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ABSTRACT

We present an efficient algorithm for nonlocal image filtgrimith
applications in electron cryomicroscopy. Our denoisirgpethm is

a rewriting of the recently proposed nonlocal mean filteouitds on
the separable property of neighborhood filtering to offerst parallel
and vectorized implementation in contemporary shared mgmo
computer architectures while reducing the theoreticalatational
complexity of the original filter. In practice, our approaishmuch
faster than a serial, non—vectorized implementation arstales
linearly with image size. We demonstrate its efficiency itadsets
from Caulobacter crescentuemograms and a cryoimage containing
viruses and provide visual evidences attesting the rerhikpuality

of the nonlocal means scheme in the context of cryoimaginigh W
such development we provide biologists with an attractikerfing
tool to facilitate their scientific discoveries.

Index Terms— Nonlocal mean filtering, image denoising,
electron cryomicroscopy, image vectorization, SIMD, flatémage
processing.

1. INTRODUCTION

Electron cryomicroscopy is a remarkable technology engbli
new discoveries at subcellular scale. Studies at such scale
to understand the structure and function of the macromtdecu
machinery responsible for regulating cell mechanisms whiéa
ultimate goal of transforming living cells to attain desire
configurations and perform specific tasks, such as, curasiéseand
transform plants in fuel.
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Fig. 1. This composition shows a section of a typical low contrast
tomogram after reconstruction (left portion), the levehofse more
apparent after histogram normalization (middle), and tiege after
applying our filter.
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a challenging problem. First and foremost, the amount cfen@s
significantly high (see Fidl1), far beyond what is commomlyrfd
in regular photography and other microscopy technolodiesignal
to noise ratio of 1 or lower is not uncommdn [1]. Second, lahigh
resolution images are the rule and the trend is to contincreasing
the CCD resolution to obtain images with even higher levetketail
(current cameras can generate images having uf§26° pixels).
Third, structures of interest in the images can be eithemglesi
filament or a bundle of filamentEl[2], which are a few points evid
that when mixed with noise are challenging to visualize eegra
trained eye. Fourth, validating the results might be diffisince the
shapes of the pictured cell and of its macromolecular sirestare
most likely unknown (hence the reason to photograph tharcétle
first place) and therefore a counterpart to help make cosmasi
is unknown. The experienced biologist plays a major rolehi t
validation.

The solution to this challenge is @bust and efficient filter

Researchers rely on pictures of samples maintained at crygapable ofpreserving fiber like structures The nonlocal means

(freezing) temperatures to investigate a particular gpktin its near
native state. A picture of a cell is formed after beam of etewd
is projected through the sample and captured by a charggulezb
device, CCD, camera. Due to a low dosage of electrons, ragess
to avoid damaging the thin biological sample, a poorly reso]

filter, NL-means for short, recently proposed by Buades),@old
Morel [3], and experimented and extended by others, El&][4as
the right features that interest us: it is simpé&aightforwardto
implement, and the results shown in the literature are antkng.
The filter is primarily designed to reduce noise without d®shg

noisy, low contrast image is formed (see F[@. 1). In the cédse oextures and fine structures, a superior feat when comparether

cryotomography, a series of unfiltered 2D projections ametined
to build a 3D reconstruction of the cell. In this process,srois
transferred to the reconstructed object. All this makesrfilg ade
factocomponent of the cryoimage processing pipeline.

A number of factors contribute to make filtering of cryoimage
(an image generated using the electron cryomicroscopynieh)
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equally extraordinary filters which, contrary to NL—-meainserpret
textures a®scillating patternsand remove them altogether to form
a separation of the image into a cartoon part and an osoglétioise

+ texture) part. We have recently discovered the work of Dabo
et.al. [6] which has strong similarities to NL-means.

To the best of our knowledge, practical attempts of coding
NL—-means have led to slow implementations which somehow
Thadowed the full potential of the method. The straighttodmess
of the proposed algorithm i][3] does not directly transiate an
efficientimplementation. We depart from the sliding windesheme
typically adopted by neighborhood filtering implementatioand



resort on more sophisticated ideas leading to a faster mmiéation.
We claim thagttaining a desirable level of applicabilityas advocated
by [3], is due to our algorithm and implementation bringirge t
NL-means ideas to a full realization.

We emphasize here efficiency as it permits practitionersdouge
trial and error runs at an affordable pace enabling a promygrpss
of their ultimate investigations. Considering the undeitas and
difficulties in picturing frozen cells as described earpeactitioners
would greatly benefit from a fast implementation. This woalldw
and encourage them to quickly test different denoisingades and
make choices satisfying their own quality criteria — visinapection
continues to be the most reliable metric to assess denaissugts.

similarities between pixels. Similarity is computed betwequally
sized patches as they capture the local structures (gepraet
texture) around the sites in consideration. Note that pireitside
N (s) do not contribute to the value afs). This property allows us
to separate the image into independent disjoint pieces esukgs
them in parallel, as it is done in domain decomposition s@sem
Following [3], we assume searching windows and patches
A have uniform cardinalities of, respectively2K + 1)? and
(2P + 1)* with N = [-K,K]* and A = [-P, P]*. Using
equations [[l1) andX2) one realizes the nonlocal mean ahgorit
proposed in[[B] which ha®(|Q| K P?) for time complexity. Note
that this complexity is exponential with respect to spaceetision

For lack of space, we will not compare NL-means with otherd but it is polynomial with respect to the number of pixédy. In

well established filters (e.g. anisotropic diffusion, t#al, median,
Wiener, total variation based filters) and refer the readethe

literature for pragmatical comparisons (seg [31[5]). These popular
filters comprise the majority of attempts in denoising cnyages

practice, where dimensions are fixed and low, the algoritmains
polynomial.

To make averaging more robust, one would like to set the
searching windowV/(-) as large as possible and in the limit extend

(seee.g. [} [4,[8]). We believe results can be further improved init to the entire image. However, this would lead to excesgilang
terms of robustness and efficiency and we shall present hiene a computation times and thus we constrain searching only dallo

supporting examples.

neighborhoods, as suggested[ih [3]. We refer the readél] tmf9

Outline. In the next section we present the nonlocal meara variational formulation of neighborhood filtering in thads of

approach and our fast algorithm. Results are presentectiivsEl
and we offer some conclusions thereafter.

2. THE NONLOCAL ALGORITHM

In this section we briefly review the nonlocal approach of des
et. al. [3] before presenting our fast algorithm.

2.1. The Nonlocal Means Approach

nonlocal mean.

2.2. A Fast Algorithm

Our fundamental contribution consists in a method for catingu
very efficiently the weightsu(s,t) given by EqI[R). The weight
computation is by far the most time consuming part when getimey
the restored image. For the sake of clarity we present our algorithm
for 1-dimensional images; extending it to higher dimensids
straightforward. Under this 1D assumption we h&ve- [0, n — 1],

The NL-means scheme thrives when an image contains marf image withn pixels.

repetitive structured patterns. It uses redundant infiomao reduce
noise by performing a weighted average of pixel values. Rtiym
we assume images are defined over a discrete regulartgiad
dimensiond and cardinality|2|. Let us denote by the original
noisy image. The value of the restored imagat a sites € Q is
defined as the convex combination

us) = 7555 3wl | @

teEN (s)

where w(-,-) are non-negative weight¥/(s) is a normalization
constant such that for any sitave haveZ(s) = >, v, w(s, 1) ,

and A/ (s) corresponds to a set of neighboring sites oFollowing

Given a translation vectet,, we introduce a new imag®;, as

P

S0.(p) = Y (k) —v(k+do))*, peQ. @

k=0

Sa, corresponds to the discrete integration of the squareérdiftte
of the imagev and its translation byl,. Note that Eq.[[3) may
require access to pixels outside the image domain. To averdarny
corruption in our implementation we extend the image botirda
either by symmetry or in a periodic fashion.

Our strategy to compute the weight for two pixeisand
t follows. Recall that in 1D we have patches of the form
A = [-P, P]. Contrary to[[8] we replace the Gaussian kernel by

Buadeset. al. A'(-) will be referred to as the searching window. The a constant without noticeable differences. Thus E}. (2)itew
weightw(s, t) measures the similarity between two square patche@s follows:w(s,t) = gn(}"5, oo (v(s + 62) — v(t + 62))*). Now

centered, respectively, at sitegndt, and it is defined as follows:
w(s,t) = gn (Z Go(0) (v(s +6) —v(t + 5))2> , @
deA

where G, is a Gaussian kernel of variane€, g, : R™ — R™T
is a continuous non-increasing function wii),(0) = 1 and

lims— 400 gn(x) = 0, and A represents the discrete patch region

containing the neighboring sites The parametef is used to
control the amount of filtering. Typical examples of #hefunction

aregn(v) = a7y andgn(z) = e=="/"* the latter used ir]3].
We adopt the former which leads to a more efficient implententa

letd, = (t — s) and defingd = s + 0. With this reparametrization
we writew(s, t) = gn (3510, (v(p) — v(p + da))?). If we split

the sum and use the identity in ER] (3) we obtain
w(s,t) = gn (Sa, (s + P) = Sa, (s — P)) 4

which is in fact independent efprovided the quantity,,, is known.
This is the key expression that allow us to compute the wdgta
pair of pixels in constant time. Generalizing to higher disiens
corresponds to have integrations along the image orthdgaea in
Eqg. [@). Itis not difficult to see that this approach yields eight
computation formula requirin@(2?) operations forl—dimensional
images. This quantity isndependenif the size of the patches,

In summary, NL-means restores an image by performing a wezigh contrary to the formulation irl13] which requir€s(P?) operations

average of pixel values taking into account spatial andniitg

per patch.



In summary, the algorithm works as follows: first, all values 3. RESULTS

Sa, are computed using EQ](3); then weights are computed using

Eq.@2) and Eq¥); and finally the filtering is performed gsifg [1). We implement our algorithm in C/C++ and demonstrate it in

This procedure is repeated for all possible translationergiby  cryotomograms ofCaulobacter crescentudacteria and for a

the dimensions of the searching windowW. Pseudo-code of our cryoimage containing viruses. Figures and tables togetitartheir

algorithm is shown in Algorithritl1. captions are self explanatory. All results are based onrprmg
written by our own. We report timing and scalability numbérs
tables to show the applicability of our work in large imagesl a

Algorithm 1 — Fast Nonlocal Mean — 1D multicore computing. All results were obtained Br= 3, K =7,
Input: v, K, P, h and h = 1. Parallel runs were performed on a 32 GB shared
Output: u memory, 2.8GHz, Dual-Core AMD Opteron Processor 8220 based
Temporary variables: imagesSy, , Z, M server having 8 dual core chips, each core with 1 MB of cache.
Initialize u, M and Z to 0. ' Times were averaged after 40 runs and do not include I/O.[Regu
forall d. € [-K, K] do imag_es were post-processed to improve visualization &giam

ComputeS,, using Eq.[B) manipulation. o
for all s € [0,n — 1] do Regarding the performance of our formu_latlon in 3D, we
compute weightso using EqI[R) and EqX4) spepulate an_d compare our resul_ts with thosélin [5]. Obsiate
u(s) — u(s) + w- u(s + dz) an image Wlth40962 p|>'<els requires the same amount of data
M (s) = max(M(s), w) processing as in a 3D image witt56° voxels. We would then
Z(s) — Z(s) + w expect equivalent filtering times for these. Given the penfince
end for numbers presented in our timing tables and thosglin [5] weats
end for that our formulation in 3D would be approximately 20 timestéa
forall s € [0,n — 1] do Fhan the pargllel implement.atio.n ¢fi [5]. We believe (.)ur'rasn.iion
u(s) — u(s) + M(s) - v(s) is conservative after considering the differences in image,
u(s) hardware, and searching window and patch sizes reporté.in [
u(s) < Zrytarey
end for
return

Timings for filtering images of different sizes
image size 256° 51 1024 2048 4096
time (s) 0.07 035 154 6.05 26.32

Time and memory complexity in the Random Access Model. scalability - 5.0 4.4 3.9 4.4
Compared to the original NL-means approach our algorithquires
three additional images to store partial results but it asieh better ~ Table 1. This table shows filtering times in seconds for images of
time complexity ofO(|2| K¥2%) when compared t@(|Q|K¢P?)  different sizes using 2 cores of a dual core AMD Athlon X2 64.
of Buadeset. al. — an improvement of orde®(P?). It is also  Image size increases linearly by a factor of 4. Similarlpgassing
faster, whend > 1, than a sliding window-based approach that onetime increases linearly by an average factor of 4.4 (avevagalues
could obtain if adaptindT10]. This would result in(P*~*) time inthescal abi | i ty row). An entry in thescal abi | i ty row
complexity per pixel & is nonexistent in median filtering). The is the ratio of two consecutive values in thene row, and it shows
method of [4] also improved the time complexity of the or@in how time scales as we increase image size. Note that smalesna
NL-means [[B]. However, it makes use of hashing techniquas th residing in memory are filtered in real time.
only behave in constant time when consideringaamortizedtime

complexity. Scalability results for a 8192 x 8192 cryoimage
Vectorization and parallelization.  The nonlocal mean version cores time(s) speedup efficiency(%)

formulation permits decomposing an image into disjointtpar serial 1 7,071.42 1 100
allowing for parallel denoising of the distinct image partShis parallel 1 313.12 23 2,300
fact has already been explored ih [5] to improve computéiines. 2 163.59 43 2,150
However, a much higher speed up is achieved when combining 4 102.21 69 1,725
image decomposition with our strategy enabling vectoiorabf 8 66.83 106 1,325
operations using contemporary SIMD (Single Instructionltiple 16 64.15 110 688

Data) instructions set. This is equivalent to paralleligntha data

level. To use SIMD instructions our implementation must pm  Table 2. Scalability results after filtering a large image witho2?
with the strict requirement of accessing aligned data in orgm pixels. In theserial row we report the time spent by the
something not necessary if implementing nonlocal meansliding serial, non—vectorized version of NL-means (this corredpdo a
windows, as we suspect it is done [d [3, 4]. Our implementatio straightforward, slow sliding window implementation). tsathe
employs the latest SIMD instructions set and benefits from th significant speedup (ratio between serial and paralleldjrabtained
adoption of the prefix sum constru¢t]11] to efficiently buiy, with the parallel versions. As expected, efficiency (petage of
in a cache aware manner. It is important to mention that aho speedup to number of cores) decreases as we employ more cores
usage of SIMD instructions and maximization of cache hithdo  We suspect that at 16 cores other variables other than mesirmy
change the time complexity of an algorithm in the RAM modelth dominate performance preventing further reduction in gssing
drastically reduce the computational load of its impleragoh.  time.

Complexity analysis in the cache oblivious model would beeno

faithful to our design and implementation.
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noisy bacterial filaments denoised filaments

Fig. 2. Itis now known that many bacterial proteins do form filansent
in vivo which play critical roles in cell shape and division. Electr
cryomicroscopy is helping elucidate the molecular medhasi
related to these filaments by providing images where theybean
seen in near—native state acting within their cellular esni{Z].
Denoising of filaments helps clarify their conformation. d\ie

is a slice from aCaulobacter crescentutomogram which has

NoIsy viruses

@) (b) ©

Fig. 3. Our filter has excelled in denoising tH§482 cryoimage

containing viruses (only a portion of the entire image isvamo
on the top row). The NL-means thrives denoising the repetiti
spikes present on the virus surface. This is most noticdabe),

been NL-means denoised to significantly enhance visuadizaif
filaments almost unseen in the noisy image.

which was obtained after 4 passes of filtering (a). Imageqthe

4. CONCLUSION

We presented a fast algorithm to compute nonlocal filtering a
demonstrated results after denoising cryoimages. Ouritigois
an efficient version of the nonlocal mean filter capable ofipoing
equally good results. Ourvectorized, data parallel imgletation for
shared memory architectures based on the latest SIMD atisins
set is fast and scales well with image size and number of core
We are currently extending our implementation to 3D and vee ar
looking into making it available to the public at large afterd.
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