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Unsupervised Multiphase Segmentation:

a phase balancing model
Berta Sandberg Sung Ha Kang Tony F. Chan

Abstract

Variational Models have been studied for image segmentation since the Mumford-Shah functional was

introduced in the late 1980’s. In this paper, we focus on multiphase segmentation with a new regularization

term that yields a unsupervised segmentation model. We propose a functional that simultaneously chooses

a reasonable number of phases while segmenting the image. Byusing the scale measure of the phases

in the regularization term, bigger objects are preferred tobe identified while segmentation is driven by

the intensity fitting term. For the numerical method, we propose a fast brute-force algorithm, and we

present experiments showing the robustness of this method.

I. INTRODUCTION

Image segmentation separates the image into different regions to simplify the image and identify the

objects easily. Image segmentation has been extensively studied via various approaches, such as mixture

random-field models [10], Mumford and Shah’s variational image model [17], and new segmentation

models incorporates more complexities, like Monte-Carlo Markov chain model [27], the graph-cutting

and spectral method [23], and the variational texture segmentation models [20], [21], just to mention a

few. Many extensions and properties have been studied for the variational approaches since the work of

Mumford and Shah’s image segmentation model. The Chan-Vesemodel [6] is well-known for a successful

level set implementation, and this work has been extended tovarious cases such as multi-channel [5],

texture segmentation [20], a logic model [19] and multiphase segmentations [7], [28].
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In this paper, we focus on multiphase image segmentation, that is to identify more than two phases from

a given image. There are several region-based multiphase segmentation models introduced by various

researchers, such as Vese and Chan [28], Chung and Vese [7], Brox and Weickert [2], Tai and Chan [26],

Lie, Lysaker and Tai [16], Jung, Kang and Shen [13], and Bae and Tai [1]. In [28], Vese and Chan

first introduced the generalization of two-phase segmentation model [6] by usinglog2 n number of level

sets to identifyn number of phases. A multi-layer method is introduced in [7],where the authors used

more than one levels of a level set to represent the discontinuity of the image, inspired by modeling

island dynamics for epitaxial growth. In [2], the authors proposed a minimization strategy using the level

set framework for minimizing the energy of [29]. In [16], a piecewise level set method is introduced

which uses one level set for multiphase segmentation by representing each phase with a different constant

value. The graph-cut algorithm is utilized for multiphase Mumford-Shah model in [1]. In [13], the authors

introduced a relaxed model for multiphase segmentation usingΓ-convergence analysis. More related work

can be found at [3], [9], [14], [15], [18].

Let Ω be the image domain, a bounded Lipschitz domain, anduo : Ω −→ R+∪{0} be a given image.

Recall that the classical Mumford-Shah segmentation is to minimize

Ems[u,Γ|uo] = α

∫

Ω\Γ
|∇u|2dx + βH1(Γ) +

∫

Ω
(u − uo)

2dx, (1)

where Γ ∈ Ω denotes theedge setof the imageu, and H1 represents the 1-dimensional Hausdorff

measure. Multiphase segmentation identifies different phases by the intensity discontinuities, and this

setting is considered in [7], [13], [16], [26], [28]. For identifying piecewise constant objects, the reduced

Mumford-Shah functional can be written as, minimizing

Ecv[u,Γ|u0] = βH1(Γ) +

N
∑

i=1

∫

Ωi

|u0 − ci|
2, (2)

whereΩis are the connected components ofΩ\Γ andci is the intensity average ofu in eachΩi. With a

successful level-set implementation, this reduced Mumford-Shah model is also frequently referred to as

the Chan-Vese (CV) model for a two-phase case [6]. This particular expression of multiphase segmentation

(2) is first used in [16] and shown it can keep symmetry for triple junctions.

One of the limitation of these multiphase segmentation methods is that the number of phases are

typically given or needs to be chosen a priory, to get a properresult. One way to avoid choosing the

number of phases is to give many initial contours with the hope that only the necessary contours will

remain. In practice, if more phases are given than needed, then over-segmentation occurs, as illustrated
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(a) Original Image (b) 3 level sets (c) 4 level sets (d) 5 levelsets

Fig. 1. (a) The original given image is a piecewise constant image with eight different constant intensities. (b), (c) and (d)

shows three different possible segmentation results using[28] with different numbers of level sets: (b) 3 level sets, (c) 4 level

sets, and (d) 5 level sets. Boundaries of contours are superposed over the segmented result. (b) shows segmentation using 3

level sets (23 = 8 phases), exactly finding the correct segmentation. When more contours are used than needed, as in (c) and

(d), one object can be separated to more than one segments andthere are many empty level sets.

in Figure I. The algorithm unnecessarily separates one object to more than one regions. Figure I is using

multiphase level set segmentation as in [28]. In [13], [16],typically a reasonable number of phases

are given before the experiments or some supervisions are used for good segmentation results. Another

possibility of avoiding over-segmentation is to graduallyincrease the number of phases one by one. Then,

in most cases, the intensity fitting term will drive the segmentation and even slight different in intensity

can continuously increase the number of phases. In addition, for the functional models, such as (1) and

(2), there are at least one free parameter to choose and, often for multiphase segmentation, the result

becomes very sensitive to the choice of these parameters. In[2], the authors also noticed the difficulties

of having arbitrary number of regions, and proposed a minimization strategy using level set method for

minimizing the energy of [29].

We propose a new model for unsupervised segmentation, whichautomatically chooses the number of

phases without any user input. This model gives reasonable number of phases while segmenting the image

at the same time. The contribution of this paper is to proposea new variational functional for unsupervised

multiphase segmentation and provide a fast numerical algorithm. We present a brute-force algorithm for

a fast and easy computation without using Euler-Lagrange equation of this nonlinear functional. The

numerical experiments are presented to validate the proposed functional.

This paper is organized as follows. In Section II, followed by a general formulation of multiphase

segmentation, we present a new phase balancing unsupervised multiphase segmentation model in subsec-
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tion II-C. In Section III, we present the details of the brute-force algorithm. This is followed by various

numerical experiments in Section IV.

II. UNSUPERVISEDMULTIPHASE SEGMENTATION MODEL

We represent the segmented image as a linear combination of different phases which are defined by

characteristic functions asχi to be representing each phase. The
∑

χi covers the entire image domain

Ω andχi ∩ χj = ∅. Eachχi is defined by one intensity average valueci, and each phase may consist

of many separate regions (distinct connected components).The average value is computed byci =
∫

χi
uo(x)dx/

∫

χi
1dx as usual. Then, the final segmented result is represented as

u =
K
∑

i=1

ci ∗ χi.

In the CV model (2), the main two terms represent the intensity fitting term and the regularization term.

The segmentation is driven by the intensity, while the length of the boundaries are kept to be minimized to

avoid oscillatory boundary identification. We also keep these two terms for our segmentation model and

construct our new functional based on this CV model (2). We propose to add two more objectives to design

an unsupervised model, which automatically gives the number of phases as well as the segmentation of

the image. The objectives are as follows:

1) [Phase] Find the objects with significant sizes. We prefernot to have small partitions of the image,

but want to identify relatively big objects which can be understood as a feature of the image.

2) [Balance] We assume each identified phases are all equallyimportant, i.e. no a priory information

is given on which phase is more important than the other. Therefore, this functional should partition

the image uniformly among different phases.

In the following subsections, we construct the new functional by implementing the above two new

objectives.

A. Phase

We turn our attention to the scale term which has been studiedin [25] to identify objects of big enough

size. The authors of [25] have recognized the relation between the length and the area of objects, and the

scale term is defined asscale :=
area

length
. When the size of an object is big, the scale value is big, and

when an object is small, the scale value is small. This term isanalyzed in the context of total variation

(TV) denoising.
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(a) Original (b)χ1 (black boxes) (c)χ2 (dark-gray boxes)

(d) Original (e)χ1 (phase with the disk)

Fig. 2. The effect ofSi: In the top row, from the given original image (a), two biggest boxes on the right (one black and

another gray) are identified as two different phasesχ1 andχ2. Then, all the black boxes will be in phaseχ1 (image (b)) and

the similar intensity gray boxes are in phaseχ2 (image (c)). (These two phasesχ1 andχ2 are two among many other phases,

full results showing all other phases are in Figure 4.) In thesecond row, from the original image (d), one disk in the center is

identified as one phase, together with all the similar intensity area. (The result showing all other phases are in Figure 3.)

To meet our objective of identifying significant size objects while minimizing a functional, we use the

inverse scale term,

Si :=
P (χi)

|χi|
, (3)

whereP (χi) denotes the perimeter of a phaseχi and |χi| denotes the 2-dimensional area of a phaseχi.

By minimizing this term, the segmentation prefers to identify bigger objects rather than the smaller ones.

For example, in Figure 2 (a), the biggest objects are the two big boxes (one black and another gray) on

the right. Therefore, segmentation would identify the black box to be in one phase (for example,χ1)

and the gray box in another phase,χ2. Then, since the segmentation is driven by the intensity value, the

similar intensity boxes will go the corresponding phase: black boxes into phaseχ1 and dark gray boxes

into phaseχ2. Also, in Figure 2 (d), the given image has only one definite object, the disk in the center,

so this object and similar intensity areas are identified as one phaseχ1.
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Remark 1:The inverse scaleSi is defined on each phaseχi, thus it is possible to have disconnected

regions within the phase. We compute the total length of the edges in the phaseχi and divide by the

total area of objects in the phaseχi, regardless of how many connected component this phaseχi has.

For example, several different objects with similar intensities will be in one phaseχi and contribute to

Si all together.

Remark 2:This notation ofSi is related to theCheeger Set, which is widely studied in calculus of

variation analysis. The objective is to find a nonempty setA ⊂ Ω of finite perimeter which minimizes

the following,

min
A⊂Ω

P (A)

|A|
.

There are various studies on qualitative properties of Cheeger Sets, and [4], [8] give good overviews

and some references for related recent works on Cheeger sets. By defining a finite perimeterλ :=

P (G)
|G| , and consideringminA⊂Ω P (A)− λ|A|, these studies of Cheeger sets are related to Total Variation

minimization, minu∈BV (Ω)

∫

Ω |Du| + λ
∫

Ω |u(x) − uo(x)|2, which is consistent with the scale notation

studied in [25]. Note, these Cheeger Set studies are only on one setA, while our interests are in multiple

sets of these kinds.

Property 1: For a phaseχi with a single object, if the perimeter is fixed, convex objecthave smaller

Si compared to the concave objects. Therefore, by minimizingSi the shape of object prefers to be closer

to a circle rather than an ellipse.

Property 2: Objects with different shape can have the same inverse scalevalue. For example, any

regular (equilateral) convex polygon,B, which incircles a circle with radiusr has
P (B)

|B|
=

2

r
, which is

the same as the inverse scale value of a circle with radiusr.

B. Balance

In order to give balance among the phases, we do not assume anyparticular importance among different

phases, and we consider the summation without any particular weight,

K
∑

i=1

Si =
K
∑

i=1

P (χi)

|χi|
.

Then, for a given discrete bounded image with|Ω| < ∞ and
∑K

i=1 P (χi) < ∞, for a fixed K, the

minimum of the summation is achieved whenSi are all equal to each other for∀i = 1, . . . ,K. Therefore,

by minimizing this term, the objects of various sizes in the image will uniformly be distributed among all

6



(a) Original (b) Result

Fig. 3. The effect of
P

Si: The original image (a) has a smooth background with a disk inthe center. (b) is the segmented

result
P

ci ∗ χi, using the proposed model (5). A phase with the disk is identified, as in Figure 2 (e), and the remaining

background is more or less uniformly divided as shown in image (b).

different phases andSi value will be similar to each other. We refer to this term asthe phase balancing

term, since it prefers to find balance among the scales of eachphases. Figure 3 shows this effect of

uniform separations among the phases.

Proposition 1: For a fixed K, given a piecewise constant image with multiple objectsBj with the same

ratio, P (Bj)/|Bj | := p1 (except for the background), any distribution of these objects Bj to different

phasesχi (no empty phases, no partial objects) gives minimum of the phase balancing term, and

K
∑

i=1

P (χi)

|χi|
= (K − 1)p1 +

P (χb)

|χb|
,

whereχp represents the background.

Proof: The inverse scale termSi in (3) is define for each phase, not for each object. For example,

if one phaseχi has one circle with radiusr, Si = 2/r, and if another phaseχj has two circles,

Sj = 2πr+2πr
πr2+πr2 = 2/r. Therefore, if we let the length of an object to beP (Bj) = a, the area to bea/p1

and mi be the number of the objects in the phaseχi, then,Si = mia/mi(a/p1) = p1, independent

of the numbermi. The phase balancing term will be(K − 1)p1 except for the phase representing the

background.

According to above Proposition, if an image has only one kindof object, the number of objects in

each phases can be quite different, which can be counter-intuitive to the balancing effect. This is due to

the way we compute theSi (Remark 1).
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C. The proposed model

Incorporating these additional objectives, we propose thefollowing functional for automatic multiphase

segmentation,a phase balancing model,

E[K,χi, ci|uo] = µ̂

(

K
∑

i=1

Si

)

H1(Γ) +
K
∑

i=1

∫

χi

|uo − ci|
2, (4)

whereΓ is set of all the boundaries ofχi for i = 1, . . . ,K, i.e. Γ =
⋃K

i=1{∂χi}, H1 represents the

1-dimensional Hausdorff measure as in (1) and (2), and the average valuecis are defined as in (2),

ci =
∫

χi
uo(x)dx/

∫

χi
1dx. Notice thatK, χis andcis in E[K,χi, ci|uo] are unknown variables while

only the original imageuo is given. This is one of the main difference compared to the other multiphase

models, which don’t minimize the functional with respect tothe number of phasesK. Using P (A) to

represent the finite perimeter of the setA, the proposed functional can be also represented as

E[K,χ, ci|uo] = µ

(

K
∑

i=1

P (χi)

|χi|

)

K
∑

i=1

P (χi) +
K
∑

i=1

|u0 − ci|
2χi. (5)

Hereµ = µ̂/2 from µ̂ in (4), since by adding the perimeter of each phases the length of boundaries will

be added twice.

In this functional,µ is the only free parameter, and for an unsupervised segmentation we typically set

µ = 1. The first term of (5) is essentially unit-free, while the second term
∑K

i=1 |u0 − ci|
2χi corresponds

to the area of the phase, therefore, thisµ is a parameter representing the area of the segmentation. If

µ is big, the segmentation prefers to have phases with bigger areas, and smaller value forµ prefers

smaller phases for a segmentation. The effects of this changes ofµ are explored in Section IV, and for

unsupervised segmentation we kept thisµ = 1.

To illustrate the full effect of this model, we consider the example in Figure 2 again. After the two

main features are identified, the other regions are well divided to give balance among the phases and

follow the intensity differences. Figure 4 illustrates thefull result. The original image Figure 2 (a), has

at least 15 different intensity values, however, the image is automatically (withµ = 1) identified to 4

different phases. The segmentation is driven by the two biggest objects, then the rest are well distributed

following the intensity similarities while giving the balance among the phases.

Remark 3: In the proposed model (5), the perimeterP (χi) appears twice, once in the phase balancing

term and the total length term. According to the Property 2 insubsection II-A, the smoothness of the

boundary is independent to minimizingSi, since the circle and a convex polygon can have the same
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χ1 χ2 χ3 χ4

Fig. 4. In the original image Figure 2 (a), each column of boxes are changing the intensity consistently from top to bottom, and

the size of the boxes are increasing from left to right (length of the width is doubling each time). These images are identified

phases using the proposed model. The model automatically chooses four phases withµ = 1, and it shows that the boxes are

well distributed among the phases. Notice the strong similarity among the phases.

inverse scale value. Therefore, the total length termH1(Γ) is needed for for its smoothness property (and

well-fitted boundaries).

Remark 4:As shown in Figure 3 and 4, the segmentation is mainly driven by the intensity. The model

favors larger continuous region, however, the smaller regions with similar intensity will also go into the

same phase. The small objects, such as noise or small stars, have a big inverse scale value, and it will

be identified as a feature of the image rather than being completely denoised. Denoising occurs within

a certain difference in intensity. If the intensity is closeto one of the phases, it will be included in that

phase. (See Figure 12).

Remark 5:After proposing to add two additional objectives in the formof the phase balancing term,
∑K

i=1 Si, we had different options to modify the new functional. For example, Case I, adding (not

multiplying) the phase balancing term to CV model (2): this looses the unsupervised properties and the

results become heavily depended on the choice of two parameters,β andµ. This inherits limitations of

CV model with additional parameter to choose. Case II, multiplying
∑ 1

Si
to the total length term, i.e.

two terms in the segmentation function both represents the area, and Case III, multiplying the phase term

to the fitting term, i.e. both terms represents length of the segmentation. In these both cases, Case II and

Case III, in addition to being sensitive to the choice of the parameter, we observed that the number of

phaseK increases to minimize to energy. The total length term is never zero, while the fitting term can

become zero by increasing the number of phases continuously, therefore, both cases typically result in a

big number of phases.

In the following section, we present a brute-force algorithm for a fast and easy computation of the
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proposed model (5).

III. FAST ALGORITHM FOR MULTIPHASE SEGMENTATION

As before, each phase is a separate characteristic functionχi, for i = 1, . . . ,K, and represent the

segmented result asu =
∑K

i=1 ci ∗ χi. Typically, a level set method is widely used in these settings [7],

[16], [19], [20], [26], [28], or one function is used to represent multiphases as in [13], [16]. However,

by using each characteristic functionχi to represent each phase, this allows simplicity in adding new

phases and does not introduce bias in transition from one phase to another.

This unsupervised segmentation model (5) is nonlinear and non trivial to identify the Euler-Lagrange

equation with three different types of unknowns: the numberof phasesK, χis and the average intensity

cis. Thus, we decided to accentuate the speed and simplicity bydirectly minimizing this functional. We

are not the first to use these fast techniques, and the credit goes to [11], [24], which discuss applications

to level set implementation in two phase identification. In particular, we adapted the main idea of Song

and Chan [24] to consider the change in the difference of the functional using a greedy algorithm to

decide if one pixel belongs to the inside or the outside of thecontour. These settings, [11], [24], are well-

equipped to handle fast computation for two phase computations. In [12], the authors used fast algorithm

for multiphase level set method for CV model, and discuss thedanger of using these algorithms for

the length term via considering the topological derivative. (In this paper, we extend the idea of [24] to

multiphase model, and work with the discrete setting of the functional that the length change is explicitly

computed by the four edge changes.)

From the proposed model (5),

E[K,χ, ci|uo] = µ

(

K
∑

i=1

P (χi)

|χi|

)

K
∑

i=1

P (χi) +
K
∑

i=1

|u0 − ci|
2χi,

we consider the difference in the functional and pick the phase according to the minimum value. For

(x, y) ∈ Ω, the change in energy when(x, y) moves from one phasel to another phasej is computed

by,

∆Elj = µ∆ST + (u − cj)
2 nj

nj + 1
− (u − cl)

2 nl

nl − 1
, (6)

whereu = u(x, y) is the intensity value at the pixel(x, y), ci is the average of each phasei, andni

is the number of pixels in phasei, i.e. area|χi| = ni. The first term∆ST is the change of the phase

balancing and total length term in (5), and other two terms are the change of the intensity fitting term

which is used in [24].
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Then, this∆ST is

∆ST = SjTj − SlTl = Sj(Tl + ∆T ) − SlTl = (Sj − Sl)Tl + Sj∆T = Tl∆S + Sj∆T,

whereSl presents the phase balancing energy (
∑

Si) and Tl the total length energy (
∑

P (χi)) when

(x, y) is in phasel. To compute the total lengthTl, since each phase is represented by a characteristic

function χi, we simply add all the edges in the phase to get the length,

P (χi) =
∑

(x,y)∈Ω

{|χi(x + 1, y) − χi(x, y)| + |χi(x, y + 1) − χi(x, y)|}

then, when the pixel is in phasel, Tl =

K
∑

i=1

P (χi) andSl =
∑ P (χi)

ni
.

The difference in total length energy,∆T becomes an addition of the change of perimeter in phase

j and the change in phasel, ∆T = ∆P (χj) + ∆P (χl). In phasej, if pixel (x, y) changes from 0 to

1, the change in the length can be computed from the values of the neighboring points, i.e.∆P (χj) =

4−2
∑

(a,b)∈N χj(a, b), whereN refers to four neighboring points (N,S,E,W of (x,y)). When there were

no edges (∀(a, b) ∈ N , χj(a, b) = 0), by changing this pixel from 0 to 1, it creates four new edges.

If there is one edge, by flippingχj(x, y) = 0 → 1, it creates two additional edges. If there were two

edges, the change creates no new edges, but if there were fouredges, it will remove those four edges

(-4). Similarly, change in the perimeter of phasel becomes∆P (χl) = −4 + 2
∑

(i,j)∈N χl(i, j). Then,

the difference in the total length becomes

∆T = −2





∑

(i,j)∈N

χj(i, j) −
∑

(i,j)∈N

χl(i, j)



 . (7)

The difference∆Elj in (6) can be computed by gathering all these terms,

∆Elj = µ(Tl∆S + Sj∆T ) + (u − cj)
2 nj

nj + 1
− (u − cl)

2 nl

nl − 1
. (8)

This is an explicit difference of the energy when the pixel changes from one phasel to another phasej,

which is used in the algorithm, Table I (9). If∆Elj > 0, the pixel will not change to phasej since that

will increase the energy. While, if this value∆Elj is negative, it is better to move(x, y) to phasej.

In this algorithm, we are considering multiphase segmentation, it is important to noticed that the number

of phases are initially set to beK = 1 for all the experiments. In Table I, the algorithm compares the

change∆Elj among all the existing different phasesj = 1, . . . , k and if necessary, it creates a new phase

to minimize the energy. This new phase is represented as phase k + 1 and the difference in the energy

(9) is calculated usingnk+1 = 0.
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Algorithm

• Set an initial phase:|χ1| = |Ω| with ko = 1, whereko is the number of phase.

• Iterate

1) At each pixel(x, y) ∈ Ω which belongs to phasel (χl(x, y) = 1 andχi(x, y) = 0 for ∀i 6= l),

compute

value = min
j

{∆Elj |j 6= l, j = 1, . . . , k + 1}, (9)

and leth = arg minj{∆Elj |j 6= l, j = 1, . . . , k + 1}. Herek + 1 refers to the new empty phase.

Then,
8

<

:

if value < 0, setχh(x, y) = 1 andχl(x, y) = 0.

if value > 0, do nothing

2) Updatek = h, calculateni = |χi| andci for each phasei = 1, . . . , k.

TABLE I

A PIXELWISE BRUTE-FORCEALGORITHM

The complexity of the algorithm is straightforward. Letm be the total number of pixels in the image.

At the first pixel, it was two choices: the current phaseχ1 and a new phaseχ2. As the algorithm sweeps

through the domain, at each pixel it wask+1 choice of phases, wherek is the current number of phases

and one additional choice for a new phase. For the most brute-force algorithm, when the number of

phases is fixed asr, the complexity isO(rm), and when the number of phases is increasing with each

iteration, the complexity becomesO(m + 2m + · · · + sm) wheres is the maximum number of regions

attempted. The second type of method ends up beingO(s2m). However, for the proposed algorithm, the

number of phases is typically identified after only one sweeping of the image, the complexity calculation

is O(km) = O(m) for upto k number of phases. This is also similar to the fast algorithm method [24]

which givesO(m) complexity.

The proposed method allows for a real-time processing of a large image set, since there is no need to

pre-process the data to identify the number of regions, but it is automatically given from the iteration.

The run time on a single core Intel processor computer for 100by 100 image is 100 frames/second using

C++. Typically, the algorithm converges in less then 6 iterations.
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(a) Original Image (b) Segmentation

(c) phase 1 (d) phase 2 (e) phase 3 (f) phase 4

Fig. 5. Real image: A MRI brain image is automatically segmented into four regions. The model segments the different parts

of the brain accurately.

IV. NUMERICAL EXPERIMENTS

All of the experiments are initialized with|χ1| = |Ω| i.e. K = 1, and most of the experiments were

done withµ = 1 (unless otherwise stated). The following experiments are done with left to right, and

down sweeping order. These conditions eliminate some of thedifficulties associated with multiphase

segmentation.

Figure 5 shows an experiment on a real image, a MRI brain scan.The model not only automatically

gives four phases, but also segments the different parts of the brain accurately. Figure 6 shows that the

model segments the image with sharp corners and clear edges.This model automatically identifies five

phases: white, gray, black (blue), green and yellow.

This method is extended to color images in Figure 6. As in [5],we added all the channels for this

experiment, using

µ

(

K
∑

i=1

|∂χi|

|χi|

)

K
∑

i=1

|∂χi| +
K
∑

i=1

∫

χi

3
∑

l=1

|u0,l − ci,l|
2dx, (10)

13



(a) Original Image (b) Segmentation (c)χ1

(d) χ2 (e) χ3 (f) χ4 (g) χ5

Fig. 6. Color image: The model automatically segments the original image to five phases. Each segments refers toχ1 (yellow),

χ2 (white), χ3 (gray),χ4 (black/blue) andχ5 (green). The model is extended to a vector model using the fitting term as in [5],

and for the image with sharp corners and edges, this model successfully finds shape boundary information.

here indexl refers to each RGB (red, green and blue) channels.

The proposed model automatically picks an appropriate number of phases depending on the image. In

Figure 7, the original image (a) is automatically segmentedto 4 phases (blue, white, yellow and green).

And when zoom into the one phase the field region (yellow), image (c), is automatically further segmented

to three phases. This shows that the proposed model (5) adjusts to the given image and recognizes or

not recognizes certain features depending on the focus.

A. Application to image quantization

The proposed model can be applied to image quantization. Image quantization is used when high-

resolution images are displayed on low-resolution or low-bit devices, such as in the calculators or in cell

phones. If the low-bit device is aq−bit device, the range of the image can only take few discrete values

from 0 to 2q − 1. With vast developments in cell phones and hand-held devices, good quality and fast

quantization became more important. Figure 8 shows such an application. Using this model, the image is

automatically segmented to five phases. In [22], the authorscomputed the segments by minimizing the
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(a) Original Image (b) Segmentation to 4 phases

(c) Original (zoom) (d) Segmentation to 3 phases

Fig. 7. Focus of the image: The original image (a) is automatically segmented to 4 phases in image (b). When zoom into

the one phase the field region (yellow), image (c), is automatically further segmented to three phases in image (d). The model

adjusts to the given image and recognizes or not recognizes certain features depending on the focus.

TV functional which is constrained on the quantum setQ. Here the cardinalityK is given.

min
u∈BV Q

E[u] = min
u∈BV Q

∫

Ω
|Du| +

λ

2

∫

Ω
(f − u)2dx,

where BV Q = BV (Ω;Q) = {u ∈ BV (Ω) : u(x) ∈ Q, a.e. x ∈ Ω}. With the given cardinality

K = 6, the girl image is quantized with method [22] (Figure 8, image (c)) and the optimized quanta

set is found to beQ = {0.1314, 0.2860, 0.4514, 0.6009, 0.7484, 0.9417}. In our experiment, Figure 8,

image (a) is automatically segmented to six phases in image (b), and theci values are found to be

{0.1468, 0.2915, 0.4628, 0.6121, 0.7554, 0.9508} these values are within2% difference. This example

shows an application of the unsupervised segmentation model to image quantization.

B. The number of phaseK: automatic stopping

Notice from the algorithm, Table I, that initial condition is always set asK = 1 with χ1 = χΩ, and as

the algorithm sweeps through the domain the number of phasesincreases. It is important to understand

when the algorithm stops adding the new phase, to automatically give a reasonable number of phasesK.
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(a) Segmentation (b) Quantum TV [22]

Fig. 8. Image quantization: The proposed model can be applied to image quantization. This model automatically segmentsthe

image to six phases. Compared to Quantum TV [22], this model keeps more details and features of the original image, such as

the necklaces, details of the face and texture of the clothing.

In the algorithm (9), a new phase is created only if it gives the minimum of∆Elj among all possible

choices ofi, j, and also if that minimum is a negative value. Therefore, we look into the details of when

the energy becomes negative for possibly creating a new phase, i.e.∆Elj < 0, for j = k +1 andnj = 0.

For this new phase, the intensity difference is zero,(u − cj)
2 = 0, and the energy (8) is negative when

µ(Tl∆S + Sj∆T )(1 −
1

nl

) < (u − cl)
2, (11)

for at least onel ≤ k. This left-hand-side value,test := µ(∆ST )(1− 1
nl

) gives the lower bound on how

big the intensity difference (between the current pixelu(x, y) and each phase intensity averagecl) should

be to create a new phasej = k+1. First of all, asnl increases (as the area of existing phase gets bigger),

the test increases, so it requires the intensity to be more differentfrom averagescl to create a new phase

by itself. Secondly, thetest value is depended on∆S multiplied by Tl, so, when the segmentation is

already complicated with a large total lengthTl, it becomes more difficult to add a new phase. Thirdly,

∆T is multiplied bySj, and since the new phasej only have one pixel, thisSj is quite big. After this

test (11) is satisfied, the energy∆Elj still needs to be the minimum among all other possibilities of
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being added to different phases.

To summarize, as the size of the phases increases, it becomesmore difficult to add new phase. As soon

as all the phases reach certain sizes, the algorithm’s sensitivity to the intensity fitting term decreases, and

prefer to be added to already existing phases. This is independent to the location of the regions, since

the area and perimeter is computed over each phase without considering the local connected components

separately. This is the main reason for the automatic selection of K and the proposed functional gives

unsupervised segmentation.

As a comparison, we considered the reduced piecewise constant Mumford-Shah, Chan-Vese [6] model

as in [7]. We designed a similar brute-force algorithm as (8)for multiphase CV model,

∆Ecv = β∆T + (u − cj)
2 nj

nj + 1
− (u − cl)

2 nl

nl − 1
(12)

and we find that this algorithm also works very well if the original image is a piecewise constant function.

However, for non-piecewise constant images, these type of brute-force algorithm seems to continuously

add new phases, or the algorithm becomes very sensitive to the choice of parameterβ. This can be seen

from a similar analysis as (11). The energy is negative, when

β ∆T (1 −
1

nl

) < (u − cl)
2.

It is clear this algorithm will be sensitive to the choice ofβ. Since this test is only depended on the

change in total length, which is typically very small, unless big β is given, this algorithm will continue

to add new phases. In (2), this effect corresponds to the intensity fitting term going to zero as more and

more phases are added. Therefore, big enoughβ should be given, and the result will be very sensitive

to this choice.

Figure 9 illustrates this comparison. Given a image (a), theproposed model segments the image with

5 phases automatically, while as in image (c), the CV model using a brute-force algorithm (12) will

continue to increase the number of phases. Even with a big value ofβ which resulted in quite a denoised

result, this image (c) has about 128 number of phases with many small regions. However, when the

phase number is given for CV model, in this caseK = 5, the brute-force algorithm (12) becomes less

sensitive to the choice ofβ and gives a good segmentation result. Comparing image (b) and image (d),

our proposed model gives comparable result to CV model, withunsupervisedK.
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(a) Original (b) The proposed model

(c) CV with a bigβ (d) CV with K = 5

Fig. 9. Comparison: (a) The original image. (b) Using (6), the proposed unsupervised model. (c) Using CV model with a

brute-force algorithm (12) using a bigβ (d) Using CV model with (12) for a given fixed number of phaseK = 5. Comparing

image (b) and image (d), the proposed model gives comparableresult to CV model. With the number of phasesK is not given

for CV model, in image (c) the methods continuous to add new phases even with a big number ofβ. This image (c) has about

128 phases, many of which are very small regions.

C. The effects of differentµ

Up to now, all the experiments were usingµ = 1. This makes the proposed model (5) essentially

parameter free. By changingµ, different results can be achieved as in Figure 10. Comparedto the

Figure 7 (b)µ = 1, Figure 10 (b) usingµ = 10 returns only two phases separating the sky from the

earth. On the other hand, by decreasing theµ to 0.1 in Figure 10 (c), the proposed model gives more

detailed separations and identifies ten different phases.
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(a) Original Image (b)µ = 10 (c) µ = 0.1

Fig. 10. Differentµ: Bigger values ofµ give bigger regions for segmentation. Whenµ = 10, the model gives only two phases

separating the sky from the earth (white and blue, and yellowand green regions are merged). While by usingµ = 0.1, the

model enforces the intensity fitting term, and it gives ten phases with more detailed separations of the image.
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Fig. 11. K versesµ: The plots ofK versesµ for the girl image in Figure 8. The range ofµ are (a)0.01 < µ < 1.5 and (b)

1 < µ < 20. Notice that each piecewise intervals are quite large showing this model is not very sensitive to the choice ofµ.

Since we are varying the parameterµ, we present a plot in Figure 11 to show the changes in the phase

numberK verses differentµ values. We experimented with the girl image in Figure 8. Bothgraphs are

a plot of the number of phasesK verses theµ values, (a)0.01 < µ < 1.5 and (b)1 < µ < 20. As

predicted in Figure 10 (also related to the inequality (11)), this is a decreasing function, and to have an

integer valueK, the graph becomes a step function. Notice, that each piecewise intervals are quite large

showing this model is not sensitive to a careful choice ofµ.

Using different values ofµ, the proposed model can also handle a cluster segmentation.Figure 12

shows an example of segmentation of a nebula (this is a color image and vector-valued model (10) is
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Original Image Segmentation phase 1 phase 2

Fig. 12. Cluster segmentation: A color image of a nebula is segmented into two phases usingµ = 10. Notice the details of

the boundaries are kept while other small stars within the cluster is denoised and identified as the part of the main cluster.

used.). Usingµ = 10, the image is segmented into two regions (while usingµ = 1, it gave 6 different

phases). Notice the details of small stars are kept as a part of identified nebula. This is due to the way

we compute the phase length and area (not considering each connected components separately), and as

mentioned in Section II-C, Remark 4 only the small objects which has similar intensities as the identified

phase will be kept, while others are denoised. Noticed the bright starts within the nebula is included in

the phase without being identified separately, showing thismodel have denoising effect while keeping

details of the boundary.

D. Histogram comparison

Without an unsupervised model, one way to give a phase numbera priory is to consider the image’s

histogram. Therefore, we compare the histogram of originalimage and the histogram of the segmented

image to see the effect of the proposed model. In Figure 13, the blue dotted line is the histogram of the

original image and the red solid line is the histogram of the segmented result. For the images, such as

he girl (b), it is not totally clear how many phases are neededjust from the histogram, nevertheless, the

proposed model picks a reasonable number of phases.

This example also shows the difference between the proposedmodel and the typical k-mean or GMM

methods. The image segmentation and data mining are two different applications and the minimization

functional and the objective is somewhat different. However, the similarities lies in the fact that there is a
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(a) brain MRI, Fig. 5 (b) the girl image, Fig. 8

black white black white

Fig. 13. Histogram comparison: The blue dotted lines are thehistogram of the original image, and the red solid red lines

are the histogram of the segmented result (i.e.ci values). The range of the y-axis is artificially shortened toshow the details,

i.e. the red lines have a bigger value than represented in these graphs. Looking at the histogram of the original images, it is

might be unclear how many number of phases are needed for the segmentation. Image (a) and (b) show that the proposed model

automatically gives reasonable number of phases as well as the locations ofci.

number of bins (or phases) to choose (this connection is alsomentioned in [11]). Most of these methods,

the numberK is given a priory, then after iterations they correct the locations, or many pre-processing

and learning process is added before these methods are used.However, in the proposed model, the number

of phasesK is given from the minimization of the proposed functional. This proposed functional has a

fitting term and a regularization term with newly added phasebalancing term, which allows the automatic

segmentation.

V. CONCLUSION

We propose a new unsupervised multiphase segmentation model that balances each phases and auto-

matically gives a reasonable number of phases. One limitation of many multiphase segmentation methods

is in choosing the number of phases needed for the segmentation.

By adding two additional objectives, we achieved automaticsegmentation which gives a reasonable

number of phasesK and finds each phase. This proposed method have interesting properties and many

different extensions and applications are possible. To findthe minimum of this nonlinear functional, we

used a brute-force algorithm for a fast and accurate computation. The algorithm gives an insight on why

this model has automatic stopping criteria for choosing thenumber of phasesK. We experimented with

syntactic and real images, considered applications to image quantization, extension to color images, and
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cluster segmentation.

This work marks a beginning of research in this area. By identifying the number of phases for a

segmentation, many new and interesting applications are possible. This includes combining k-means with

this clustering method for data mining applications and incorporating logic frameworks [19] in identifying

key objects in the image. This furthers the pursuit of a robust and flexible computer vision system.
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