A Saddle Point Approach to the Computation of Harmonic Maps

Qiya Hu† Xue-Cheng Tai‡ Ragnar Winther§

February 21, 2008

Abstract

In this paper we consider numerical approximations of a constraint minimization problem, where the objective function is a quadratic Dirichlet functional for vector fields and the interior constraint is given by a convex function. The solutions of this problem are usually referred to as harmonic maps. Minimization problems of the form studied here arise for example in liquid crystal and superconductor simulations. The solution is characterized by a nonlinear saddle point problem, and we show that the corresponding linearized problem is well-posed near exact local minima. The main result of this paper is to establish a corresponding result for a proper finite element discretization of the harmonic map problem. Iterative schemes for the discrete nonlinear saddle point problems are investigated. Mesh independent preconditioners for the iterative methods are also proposed.

Key words: harmonic maps, nonlinear constraints, saddle point problems, error estimates.

1 Introduction

The solutions of many systems of linear partial differential equations can be characterized as minimizers of quadratic functionals over a set of linear constraints. The solutions of such systems are the linear Stokes system for fluid flow, the Reissner-Mindlin plate model, and the so-called mixed formulation of second order elliptic equations. The discretizations of these systems lead to linear systems with a saddle point structure, and where conditioning deteriorates as the mesh becomes finer. As a consequence, a substantial research on preconditioned iterative methods for the corresponding discrete systems has taken place, cf. for example [2, 3] or [18, Chapter 6]. The purpose of the present paper is to perform a corresponding analysis for a nonlinear problem. We will study a simple variant of the problem characterizing harmonic maps with respect to a compact manifold. In particular, we will focus on stability and error estimates for the discretization, and on preconditioning of the linear saddle point systems arising in a Newton iteration.

For a bounded Lipschitz domain $\Omega \subset \mathbb{R}^d$ we shall consider the problem of finding local minima of the constrained minimization problem of the form:

$$
\min_{v \in H^1_g(\Omega; M)} \mathcal{E}(v) = \frac{1}{2} \int_{\Omega} |\nabla v|^2 \, dx.
$$

(1.1)

Here $H^1_g(\Omega; M)$ is the set of vector fields with values in a smooth, compact manifold M in \mathbb{R}^d, with function values and first derivatives in $L^2(\Omega)$, and such that the elements v of $H^1_g(\Omega; M)$...
satisfies $v|_{\partial \Omega} = g$ for fixed vector field g defined on the boundary $\partial \Omega$. We will further assume that the target manifold \mathcal{M} is implicitly given on the form

$$\mathcal{M} = \{ v \in \mathbb{R}^d \mid F(v) = 0 \},$$

where the function $F : \mathbb{R}^d \to \mathbb{R}^k$ is a smooth function, and it will be assumed that the compatibility condition $F(g) = 0$ holds. More specific assumptions on F and the boundary data g will be given later. Problems of the form (1.1) arise for example in liquid crystal and superconductor simulations. The solutions of the problem (1.1) are frequently referred as harmonic maps, [7]. In the present paper we will restrict our study to the case $k = 1$, i.e. \mathcal{M} is of dimension $d - 1$. We will focus on a nonlinear saddle point approach to compute the solutions of the problem (1.1).

For a review of results on the continuous harmonic map problem we refer to [7, 24, 29, 30]. The purpose of the present paper is to discuss a finite element method for approximating the constraint minimization problem (1.1). For the simplest case of (1.1), with interior constraint given by $|v| = 1$, several numerical approaches have been discussed, cf. for example [1], [4], [5], [13], [14], [15], [16], [20], [21], [25], [26] and [32]. Variants of the projection method are proposed and analyzed in [1], [5] and [16]. However, the standard projection method applies only to the simplest model. Moreover, it was illustrated in [5] that the projection method converges only for very special regular and quasi-uniform triangulations for the discretized harmonic map problem. The relaxation method of [13, 21, 25] is using point relaxation with the constraint required at each grid point. Both convergence analysis and numerical experiments are supplied in [25]. An advantage with the relaxation method is that it is very easy to implement. However, disadvantages are that the relaxation parameter has to be chosen properly to obtain convergence, and that the convergence of such fixed point iterations is slow. Another commonly used approach for harmonic map problems is to use penalization methods, c.f. [4, 14, 15, 16, 20]. It is even often combined with gradient decent method which produces some time evolution equations, cf. [4, 11, 12, 14, 15, 16, 20]. The approach and analysis given in [4] even work for general p-harmonic problems with p close to 1. The analysis of [14, 15] is also valid for problems coupling harmonic maps with Navier-Stokes equations.

The main contribution of the present paper is to discuss the use of a saddle point approach for the construction of numerical methods for the constraint minimization problem (1.1). We will show that the corresponding saddle point problem is stable near exact local minima. This is achieved by verifying standard stability conditions for linear saddle point problems. This verification has the extra difficulty that the coercivity condition will not hold in general, but only on the kernel of the linearized constraint. Using the standard stability conditions for the corresponding discrete saddle point problem we will construct finite element methods such that the corresponding discrete solutions admit an optimal error estimate in the energy norm. Due to some technical difficulties, caused by the use of inverse inequalities to handle some nonlinear terms, this analysis of the finite element discretization is restricted to two space dimensions, i.e., $d = 2$. In this case we also establish that any critical point of the functional E with respect to $H^1_0(\Omega; \mathcal{M})$ is indeed a local minimum. Compared with other approaches [4, 11, 14, 15], our estimates do not depend on extra artificial parameters like a weight parameter for the penalty method or a step size for a gradient flow. We will also study Newton’s method for the discrete nonlinear saddle point problem, and propose a simple and efficient preconditioner for the linear systems arising during the iterations. Numerical tests will be given to show the efficiency of the proposed method.

The outline of the paper is as follows. In Section 2, the notations and assumption will be specified. In Section 3, the continuous problem is studied. The problem (1.1) is formally transformed to a saddle point problem, and stability results will be proved for the continuous model. In Section 4 we first describe a finite element discretization for (1.1), and then the discrete stability conditions are established. Using these stability conditions, the existence, local uniqueness and the error estimates are derived in Section 5. Variants of Newton’s method are analyzed in Section 6, while numerical experiments are presented in Section 7.
2 Notation and preliminaries

Throughout this paper we will use c and C to denote generic positive constants, not necessarily the same at different occurrences. It is assumed that the constants are independent of the mesh size h which will be introduced later. For vectors $v, w \in \mathbb{R}^d$ we use $v \cdot w$ to denote the Euclidian inner product, while the notation $A : B$ is used to denote the Frobenius inner product of two matrices $A, B \in \mathbb{R}^{d \times d}$. The corresponding norms are given by $|v|$ and $|A|$, respectively. For a vector or matrix A, A^t is the transpose of A. In the special case of vectors $v = (v_1, v_2)$ in \mathbb{R}^2 we will use $v^+ = (-v_2, v_1)$ to denote the corresponding vector obtained by a rotation of 90 degrees.

For $m \geq 0$ we will use $H^m = H^m(\Omega)$ to denote the real valued L^2– based Sobolev spaces on domain $K \subset \mathbb{R}^d$, the corresponding norm by $\| \cdot \|_{m,K}$, and $| \cdot |_{m,K}$ is the semi norm involving only the nth order derivatives. The subspace H^m_0 is the closure in H^m of $C_0^\infty(\Omega)$, while H^{-m} is the dual of H^m_0 with respect to an extension of the L^2 inner product (\cdot, \cdot). The corresponding L^∞– based Sobolev spaces are denoted $W^{m,\infty}(K)$, with associated norm $\| \cdot \|_{m,K}$. For all the Sobolev norms, we will omit K in case $K = \Omega$. In general we will use boldface symbols for vector or matrix valued functions. The gradient operator with respect to the spatial variable $x = (x_1, x_2, \ldots, x_d)$ is denoted $\nabla = (\partial / \partial x_1, \partial / \partial x_2, \ldots, \partial / \partial x_d)^t$. Furthermore, the gradient of a vector valued function $v = (v_1, v_2, \ldots, v_d)^t$, ∇v, is the matrix valued function obtained by taking the gradient row–wise, i.e. $(\nabla v)_{ij} = \partial v_i / \partial x_j$.

In order to specify the properties of the constraint functional $F : \mathbb{R}^d \rightarrow \mathbb{R}$, defining the constraint manifold \mathcal{M}, we will use DF to denote the gradient of F, i.e. $DF(v) = (\partial F / \partial v_1, \ldots, \partial F / \partial v_d)^t$ and the corresponding Hessian by $D^2F(v) = (\partial^2 F / \partial v_i \partial v_j)_{i,j=1}$. Throughout this paper we will assume that the constraint functional F satisfies:

(i) F is convex and smooth. Furthermore, there exist constants c_0 and c_1 such that

$$c_0|v|^2 \leq D^2F(\xi)v \cdot v \leq c_1|v|^2, \quad \xi, v \in \mathbb{R}^d. \tag{2.1}$$

(ii) $F(0) < 0$ and $DF(0) = 0$;

(iii) There exists an $\ell > 0$ such that the matrix function D^2F satisfies

$$|D^2F(\xi_1) - D^2F(\xi_2)| \leq \ell|\xi_1 - \xi_2|, \quad \xi_1, \xi_2 \in \mathbb{R}^d. \tag{2.2}$$

The analysis below will still hold if the assumptions (2.1) and (2.2) are only valid for all ξ, ξ_1, ξ_2 in a neighborhood of a continuous solution.

For the boundary function g of (1.1) we assume that it has been extended into the interior of Ω such that $g \in H^1(\Omega)$. Corresponding to g, we let

$$H^1_0(\Omega) = \{v \in H^1(\Omega) : v = g \text{ on } \partial \Omega\}.$$

If $v : \Omega \rightarrow \mathbb{R}^d$ is a smooth vector field then it follows from the chain rule that

$$\nabla F(v) = (\nabla v)^tDF(v), \tag{2.3}$$

where the product on the right hand side is the ordinary matrix–vector product. Furthermore, we have

$$\nabla D^2F(v) = D^2F(v)\nabla v. \tag{2.4}$$

From assumption (i)-(ii) and the Taylor expansion we obtain the following estimate:

$$2c_1^{-1}|F(0)| \leq |v(x)|^2 \leq 2c_0^{-1}|F(0)|, \quad x \in \Omega, \tag{2.5}$$

for any v satisfying $F(v) \equiv 0$ in Ω. Similarly, we derive

$$|DF(v)| \geq c_0|v| \tag{2.6}$$
for any \(v \), and hence \(|DF(v(x))| > 0 \) if \(v(x) \in M \).

Let us note that the interior constraint in (1.1), given by \(v(x) \in M \), implies that a local minimum of (1.1) satisfies \(u \in H^1_g(\Omega) \cap L^\infty(\Omega) \). In fact, if we restrict the analysis to the case \(d = 2 \), with the manifold \(M \) taken to be the unit circle \(S^1 \), and we assume that the boundary \(\partial \Omega \) and the boundary data \(g \) are sufficiently regular, then there is a unique smooth global minimizer of (1.1), cf. [7, Theorem 12], and [22]. However, this result is not true for more general harmonic map problems [30, 24].

We will first consider the characterization of critical points of the functional \(E \) over \(H^1_g(\Omega; M) \). The outline below follows a standard Langrange multiplier approach to constrained optimization, cf. for example [6] for the finite dimensional case or [17, 19] in the infinite dimensional case. A vector field \(u \in H^1_g(\Omega; M) \) is such a critical point if it satisfies

\[
\langle \nabla u, \nabla v \rangle = 0
\tag{2.7}
\]

for any \(v \) in the tangent space of \(H^1_g(\Omega; M) \) at \(u \), i.e. for any \(v \in H^1_0(\Omega) \) such that \(DF(u) \cdot v \equiv 0 \). In the saddle point approach which we shall consider here we will view the critical points \(u \) as elements of the larger space \(H^1_0(\Omega) \). Assume that \(u \) has the extra regularity property that

\[
u \in H^1_0(\Omega) \cap W^{1,\infty}(\Omega).
\tag{2.8}
\]

Then any such \(u \) is a critical point if and only if there is a \(\lambda \in L^2(\Omega) \) such that the pair \((u, \lambda) \) satisfies the first order conditions

\[
\langle \nabla u, \nabla v \rangle + \langle DF(u) \cdot v, \lambda \rangle = 0, \quad v \in H^1_0(\Omega),
\]

\[
\langle F(u), \mu \rangle = 0, \quad \mu \in L^2(\Omega).
\tag{2.9}
\]

To see this we assume that \(u \) is a critical point satisfying (2.8), and let \(z = DF(u) / |DF(u)| \). For any \(v \in H^1_0(\Omega) \) let \(v_r = v - (v \cdot z)z \). As a consequence \(DF(u) \cdot v_r = 0 \), and by (2.7),

\[
0 = \langle \nabla u, \nabla v_r \rangle = \langle \nabla u, \nabla v \rangle - \langle \nabla u, \nabla (v \cdot z)z \rangle.
\]

However, by using (2.3) the constraint implies that \(\nabla u \cdot z = 0 \) and therefore the final inner product above can be rewritten as

\[
\langle \nabla u, \nabla (v \cdot z)z \rangle = \langle \nabla u, \nabla z, v \cdot z \rangle.
\]

Hence, the system (2.9) holds with

\[
\lambda = -\nabla u : \nabla z / |DF(u)| = -\nabla u : \nabla DF(u) / |DF(u)|^2,
\tag{2.10}
\]

where the last identity again is a consequence of the constraint. Note that it follows from (2.8) that the multiplier \(\lambda \) is actually in \(L^\infty(\Omega) \).

The variational problem (2.9) is the Euler-Lagrangian equation for the constrained minimization problem (1.1), and the system is a weak formulation of the problem

\[
-\Delta u + \lambda DF(u) = 0, \quad \text{in } \Omega,
\]

\[
F(u) = 0, \quad \text{in } \Omega.
\tag{2.11}
\]

In the simplest case when \(M = S^{d-1} \), i.e. the unit disc in \(\mathbb{R}^d \), we have \(\lambda = -|\nabla u|^2 \) and

\[
-\Delta u - |\nabla u|^2 u = 0, \quad \text{in } \Omega, \quad u = g \text{ on } \partial \Omega.
\]

In the present paper we will restrict our attention to the critical points \(u \) of \(E \) over \(H^1_g(\Omega; M) \) which are local minimizers. So assume that the pair \((u, \lambda) \) is a solution of (2.9), satisfying the regularity property (2.8), and let \(w = w(t) \) be a smooth curve in \(H^1_g(\Omega; M) \), defined for \(t \) in a
neighbhorhood of the origin, such that $w(0) = u$, and $w'(0) = v$. Hence, since $F(w(t)) \equiv 0$ we must have $DF(u) \cdot v = 0$, and
\[DF(u) \cdot w''(0) = -D^2F(u)v \cdot v. \] (2.12)
Furthermore, if we define a real valued function $\phi = \phi(t)$ by
\[\phi(t) = \mathcal{E}(w(t)) = \frac{1}{2} \langle \nabla w(t), \nabla w(t) \rangle, \]
then
\[\phi'(t) = \langle \nabla w'(t), \nabla w'(t) \rangle \quad \text{and} \quad \phi''(t) = \langle \nabla w'(t), \nabla w'(t) \rangle + \langle \nabla w(t), \nabla w''(t) \rangle. \]
Hence, it follows from the system (2.9) that $\phi'(0) = \langle \nabla u, \nabla v \rangle = 0$, and if u corresponds to a local minimum of \mathcal{E} over $H^1_0(\Omega; M)$ then the second order condition
\[\phi''(0) = \langle \nabla v, \nabla v \rangle + \langle \nabla u, \nabla w''(0) \rangle \geq 0 \]
must hold. However, by using the system (2.9) and (2.12) we obtain that
\[\langle \nabla u, \nabla w''(0) \rangle = -\langle D^2F(u) \cdot \nabla v', \lambda \rangle = \langle D^2F(u)v \cdot v, \lambda \rangle. \]
Therefore, the second order condition takes the form
\[\phi''(0) = \langle \nabla v, \nabla v \rangle + (D^2F(u)v \cdot v, \lambda) \geq 0. \] (2.13)
In fact, let us refer to a local minimum u of \mathcal{E} over $H^1_0(\Omega; M)$ as a strict local minimum if there is a positive constant β such that
\[\frac{d^2}{dt^2} \mathcal{E}(w(t))|_{t=0} \geq \beta \|v\|_2^2 \]
for any smooth curve $w = w(t)$ in $H^1_0(\Omega; M)$ satisfying $w(0) = u$ and $w'(0) = v$. It follows from the calculation above that the function $\phi(t) = \mathcal{E}(w(t))$ satisfies
\[\phi''(0) = \langle \nabla v, \nabla v \rangle + (D^2F(u)v \cdot v, \lambda) \geq \beta \|v\|_2^2, \] (2.14)
for all $v \in H^1_0(\Omega)$ satisfying $DF(u) \cdot v = 0$. As we shall see below this condition is closely tied to a stability condition for a linearization of the system (2.9).

Finally in this section, we would like to point out a relationship between the saddle point approach and the penalty method. In the commonly used penalty approach, cf. [4, 14, 15, 16, 20], one is seeking a local minimizer of the following regularized problem:
\[\min_{v \in H^1_0(\Omega)} \mathcal{E}(v) + \frac{1}{2\epsilon} \int_\Omega |F(v)|^2dx, \]
where the penalty parameter $\epsilon > 0$ is small. Formally, the necessary equilibrium condition for this problem is given by
\[\int_\Omega \nabla u^\epsilon \cdot \nabla vdx + \frac{1}{\epsilon} \int_\Omega F(u^\epsilon)DF(u^\epsilon) \cdot vdx = 0, \quad v \in H^1_0(\Omega). \]
A difficulty with this approach is that the penalty parameter ϵ needs to be chosen sufficiently small in order to resolve the constraint, and usually it also needs to be related to the discretization parameter. However, for small penalty parameters, numerical instabilities may occur.

In order to see the relation between the penalty method and the saddle point system (2.9) we introduce $\lambda^\epsilon = \frac{1}{\epsilon}F(u^\epsilon)$. The above system then reduces to
\[\langle \nabla u^\epsilon, \nabla v \rangle + \langle DF(u^\epsilon) \cdot v, \lambda^\epsilon \rangle = 0, \quad v \in H^1_0(\Omega), \]
\[(F(u^\epsilon), \mu) - \epsilon \langle \lambda^\epsilon, \mu \rangle = 0, \quad \mu \in L^2(\Omega). \]
If $\epsilon \to 0$, we see that the above system formally converges to the saddle point system (2.9), i.e. the saddle point approach can be regarded as the limit case of the penalty system. The advantage of the saddle point approach is that the standard mixed finite element theory, cf. [9], tells us how to choose the finite element spaces properly to avoid possible instabilities. Furthermore, there is no need to choose a penalty parameter.
3 Stability of the linearized problem

Throughout the rest of this paper we will assume that the pair \((u, \lambda)\) is a solution of the system (2.9), corresponding to a local minimum of \(\mathcal{E}\) over \(H^1_g(\Omega; \mathcal{M})\), and satisfying the regularity property

\[u \in H^1_g(\Omega) \cap W^{1,\infty}(\Omega), \quad \lambda \in L^\infty(\Omega). \]

(3.1)

In particular, \(u\) and \(\lambda\) are related by (2.10), and the second order condition (2.13) holds, i.e.,

\[a(u, \lambda; v, v) \geq 0 \]

for all \(v \in \mathbb{Z}_u\), where the bilinear form \(a(u, \lambda; \cdot, \cdot)\) is given by

\[a(u, \lambda; v, \bar{v}) = \langle \nabla v, \nabla \bar{v} \rangle + \langle D^2 F(u)v \cdot \bar{v}, \lambda \rangle, \]

and

\[\mathbb{Z}_u = \{ v \in H^1_0(\Omega) : \langle DF(u) \cdot v, \mu \rangle = 0, \quad \mu \in L^2(\Omega) \}. \]

For the analysis below it will be useful to consider linearization of the saddle point system (2.9). More precisely, we consider systems of the form:

Find \((v, \mu) \in H^1_0(\Omega) \times H^{-1}(\Omega)\) such that

\[
\begin{align*}
 a(u, \lambda; v, \bar{v}) &+ \langle DF(u) \cdot \bar{v}, \mu \rangle = \langle f, v \rangle, \quad \bar{v} \in H^1_0(\Omega), \\
 \langle DF(u) \cdot v, \bar{\mu} \rangle &\geq \langle \sigma, \bar{\mu} \rangle, \quad \bar{\mu} \in H^{-1}(\Omega),
\end{align*}
\]

(3.2)

where \((u, \lambda)\) is the exact solution of (2.9) satisfying (3.1). Here \(f \in H^{-1}(\Omega)\) and \(\sigma \in H^1_0(\Omega)\) represents data.

Our goal is to show that this linear system is well-posed, i.e., we will show that the map

\[(f, \sigma) \in H^{-1}(\Omega) \times H^1_0(\Omega) \mapsto (v, \mu) \in H^1_0(\Omega) \times H^{-1}(\Omega) \]

is well defined and bounded. This will be established by verifying the standard stability conditions for saddle points systems, cf. [8] or [9]. We will first establish the so-called inf-sup condition.

Theorem 3.1 Let \((u, \lambda)\) satisfy (3.1) and be related by (2.10). Then there is a positive constant \(\beta_1\), depending on \(u\), such that

\[\inf_{\mu \in H^{-1}(\Omega)} \sup_{v \in H^1_0(\Omega)} \frac{\langle DF(u) \cdot v, \mu \rangle}{\|v\|_1 \|\mu\|_{-1}} \geq \beta_1. \]

(3.3)

Proof. For any \(\mu \in H^{-1}(\Omega)\), there exists a \(\varphi \in H^1_0(\Omega)\) such that

\[\frac{\langle \mu, \varphi \rangle}{\|\varphi\|_1} = \|\mu\|_{-1}. \]

(3.4)

Define \(v = \varphi \frac{w}{\|w\|}\), where \(w = DF(u)\). Then, by Leibniz’s rule there exists a \(c > 0\), depending on \(u\), such that

\[\|\nabla v\|_0 \leq c \|\varphi\|_1. \]

Furthermore,

\[\langle DF(u) \cdot v, \mu \rangle = \langle \varphi, \mu \rangle = \|\varphi\|_1 \|\mu\|_{-1}. \]

Hence, the desired inequality holds with \(\beta_1 = 1/c\). □

Next we need to consider the properties of the bilinear form \(a(u, \lambda; \cdot, \cdot)\). It is straightforward to check that this bilinear form is bounded in the sense that

\[a(u, \lambda; v, \bar{v}) \leq C(u, \lambda) \|v\|_1 \|\bar{v}\|_1, \quad v, \bar{v} \in H^1_0(\Omega), \]

(3.5)
where the constant $C(u, \lambda)$ depends on the norms of u and λ indicated by (3.1).

The final key property for the stability analysis of the linear system (3.2) is the requirement that the bilinear form $a(u, \lambda; \cdot, \cdot)$ is coercive on the linearized constraint space Z_u. It should be noted that this bilinear form is in general not coercive on the entire space $H^1_0(\Omega)$. For example, in the simplest case, when $M = S^{d-1}$, we have

$$a(u, \lambda; v, v) = \int_{\Omega} (|\nabla v|^2 - |\nabla u|^2 |v|^2) \, dx.$$

On the other hand, the stability theory of [8] only requires that

$$a(u, \lambda; v, v) \geq \beta \|v\|^2_1, \quad v \in Z_u$$

(3.6)

for a suitable positive constant β, and this is exactly the strict minimum condition (2.14). Therefore, if u is a strict local minimum then the linear system (3.2) is well–posed.

Furthermore, if we restrict to two space dimensions, i.e. $d = 2$, then the coercivity condition (3.6) always holds. This is a consequence of the following theorem, which implies that in this case every critical point (u, λ) satisfying (3.1) is a strict local minimum, and the corresponding problem (3.2) is well–posed.

Theorem 3.2 Assume that $d = 2$. Let (u, λ) satisfy (3.1) and be related by (2.10). Then there is a positive constant β_2, depending on u, such that

$$a(u, \lambda; v, v) = \langle \nabla v, \nabla v \rangle + (D^2F(u)v \cdot v, \lambda) \geq \beta_2 \|v\|^2_1, \quad v \in Z_u.$$

(3.7)

Remark 3.1 The result of this theorem will not be true in general if the target manifold M is of higher dimension. However, in [23] a sufficient condition on u and M, referred to as the “cut locus condition,” is given which ensures that the operator associated the bilinear form $a(u, \lambda; \cdot, \cdot)$, restricted to the tangent space Z_u, is invertible, and hence the linear system (3.2) will be well–posed. \(\square\)

Before we give the proof of the theorem we will establish an auxiliary result.

Lemma 3.1 Assume the conditions given in Theorem 3.2 holds and define $w = (w_1, w_2)^\top = DF(u)$. Then,

$$\lambda D^2F(u) w \perp \cdot w \perp = - \frac{w_1^2 |\nabla w_2|^2 + w_2^2 |\nabla w_1|^2 - 2w_1 w_2 \nabla v \cdot \nabla w_2}{|w|^2}.$$

Proof. It follows from (2.10) that the multiplier λ can be expressed as $\lambda = -\nabla u : \nabla w / |w|^2$. Hence,

$$\lambda D^2F(u) w \perp \cdot w \perp = \frac{\nabla u : \nabla w}{|w|^2} (F_{11} w_1^2 + F_{22} w_1^2 - 2F_{12} w_1 w_2),$$

(3.8)

where $F_{ij} = \partial^2 F / \partial u_i \partial u_j$. Furthermore, since $\nabla F(u) \equiv 0$ we have from (2.3) that

$$w_1 \nabla u_1 + w_2 \nabla u_2 = 0,$$

while (2.4) implies that

$$\nabla w_1 = F_{11} \nabla u_1 + F_{12} \nabla u_2.$$

By combining these identities we obtain

$$F_{11} v_1^2 + F_{22} v_1^2 - 2F_{12} v_1 v_2 \nabla u_1 \cdot \nabla w_1$$

$$= w_1^2 (F_{11} \nabla u_1 + F_{12} \nabla u_2) \cdot \nabla w_1 - w_1 w_2 (F_{22} \nabla u_2 + F_{12} \nabla u_1) \cdot \nabla w_1$$

$$= w_1^2 |\nabla w_1|^2 - w_1 w_2 \nabla v_1 \cdot \nabla w_2.$$
A similar argument shows that
\[(F_{11}w_2^2 + F_{22}w_1^2 - 2F_{12}w_1w_2)\nabla w_2 \cdot \nabla w_2 = w_1^2|\nabla w_2|^2 - w_1w_2\nabla w_1 \cdot \nabla w_2,\]
and hence the desired identity follows from (3.8). □

Proof of Theorem 3.2. As above we let \(w = DF(u)\). For any \(v \in Z_u\), there exists a \(\alpha\) such that \(v = \alpha w^+\). In fact, we have
\[
\alpha = \frac{v \cdot w^+}{|w|^2}. \tag{3.9}
\]
From the estimates (2.5)-(2.6) and condition (3.1), we see that \(\alpha \in H^1_0(\Omega)\). The key identity we will use is the pointwise relation
\[
|\nabla v|^2 + \lambda D^2F(u)v \cdot v = |\nabla (\alpha|w|)|^2. \tag{3.10}
\]
In order to verify this identity note that
\[
\nabla (\alpha|w|) = |w|\nabla \alpha + \frac{\alpha}{|w|}(w_1\nabla w_1 + w_2\nabla w_2).
\]
Hence,
\[
|\nabla (\alpha|w|)|^2 = |w|^2|\nabla \alpha|^2 + \left(\frac{\alpha^2}{|w|^2}|w_1\nabla w_1 + w_2\nabla w_2|^2\right) + 2\alpha(w_1\nabla \alpha \cdot \nabla w_1 + w_2\nabla \alpha \cdot \nabla w_2).
\]
On the other hand,
\[
|\nabla v|^2 = |w|^2|\nabla \alpha|^2 + \alpha^2|\nabla w|^2 + 2\alpha(w_1\nabla \alpha \cdot \nabla w_1 + w_2\nabla \alpha \cdot \nabla w_2).
\]
Therefore,
\[
|\nabla v|^2 - |\nabla (\alpha|w|)|^2 = \alpha^2(|\nabla w|^2 - \frac{|w_1\nabla w_1 + w_2\nabla w_2|^2}{|w|^2})
= \frac{\alpha^2}{|w|^2}(w_1^2|\nabla w_2|^2 + w_2^2|\nabla w_1|^2 - 2w_1w_2\nabla w_1 \nabla w_2)
= -\lambda D^2F(u)v \cdot v,
\]
where the last identity follows from Lemma 3.1. Hence, we have verified (3.10).

Let \(\mu = \alpha|w|\). Then \(v = \frac{\mu}{|w|}w^+\) and hence
\[
\nabla v = \frac{1}{|w|}w^+ \cdot \nabla \mu + \mu \nabla \left(\frac{w^+}{|w|}\right).
\]
Therefore, since \(u\) satisfies (3.1), Poincaré’s inequality implies that
\[
||\nabla v||_0 \leq c(||\nabla \mu||_0 + ||\mu||_0) \leq c||\nabla (\alpha|w|)||_0,
\]
where the constant \(c\) depends on \(u\). Together with (3.10) this implies the desired inequality of the theorem. □

4 A stable discretization

The purpose of this section is to analyze a finite element discretization of the constrained minimization problem (1.1). Due to some technical difficulties caused by the use of inverse inequalities to treat some nonlinear terms, cf. (4.3) below, the analysis given here is restricted to the case
We will use πV piecewise linear functions and N operators onto the spaces inverse inequalities hold:

We will consider the following discretized minimization problem:

The first order condition defining the critical points of L leads to the following discrete counterpart of the nonlinear saddle point problem (2.9):

Find $(\hat{u}, \hat{\lambda}) \in V_{h,g} \times V_{h,0}$ such that

$$\langle \nabla \hat{u}, \nabla v \rangle + (\pi_h [DF(\hat{u})] \cdot v, \lambda_h) = 0, \quad v \in V_{h,0},$$

$$\langle \pi_h F(\hat{u}), \mu \rangle = 0, \quad \mu \in V_{h,0}. \quad (4.6)$$

However, we shall first analyse the discrete counterpart of the linearized system (3.2). For a given $(\hat{\mu}, \hat{\lambda}) \in V_{h,g} \times V_{h,0}$, let us define the bilinear form $a_h(\hat{\mu}, \hat{\lambda}; \cdot, \cdot)$ to be

$$a_h(\hat{u}, \hat{\lambda}; v, \hat{\mu}) = \langle \nabla v, \nabla \hat{u} \rangle + (\pi_h [D^2 F(\hat{u})] v \cdot \hat{\lambda}, \hat{\mu}).$$

Similarly as in (3.2) for the continuous problem, the linearized problem for (4.6) is to find $(v, \mu) \in V_{h,0} \times V_{h,0}$ such that

$$a_h(\hat{u}, \hat{\lambda}; v, \hat{\mu}) + (\pi_h [DF(\hat{u})] \cdot v, \mu) = \langle f, \hat{v} \rangle, \quad v \in V_{h,0}$$

$$\langle \pi_h [DF(\hat{u})] \cdot v, \hat{\mu} \rangle = \langle \sigma, \hat{\mu} \rangle, \quad \sigma, \hat{\mu} \in V_{h,0}. \quad (4.7)$$

For a given $\hat{u} \in V_{h,g}$, define

$$Z_{h,\hat{u}} = \{ v \in V_{h,0} : DF(\hat{u}) \cdot v = 0 \text{ on } N_h \}.$$
Lemma 4.1 Let $\Phi : \mathbb{R}^2 \times \mathbb{R}^2 \times \cdots \times \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be a smooth function. Then we have the following estimates for all $v_1, v_2, \ldots, v_k \in V_h$:

$$|\pi_h \Phi(v_1, v_2, \ldots, v_k)|_1 \leq C \sum_{i=1}^{k} \|D_v \Phi\|_{0, \infty} |v_i|_1;$$ \hspace{1cm} (4.8)

$$\| (\pi_h - I) \Phi(v_1, v_2, \ldots, v_k) \|_0 \leq Ch \sum_{i=1}^{k} \|D_v \Phi\|_{0, \infty} |v_i|_1.$$ \hspace{1cm} (4.9)

Above, the constant C is independent of h, Φ and v_i. The norm $\|D_v \Phi\|_{0, \infty}$ stands for $\|D_v \Phi(v_1, v_2, \ldots, v_k)\|_{0, \infty}$.

Proof. For clarity, we shall only give the proof for $k = 2$. The extension of the proof for general cases is straightforward.

For an element $e \in T_h$, let $p_i, i = 1, 2, 3$ be the vertices of e. Under the condition that the finite element mesh T_h is regular and quasi-uniform, then we have the following equivalent H^1 norms for $v \in V_h$:

$$|v|_{1,e} \equiv \sum_{i,j=1}^{3} |v(p_i) - v(p_j)|^2, \quad v \in V_h, e \in T_h. \hspace{1cm} (4.10)$$

In particular,

$$|\pi_h \Phi(v_1, v_2)|_{1,e}^2 \leq \sum_{i,j=1}^{3} |\Phi(v_1(p_i), v_2(p_i)) - \Phi(v_1(p_j), v_2(p_j))|^2.$$ \hspace{1cm}

Thus, we get (4.8) from the following estimate:

$$|\pi_h \Phi(v_1, v_2)|_{1,e}^2 \leq 2 \sum_{i,j=1}^{3} \left(|\Phi(v_1(p_i), v_2(p_i)) - \Phi(v_1(p_j), v_2(p_j))|^2 \right)$$

$$+ |\Phi(v_1(p_j), v_2(p_j)) - \Phi(v_1(p_j), v_2(p_j))|^2 \right)$$

$$\leq 2 \sum_{i,j=1}^{3} \left(\|D_v \Phi\|_{0, \infty, e} |v_1(p_i) - v_1(p_j)|^2 + \|D_v \Phi\|_{0, \infty, e} |v_2(p_i) - v_2(p_j)|^2 \right).$$

Next, we estimate (4.9). By the definition of the interpolation operator π_h, we have:

$$(\pi_h - I) \Phi(v_1, v_2)(p) = \sum_{i=1}^{3} |\Phi(v_1(p_i), v_2(p_i)) - \Phi(v_1(p), v_2(p))| \chi_i(p) \quad p \in e,$$

where $\{\chi_i\}_{i=1}^{3}$ are the barycentric coordinates on e. From this, we see that

$$\|(\pi_h - I) \Phi(v_1, v_2)\|_{0, \infty}^2 \leq C \sum_{i=1}^{3} \int_e \left(|\Phi(v_1(p_i), v_2(p_i)) - \Phi(v_1, v_2)|^2 \right)$$

$$\leq C \sum_{i,j=1}^{3} \int_e \left(\|D_v \Phi\|_{0, \infty, e} |v_1(p_i) - v_1(p_j)|^2 + \|D_v \Phi\|_{0, \infty, e} |v_2(p_i) - v_2(p_j)|^2 \right)$$

$$\leq Ch \sum_{i,j=1}^{3} \left(\|D_v \Phi\|_{0, \infty, e} |v_1|_{1,e}^2 + \|D_v \Phi\|_{0, \infty, e} |v_2|_{1,e}^2 \right).$$

Thus, estimate (4.9) is verified. \square
For the lemma above, it is essential that the functions \(v_i \) are finite element functions. If \(v_1 \in W^{1, \infty}(\Omega) \) and \(v_2 \in V_h \), then we obtain:

\[
\| (\pi_h - I) \Phi(v_1, v_2) \|_0 \leq C h \| D_v \Phi \|_{0, \infty} \| v_1 \|_{1, \infty} + \| D_{v_2} \Phi \|_{0, \infty} \| v_2 \|_1.
\]

(4.12)

The next results, which is essential for our analysis, is a discrete version of Theorem 3.2. As in the previous section \((u, \lambda)\) is a solution of (2.9) satisfying (3.1).

Theorem 4.1 There exists positive constants \(\gamma_0 \) and \(h_0 \) such that, for \((\hat{u}, \hat{\lambda}) \in V_{h, g} \times V_{h, 0} \) satisfying

\[
\| \hat{u} - \pi_h u \|_1 + \| \hat{\lambda} - P_h \lambda \|_{-1} \leq \gamma / \log^2(h^{-1})
\]

(4.13)

with \(h \leq h_0 \) and \(\gamma \leq \gamma_0 \), we have

\[
a_h(\hat{u}, \hat{\lambda}; v, v) \geq \beta_3 \| v \|_{H^1}^2, \quad v \in Z_{h, u}.
\]

(4.14)

Here the constants \(\gamma_0, h_0, \beta_3 \) depend on \(u \).

In order to prove the above theorem, we need to derive some auxiliary results. The main idea is to relate (4.14) to the continuous problem, and then use Theorem 3.2 and some approximate properties of the operators \(\pi_h \) and \(P_h \). As before, we shall use \(w = DF(u) \) with \(u \) being the true solution, see (3.1). Given a \((\hat{u}, \hat{\lambda})\) satisfying (4.13), we define \(\check{w} = DF(\hat{u}) \). For any \(v \in Z_{h, u} \), let us define

\[
\alpha(p_i) = \frac{v(p_i) \cdot \check{w}^\perp(p_i)}{|\check{w}(p_i)|^2}, \quad p_i \in N_h.
\]

(4.15)

From the above definition, it is clear that

\[
\alpha = \pi_h \left(\frac{v \cdot \check{w}^\perp}{|\check{w}|^2} \right) \in V_{h, 0}, \quad v = \pi_h(\alpha \check{w}^\perp).
\]

We have used the relation \(\check{w} \cdot v = 0 \) on \(N_h \) in getting the last equality. Corresponding to the true solution \(u \) and a given \(\hat{u} \in Z_{h, u} \), let \(\varepsilon_h \in H^1_0(\Omega) \) be the function given by \(\varepsilon_h = \alpha \check{w}^\perp - v \). We see clearly that

\[
\varepsilon_h + v \in Z_u.
\]

(4.16)

For a given \(\hat{u} \) satisfying (4.13) one can verify by assumption (i), cf. (2.1), and the inverse estimate (4.3) that

\[
|w(p) - \check{w}(p)| = |DF(\hat{u}(p)) - DF(\pi_h u(p))| \leq c_1 \gamma, \quad p \in N_h.
\]

Thus, by choosing \(\gamma \) small enough, one can guarantee that

\[
0 < c|w(p)| \leq |\check{w}(p)| \leq C|w(p)|, \quad p \in N_h.
\]

(4.17)

Lemma 4.2 Let \((\hat{u}, \hat{\lambda}) \in V_{h, g} \times V_{h, 0} \) satisfy (4.13). Then we have the estimate

\[
\left| \pi_h \left(\frac{\check{w}}{|\check{w}|^2} \right) \right|_1 \leq C |\varphi|_1, \quad \varphi \in V_{h, 0},
\]

where the constant \(C \) depends on \(u \).

Proof. Let \(\psi = \pi_h \left(\varphi \frac{\check{w}}{|\check{w}|^2} \right) \). Using (4.10), we see that

\[
|\psi|_{1,e}^2 \leq C \sum_{i,j} \left| \varphi(p_i) \frac{\check{w}(p_i)}{|\check{w}(p_i)|^2} - \varphi(p_j) \frac{\check{w}(p_j)}{|\check{w}(p_j)|^2} \right|^2 \leq C \sum_{i,j} \left[|\varphi(p_i) - \varphi(p_j)|^2 \left| \frac{\check{w}(p_i)}{|\check{w}(p_i)|^2} \right|^2 + |\varphi(p_j)|^2 \left| \frac{\check{w}(p_j)}{|\check{w}(p_j)|^2} \right|^2 \right].
\]

(4.18)
Thus, we get by the inverse estimate (4.3) and (4.13) that
\[
\sum_{i,j} \frac{|\varphi_h(p_i) - \varphi_h(p_j)|^2}{|\mathbf{w}(p_i)|^2} \leq C|\varphi|_{1,e}^2. \tag{4.19}
\]

On the other hand, we have by (4.17) and assumption (iii), cf. (2.2),
\[
\left| \frac{\mathbf{w}(p_i)}{|\mathbf{w}(p_i)|^2} - \frac{\mathbf{w}(p_j)}{|\mathbf{w}(p_j)|^2} \right|^2 \leq C\left| \mathbf{w}(p_i) - \mathbf{w}(p_j) \right|^2 \leq C\left| (\mathbf{u} - \pi_h \mathbf{u})(p_i) - (\mathbf{u} - \pi_h \mathbf{u})(p_j) \right|^2 \leq C\left| (\mathbf{u} - \pi_h \mathbf{u})(p_i) - (\mathbf{u} - \pi_h \mathbf{u})(p_j) \right|^2.
\]

Thus, we get by the inverse estimate (4.3) and (4.13) that
\[
\sum_{i,j} \left| \varphi(p_j) \right|^2 \left| \frac{\mathbf{w}(p_i)}{|\mathbf{w}(p_i)|^2} - \frac{\mathbf{w}(p_j)}{|\mathbf{w}(p_j)|^2} \right|^2 \leq C\left(\gamma^2 + \left\| \mathbf{u} \right\|_{1,e}^2 \right) \left| \varphi \right|_{1,e}^2. \tag{4.20}
\]

Substituting (4.19)–(4.20) into (4.18), we obtain the desired bound. \(\Box\)

Remark 4.1 If we apply Lemma 4.1 on the function \(\psi \) defined by \(\psi = \pi_h \left(\frac{\mathbf{w}}{|\mathbf{w}|^2} \right) \), we will get that \(|\psi|_1 \leq C \log(h^{-1})|\varphi|_1 \). The results we are getting here is better. We have removed the factor \(\log(h^{-1}) \). \(\Box\)

Lemma 4.3 Let \((\mathbf{u}, \lambda) \in \mathbf{V}_{h, \mathbf{g}} \times \mathbf{V}_{h,0} \) satisfy (4.13). Then, there exist positive constants \(h_0 \) and \(\gamma_0 \), depending on \(\mathbf{u} \), such that
\[
a(\mathbf{u}, \lambda; \mathbf{v}, \mathbf{v}) \geq \frac{\beta_2}{2} \left| \mathbf{v} \right|_{1,\mathbf{a}}^2, \quad \mathbf{v} \in \mathbf{Z}_{h, \mathbf{a}}
\]
for \(0 < h \leq h_0 \) and \(0 < \gamma \leq \gamma_0 \).

Proof. For any \(\mathbf{v} \in \mathbf{Z}_{h, \mathbf{a}} \), let \(\alpha \) and \(\varepsilon_h \) be as defined in (4.15) and (4.16). From \(\pi_h(\alpha \pi_h \mathbf{w}^{-1}) = \pi_h(\alpha \mathbf{w}^{-1}) \), we have
\[
\varepsilon_h = (I - \pi_h)(\alpha \mathbf{w}^{-1}) + \pi_h[\alpha \pi_h(\mathbf{w}^{-1} - \hat{\mathbf{w}}^{-1})]. \tag{4.21}
\]
\(\Box\)

From Lemma 4.2, we see that
\[
\left| (I - \pi_h)(\alpha \mathbf{w}^{-1}) \right|^2 \leq C h^2 \left(\left\| \mathbf{w}^{-1} \right\|_{0,\infty} \left| \alpha \right|^2 + \left\| \alpha \right\|_{0,\infty} \left| \mathbf{w}^{-1} \right|_{1,\infty} \right) \leq C h^2 \log^2(h^{-1}) \left| \mathbf{u} \right|_{1,\infty}^2 \left| \alpha \right|_{1,\mathbf{a}}^2. \tag{4.22}
\]

Note that there exists a \(\xi \) such that
\[
\pi_h[\alpha \pi_h(\mathbf{w}^{-1} - \hat{\mathbf{w}}^{-1})] = \pi_h \left[\alpha \pi_h \left(\pi_h \mathbf{D}^2 F(\xi)(\pi_h \mathbf{u} - \mathbf{u}) \right) \right]^{-1}
\]
A repeated application of (4.8) and (4.3) gives
\[
\left| \pi_h[\alpha \pi_h(\mathbf{w}^{-1} - \hat{\mathbf{w}}^{-1})] \right|_{1,\mathbf{a}}^2 \leq C \log^4(h^{-1}) \left| \alpha \right|_{1,\mathbf{a}}^2 \left| \pi_h \mathbf{u} - \mathbf{u} \right|_{1,\mathbf{a}}^2. \tag{4.23}
\]
\(\Box\)

Combining (4.22)-(4.24) with (4.13), we see that
\[
\left| \varepsilon_h \right|_{1,\mathbf{a}}^2 \leq C(h^2 \log^2(h^{-1}) \left| \mathbf{u} \right|_{1,\infty}^2 + \gamma^2) \left| \alpha \right|_{1,\mathbf{a}}^2 \leq C(h^2 \log^2(h^{-1}) \left| \mathbf{u} \right|_{1,\infty}^2 + \gamma^2) \left| \mathbf{v} \right|_{1,\mathbf{a}}^2. \tag{4.25}
\]
The following estimate follows from (3.5) and (3.7)

\[
a(u, \lambda; v, v) = a(u, \lambda; v + \varepsilon_h, v + \varepsilon_h) - a(u, \lambda; v, v) + a(u, \lambda; \varepsilon_h, \varepsilon_h) \geq C\beta_2|v + \varepsilon_h|^2 - |\varepsilon_h||\varepsilon_h|_1 - |\varepsilon_h|_1^2. \tag{4.26}
\]

Choosing \(h\) and \(\gamma\) small enough, we obtain the desired result from (4.25) and (4.26). □

Proof of Theorem 4.1. In the proof, we always assume that \(h\) and \(\gamma\) are small. Note that

\[
a_h(\hat{u}, \hat{\lambda}; v, v) = a_h(\hat{u}, \hat{\lambda}; v, v) = (\pi_h[D^2 F(\hat{u}) v \cdot v], \hat{\lambda}) - (D^2 F(\hat{u}) v \cdot v, \lambda)
\]

\[
= (\pi_h[D^2 F(\hat{u}) v \cdot v], \hat{\lambda} - \lambda) + ((\pi_h - I)[D^2 F(\hat{u}) v \cdot v], \lambda) + ((D^2 F(\hat{u}) - D^2 F(u)) v \cdot v, \lambda) = I_1 + I_2 + I_3.
\tag{4.27}
\]

The meaning of \(I_1\) is self-explainable. Since \(\lambda \in L^2(\Omega)\), we obtain from (4.13) that

\[
\|\hat{\lambda}_h - \lambda\|_{-1} \leq \|\hat{\lambda}_h - P_h\lambda\|_{-1} + \|P_h\lambda - \lambda\|_{-1} \leq \gamma/\log^2(h^{-1}) + C\|\lambda\|_0.
\]

Using Lemma 4.1, we see that

\[
|\pi_h[D^2 F(\hat{u}) v \cdot v]| \leq C\|D^2 F(\hat{u}) \cdot v|_{0, \infty}|v|_1 + |v||_{0, \infty}\|D^3 F(\hat{u})\|_{0, \infty} |\hat{u}|_1 \leq C \log^2(h^{-1}) |v|^2.
\]

For a small \(h\), a combination of the above two inequalities leads to

\[
|I_1| = |(\pi_h[D^2 F(\hat{u}) v \cdot v], \hat{\lambda} - \lambda)| \leq C \log^2(h^{-1}) |v|^2 (\gamma/\log^2(h^{-1}) + Ch\|\lambda\|_0) \leq C\gamma |v|^2.
\]

Similarly, we use Lemma 4.1 to prove that

\[
|I_2| = |((\pi_h - I)[D^2 F(\hat{u}) v \cdot v], \lambda)| \leq \|((\pi_h - I)[D^2 F(\hat{u}) v \cdot v]|_0 \| |\lambda|_0 \leq Ch \log^2(h^{-1}) |v|^2,
\]

and

\[
|I_3| = |((D^2 F(\hat{u}) - D^2 F(u)) v \cdot v, \lambda)| \leq \|((D^2 F(\hat{u}) - D^2 F(u)) v \cdot v|_0 \| |\lambda|_0 \leq C\gamma |v|^2.
\]

Choosing \(h\) and \(\gamma\) small enough, we obtain the desired result from Lemma 4.3 and the estimates above of the three terms appearing in (4.27). □

Theorem 4.2 Assume that \((\hat{u}, \hat{\lambda}) \in V_{h,0} \times V_{h,0}\) satisfies the condition (4.13). There exists a constant \(\beta_4 > 0\), which depends on \(u\), such that

\[
\inf_{\mu \in V_{h,0}} \sup_{v \in V_{h,0}} \frac{\langle \pi_h[D^2 F(\hat{u}) v \cdot v], \mu \rangle}{\|\mu\|_{-1}|v|_1} \geq \beta_4. \tag{4.28}
\]

Proof. For the \(\varphi\) given in (3.4), let \(\varphi_h = P_h \varphi\). Then, we see that

\[
\frac{\langle \mu_h, \varphi_h \rangle}{\|\varphi_h\|_1} \geq \beta_1 \|\mu_h\|_{-1}.
\]

Define \(v_h = \pi_h \left[\varphi_h \begin{pmatrix} D^2 F(\hat{u}) \cdot v_h \end{pmatrix} \right]\). Then,

\[
\langle \pi_h[D^2 F(\hat{u}) \cdot v_h], \mu_h \rangle = \langle \mu_h, \varphi_h \rangle.
\]

From Lemma 4.2, one gets that \(|v_h|_1 \leq C|\varphi_h|_1\). By collecting these estimates the theorem is established. □

Together with the Theorems 4.1 and 4.2, the saddle point theory given in [8] or [9] assures existence, stability and uniqueness of the solution of the linearized saddle point system (4.7), as long as \((\hat{u}, \hat{\lambda})\) satisfies (4.13). In the next section, we shall use these properties to prove some results for the corresponding nonlinear systems.

Remark 4.2 If we replace \(V_{h,0}\) by \(V_h\) in (4.28), the inf-sup condition (4.28) may not be satisfied. This is why we use the \(V_{h,0}\), instead of \(V_h\), as finite element space for the Lagrange multiplier. □
5 The discrete nonlinear problem

The main purpose of this section is to establish existence and uniqueness of solutions of the
discretized nonlinear saddle point problem (4.6) in a neighborhood of a continuous solution \((u, \lambda)\)
of the system (2.9). As above, we assume that \((u, \lambda)\) corresponds to a local minimum of the
functional \(E\) over \(H^1_h(\Omega; M)\), and that the regularity assumption (3.1) holds. Furthermore, we
will show that the discrete solutions converge to the continuous solution with a linear rate with
respect to the mesh parameter \(h\). However, we start by summarizing some properties for the
linearized saddle point system.

For notational simplicity, we shall use \(X, X_h\) and \(X_{h, G}\) defined by \(X = H^1_h(\Omega) \times \dot{H}^{-1}(\Omega)\),
\(X_h = V_{h,0} \times V_{h,0}\), and \(X_{h,G} = V_{h,G} \times V_{h,0}\). Let \(\| \cdot \|_X\) denote the norm on the product space
\(H^1_h(\Omega) \times \dot{H}^{-1}(\Omega)\), and let \(\| \cdot \|_X^\ast\) denote the norm on the dual space \(X^* = \dot{H}^{-1}(\Omega) \times H^1_h(\Omega)\). The
norm \(\| \cdot \|_{L(X,X^\ast)}\) will be used to denote the norm of a bounded linear operator from \(X\) to \(X^\ast\).
The spaces \(X_h\) and \(X_{h,G}\) are equipped with the norm of \(X\), while \(X^\ast\) is equal to \(X_h\) as a set, but
equipped with the dual norm of \(X\) with respect to the \(L^2\) inner products. Similarly, the norm
\(\| \cdot \|_{L(X_h,X^\ast)}\) is the associated operator norm.

Let \(x = (u, \lambda)\) be a solution of (2.9). Corresponding to \(x\), let \(G(x) \in X^\ast\) to be given by
\[
\langle G(x), y \rangle = \langle \nabla u, \nabla v \rangle + \langle D F(u) \cdot v, \mu \rangle + \langle F(u), y \rangle, \quad y = (v, \mu) \in X,
\]
As usual, \(\langle \cdot, \cdot \rangle\) is the duality pairing which extends the standard \(L^2\) inner product. Associated
with \(G\), we define a mapping \(G'(x) : X \to X^\ast\) by
\[
G'(x) : y \mapsto a(u, \lambda; v, \mu) + \langle DF(u) \cdot v, \mu \rangle + \langle F(u), y \rangle,
\]
for all \(y = (v, \mu), y = (v, \mu) \in X = H^1_h(\Omega) \times \dot{H}^{-1}(\Omega)\). The operator \(G'(x)\) is formally the Fréchet
differential of \(G\) at \(x\).

Recall from the saddle point theory given in [8, 9] that Theorems 3.2-3.1 implies that the
system (3.2) has a unique solution \((v, \mu)\) which depends continuously on \((f, \sigma) \in X^\ast\). Thus we
have the following result.

Theorem 5.1 If \((u, \lambda)\) satisfies the regularity assumption (3.1) then the map \(G'(x)\) defined by
(5.1) is an isomorphism from \(X = H^1_h(\Omega) \times \dot{H}^{-1}(\Omega)\) to \(X^\ast = \dot{H}^{-1}(\Omega) \times H^1_h(\Omega)\).

For the discretized saddle point problem, we define \(G_h : X_{h,G} \to X_h^\ast\) to be the map defined by
(4.6). For any \(\hat{x} = (\hat{u}, \hat{\lambda}) \in X_{h,G}\), \(G_h(\hat{x})\) is the operator that satisfies
\[
\langle G_h(\hat{x}), \hat{y} \rangle = \langle \nabla \hat{u}, \nabla \hat{v} \rangle + \langle \pi_h[DF(\hat{u}) \cdot \hat{v}], \lambda \rangle + \langle \pi_h F(\hat{u}), \hat{\mu} \rangle, \quad \hat{y} = (\hat{v}, \hat{\mu}) \in X_h.
\]
Thus, problem (4.6) is in fact to find \(x_h = (u_h, \lambda_h) \in X_{h,G}\) such that
\[
\langle G_h(x_h), y \rangle = 0, \quad y = (v, \mu) \in X_h.
\]
Let \(G'_h(\hat{x})\) be the Fréchet derivative of \(G_h\) at \(\hat{x} = (\hat{u}, \hat{\lambda}) \in X_{h,G}\). Then, \(G'_h(\hat{x}) : X_h \to X_h^\ast\) is the
linear operator given by
\[
G'_h(\hat{x}) : y \mapsto a_h(\hat{u}, \hat{\lambda}; v, \mu) + \langle \pi_h[DF(\hat{u}) \cdot \hat{v}], \mu \rangle + \langle \pi_h F(\hat{u}), \hat{\mu} \rangle, \quad y = (v, \mu) \in X_h, \quad \hat{y} = (\hat{v}, \hat{\mu}) \in X_h.
\]
By Theorem 4.1-4.2, the following result is a consequence of the theory given in [8, 9]:

Theorem 5.2 Assume that \(\hat{x} = (\hat{u}, \hat{\lambda}) \in X_{h,G}\) satisfies the condition (4.13). For sufficiently small
\(h\) and \(\gamma\), the map \(G'_h(\hat{x})\) is an isomorphism from \(X_h\) to \(X_h^\ast\). Moreover,
\[
\| G'_h(\hat{x})^{-1} \|_{L(X_h^\ast, X_h)} \leq M,
\]
where \(M\) is a constant independent of \(h\) and \(\hat{x} = (\hat{u}, \hat{\lambda})\).
Define $x_\ast = (\pi_h \mathbf{u}, P_h \lambda)$, and set $y_\ast = G_h(x_\ast)$. We can use similar techniques as for Theorems 4.1 to prove the following lemma.

Lemma 5.1 For any $\hat{x} = (\hat{\mathbf{u}}, \hat{\lambda}) \in X_h$ satisfying (4.13), we have

$$
\|G_h'(\hat{x}) - G_h'(x_\ast)\|_{L(X_h, X_\ast)} \leq C \log^2(h^{-1})\|\hat{x} - x_\ast\|_{X}.
$$

Proof. By the definition of G_h', we have for any $y = (\mathbf{v}, \mu) \in X_h$ and $\hat{y} = (\hat{\mathbf{v}}, \hat{\mu}) \in X_h$

$$
\langle G_h'(\hat{x}) - G_h'(x_\ast), y \rangle = \langle \pi_h [D^2F(\hat{\mathbf{u}})\mathbf{v} \cdot \hat{\mathbf{v}}], \hat{\lambda} - P_h \lambda \rangle \\
+ \langle \pi_h [D^2F(\hat{\mathbf{u}}) - D^2F(\pi_h \mathbf{u})]\mathbf{v} \cdot \hat{\mathbf{v}}], P_h \lambda \rangle \\
+ \langle \pi_h [(D^2F(\hat{\mathbf{u}}) - D^2F(\pi_h \mathbf{u})) \cdot \hat{\mathbf{v}}], \mu \rangle \\
+ \langle \pi_h [(DF(\hat{\mathbf{u}}) - DF(\pi_h \mathbf{u})) \cdot \hat{\mathbf{v}}], \hat{\mu} \rangle.
$$

(5.5)

> > From Lemma 4.1, (4.13) and (4.3), we see that

$$
\langle \pi_h [D^2F(\hat{\mathbf{u}})\mathbf{v} \cdot \hat{\mathbf{v}}], \hat{\lambda} - P_h \lambda \rangle \leq C \|\pi_h [D^2F(\hat{\mathbf{u}})\mathbf{v} \cdot \hat{\mathbf{v}}]\|_1 \|\hat{\lambda} - P_h \lambda\|_{-1} \\
\leq C \log^2(h^{-1})\|\hat{\mathbf{u}}\|_1\|\hat{\mathbf{v}}\|_1 \|\hat{\lambda} - P_h \lambda\|_{-1} \leq C\gamma\|\hat{\mathbf{v}}\|_1\|\hat{\mathbf{v}}\|_1.
$$

Similarly, we have

$$
\langle \pi_h [(D^2F(\hat{\mathbf{u}}) - D^2F(\pi_h \mathbf{u}))\mathbf{v} \cdot \hat{\mathbf{v}}], P_h \lambda \rangle \\
\leq C\|\pi_h [(D^2F(\hat{\mathbf{u}}) - D^2F(\pi_h \mathbf{u}))\mathbf{v} \cdot \hat{\mathbf{v}}]\|_1 \|P_h \lambda\|_{-1} \\
\leq C\|\pi_h [(D^2F(\hat{\mathbf{u}}) - D^2F(\pi_h \mathbf{u}))\mathbf{v} \cdot \hat{\mathbf{v}}]\|_1 \|\hat{\mathbf{v}}\|_1 \|\hat{\lambda} - P_h \lambda\|_{-1} \\
\leq C\log^2(h^{-1})\|\mathbf{v}\|_1\|\hat{\mathbf{v}}\|_1.
$$

Estimating the last two terms in (5.5) similarly using Lemma 4.1, (4.3) and (4.13), we obtain the result. The constants C in the estimates depend on \mathbf{u} and λ.

At this point, we need to recall the implicit function theorem as for example given in Lemma 1 of [10]. From the implicit function theorem, we can conclude that if there is a $\delta > 0$ such that

$$
\hat{x} \in X_h, \|\hat{x} - x_\ast\|_{X} \leq \delta \text{ implies } \|G_h'(\hat{x}) - G_h'(x_\ast)\|_{L(X_h, X_\ast)} \leq \frac{1}{2M},
$$

(5.6)

then the equation

$$
G_h(\hat{x}) = \hat{y}
$$

(5.7)

has a unique solution for all \hat{y} satisfying

$$
\|\hat{y} - y_\ast\|_{X_\ast} \leq \frac{\delta}{2M}.
$$

Here $M > 0$ is the positive constant appearing in Theorem 5.2. From Lemma 5.1, we see that the implication (5.6) is fulfilled if we choose $\delta = 1/(2MC\log^2(h^{-1}))$. Hence, we have that the equation (5.7) has a unique solution \hat{x} satisfying

$$
\|\hat{x} - x_\ast\|_{X} \leq \frac{1}{2M\log^2(h^{-1})}
$$

for all \hat{y} such that

$$
\|\hat{y} - y_\ast\|_{X_\ast} \leq \frac{1}{4M^2C\log^2(h^{-1})}.
$$

Furthermore, we can conclude from Lemma 1 of [10] that

$$
\|\hat{x} - x_\ast\|_{X} \leq 2M\|\hat{y} - y_\ast\|_{X_\ast}.
$$

(5.8)
Note that our desired equation is $G_h(x) = 0$. Thus, if we can verify that
\[
\|G_h(x_*)\| \leq \frac{1}{4M^2C \log^2(h^{-1})},
\]
we can conclude existence and uniqueness of solution of this equation. If we assume more smoothness on u, this is a consequence of the following lemma.

Lemma 5.2 Assume that $u \in H^2(\Omega) \cap W^{1,\infty}(\Omega)$. Then we have
\[
\|G_h(x_*)\| \leq Ch \text{ with } x_* = (\pi_h u, P_h\lambda).
\]

Proof. It suffices to prove that
\[
\|G_h(x_*)\| \leq Ch \|x\|_X, \quad x = (v, \mu) \in X_h.
\]
We have by (2.9) and the definition of G_h
\[
\langle G_h(x_*), \hat{x} \rangle = \langle \nabla (\pi_h u - u), \nabla v \rangle + \langle \pi_h F(\pi_h u), \mu \rangle - \langle F(u), \mu \rangle
\]
\[
+ \langle \pi_h [DF(\pi_h u) \cdot v], P_h \lambda \rangle - \langle DF(u) \cdot v, \mu \rangle.
\]
It is clear that
\[
|\langle \nabla (\pi_h u - u), \nabla v \rangle| \leq |\pi_h u - u|_1 \cdot |v|_1 \leq Ch \|u\|_2 \cdot |v|_1.
\]
Note that since $\pi_h F(\pi_h u) = \pi_h F(u)$ we obtain from (4.1) that
\[
|\langle \pi_h F(\pi_h u), \mu \rangle - \langle F(u), \mu \rangle| = |\langle \pi_h - I \rangle F(u), \mu \rangle|
\]
\[
\leq \|\langle \pi_h - I \rangle F(u)\|_1 \cdot \|\mu\|_{-1} \leq Ch \|F(u)\|_2 \cdot \|\mu\|_{-1}.
\]
Furthermore, by the assumptions on F and the estimates (4.1), (4.2) and (4.12) we get
\[
|\langle \pi_h [DF(\pi_h u) \cdot v], P_h \lambda \rangle - \langle DF(u) \cdot v, \lambda \rangle|
\]
\[
\leq \|\langle \pi_h - I \rangle [DF(u) \cdot v], P_h \lambda \rangle| + \|DF(u) \cdot v, P_h \lambda - \lambda \|_1
\]
\[
\leq \|\langle \pi_h - I \rangle [DF(u) \cdot v]\|_0 \cdot \|P_h \lambda\|_0 + \|DF(u) \cdot v\|_1 \cdot \|P_h \lambda - \lambda\|_{-1}
\]
\[
\leq Ch \|DF(u) \cdot v\|_0 \cdot \|\lambda\|_0 \leq Ch \|DF(u)\|_{1,\infty} \cdot \|\lambda\|_0 \cdot \|v\|_1.
\]
Substituting (5.12)-(5.14) into (5.11), gives (5.10). □

From this lemma, we see that y_n satisfies (5.9) for small h. Thus, there exists a unique solution for equation (4.6). Moreover, the solution satisfies the estimate (5.8). We state this conclusion more clearly in the following theorem.

Theorem 5.3 Assume that $u \in H^2(\Omega) \cap W^{1,\infty}(\Omega)$. Then, for sufficiently small h, there exists a unique saddle point $(u_h, \lambda_h) \in X_h$ for (4.6) in a small neighborhood of $(\pi_h u, P_h\lambda)$. Moreover, the following error estimate holds:
\[
\|u_h - u\|_1 + \|\lambda_h - \lambda\|_{-1} \leq Ch.
\]

6 Preconditioned iterative methods

We shall combine a preconditioning technique with the classical Newton’s method, cf. for example [27, chapter 7], to solve the nonlinear saddle point problem (4.6), or equivalently (5.2). Let $x_0 = (u_h^0, \lambda_h^0) \in X_h$ be a suitable initial guess. The Newton iteration is given by
\[
x_{n+1} = x_n - G'_h(x_n)^{-1}G_h(x_n), \quad n = 0, 1, \cdots.
\]
Assume that the initial guess \((\mathbf{u}_0^n, \lambda_0^n)\) satisfies (4.13) with a small \(\gamma\). Using Theorem 5.2, combined with Lemma 5.1, and the standard properties of Newton’s method, it follows that all \(x_n = (\mathbf{u}_n^n, \lambda_n^n)\) satisfy (4.13) with the same \(\gamma\), and all the operators \(G'_n(x_n)\) are invertible. Moreover, the sequence \(\{u_n^n, \lambda_n^n\}\) converges with almost order 2, i.e.

\[
\|\mathbf{u}_n^{n+1} - \mathbf{u}_n\|_1 + \|\lambda_n^{n+1} - \lambda_n\|_{-1} \leq C \log^2(h^{-1}) (\|\mathbf{u}_n^n - \mathbf{u}_n\|_1 + \|\lambda_n^n - \lambda_n\|_{-1})^2.
\]

For the iteration (6.1), we need to invert \(G'_n(x_n)\), i.e., we need to solve the system

\[
G'_n(x_n)(x_{n+1} - x_n) = -G(x_n).
\] (6.2)

From Theorem 5.2, we obtain that \(G'_n(x_n)\) is an isomorphism from \(X_h\) to \(X_h^*\). Moreover, \(\|G'_n(x_n)\|_{L(X_h, X_h^*)}\) is bounded and the bound is independent of \(h\) and \(n\) if the initial value is chosen close enough to the true solution. Hence, by following the approach to preconditioning taken for example in [2, 3], we see that any isomorphism from \(X_h^*\) to \(X_h\) is an optimal preconditioner for system (6.2). Due to this, we can construct some efficient preconditioners for (6.2). Let \(\Delta_h\) and \(\Delta_h\) be the finite element discretizations for the vector and scalar Laplacian operators \(\Delta\) and \(\Delta\) on \(V_{h,0}\) and \(V_{h,0}\) respectively. To be precise, \(\Delta_h : V_{h,0} \mapsto V_{h,0}\) is the mapping defined by

\[
(\Delta_h \mathbf{u}_h, \mathbf{v}) = -\langle \nabla \mathbf{u}_h, \nabla \mathbf{v} \rangle, \quad \mathbf{v} \in V_{h,0}.
\]

Then the operator

\[
T_h = \begin{pmatrix}
-\Delta_h^{-1} & 0 \\
0 & -\Delta_h
\end{pmatrix},
\]

is an isomorphism from \(X_h^*\) to \(X_h\) with associated operator norm bounded independently of \(h\). Thus, \(T_h \circ G'_n(x_n)\) maps \(X_h\) to \(X_h\), with condition numbers bounded independently of \(h\) and \(n\). However, in order to make the preconditioner efficient it is necessary to to simplify the evaluation of the operator \(T_h\). We therefore replace \(\Delta_h^{-1}\) by another spectral equivalent operator, i.e. by a preconditioner for the discrete Laplacian using domain decomposition or multigrid methods [31, 33]. The linear system (6.2) is then solved by the preconditioned minimum residual method, with the modified \(T_h\) operator, \(\tilde{T}_h\), as the preconditioner, cf. [28] or [18, Chapter 6]. Since the condition number of the operator \(\tilde{T}_h \circ G'_n(x_n)\) is bounded independent of \(h\) and \(n\), so is the convergence of the iteration.

7 Numerical experiments

Numerical experiments for the harmonic map problem with \(\mathcal{M} = S^1\), i.e. the unit circle, will be done. The domain \(\Omega\) is always a square. The sequence of grids is made as a refinements of a 2 \times 2 partition of \(\Omega\), which is further divided into triangles by the diagonal with a negative slope. When refining the mesh, each triangle is divided into four equal smaller triangles. The finite element problem (4.6) is to find \((\mathbf{u}_h, \lambda_h)\) in \(V_{h,g} \times V_{h,0}\) such that

\[
\langle \nabla \mathbf{u}_h, \nabla \mathbf{v}_h \rangle + \langle \pi_h(\mathbf{u}_h \cdot \mathbf{v}_h), \lambda_h \rangle = 0, \quad \mathbf{v}_h \in V_{h,0},
\]

\[
\langle \pi_h(|\mathbf{u}_h|^2 - 1), \mu_h \rangle = 0, \quad \mu_h \in V_{h,0}.
\] (7.1)

For the finite element method, we need to integrate over each element \(e \in T_h\). If we use the three vertices of \(e\) as the integration points, then the mass matrix reduces to a diagonal matrix. Correspondingly, the system (7.1) is reduced to:

\[
-L_h \mathbf{u}_h + \lambda_h \mathbf{u}_h = 0 \quad \text{on } \mathcal{N}_h,
\]

\[
|\mathbf{u}_h|^2 - 1 = 0 \quad \text{on } \mathcal{N}_h.
\] (7.2)
Above L_h is the standard five-point finite difference discrete Laplacian approximation. For the
Newton iteration (6.1), we need to solve the system:

$$
\begin{pmatrix}
-L_h + \Lambda_n & \text{diag}(u_n) \\
\text{diag}(u_n)^t & 0
\end{pmatrix}
\begin{pmatrix}
u_{n+1} - u_n \\
\lambda_{n+1} - \lambda_n
\end{pmatrix}
= \begin{pmatrix}
L_h u_n - \lambda_n u_n \\
(1 - |u_n|^2)/2
\end{pmatrix}
$$

(7.3)
on N_h. Here and below we use the simplified notation (u_n, λ_n) instead of (u_n^h, λ_n^h). Furthermore, Λ_n and $\text{diag}(u_n)$ are the matrix representations of the operators $v \mapsto \pi_h(\lambda_n v)$ and $\mu \mapsto \pi_h(\mu u_n)$ respectively. From Theorem 5.2, it is interesting to observe that the block-diagonal matrix $T_h = \text{diag}(L_h^{-1}, L_h)$ is a uniform preconditioner for the matrix of system (7.3).

For the Newton iteration (7.3) with the preconditioner

$$
T_h = \text{diag}(L_h^{-1}, L_h),
$$

the matrix L_h^{-1} in T_h is replaced by a symmetric and spectrally equivalent multigrid operator, while the matrix L_h is simply a discrete Laplacian with homogeneous Dirichlet boundary conditions. By doing so, no matrix needs to be inverted during the iterations. The cost per iteration is $O(N)$, where N is the degree of freedom for the discretization.

In the following, we will investigate if it possible to replace Newton’s method with a modified
method where the linear system (6.2) is only solved to a given accuracy. More precisely, we shall
compare the behavior of the exact and an inexact Newton solver:

- The exact Newton solver: this refers to the scheme where we solve the linear system (6.2)
 with a preconditioned Minimum Residual method which is terminated when the residual is reduced
 by a factor of 10^{10}.
- The inexact Newton solver: this refers to the scheme where the Newton iterations (6.2) are
 terminated when the residual is reduced by a factor of 10^2.

In the tables, we show the numerical errors e_n versus the iteration number n, where e_n is defined as

$$
e_n = \|u_h^n - u_h\|_{H^1} + \|\lambda_h^n - \lambda_h\|_{H^{-1}},
$$

(7.4)
where $\|x_h\|_{H^1}^2 = (\pi_h x_h)^t(I - L_h)\pi_h x_h$ and $\|y_h\|_{H^{-1}}^2 = (\pi_h y_h)^t(I - L_h)^{-1}\pi_h y_h$.

7.1 A smooth harmonic map

In the first example we consider a smooth harmonic map

$$
u = (\sin(\theta(x, y)), \cos(\theta(x, y)))
$$

with $\theta = k \log(\sqrt{(x-a)^2 + (y-b)^2})$ and $\lambda = -|\nabla u|^2$ on $\Omega = [0, 1] \times [0, 1]$. We have used

$a = b = -0.1$ and $k = 3$. The initial guess was $u_0 = 2(\pi_h u + \epsilon)$, where ϵ is a random noise vector field with values between -0.3 and 0.3, and $\lambda_0 = 0$.

When using the inexact Newton solver the stop criteria is obtained in less than 20 iterations,
with a few exceptions in the first nonlinear iterations where the maximum was 80. For the exact
Newton solver the stop criteria is obtained in less than 50 iterations with a few exceptions in the
first nonlinear iterations where as much as 300 iterations were required on the finest mesh. Hence,
except for the first iterations the required number of iterations seems to be bounded independent
of the mesh size. This is due to the property of the preconditioner.

In Table 1 we estimate the L^2 and H^1 error of $u - u_h$ in terms of h. We have linear convergence
in H^1 and quadratic convergence in L^2, respectively. This is in accordance with the error estimate
of Theorem 5.3. Also $\lambda - \lambda_h$ seems to converge more than linearly in L^2.

A comparison of the exact Newton and inexact Newton solvers is shown in Table 2 for mesh
size $h = 2^{-4}$. The convergence for other mesh sizes is similar. These tests indicate that the inexact
Newton solver is nearly as efficient as the exact Newton solver. In Table 3, the convergence of
the inexact Newton solver with different mesh sizes are shown. It shows the mesh independence
property of the preconditioned iterative solver.
7.2 A harmonic map with singularity

Here, we test a non-smooth problem with a solution that has a singularity, i.e. \(\mathbf{u} = (x/r, y/r) \) with \(r = k \sqrt{x^2 + y^2} \) and \(\lambda = -|\nabla \mathbf{u}|^2 \) on \(\Omega = [-0.5, 0.5] \times [0.5, 0.5] \). For this example, we have \(\|\mathbf{u}\|_1 = \infty \). The Dirichlet boundary conditions are obtained from the analytical solution, while the initial value for \(\lambda \) is \(\lambda_0 = 0 \) everywhere except in \((0,0)\) where \(\lambda = 1 \). The initial value for \(\mathbf{u} \) is shown in Figure 1.a. The numerical errors are shown in Table 4. The errors indicate that both \(\mathbf{u}_h \) and \(\lambda_h \) converge linearly to the solution when measured in \(L_2 \). The computed solution is shown in Figure 1.b.

For this example, the Newton solvers are unstable and do not always converge. Thus, we have used the following iteration to produce the initial value for the Newton solvers:

\[
\begin{pmatrix}
-L_h & \text{diag}(\mathbf{u}_n) \\
\text{diag}(\mathbf{u}_n)^t & 0
\end{pmatrix}
\begin{pmatrix}
\mathbf{u}_{n+1} - \mathbf{u}_n \\
\lambda_{n+1} - \lambda_n
\end{pmatrix}
= \begin{pmatrix}
L_h \mathbf{u}_n - \lambda_n \mathbf{u}_n \\
(1 - |\mathbf{u}_n|^2)/2
\end{pmatrix},
\]

(7.5)

Compared with (7.3), the matrix \(\Lambda_n \) has been dropped. This iterative scheme is globally convergent and is normally slower than the Newton solvers. Its convergence properties will be analyzed and discussed elsewhere. We do ten iterations of (7.5) and the inexact Newton solver is then turned on. The results are shown in Table 5 for \(h = 2^{-4} \), where it is clear that we have quadratic convergence in the last iterations.

For the smooth problem tested in Section 7.1, it seems that the iterative solution always converges to the same solution no matter what kind of initial solution we use. For the problem here, we have noticed that the saddle point problem may have multiple solutions. With another initial solution, as shown in Figure 1.c, we obtain another solution which is shown in Figure 1.d.

Acknowledgement: The author are grateful to Kent Mardal who has supplied the numerical experiments for this work.

References

Table 3: Convergence for the the Inexact Newton solver

<table>
<thead>
<tr>
<th>$h \backslash \text{it.}$</th>
<th>e_1</th>
<th>e_2</th>
<th>e_3</th>
<th>e_4</th>
<th>e_5</th>
<th>e_6</th>
<th>e_7</th>
<th>e_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^{-2}</td>
<td>9.2</td>
<td>2.6</td>
<td>4.7e-1</td>
<td>2.8e-2</td>
<td>1.9e-4</td>
<td>9.9e-7</td>
<td>7.7e-9</td>
<td>7.6e-10</td>
</tr>
<tr>
<td>2^{-3}</td>
<td>1.6e+1</td>
<td>4.7</td>
<td>9.1e-1</td>
<td>7.6e-2</td>
<td>8.8e-4</td>
<td>4.0e-6</td>
<td>7.9e-8</td>
<td>1.4e-9</td>
</tr>
<tr>
<td>2^{-4}</td>
<td>3.2e+1</td>
<td>9.5</td>
<td>1.7</td>
<td>2.4e-1</td>
<td>3.5e-3</td>
<td>1.1e-5</td>
<td>1.0e-7</td>
<td>2.7e-9</td>
</tr>
<tr>
<td>2^{-5}</td>
<td>6.4e+1</td>
<td>2.4e+1</td>
<td>3.6</td>
<td>9.6e-1</td>
<td>1.5e-2</td>
<td>4.7e-5</td>
<td>1.5e-6</td>
<td>6.6e-9</td>
</tr>
</tbody>
</table>

Table 4: Errors with respect to h for the singular problem.

<table>
<thead>
<tr>
<th>h</th>
<th>2^{-3}</th>
<th>2^{-4}</th>
<th>2^{-5}</th>
<th>2^{-6}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$|u-u_h|_0$</td>
<td>2.2e-1</td>
<td>1.3e-1</td>
<td>7.4e-2</td>
<td>4.0e-2</td>
</tr>
<tr>
<td>$|\lambda-\lambda_h|_0$</td>
<td>8.3e-1</td>
<td>4.1e-1</td>
<td>2.1e-1</td>
<td>1.0e-1</td>
</tr>
</tbody>
</table>

Table 5: Convergence for the inexact Newton solver for the singular problem.

<table>
<thead>
<tr>
<th>ϵ_1</th>
<th>ϵ_5</th>
<th>ϵ_{10}</th>
<th>ϵ_{11}</th>
<th>ϵ_{12}</th>
<th>ϵ_{13}</th>
<th>ϵ_{14}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1e+1</td>
<td>6.4e-1</td>
<td>1.1e-1</td>
<td>8.1e-2</td>
<td>9.7e-4</td>
<td>2.4e-7</td>
<td>1.2e-8</td>
</tr>
</tbody>
</table>

Figure 1: Plot of the initial solutions and the computed solutions. a) The first initial solution. b) The solution for a). c) The second initial solution. d) The solution for c).