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Abstract

Variational Models have been studied for image segmemtaiicce the Mumford-Shah functional was
introduced in the late 1980’s. In this paper, we focus on ipluétse segmentation with a new regularization
term that yields a unsupervised segmentation model. Weogea functional that simultaneously chooses
a reasonable number of phases while segmenting the imagasiBy the scale measure of the phases
in the regularization term, bigger objects are preferretheodentified while segmentation is driven by
the intensity fitting term. For the numerical method, we e a fast brute-force algorithm, and we

present experiments showing the robustness of this method.

. INTRODUCTION

Image segmentation separates the image into differenbmegb simplify the image and identify the
objects easily. Image segmentation has been extensivaliedtvia various approaches, such as mixture
random-field models [10], Mumford and Shah’s variationabhge model [17], and new segmentation
models incorporates more complexities, like Monte-Carlarkbv chain model [27], the graph-cutting
and spectral method [23], and the variational texture segatien models [20], [21], just to mention a
few. Many extensions and properties have been studied éovdhational approaches since the work of
Mumford and Shah'’s image segmentation model. The Chan+vesiel [6] is well-known for a successful
level set implementation, and this work has been extendedtious cases such as multi-channel [5],

texture segmentation [20], a logic model [19] and multighasgmentations [7], [28].
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In this paper, we focus on multiphase image segmentatiahjgho identify more than two phases from
a given image. There are several region-based multiphag@esgation models introduced by various
researchers, such as Vese and Chan [28], Chung and Vesea¢X]aBd Weickert [2], Tai and Chan [26],
Lie, Lysaker and Tai [16], Jung, Kang and Shen [13], and Ba# Eai [1]. In [28], Vese and Chan
first introduced the generalization of two-phase segmimtanhodel [6] by usindog, n number of level
sets to identifyn number of phases. A multi-layer method is introduced in ¥here the authors used
more than one levels of a level set to represent the disadttinf the image, inspired by modeling
island dynamics for epitaxial growth. In [2], the authoreposed a minimization strategy using the level
set framework for minimizing the energy of [29]. In [16], aepewise level set method is introduced
which uses one level set for multiphase segmentation bysenting each phase with a different constant
value. The graph-cut algorithm is utilized for multiphasemford-Shah model in [1]. In [13], the authors
introduced a relaxed model for multiphase segmentatiamgisiconvergence analysis. More related work
can be found at [3], [9], [14], [15], [18].

Let ©2 be the image domain, a bounded Lipschitz domain,and? — R, U {0} be a given image.

Recall that the classical Mumford-Shah segmentation is itonnize
Enclis Tl =a [ [Vulds+ 5D + [ (0= P, (1)
O\l Q

whereI' € Q denotes theedge setof the imageu, and H' represents the 1-dimensional Hausdorff
measure. Multiphase segmentation identifies differentsebady the intensity discontinuities, and this
setting is considered in [7], [13], [16], [26], [28]. For id&fying piecewise constant objects, the reduced

Mumford-Shah functional can be written as, minimizing

N
Eeolu, Tug) = BHYD) + Z/ lug — ¢, (2)
=1

where(2;s are the connected componentSBfi* andc; is the intensity average of in each(2;. With a
successful level-set implementation, this reduced Mudieihah model is also frequently referred to as
the Chan-Vese (CV) model for a two-phase case [6]. Thisqadar expression of multiphase segmentation
(2) is first used in [16] and shown it can keep symmetry forlérijunctions.

One of the limitation of these multiphase segmentation oughis that the number of phases are
typically given or needs to be chosen a priory, to get a propsult. One way to avoid choosing the
number of phases is to give many initial contours with the entimat only the necessary contours will

remain. In practice, if more phases are given than needed, aler-segmentation occurs, as illustrated



(a) Original Image (b) 3 level sets (c) 4 level sets (d) 5 lesets
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Fig. 1. (a) The original given image is a piecewise constardge with eight different constant intensities. (b), (cil gd)
shows three different possible segmentation results yg8pwith different numbers of level sets: (b) 3 level sets) 4 level
sets, and (d) 5 level sets. Boundaries of contours are sogedpover the segmented result. (b) shows segmentatiog 8sin
level sets 2° = 8 phases), exactly finding the correct segmentation. Where roontours are used than needed, as in (c) and

(d), one object can be separated to more than one segmentieaxadare many empty level sets.

in Figure I. The algorithm unnecessarily separates onecbljemore than one regions. Figure | is using
multiphase level set segmentation as in [28]. In [13], [1§hically a reasonable number of phases
are given before the experiments or some supervisions @@ fas good segmentation results. Another
possibility of avoiding over-segmentation is to graduatigrease the number of phases one by one. Then,
in most cases, the intensity fitting term will drive the segitagion and even slight different in intensity
can continuously increase the number of phases. In addftorthe functional models, such as (1) and
(2), there are at least one free parameter to choose and, faftemultiphase segmentation, the result
becomes very sensitive to the choice of these parametef2],Ithe authors also noticed the difficulties
of having arbitrary number of regions, and proposed a mipation strategy using level set method for
minimizing the energy of [29].

We propose a new model for unsupervised segmentation, vehuitdmatically chooses the number of
phases without any user input. This model gives reasonainiar of phases while segmenting the image
at the same time. The contribution of this paper is to proosew variational functional for unsupervised
multiphase segmentation and provide a fast numerical iihgor We present a brute-force algorithm for
a fast and easy computation without using Euler-Lagrangeatimn of this nonlinear functional. The
numerical experiments are presented to validate the pespbsctional.

This paper is organized as follows. In Section I, followeg @& general formulation of multiphase

segmentation, we present a new phase balancing unsupkmidéphase segmentation model in subsec-
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tion II-C. In Section lll, we present the details of the brfece algorithm. This is followed by various

numerical experiments in Section IV.

1. UNSUPERVISEDMULTIPHASE SEGMENTATION MODEL

We represent the segmented image as a linear combinatioifferedt phases which are defined by
characteristic functions ag; to be representing each phase. They; covers the entire image domain
Q andy; N x; = 0. Eachy; is defined by one intensity average valye and each phase may consist
of many separate regions (distinct connected component®. average value is computed by =

fX, Uo(x)dz/ fX, 1dx as usual. Then, the final segmented result is represented as

K
u = E Ci * Xi-
i=1

In the CV model (2), the main two terms represent the intgrigting term and the regularization term.
The segmentation is driven by the intensity, while the largjtthe boundaries are kept to be minimized to
avoid oscillatory boundary identification. We also keepsthévo terms for our segmentation model and
construct our new functional based on this CV model (2). Wdpse to add two more objectives to design
an unsupervised model, which automatically gives the nurobehases as well as the segmentation of

the image. The objectives are as follows:

1) [Phase] Find the objects with significant sizes. We pratdrto have small partitions of the image,
but want to identify relatively big objects which can be urgleod as a feature of the image.

2) [Balance] We assume each identified phases are all equgllgrtant, i.e. no a priory information
is given on which phase is more important than the other. &fbeg, this functional should partition
the image uniformly among different phases.

In the following subsections, we construct the new funailomy implementing the above two new

objectives.

A. Phase

We turn our attention to the scale term which has been studifb] to identify objects of big enough
size. The authors of [25] have recognized the relation betvibe length and the area of objects, and the
scale term is defined as:ale := "

~ length’
when an object is small, the scale value is small. This teramilyzed in the context of total variation

When the size of an object is big, the scale value is big, and

(TV) denoising.



(a) Original (b)x1 (black boxes) (c)2 (dark-gray boxes)

(d) Original (e)x1 (phase with the disk)
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Fig. 2. The effect ofS;: In the top row, from the given original image (a), two biggé®sxes on the right (one black and

another gray) are identified as two different phagesand x2. Then, all the black boxes will be in phage (image (b)) and
the similar intensity gray boxes are in phage (image (c)). (These two phasgs and 2 are two among many other phases,
full results showing all other phases are in Figure 4.) Inskeond row, from the original image (d), one disk in the cerge
identified as one phase, together with all the similar intgrerea. (The result showing all other phases are in Figure 3

To meet our objective of identifying significant size obguthile minimizing a functional, we use the

inverse scale term

SZ' = P(XZ)’ (3)
x|

where P(x;) denotes the perimeter of a phageand|x;| denotes the 2-dimensional area of a phgse

By minimizing this term, the segmentation prefers to idgnitigger objects rather than the smaller ones.
For example, in Figure 2 (a), the biggest objects are the tigdbxes (one black and another gray) on
the right. Therefore, segmentation would identify the klédox to be in one phase (for example;)
and the gray box in another phasg, Then, since the segmentation is driven by the intensityesahe
similar intensity boxes will go the corresponding phasecklboxes into phasg,; and dark gray boxes
into phasey,. Also, in Figure 2 (d), the given image has only one definitgoty the disk in the center,

so this object and similar intensity areas are identified ras ghasey; .



Remark 1:The inverse scalé,; is defined on each phasg, thus it is possible to have disconnected
regions within the phase. We compute the total length of thges in the phasg; and divide by the
total area of objects in the phasg, regardless of how many connected component this pRhases.
For example, several different objects with similar intéas will be in one phase; and contribute to
S; all together.

Remark 2: This notation ofS; is related to theCheeger Setwhich is widely studied in calculus of
variation analysis. The objective is to find a nonempty 4et 2 of finite perimeter which minimizes

the following,
min P(A).
AcQ |4

There are various studies on qualitative properties of Gae&ets, and [4], [8] give good overviews

and some references for related recent works on CheegerBgtdefining a finite perimeten :=

@, and consideringnin s~ P(A) — A|A|, these studies of Cheeger sets are related to Total Variatio
Gl an g

minimization, min,c gy () [, [Dul + X [, [u(z) — uo(2)]?, which is consistent with the scale notation

studied in [25]. Note, these Cheeger Set studies are onlynersetA, while our interests are in multiple
sets of these kinds.

Property 1: For a phasey; with a single object, if the perimeter is fixed, convex objbate smaller
S; compared to the concave objects. Therefore, by minimidnthe shape of object prefers to be closer
to a circle rather than an ellipse.

Property 2: Objects with different shape can have the same inverse sedle. For example, any
P(B)

regular (equilateral) convex polygo®, which incircles a circle with radius has B

_ 2 Wwhichis
;

the same as the inverse scale value of a circle with raclius

B. Balance

In order to give balance among the phases, we do not assunpasgigular importance among different

phases, and we consider the summation without any pantiewdaght,

K K

P(x;
IREDI
i=1 =1

Then, for a given discrete bounded image with < oo and >_X | P(x;) < oo, for a fixed K, the
minimum of the summation is achieved wh&nare all equal to each other foi = 1, ..., K. Therefore,

by minimizing this term, the objects of various sizes in thage will uniformly be distributed among all



(a) Original (b) Result

Fig. 3. The effect ofy_ S;: The original image (a) has a smooth background with a disthéncenter. (b) is the segmented
result > ¢; * x;, using the proposed model (5). A phase with the disk is ifiedti as in Figure 2 (e), and the remaining

background is more or less uniformly divided as shown in ienéuj.

different phases and; value will be similar to each other. We refer to this termtlas phase balancing
term, since it prefers to find balance among the scales of paelkes. Figure 3 shows this effect of
uniform separations among the phases.

Proposition 1: For a fixed K, given a piecewise constant image with multigdgeots B; with the same
ratio, P(B;)/|B;| := p1 (except for the background), any distribution of these olsjé3; to different

phasesy; (no empty phases, no partial objects) gives minimum of thesptbalancing term, and

Pxi) _ P(xp)
; pal — KR

wherey, represents the background.
Proof: The inverse scale terd; in (3) is define for each phase, not for each object. For exampl

if one phasey; has one circle with radius, S; = 2/r, and if another phasg; has two circles,

S; = 3:;2172:; = 2/r. Therefore, if we let the length of an object to B¥5;) = «, the area to be/p;
and m; be the number of the objects in the phage then,S; = m;a/m;(a/p1) = p1, independent
of the numbern;. The phase balancing term will g — 1)p; except for the phase representing the
background. ]
According to above Proposition, if an image has only one kifigbject, the number of objects in
each phases can be quite different, which can be countétimetto the balancing effect. This is due to

the way we compute ths; (Remark 1).



C. The proposed model

Incorporating these additional objectives, we proposddhewing functional for automatic multiphase

segmentationa phase balancing model
K

EIK, s, &iue] = (fjs) Hl(F)+Z/ o — 7, @)
i=1 =1 /X
where I is set of all the boundaries of; fori = 1,..., K, i.e. ' = Ufil{axi}, H' represents the
1-dimensional Hausdorff measure as in (1) and (2), and teeage valuer;s are defined as in (2),
c = fxi Uo(x)dx/ fxi 1dz. Notice thatK, y;s and¢;s in E[K, x;, ¢ci|u,] are unknown variables while
only the original imageu, is given. This is one of the main difference compared to ttewomultiphase
models, which don’t minimize the functional with respectth® number of phase&. Using P(A) to

represent the finite perimeter of the s&tthe proposed functional can be also represented as

K K

) > POa) + Y luo — eil’xi (5)
i=1 i=1

Herep = f1/2 from fi in (4), since by adding the perimeter of each phases theHesfgboundaries will

be added twice.

K

E[K, X, ciluo] = p <Z P():’z')

2 Tx

In this functional,u is the only free parameter, and for an unsupervised segti@mtae typically set
w = 1. The first term of (5) is essentially unit-free, while the sed termzfil lug — ¢;|*x; corresponds
to the area of the phase, therefore, thiss a parameter representing the area of the segmentation. If
1 is big, the segmentation prefers to have phases with biggesaand smaller value fqr prefers
smaller phases for a segmentation. The effects of this @waoty are explored in Section IV, and for
unsupervised segmentation we kept this- 1.

To illustrate the full effect of this model, we consider theample in Figure 2 again. After the two
main features are identified, the other regions are welldéidito give balance among the phases and
follow the intensity differences. Figure 4 illustrates thél result. The original image Figure 2 (a), has
at least 15 different intensity values, however, the imagautomatically (withy = 1) identified to 4
different phases. The segmentation is driven by the twodsggbjects, then the rest are well distributed
following the intensity similarities while giving the balee among the phases.

Remark 3:1In the proposed model (5), the perimefefy;) appears twice, once in the phase balancing
term and the total length term. According to the Property &ibsection II-A, the smoothness of the

boundary is independent to minimizing, since the circle and a convex polygon can have the same



X4

Fig. 4. In the original image Figure 2 (a), each column of lsoaee changing the intensity consistently from top to boftand
the size of the boxes are increasing from left to right (langt the width is doubling each time). These images are itiedti
phases using the proposed model. The model automaticadigsels four phases with = 1, and it shows that the boxes are
well distributed among the phases. Notice the strong siityilamong the phases.

inverse scale value. Therefore, the total length téthil') is needed for for its smoothness property (and
well-fitted boundaries).

Remark 4: As shown in Figure 3 and 4, the segmentation is mainly drivethk intensity. The model
favors larger continuous region, however, the smalleraegiwith similar intensity will also go into the
same phase. The small objects, such as noise or small st&es,ahbig inverse scale value, and it will
be identified as a feature of the image rather than being cateipldenoised. Denoising occurs within
a certain difference in intensity. If the intensity is claseone of the phases, it will be included in that
phase. (See Figure 12).

Remark 5: After proposing to add two additional objectives in the fooithe phase balancing term,
Zfil&-, we had different options to modify the new functional. Foample, Case |, adding (not
multiplying) the phase balancing term to CV model (2): tliedes the unsupervised properties and the
results become heavily depended on the choice of two paeamétandp This inherits limitations of
CV model with additional parameter to choose. Case I, rplyitng Z - to the total length term, i.e.
two terms in the segmentation function both represents ris@, @and Case [ll, multiplying the phase term
to the fitting term, i.e. both terms represents length of ggnsentation. In these both cases, Case Il and
Case lll, in addition to being sensitive to the choice of tla@ameter, we observed that the number of
phaseK increases to minimize to energy. The total length term issneero, while the fitting term can
become zero by increasing the number of phases continydhshgfore, both cases typically result in a
big number of phases.

In the following section, we present a brute-force algartfor a fast and easy computation of the



proposed model (5).

I11. FAST ALGORITHM FORMULTIPHASE SEGMENTATION

As before, each phase is a separate characteristic fungtiofor i = 1,..., K, and represent the
segmented result as= Efil ¢ * x;. Typically, a level set method is widely used in these sg#ifv],
[16], [19], [20], [26], [28], or one function is used to regent multiphases as in [13], [16]. However,
by using each characteristic functigp to represent each phase, this allows simplicity in adding ne
phases and does not introduce bias in transition from onseptanother.

This unsupervised segmentation model (5) is nonlinear amdtrivial to identify the Euler-Lagrange
equation with three different types of unknowns: the numifgphasesx’, x;s and the average intensity
¢;S. Thus, we decided to accentuate the speed and simplicitiregtly minimizing this functional. We
are not the first to use these fast techniques, and the creekt @ [11], [24], which discuss applications
to level set implementation in two phase identification. &rtigular, we adapted the main idea of Song
and Chan [24] to consider the change in the difference of timeetfonal using a greedy algorithm to
decide if one pixel belongs to the inside or the outside ofcitwvetour. These settings, [11], [24], are well-
equipped to handle fast computation for two phase compunsitin [12], the authors used fast algorithm
for multiphase level set method for CV model, and discussdhaeger of using these algorithms for
the length term via considering the topological derivati¢te this paper, we extend the idea of [24] to
multiphase model, and work with the discrete setting of threcfional that the length change is explicitly
computed by the four edge changes.)

From the proposed model (5),

K ply)) & K
E[K, x; ciluo] = p (E ‘X_‘Z > E P(xi) + E |uo — cil*xi,
i=1 v i=1 =1

we consider the difference in the functional and pick thegehaccording to the minimum value. For

(z,y) € Q, the change in energy when, y) moves from one phasketo another phasg is computed

by,

.
nj—i—l

ny

AElj = ,uAST + (u — Cj)2 — (u — 01)2

(6)

n; — 17
whereu = u(z,y) is the intensity value at the pixél,y), ¢; is the average of each phaseandn;

is the number of pixels in phasei.e. areay;| = n;. The first termAST is the change of the phase
balancing and total length term in (5), and other two ternesthe change of the intensity fitting term

which is used in [24].
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Then, thisAST is
AST = 5;T; — SiT; = S;(T; + AT) — S/T; = (S; — S))T; + S;AT = T)AS + S;AT,

where S; presents the phase balancing eneryy§;) and 7; the total length energyd( P(x;)) when
(z,y) is in phasel. To compute the total lengtt;, since each phase is represented by a characteristic
function y;, we simply add all the edges in the phase to get the length,

Pixi)= > {bax+1Ly) = xi(z )|+ iz, v+ 1) = xa(z, )|}
(z,y)eQ

P(xi)
i=1 ni
The difference in total length energyT becomes an addition of the change of perimeter in phase

K
then, when the pixel is in phase7; = ZP(Xi) and S, = Z

j and the change in phase AT = AP(x;) + AP(x;). In phasey, if pixel (x,y) changes from 0 to
1, the change in the length can be computed from the valudseon¢ighboring points, i.eAP(x;) =
4=2%" upen Xi(a,b), whereN refers to four neighboring points (N,S,E,W of (x,y)). Whémete were
no edges¥Y(a,b) € N, x;(a,b) = 0), by changing this pixel from 0 to 1, it creates four new edges
If there is one edge, by flipping;(z,y) = 0 — 1, it creates two additional edges. If there were two
edges, the change creates no new edges, but if there weredges, it will remove those four edges
(-4). Similarly, change in the perimeter of phalsbecomesAP(y;) = —4 + 22(@]-)6/\/ xi(i,7). Then,

the difference in the total length becomes

AT2( > oxitg) = > m(%]‘))- (7)
(

i,j)EN (4,9)EN
The differenceA E;; in (6) can be computed by gathering all these terms,

n; n;

AEy; = u(TiAS + S;AT) + (u — ¢;)? —(u —¢)?

n; +1 n—1 ®)
This is an explicit difference of the energy when the pixehreges from one phageo another phasg,
which is used in the algorithm, Table | (9). ££;; > 0, the pixel will not change to phagesince that
will increase the energy. While, if this valu&F;; is negative, it is better to movee, y) to phasej.

In this algorithm, we are considering multiphase segmaéntait is important to noticed that the number
of phases are initially set to b&E = 1 for all the experiments. In Table |, the algorithm compates t
changeA E£;; among all the existing different phasgs- 1,. ..,k and if necessary, it creates a new phase
to minimize the energy. This new phase is represented agpghasl and the difference in the energy

(9) is calculated using.1 = 0.
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‘Algorithm

« Set an initial phaselx:| = || with k, = 1, wherek, is the number of phase.
o lterate
1) At each pixel(z,y) € Q which belongs to phask(x;(z,y) = 1 and x;(x,y) = 0 for Vi # 1),
compute

value = min{AFE;|j #1,7=1,...,k + 1}, 9)
J

and leth = argmin;{AE;|j #1,j=1,...,k+ 1}. Herek + 1 refers to the new empty phase.
Then,

if value <0, setxn(z,y)=1andx;(z,y)=0.
if value >0, do nothing

2) Updatek = h, calculaten; = |x;| andc; for each phase =1,. .. k.

TABLE |

A PIXELWISE BRUTE-FORCEALGORITHM

The complexity of the algorithm is straightforward. Let be the total number of pixels in the image.
At the first pixel, it was two choices: the current phageand a new phasg.. As the algorithm sweeps
through the domain, at each pixel it was- 1 choice of phases, whefeis the current number of phases
and one additional choice for a new phase. For the most loute- algorithm, when the number of
phases is fixed as, the complexity isO(rm), and when the number of phases is increasing with each
iteration, the complexity becomé&3(m + 2m + - - - + sm) wheres is the maximum number of regions
attempted. The second type of method ends up béifxgm). However, for the proposed algorithm, the
number of phases is typically identified after only one sviegpf the image, the complexity calculation
is O(km) = O(m) for upto & number of phases. This is also similar to the fast algorithethod [24]
which givesO(m) complexity.

The proposed method allows for a real-time processing ofgelanage set, since there is no need to
pre-process the data to identify the number of regions, big automatically given from the iteration.
The run time on a single core Intel processor computer ford@00 image is 100 frames/second using

C++. Typically, the algorithm converges in less then 6 iierss.
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(a) Original Image (b) Segmentation

(f) phase 4

f

\__/

Fig. 5. Real image: A MRI brain image is automatically segtadrinto four regions. The model segments the differentspart

of the brain accurately.

IV. NUMERICAL EXPERIMENTS

All of the experiments are initialized withy;| = 2| i.e. K = 1, and most of the experiments were
done withy = 1 (unless otherwise stated). The following experiments anmeedwith left to right, and
down sweeping order. These conditions eliminate some ofdiffeulties associated with multiphase
segmentation.

Figure 5 shows an experiment on a real image, a MRI brain sta@.model not only automatically
gives four phases, but also segments the different partseobtain accurately. Figure 6 shows that the
model segments the image with sharp corners and clear etigssmodel automatically identifies five
phases: white, gray, black (blue), green and yellow.

This method is extended to color images in Figure 6. As in {&}, added all the channels for this

experiment, using

K O] K K 3
H (Z X ) Z |0xi| + Z/ Z lug; — Cz’,z\gdw, (20)
=1 1=1 i=1 Y Xi =1

|Xi|
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(a) Original Image (b) Segmentation (%)

Fig. 6. Color image: The model automatically segments tiigiral image to five phases. Each segments refesg toyellow),
x2 (white), xs (gray), x4 (black/blue) andys (green). The model is extended to a vector model using thiegfiterm as in [5],

and for the image with sharp corners and edges, this modekssfully finds shape boundary information.

here index refers to each RGB (red, green and blue) channels.

The proposed model automatically picks an appropriate murabphases depending on the image. In
Figure 7, the original image (a) is automatically segmented phases (blue, white, yellow and green).
And when zoom into the one phase the field region (yellow)geng), is automatically further segmented
to three phases. This shows that the proposed model (5)tadjushe given image and recognizes or

not recognizes certain features depending on the focus.

A. Application to image quantization

The proposed model can be applied to image quantizationgdngmantization is used when high-
resolution images are displayed on low-resolution or latdevices, such as in the calculators or in cell
phones. If the low-bit device is @ bit device, the range of the image can only take few discratees
from 0 to 29 — 1. With vast developments in cell phones and hand-held dsyvigeod quality and fast
guantization became more important. Figure 8 shows suclpplication. Using this model, the image is

automatically segmented to five phases. In [22], the autbomsputed the segments by minimizing the
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(a) Original Image (b) Segmentation to 4 phases

(c) Original (zoom) (d) Segmentation to 3 phases

Fig. 7. Focus of the image: The original image (a) is autocadl§i segmented to 4 phases in image (b). When zoom into
the one phase the field region (yellow), image (c), is autarally further segmented to three phases in image (d). Theeino

adjusts to the given image and recognizes or not recognizeaim features depending on the focus.

TV functional which is constrained on the quantum &etHere the cardinalityk” is given.

Jmin, il = min [ (Dul+ 5 [ (F =P,
where BV? = BV(Q;Q) = {u € BV(Q) : u(z) € Q, a.e. x € Q}. With the given cardinality
K = 6, the girl image is quantized with method [22] (Figure 8, iraag)) and the optimized quanta
set is found to be&) = {0.1314,0.2860, 0.4514, 0.6009, 0.7484,0.9417}. In our experiment, Figure 8,
image (a) is automatically segmented to six phases in imbjeafd thec; values are found to be
{0.1468,0.2915,0.4628,0.6121,0.7554,0.9508} these values are withia% difference. This example

shows an application of the unsupervised segmentation Iniodmage quantization.

B. The number of phask: automatic stopping

Notice from the algorithm, Table I, that initial conditios always set a& = 1 with y; = xq, and as
the algorithm sweeps through the domain the number of phiasesases. It is important to understand

when the algorithm stops adding the new phase, to autortigtgige a reasonable number of phad€s
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(a) Segmentation (b) Quantum TV [22]

Fig. 8. Image quantization: The proposed model can be appiémage quantization. This model automatically segmérds
image to six phases. Compared to Quantum TV [22], this moelep& more details and features of the original image, such as

the necklaces, details of the face and texture of the clgthin

In the algorithm (9), a new phase is created only if it gives thinimum of AE;; among all possible
choices ofi, j, and also if that minimum is a negative value. Therefore, @ak linto the details of when
the energy becomes negative for possibly creating a newephasAE;; < 0, for j = k+1 andn; = 0.
For this new phase, the intensity difference is zéio;- ¢;)? = 0, and the energy (8) is negative when

W(TIAS + S;AT)(1 - nil) < (u—a) (12)

for at least ond < k. This left-hand-side valuggest := p(AST)(1 — nil) gives the lower bound on how
big the intensity difference (between the current pixét, y) and each phase intensity averageshould

be to create a new phage= k+ 1. First of all, asn; increases (as the area of existing phase gets bigger),
thetest increases, so it requires the intensity to be more diffefemh averages; to create a new phase
by itself. Secondly, theéest value is depended oAS multiplied by 7;, so, when the segmentation is
already complicated with a large total lendih it becomes more difficult to add a new phase. Thirdly,
AT is multiplied by S;, and since the new phageonly have one pixel, this; is quite big. After this

test (11) is satisfied, the energyF;; still needs to be the minimum among all other possibiliti€s o
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being added to different phases.
To summarize, as the size of the phases increases, it becnaredifficult to add new phase. As soon
as all the phases reach certain sizes, the algorithm’steeétysio the intensity fitting term decreases, and
prefer to be added to already existing phases. This is intkp# to the location of the regions, since
the area and perimeter is computed over each phase withoatdesing the local connected components
separately. This is the main reason for the automatic sefectf i and the proposed functional gives
unsupervised segmentation.
As a comparison, we considered the reduced piecewise cardtanford-Shah, Chan-Vese [6] model
as in [7]. We designed a similar brute-force algorithm asf{@)multiphase CV model,
]

— (u— )22

AE,., = BAT —c;)?
ﬁ —I—(’LL CJ) nj—i-l nl—l

(12)

and we find that this algorithm also works very well if the amigl image is a piecewise constant function.
However, for non-piecewise constant images, these typeuté{force algorithm seems to continuously
add new phases, or the algorithm becomes very sensitiveetohtbice of parametes. This can be seen

from a similar analysis as (11). The energy is negative, when

B AT(1— i) < (u—¢q)?

n

It is clear this algorithm will be sensitive to the choice ©f Since this test is only depended on the
change in total length, which is typically very small, urddsig 5 is given, this algorithm will continue
to add new phases. In (2), this effect corresponds to thasitiefitting term going to zero as more and
more phases are added. Therefore, big engéigihould be given, and the result will be very sensitive
to this choice.

Figure 9 illustrates this comparison. Given a image (a),ftuwosed model segments the image with
5 phases automatically, while as in image (c), the CV modeigua brute-force algorithm (12) will
continue to increase the number of phases. Even with a bigeval3 which resulted in quite a denoised
result, this image (c) has about 128 number of phases withyrsamall regions. However, when the
phase number is given for CV model, in this case= 5, the brute-force algorithm (12) becomes less
sensitive to the choice gf and gives a good segmentation result. Comparing image @)jraage (d),

our proposed model gives comparable result to CV model, witbuperviseds'.
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(a) Original (b) The proposed model
o 'i' - s
4 / L

Fig. 9. Comparison: (a) The original image. (b) Using (6} ftroposed unsupervised model. (c) Using CV model with a
brute-force algorithm (12) using a bjg (d) Using CV model with (12) for a given fixed number of phase= 5. Comparing
image (b) and image (d), the proposed model gives comparabldt to CV model. With the number of phasksis not given

for CV model, in image (c) the methods continuous to add neaspb even with a big number gf This image (c) has about

128 phases, many of which are very small regions.

C. The effects of different

Up to now, all the experiments were usipg= 1. This makes the proposed model (5) essentially
parameter free. By changing, different results can be achieved as in Figure 10. Comptoetthe
Figure 7 (b) = 1, Figure 10 (b) using: = 10 returns only two phases separating the sky from the
earth. On the other hand, by decreasing th#® 0.1 in Figure 10 (c), the proposed model gives more

detailed separations and identifies ten different phases.
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(@) Original Image _ (b =10 (c)p=0.1

Fig. 10. Differentu: Bigger values ofu give bigger regions for segmentation. When= 10, the model gives only two phases
separating the sky from the earth (white and blue, and yelod green regions are merged). While by using= 0.1, the

model enforces the intensity fitting term, and it gives temg@s with more detailed separations of the image.

(@) (b)

20 T T 20
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Fig. 11. K versesu: The plots of K versesyu for the girl image in Figure 8. The range pfare (a)0.01 < . < 1.5 and (b)
1 < pu < 20. Notice that each piecewise intervals are quite large shghis model is not very sensitive to the choicerof

Since we are varying the paramejerwe present a plot in Figure 11 to show the changes in the phase
numberK verses differeny values. We experimented with the girl image in Figure 8. Bothphs are
a plot of the number of phasds verses theu values, (a)0.01 < p < 1.5 and (b)1 < p < 20. As
predicted in Figure 10 (also related to the inequality (1f)js is a decreasing function, and to have an
integer valueK, the graph becomes a step function. Notice, that each piseémiervals are quite large
showing this model is not sensitive to a careful choice.of

Using different values of:, the proposed model can also handle a cluster segmenté&iigure 12

shows an example of segmentation of a nebula (this is a colagé and vector-valued model (10) is

19



Original Image Segmentation phase 1 phase 2

= o P

Fig. 12. Cluster segmentation: A color image of a nebula ggr@nted into two phases usipg= 10. Notice the details of

the boundaries are kept while other small stars within thustel is denoised and identified as the part of the main cluste

used.). Usingu = 10, the image is segmented into two regions (while using 1, it gave 6 different
phases). Notice the details of small stars are kept as a pafewtified nebula. This is due to the way
we compute the phase length and area (not considering eactected components separately), and as
mentioned in Section II-C, Remark 4 only the small objectécWinas similar intensities as the identified
phase will be kept, while others are denoised. Noticed tlighbstarts within the nebula is included in
the phase without being identified separately, showing riiglel have denoising effect while keeping

details of the boundary.

D. Histogram comparison

Without an unsupervised model, one way to give a phase numlipeiory is to consider the image’s
histogram. Therefore, we compare the histogram of origimalge and the histogram of the segmented
image to see the effect of the proposed model. In Figure E3bthe dotted line is the histogram of the
original image and the red solid line is the histogram of tegnsented result. For the images, such as
he girl (b), it is not totally clear how many phases are nedgdstifrom the histogram, nevertheless, the
proposed model picks a reasonable number of phases.

This example also shows the difference between the propose! and the typical k-mean or GMM
methods. The image segmentation and data mining are twereliff applications and the minimization

functional and the objective is somewhat different. Howgthee similarities lies in the fact that there is a

20



(a) brain MR, Fig. 5 (b) the girl image, Fig. 8

white

black T white  bla

Fig. 13. Histogram comparison: The blue dotted lines arehilstogram of the original image, and the red solid red lines
are the histogram of the segmented result @;evalues). The range of the y-axis is artificially shortenedshow the details,

i.e. the red lines have a bigger value than represented setheaphs. Looking at the histogram of the original imagess i
might be unclear how many number of phases are needed foegimesntation. Image (a) and (b) show that the proposed model

automatically gives reasonable number of phases as welleaktations ofc;.

number of bins (or phases) to choose (this connection isratsationed in [11]). Most of these methods,
the numberK is given a priory, then after iterations they correct thealbans, or many pre-processing
and learning process is added before these methods areHmagdver, in the proposed model, the number
of phasesK is given from the minimization of the proposed functionahig proposed functional has a
fitting term and a regularization term with newly added phaakncing term, which allows the automatic

segmentation.

V. CONCLUSION

We propose a new unsupervised multiphase segmentationl tihadebalances each phases and auto-
matically gives a reasonable number of phases. One limitaif many multiphase segmentation methods
is in choosing the number of phases needed for the segnantati

By adding two additional objectives, we achieved automsgigmentation which gives a reasonable
number of phase&” and finds each phase. This proposed method have interestpgries and many
different extensions and applications are possible. To thedminimum of this nonlinear functional, we
used a brute-force algorithm for a fast and accurate contipatalhe algorithm gives an insight on why
this model has automatic stopping criteria for choosingrtbmber of phase&”. We experimented with

syntactic and real images, considered applications to éntamntization, extension to color images, and
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cluster segmentation.

This work marks a beginning of research in this area. By ifigng the number of phases for a
segmentation, many new and interesting applications assilple. This includes combining k-means with
this clustering method for data mining applications anarporating logic frameworks [19] in identifying

key objects in the image. This furthers the pursuit of a rolausl flexible computer vision system.
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