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ABSTRACT

We present an efficient algorithm for nonlocal image filtering with
applications in electron cryomicroscopy. Our denoising algorithm is
a rewriting of the recently proposed nonlocal mean filter. Itbuilds on
the separable property of neighborhood filtering to offer a fast parallel
and vectorized implementation in contemporary shared memory
computer architectures while reducing the theoretical computational
complexity of the original filter. In practice, our approachis much
faster than a serial, non–vectorized implementation and itscales
linearly with image size. We demonstrate its efficiency in data sets
fromCaulobacter crescentustomograms and a cryoimage containing
viruses and provide visual evidences attesting the remarkable quality
of the nonlocal means scheme in the context of cryoimaging. With
such development we provide biologists with an attractive filtering
tool to facilitate their scientific discoveries.

Index Terms— Nonlocal mean filtering, image denoising,
electron cryomicroscopy, image vectorization, SIMD, parallel image
processing.

1. INTRODUCTION

Electron cryomicroscopy is a remarkable technology enabling
new discoveries at subcellular scale. Studies at such scaleaim
to understand the structure and function of the macromolecular
machinery responsible for regulating cell mechanisms withthe
ultimate goal of transforming living cells to attain desired
configurations and perform specific tasks, such as, cure diseases and
transform plants in fuel.

Researchers rely on pictures of samples maintained at cryo
(freezing) temperatures to investigate a particular cell type in its near
native state. A picture of a cell is formed after beam of electrons
is projected through the sample and captured by a charged-coupled
device, CCD, camera. Due to a low dosage of electrons, necessary
to avoid damaging the thin biological sample, a poorly resolved,
noisy, low contrast image is formed (see Fig. 1). In the case of
cryotomography, a series of unfiltered 2D projections are combined
to build a 3D reconstruction of the cell. In this process, noise is
transferred to the reconstructed object. All this makes filtering ade
factocomponent of the cryoimage processing pipeline.

A number of factors contribute to make filtering of cryoimages
(an image generated using the electron cryomicroscopy technique)
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Fig. 1. This composition shows a section of a typical low contrast
tomogram after reconstruction (left portion), the level ofnoise more
apparent after histogram normalization (middle), and the image after
applying our filter.

a challenging problem. First and foremost, the amount of noise is
significantly high (see Fig. 1), far beyond what is commonly found
in regular photography and other microscopy technologies.A signal
to noise ratio of 1 or lower is not uncommon [1]. Second, large, high
resolution images are the rule and the trend is to continue increasing
the CCD resolution to obtain images with even higher levels of detail
(current cameras can generate images having up to40962 pixels).
Third, structures of interest in the images can be either a single
filament or a bundle of filaments [2], which are a few points wide
that when mixed with noise are challenging to visualize evenfor a
trained eye. Fourth, validating the results might be difficult since the
shapes of the pictured cell and of its macromolecular structures are
most likely unknown (hence the reason to photograph the cellin the
first place) and therefore a counterpart to help make comparisons
is unknown. The experienced biologist plays a major role in the
validation.

The solution to this challenge is arobust and efficient filter
capable ofpreserving fiber like structures. The nonlocal means
filter, NL-means for short, recently proposed by Buades, Coll, and
Morel [3], and experimented and extended by others, e.g. [4,5], has
the right features that interest us: it is simple,straightforward to
implement, and the results shown in the literature are outstanding.
The filter is primarily designed to reduce noise without destroying
textures and fine structures, a superior feat when compared to other
equally extraordinary filters which, contrary to NL–means,interpret
textures asoscillating patternsand remove them altogether to form
a separation of the image into a cartoon part and an oscillating (noise
+ texture) part. We have recently discovered the work of Dabov
et.al. [6] which has strong similarities to NL–means.

To the best of our knowledge, practical attempts of coding
NL–means have led to slow implementations which somehow
shadowed the full potential of the method. The straightforwardness
of the proposed algorithm in [3] does not directly translateinto an
efficient implementation. We depart from the sliding windowscheme
typically adopted by neighborhood filtering implementations and



resort on more sophisticated ideas leading to a faster implementation.
We claim thatattaining a desirable level of applicability, as advocated
by [3], is due to our algorithm and implementation bringing the
NL–means ideas to a full realization.

Weemphasizehereefficiencyas it permitspractitioners toexecute
trial and error runs at an affordable pace enabling a prompt progress
of their ultimate investigations. Considering the uncertainties and
difficulties in picturing frozen cells as described earlierpractitioners
would greatly benefit from a fast implementation. This wouldallow
and encourage them to quickly test different denoising scenarios and
make choices satisfying their own quality criteria – visualinspection
continues to be the most reliable metric to assess denoisingresults.

For lack of space, we will not compare NL–means with other
well established filters (e.g. anisotropic diffusion, bilateral, median,
Wiener, total variation based filters) and refer the reader to the
literature for pragmatical comparisons (seee.g.[3, 5]). These popular
filters comprise the majority of attempts in denoising cryoimages
(seee.g. [1, 7, 8]). We believe results can be further improved in
terms of robustness and efficiency and we shall present here afew
supporting examples.

Outline. In the next section we present the nonlocal mean
approach and our fast algorithm. Results are presented in section 3
and we offer some conclusions thereafter.

2. THE NONLOCAL ALGORITHM

In this section we briefly review the nonlocal approach of Buades
et. al. [3] before presenting our fast algorithm.

2.1. The Nonlocal Means Approach

The NL-means scheme thrives when an image contains many
repetitive structured patterns. It uses redundant information to reduce
noise by performing a weighted average of pixel values. Formally,
we assume images are defined over a discrete regular gridΩ of
dimensiond and cardinality|Ω|. Let us denote byv the original
noisy image. The value of the restored imageu at a sites ∈ Ω is
defined as the convex combination

u(s) =
1

Z(s)

X

t∈N (s)

w(s, t)v(t) , (1)

where w(·, ·) are non-negative weights,Z(s) is a normalization
constant such that for any sites we haveZ(s) =

P

t∈N (s) w(s, t) ,

andN (s) corresponds to a set of neighboring sites ofs. Following
Buadeset. al.N (·) will be referred to as the searching window. The
weightw(s, t) measures the similarity between two square patches
centered, respectively, at sitess andt, and it is defined as follows:

w(s, t) = gh

 

X

δ∈∆

Gσ(δ) (v(s + δ)− v(t + δ))2
!

, (2)

whereGσ is a Gaussian kernel of varianceσ2, gh : IR+ → IR+

is a continuous non-increasing function withgh(0) = 1 and
limx→+∞ gh(x) = 0, and∆ represents the discrete patch region
containing the neighboring sitesδ. The parameterh is used to
control the amount of filtering. Typical examples of thegh function
aregh(x) = 1

1+(x2/h2)
andgh(x) = e−x2/h2

, the latter used in [3].
We adopt the former which leads to a more efficient implementation.
In summary, NL-means restores an image by performing a weighted
average of pixel values taking into account spatial and intensity

similarities between pixels. Similarity is computed between equally
sized patches as they capture the local structures (geometry and
texture) around the sites in consideration. Note that pixels outside
N (s) do not contribute to the value ofu(s). This property allows us
to separate the image into independent disjoint pieces and process
them in parallel, as it is done in domain decomposition schemes.

Following [3], we assume searching windowsN and patches
∆ have uniform cardinalities of, respectively,(2K + 1)d and
(2P + 1)d with N = J−K, KKd and ∆ = J−P, P Kd. Using
equations (1) and (2) one realizes the nonlocal mean algorithm
proposed in [3] which hasO(|Ω|KdP d) for time complexity. Note
that this complexity is exponential with respect to space dimension
d but it is polynomial with respect to the number of pixels|Ω|. In
practice, where dimensions are fixed and low, the algorithm remains
polynomial.

To make averaging more robust, one would like to set the
searching windowN (·) as large as possible and in the limit extend
it to the entire image. However, this would lead to excessively long
computation times and thus we constrain searching only in local
neighborhoods, as suggested in [3]. We refer the reader to [9] for
a variational formulation of neighborhood filtering in the lines of
nonlocal mean.

2.2. A Fast Algorithm

Our fundamental contribution consists in a method for computing
very efficiently the weightsw(s, t) given by Eq.(2). The weight
computation is by far the most time consuming part when generating
the restored imageu. For the sake of clarity we present our algorithm
for 1-dimensional images; extending it to higher dimensions is
straightforward. Under this 1D assumption we haveΩ = J0, n− 1K,
an image withn pixels.

Given a translation vectordx, we introduce a new imageSdx
as

Sdx
(p) =

p
X

k=0

(v(k)− v(k + dx))2 , p ∈ Ω. (3)

Sdx
corresponds to the discrete integration of the squared difference

of the imagev and its translation bydx. Note that Eq. (3) may
require access to pixels outside the image domain. To avoid memory
corruption in our implementation we extend the image boundaries
either by symmetry or in a periodic fashion.

Our strategy to compute the weight for two pixelss and
t follows. Recall that in 1D we have patches of the form
∆ = J−P, P K. Contrary to [3] we replace the Gaussian kernel by
a constant without noticeable differences. Thus Eq. (2) rewrites
as follows:w(s, t) = gh(

P

δx∈∆ (v(s + δx)− v(t + δx))2). Now
let dx = (t− s) and definêp = s + δx. With this reparametrization
we writew(s, t) = gh(

Ps+P
p̂=s−P (v(p̂)− v(p̂ + dx))2). If we split

the sum and use the identity in Eq. (3) we obtain

w(s, t) = gh (Sdx
(s + P )− Sdx

(s− P )) (4)

which is in fact independent oft provided the quantitySdx
is known.

This is the key expression that allow us to compute the weightfor a
pair of pixels in constant time. Generalizing to higher dimensions
corresponds to have integrations along the image orthogonal axes in
Eq. (3). It is not difficult to see that this approach yields a weight
computation formula requiringO(2d) operations ford−dimensional
images. This quantity isindependentof the size of the patches,
contrary to the formulation in [3] which requiresO(P d) operations
per patch.



In summary, the algorithm works as follows: first, all values
Sdx

are computed using Eq. (3); then weights are computed using
Eq.(2) and Eq.(4); and finally the filtering is performed using Eq (1).
This procedure is repeated for all possible translations given by
the dimensions of the searching windowN . Pseudo-code of our
algorithm is shown in Algorithm 1.

Algorithm 1 – Fast Nonlocal Mean – 1D
Input : v, K, P , h

Output : u

Temporary variables: imagesSdx
, Z, M

Initialize u, M andZ to 0.
for all dx ∈ J−K, KK do

ComputeSdx
using Eq. (3)

for all s ∈ J0, n− 1K do
compute weightsw using Eq.(2) and Eq.(4)
u(s)← u(s) + w · u(s + dx)
M(s) = max(M(s), w)
Z(s)← Z(s) + w

end for
end for
for all s ∈ J0, n− 1K do

u(s)← u(s) + M(s) · v(s)

u(s)← u(s)
Z(s)+M(s)

end for
return u

Time and memory complexity in the Random Access Model.
Compared to the original NL-means approach our algorithm requires
three additional images to store partial results but it has amuch better
time complexity ofO(|Ω|Kd2d) when compared toO(|Ω|KdP d)
of Buadeset. al. – an improvement of orderO(P d). It is also
faster, whend > 1, than a sliding window-based approach that one
could obtain if adapting [10]. This would result in aO(P d−1) time
complexity per pixel (K is nonexistent in median filtering). The
method of [4] also improved the time complexity of the original
NL-means [3]. However, it makes use of hashing techniques that
only behave in constant time when considering anamortizedtime
complexity.

Vectorization and parallelization. The nonlocal mean
formulation permits decomposing an image into disjoint parts
allowing for parallel denoising of the distinct image parts. This
fact has already been explored in [5] to improve computationtimes.
However, a much higher speed up is achieved when combining
image decomposition with our strategy enabling vectorization of
operations using contemporary SIMD (Single Instruction Multiple
Data) instructions set. This is equivalent to parallelism at the data
level. To use SIMD instructions our implementation must comply
with the strict requirement of accessing aligned data in memory,
something not necessary if implementing nonlocal mean withsliding
windows, as we suspect it is done in [3, 4]. Our implementation
employs the latest SIMD instructions set and benefits from the
adoption of the prefix sum construct [11] to efficiently buildSdx

in a cache aware manner. It is important to mention that although
usage of SIMD instructions and maximization of cache hits donot
change the time complexity of an algorithm in the RAM model they
drastically reduce the computational load of its implementation.
Complexity analysis in the cache oblivious model would be more
faithful to our design and implementation.

3. RESULTS

We implement our algorithm in C/C++ and demonstrate it in
cryotomograms ofCaulobacter crescentusbacteria and for a
cryoimage containing viruses. Figures and tables togetherwith their
captions are self explanatory. All results are based on programs
written by our own. We report timing and scalability numbersin
tables to show the applicability of our work in large images and
multicore computing. All results were obtained forP = 3, K = 7,
and h = 1. Parallel runs were performed on a 32 GB shared
memory, 2.8GHz, Dual-Core AMD Opteron Processor 8220 based
server having 8 dual core chips, each core with 1 MB of cache.
Times were averaged after 40 runs and do not include I/O. Resulting
images were post-processed to improve visualization via histogram
manipulation.

Regarding the performance of our formulation in 3D, we
speculate and compare our results with those in [5]. Observethat
an image with40962 pixels requires the same amount of data
processing as in a 3D image with2563 voxels. We would then
expect equivalent filtering times for these. Given the performance
numbers presented in our timing tables and those in [5] we estimate
that our formulation in 3D would be approximately 20 times faster
than the parallel implementation of [5]. We believe our estimation
is conservative after considering the differences in imagesize,
hardware, and searching window and patch sizes reported in [5].

Timings for filtering images of different sizes
image size 2562 5122 10242 20482 40962

time (s) 0.07 0.35 1.54 6.05 26.32
scalability – 5.0 4.4 3.9 4.4

Table 1. This table shows filtering times in seconds for images of
different sizes using 2 cores of a dual core AMD Athlon X2 64.
Image size increases linearly by a factor of 4. Similarly, processing
time increases linearly by an average factor of 4.4 (averageof values
in thescalability row). An entry in thescalability row
is the ratio of two consecutive values in thetime row, and it shows
how time scales as we increase image size. Note that small images
residing in memory are filtered in real time.

Scalability results for a 8192 x 8192 cryoimage
version cores time(s) speedup efficiency(%)
serial 1 7,071.42 1 100

parallel 1 313.12 23 2,300
2 163.59 43 2,150
4 102.21 69 1,725
8 66.83 106 1,325
16 64.15 110 688

Table 2. Scalability results after filtering a large image with81922

pixels. In theserial row we report the time spent by the
serial, non–vectorized version of NL–means (this corresponds to a
straightforward, slow sliding window implementation). Note the
significant speedup (ratio between serial and parallel times) obtained
with the parallel versions. As expected, efficiency (percentage of
speedup to number of cores) decreases as we employ more cores.
We suspect that at 16 cores other variables other than memorysize
dominate performance preventing further reduction in processing
time.



noisy bacterial filaments denoised filaments

Fig. 2. It is now known that many bacterial proteins do form filaments
in vivo which play critical roles in cell shape and division. Electron
cryomicroscopy is helping elucidate the molecular mechanisms
related to these filaments by providing images where they canbe
seen in near–native state acting within their cellular context [2].
Denoising of filaments helps clarify their conformation. Above
is a slice from aCaulobacter crescentustomogram which has
been NL-means denoised to significantly enhance visualization of
filaments almost unseen in the noisy image.

4. CONCLUSION

We presented a fast algorithm to compute nonlocal filtering and
demonstrated results after denoising cryoimages. Our algorithm is
an efficient version of the nonlocal mean filter capable of producing
equally good results. Our vectorized, data parallel implementation for
shared memory architectures based on the latest SIMD instructions
set is fast and scales well with image size and number of cores.
We are currently extending our implementation to 3D and we are
looking into making it available to the public at large afterward.
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