverse problem of recovering α and F , using a

gaussian prior for F , and for two different regularization choices for α (results shown
in (c),(d)). In (c), we search for α ∈ BV (Ω), and in (d), α is searched for in the space
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Fig. 2.1. 1D matting example; In (b)-(d):F (Blue), α (Red), α′ (Magenta)

of transition functions, i.e. α ∈ BV (Ω) with constraints (2.3). In (c) and (d), the
blue, red and magenta plots are the graphs of F , α, and α′ respectively.

By restricting the search space of α only to transition functions, we obtain stable
convergence to solution (d) that is close to the ground truth, even with rough initial
guesses. However use of the search space such as BV (Ω) for α is not sufficient to
guarantee uniqueness, and leads to stability issues (e.g, as in Fig 2.1(c), even a very
close initial guess for α and F can give an incorrect solution!).

3.2. 2D Case. In Fig 2.2 (a) is shown the given image I. The corresponding
ground truth α and F are seen in first row (b and c). In (a), the cyan and red curves
overlayed on the image is the trimap initial guess. The interior of the cyan curve is
the region {α = 1}, and likewise the exterior of the red curve gives the region {α = 0}.
Using a trimap, one can easily generate initial guesses for α (shown in (b)) and F
(shown in (c)). The resulting α (i.e. the matte) is shown in (d).

Fig 2.2 (first row), shows the results obtained by using the search space BV (Ω)
for α. In the second and third rows, we show the results for α ∈ BV (Ω) additionally
constrained by (2.4) - (2.6). In both cases, F has the search space, BV (Ω). The first
row demonstrates the instability of a model that uses α ∈ BV (Ω) as the search space.
The ground truth shown in (b) and (c) was the initial guess for α and F . In spite
of such an accurate initial guess for α and F , an incorrect solution (d) is obtained.
In the second and third rows, we see that use of the transition function constraints
(2.4)- (2.6) for α has given robustness with respect to initial trimap guess (e.g. two
different rough initial guesses ((b) and (c)) converged to the correct α value (d)).
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Fig. 2.2. Wellposedness: α ∈ BV (Ω) (First Row), Our model (Second and Third Rows); (a)
Image with Trimap guess (α = 1 inside cyan curve) (b) Initial F (c) Initial α (d) α Result.

4. 2D Matting Energy. We formulate the inverse problem of recovering (F ,B,α)
each in BV (Ω), from I, as the following energy minimization:

E(α, F,B) =
∫
Ω

[I − (αF + (1− α)B)]2 dx + λF

∫
Ω

|∇F |+ λB

∫
Ω

|∇B|

+β1

∫
Ω

H
(
|∇α|2 − 2c

)
dx + λα1

∫
Ω

H
(
α2

)
H

(
(α− 1)2

)
dx + λα2

∫
Ω

|∇αxy|

+β2

∫
Ω

H
(
α2

xy

)
H

(
(αxy − c)2

)
H

(
(αxy + c)2

)
H

(
(αxy − 2c)2

)
H

(
(αxy + 2c)2

)
dx

(4.1)

Here, c = 1
4ε2 , and H(t) is the Heaviside function. The data fidelity term follows

from the matting equation. The second and third terms in the energy regularize the
TV norm of F and B. The fourth term constrains |∇α| within the necessary bound√

2
2ε . The fifth term penalizes the area of the region α /∈ {0, 1}, thus is minimized for
an α ∈ {0, 1}. The combination of the fourth and fifth terms drives the transition
region D = {x ∈ Ω|0 < α(x) < 1} to be close to the required width of 2ε (necessary
conditions (2.4) and (2.5)). Finally, the sixth term constrains the TV norm of αxy,
and the last term restricts the values of αxy to lie within {0,± 1

4ε2 ,± 1
2ε2 }(necessary

condition (2.6)). λF , λB , λα1 , λα2 are parameters that balance the respective terms,
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and β1, β2 are Langrange multipliers for the constraints. λF and λB are parameters for
the TV terms and relate to the scale of objects within the foreground and background
regions.

To minimize (4.1), we start with an initial guess (α0, F0, B0) for the unknowns and
iteratively refine the guess using steepest descent. The initial guess here is analogous
to the trimap initialization required by many matting algorithms. However, our model
gives robustness to initial guess due to the transition-function conditions used in (4.1),
as demonstrated in the experiments section. In current matting algorithms, there are
three main steps which we have combined into the above energy:

• Trimap refinement : A prior segmentation step is added to refine the approxi-
mate user defined trimap to conform to the actual α-transition region. In our
energy (4.1), this step is accomplished through the fourth and fifth terms.

• Extrapolating F and B : The foreground and background intensities, F and
B have to be extrapolated (i.e inpainted) into the transition region. Our
inpainting technique is TV based that is successful in inpainting geometric
features from the known regions.

• Solving for α: α is solved for in the transition region using the matting
equation subject to suitable priors. We constrain the smoothness of α addi-
tionally by the fifth and sixth terms, that comes from the image formation
model discussed in the previous section. Such a reduced space is essential for
the stability and local uniqueness of the computed solutions.

5. Experimental Results. In this section, we present results on some synthetic
data (Fig. 5.1, Fig. 5.2, Fig. 5.3) and on real images (Fig.5.4, Fig.5.5 , Fig.5.6). In the
synthetic examples Fig. 5.1 and Fig. 5.2, the foreground and background intensities
are from gaussian distributions. In Fig. 5.1, the use of α regularization shown in (4.1)
resulted in an α(shown in (d)) very close to the ground truth matte (b), although only
a rough initial guess was used. Whereas, in (c) we see that a typical regularization
of ∇α such as the TV (α) is not sufficient to avoid local minima (even with a good
initial guess!), and could result in a noisy matte. In another example (Fig. 5.1), the
model shows robustness to the choice of F and B (in this case with large variances),
and recovers the matte accurately. In image Fig. 5.3 (a), the background has a sharp
discontinuity. A rough trimap guess (Definitely foreground - interior of Cyan contour,
Definitely background - exterior of Red contour) is used. The initialization for B is
shown in (b). We see the result for α (in (c)) and B (in (d)). Proper inpainting of B
utilizing the geometry in the known region and driven by the image intensity, as in our
energy (4.1) is crucial for a good matte result. Nearest neighbour based inpainting
techniques (frequently used in matting algorithms) cannot give such a result without
a careful choice for the trimap.

For real images (Fig.5.4, Fig.5.5, Fig.5.6)(images shown in (a)), we start with
a trimap guess (overlayed in (a)), use the trimap to generate initial estimates for F
(shown in (b)), B (shown in (c)). The minimizing F , B and the matte α of the energy
(4.1) are shown in (d)-(f). The extracted object (i.e. αF ) is shown in (h).

In Fig.5.5 (i), we see an artifact in the extracted object(highlighted by cyan
colored square) when using an iterative algorithm such as Poisson matting that reg-
ularizes ∇α and uses nearest neighbour inpainting.
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Fig. 5.1. (a) Image (b) α regularity as in (4.1) (c) TV regularity for α (d) ground truth

Fig. 5.2. (a) Image with noisy F and B (b) α result

REFERENCES

[1] Nicholas Apostoloff and Andrew Fitzgibbon. Bayesian video matting using learnt image priors.
In Proc. Conference on Computer Vision and Pattern Recognition, volume 1, pages 407–
414, 2004.

[2] A. Berman, P. Vlahos, and A Dadourian. Comprehensive method for removing from an image
the background surrounding a selected object. U.S. Patent 6,134,345, 2000.

[3] Yuri Boykov and Marie Pierre Jolly. Interactive graph cuts for optimal boundary and region

8



Fig. 5.3. (a) Image with Trimap guess (b) Initial B (c) α result (d) B result

segmentation of objects in n-d images. In Proc. International Conference on Computer
Vision, pages 105–112, 2001.

[4] Yung-Yu Chuang, Brian Curless, David H. Salesin, and Richard Szeliski. A bayesian approach
to digital matting. In Proc. Conference on Computer Vision and Pattern Recognition,
volume 2, pages 264–271, 2001.

[5] Raymond Fielding. The Technique of Special-effects Cinematography. Hastings House, 1965.
[6] Yu Guan, Wei Chen, Xiao Liang, Zi’ang Ding, and Qunsheng Peng. Easy matting - a stroke

based approach for continuous image matting. In Proc. EUROGRAPH, pages 567–576,
2006.

[7] Samuel W. Hasinoffa, Sing Bing Kang, and Richard Szeliski. Boundary matting for view
synthesis. Computer Vision and Image Understanding, 103(1):22–32, 2006.

[8] P. Hillman, J. Hannah, and D. Renshaw. Alpha channel estimation in high resolution images
and image sequences. In Proc. Conference on Computer Vision and Pattern Recognition,
volume 1, pages 1063–1068, 2001.

[9] K.Ni, S.R. Thiruvenkadam, and T.F. Chan. Matting through variational inpainting. In SIP,
pages 173–179, 2007.

[10] Anat Levin, Dani Lischinski, and Yair Weiss. A closed form solution to natural image matting.
In Proc. Conference on Computer Vision and Pattern Recognition, volume 1, pages 61–68,
2006.

[11] Yin Li, Jian Sun, Chi-Keung Tang, and Heung-Yeung Shum. Lazy snapping. ACM Transactions
on Graphics, 23(3):303–308, 2004.

[12] Y. Mishima. Soft edge chroma-key generation based upon hexoctahedral color space. U.S.
Patent 5,355,174, 1993.

[13] Thomas Porter and Tom Duff. Compositing digital images. In Proc. SIGGRAPH, pages 253–
259, 1984.

[14] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. “grabcut”: interactive foreground
extraction using iterated graph cuts. ACM Transactions on Graphics, 23(3):309–314, 2004.

[15] Mark A. Ruzon and Carlo Tomasi. Alpha estimation in natural images. In Proc. Conference
on Computer Vision and Pattern Recognition, volume 1, pages 18–25, 2000.

[16] Alvy Ray Smith and James F. Blinn. Blue screen matting. In Proc. SIGGRAPH, pages
259–268, 1996.

9



Fig. 5.4. (a) Starfish image with Trimap guess (b),(c) Initial Guesses for, F and B (d)-(f)
Result for: α, F , and B (g) Original Image (h) Extracted object αF

[17] Jian Sun, Jiaya Jia, Chi-Keung Tang, and Heung-Yeung Shum. Poisson matting. ACM Trans-
actions on Graphics, 23(3):315–321, 2004.

[18] Jian Sun, Yin Li, Sing Bing Kang, and Heung-Yeung Shum. Flash matting. ACM Transactions
on Graphics, 25(3):772–778, 2006.

[19] J. Wang and M.F. Cohen. An iterative optimization approach for unified image segmentation
and matting. In Proc. International Conference on Computer Vision, pages 936–943, 2005.

[20] Y. Wexler, A. Fitzgibbon, and A. Zisserman. Bayesian estimation of layers from multiple
images. In Proc. European Conference on Computer Vision, pages 49–61, 2002.

[21] J. Xiao and M. Shah. Accurate motion layer segmentation and matting. In Proc. Conference
on Computer Vision and Pattern Recognition, volume 2, pages 698–703, 2005.

10



Fig. 5.5. (a) Bear image with Trimap guess (b),(c) Initial Guesses for, F and B (d)-(f) Result
for: α, F , and B (g) Original Image (h) Extracted object αF (i) Result for an iterative algorithm
similar to Poisson matting
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Fig. 5.6. (a) Scarf image with Trimap guess (b),(c) Initial Guesses for, F and B (d)-(f) Result
for: α, F , and B (g) Original Image (h) Extracted object αF
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