
A Saddle Point Approach to the Computation of Harmonic Maps ∗

Qiya Hu†, Xue-Cheng Tai‡ Ragnar Winther§

February 21, 2008

Abstract

In this paper we consider numerical approximations of a constraint minimization problem,

where the object function is a quadratic Dirichlet functional for vector fields and the interior

constraint is given by a convex function. The solutions of this problem are usually referred to

as harmonic maps. Minimization problems of the form studied here arise for example in liquid

crystal and superconductor simulations. The solution is characterized by a nonlinear saddle

point problem, and we show that the corresponding linearized problem is well–posed near

exact local minima. The main result of this paper is to establish a corresponding result for a

proper finite element discretization of the harmonic map problem. Iterative schemes for the

discrete nonlinear saddle point problems are investigated. Mesh independent preconditioners

for the iterative methods are also proposed.

Key words: harmonic maps, nonlinear constraints, saddle point problems, error estimates.

1 Introduction

The solutions of many systems of linear partial differential equations can be characterized as
minimizers of quadratic functionals over a set of linear constraints. Examples of such systems
are the linear Stokes system for fluid flow, the Reissner-Mindlin plate model, and the so–called
mixed formulation of second order elliptic equations. The discretizations of these systems lead
to linear systems with a saddle point structure, and where conditioning deteriorates as the mesh
becomes finer. As a consequence, a substantial research on preconditioned iterative methods for
the corresponding discrete systems has taken place, cf. for example [2, 3] or [18, Chapter 6]. The
purpose of the present paper is to perform a corresponding analysis for a nonlinear problem. We
will study a simple variant of the problem characterizing harmonic maps with respect to a compact
manifold. In particular, we will focus on stability and error estimates for the discretization, and
on preconditioning of the linear saddle point systems arising in a Newton iteration.

For a bounded Lipschitz domain Ω ⊂ R
d we shall consider the problem of finding local minima

of a constrained minimization problem of the form:

min
v∈H1

g
(Ω;M)

E(v) =
1

2

∫

Ω

|∇v|2dx. (1.1)

Here H1
g(Ω;M) is the set of vector fields with values in a smooth, compact manifold M in R

d,
with function values and first derivatives in L2(Ω), and such that the elements v of H1

g(Ω;M)
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satisfies v|∂Ω = g for fixed vector field g defined on the boundary ∂Ω. We will further assume
that the target manifold M is implicitly given on the form

M = {v ∈ R
d |F (v) = 0 },

where the function F : R
d → R

k is a smooth function, and it will be assumed that the compatibility
condition F (g) = 0 holds. More specific assumptions on F and the boundary data g will be
given later. Problems of the form (1.1) arise for example in liquid crystal and superconductor
simulations. The solutions of the problem (1.1) are frequently referred as harmonic maps, [7]. In
the present paper we will restrict our study to the case k = 1, i.e. M is of dimension d − 1. We
will focus on a nonlinear saddle point approach to compute the solutions of the problem (1.1).

For a review of results on the continuous harmonic map problem we refer to [7, 24, 29, 30].
The purpose of the present paper is to discuss a finite element method for approximating the
constraint minimization problem (1.1). For the simplest case of (1.1), with interior constraint
given by |v| = 1, several numerical approaches have been discussed, cf. for example [1], [4], [5],
[13], [14], [15], [16], [20], [21], [25], [26] and [32]. Variants of the projection method are proposed
and analyzed in [1], [5] and [16]. However, the standard projection method applies only to the
simplest model. Moreover, it was illustrated in [5] that the projection method converges only for
very special regular and quasi-uniform triangulations for the discretized harmonic map problem.
The relaxation method of [13, 21, 25] is using point relaxation with the constraint required at
each grid point. Both convergence analysis and numerical experiments are supplied in [25]. An
advantage with the relaxation method is that it is very easy to implement. However, disadvantages
are that the relaxation parameter has to be chosen properly to obtain convergence, and that the
convergence of such fixed point iterations is slow. Another commonly used approach for harmonic
map problems is to use penalization methods, c.f. [4, 14, 15, 16, 20]. It is even often combined with
gradient decent method which produces some time evolution equations, cf. [4, 11, 12, 14, 15, 16, 20].
The approach and analysis given in [4] even work for general p-harminc problem with p close to
1. The analysis of [14, 15] is also valid for problems coupling harmonic maps with Navier-Stokes
equations.

The main contribution of the present paper is to discuss the use of a saddle point approach for
the construction of numerical methods for the constraint minimization problem (1.1). We will show
that the corresponding saddle point problem is stable near exact local minima. This is achieved
by verifying standard stability conditions for linear saddle point problems. This verification has
the extra difficulty that the coercivity condition will not hold in general, but only on the kernel
of the linearized constraint. Using the standard stability conditions for the corresponding discrete
saddle point problem we will construct finite element methods such that the corresponding discrete
solutions admit an optimal error estimate in the energy norm. Due to some technical difficulties,
caused by the use of inverse inequalities to handle some nonlinear terms, this analysis of the finite
element discretization is restricted to two space dimensions, i.e., d = 2. In this case we also
establish that any critical point of the functional E with respect to H1

g(Ω;M) is indeed a local
minimum. Compared with other approaches [4, 11, 14, 15], our estimates do not depend on extra
artificial parameters like a weight parameter for the penalty method or a step size for a gradient
flow. We will also study Newton’s method for the discrete nonlinear saddle point problem, and
propose a simple and efficient preconditioner for the linear systems arising during the iterations.
Numerical tests will be given to show the efficiency of the proposed method.

The outline of the paper is as follows. In Section 2, the notations and assumption will be
specified. In Section 3, the continuous problem is studied. The problem (1.1) is formally trans-
formed to a saddle point problem, and stability results will be proved for the continuous model. In
Section 4 we first describe a finite element discretization for (1.1), and then the discrete stability
conditions are established. Using these stability conditions, the existence, local uniqueness and
the error estimates are derived in Section 5. Variants of Newton’s method are analyzed in Section
6, while numerical experiments are presented in Section 7.
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2 Notation and preliminaries

Throughout this paper we will use c and C to denote generic positive constants, not necessarily
the same at different occurrences. It is assumed that the constants are independent of the mesh
size h which will be introduced later. For vectors v,w ∈ R

d we use v ·w to denote the Euclidian
inner product, while the notation A : B is used to denote the Frobenius inner product of two
matrices A,B ∈ R

d×d. The corresponding norms are given by |v| and |A|, respectively. For a
vector or matrix A, At is the transpose of A. In the special case of vectors v = (v1, v2) in R

2 we
will use v⊥ = (−v2, v1) to denote the corresponding vector obtained by a rotation of 90 degrees.

For m ≥ 0 we will use Hm = Hm(K) to denote the real valued L2– based Sobolev spaces on
domain K ⊂ R

d, the corresponding norm by ‖ · ‖m,K , and | · |m,K is the semi norm involving only
the mth order derivatives. The subspace Hm

0 is the closure in Hm of C∞
0 (K), while H−m is the

dual of Hm
0 with respect to an extension of the L2 inner product 〈·, ·〉. The corresponding L∞–

based Sobolev spaces are denoted Wm,∞(K), with associated norm ‖·‖m,∞,K . For all the Sobolev
norms, we will omit K in case K = Ω. In general we will use boldface symbols for vector or matrix
valued functions. The gradient operator with respect to the spatial variable x = (x1, x2, . . . , xd) is
denoted ∇ = (∂/∂x1, ∂/∂x2, . . . , ∂/∂xd)

t. Furthermore, the gradient of a vector valued function
v = (v1, v2, . . . vd)

t, ∇v, is the matrix valued function obtained by taking the gradient row–wise,
i.e. (∇v)ij = ∂vi/∂xj .

In order to specify the properties of the constraint functional F : R
d → R, defining the con-

straint manifold M, we will use DF to denote the gradient of F , i.e. DF (v) = (∂F/∂v1, . . . , ∂F/∂vd)
t

and the corresponding Hessian by D2F (v) = (∂2F/∂vi∂vj)
d
i,j=1. Throughout this paper we will

assume that the constraint functional F satisfies:

(i) F is convex and smooth. Furthermore, there exist constants c0 and c1 such that

c0|v|
2 ≤ D2F (ξ)v · v ≤ c1|v|

2, ξ,v ∈ R
d. (2.1)

(ii) F (0) < 0 and DF (0) = 0;

(iii) There exists an ℓ > 0 such that the matrix function D2F satisfies

|D2F (ξ1) − D2F (ξ2)| ≤ ℓ|ξ1 − ξ2|, ξ1, ξ2 ∈ R
d. (2.2)

The analysis below will still hold if the assumptions (2.1) and (2.2) are only valid for all ξ, ξ1, ξ2
in a neighborhood of a continuous solution.

For the boundary function g of (1.1) we assume that it has been extended into the interior of
Ω such that g ∈ H1(Ω). Corresponding to g, we let

H1
g(Ω) = {v ∈ H1(Ω) : v = g on ∂Ω}.

If v : Ω → R
d is a smooth vector field then it follows from the chain rule that

∇F (v) = (∇v)tDF (v), (2.3)

where the product on the right hand side is the ordinary matrix–vector product. Furthermore, we
have

∇DF (v) = D2F (v)∇v. (2.4)

¿From assumption (i)-(ii) and the Taylor expansion we obtain the following estimate:

2c−1
1 |F (0) ≤ |v(x)|2 ≤ 2c−1

0 |F (0)|, x ∈ Ω, (2.5)

for any v satisfying F (v) ≡ 0 in Ω. Similarly, we derive

|DF (v)| ≥ c0|v| (2.6)
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for any v, and hence |DF (v(x))| > 0 if v(x) ∈ M.
Let us note that the interior constraint in (1.1), given by v(x) ∈ M, implies that a local

minimum of (1.1) satisfies u ∈ H1
g(Ω) ∩ L∞(Ω). In fact, if we restrict the analysis to the case

d = 2, with the manifold M taken to be the unit circle S1, and we assume that the boundary ∂Ω
and the boundary data g are sufficiently regular, then there is a unique smooth global minimizer
of (1.1), cf. [7, Theorem 12], and [22]. However, this result is not true for more general harmonic
map problems [30, 24].

We will first consider the characterization of critical points of the functional E over H1
g(Ω;M).

The otline below follows a standard Langrange multiplier approach to constrained optimization,
cf. for example [6] for the finite dimensional case or [17, 19] in the infite dimensional case. A
vector field u ∈ H1

g(Ω;M) is such a critical point if it satisfies

〈∇u,∇v〉 = 0 (2.7)

for any v in the tangent space of H1
g(Ω;M) at u, i.e. for any v ∈ H1

0(Ω) such that DF (u) ·v ≡ 0.
In the saddle point approach which we shall consider here we will view the critical points u as
elements of the larger space H1

g(Ω). Assume that u has the extra regularity property that

u ∈ H1
g(Ω) ∩ W1,∞(Ω). (2.8)

Then any such u is a critical point if and only if there is a λ ∈ L2(Ω) such that the pair (u, λ)
satisfies the first order conditions

〈∇u,∇v〉 + 〈DF (u) · v, λ〉 = 0, v ∈ H1
0(Ω),

〈F (u), µ〉 = 0, µ ∈ L2(Ω).
(2.9)

To see this we assume that u is a critical point satisfying (2.8), and let z = DF (u)/|DF (u)|. For
any v ∈ H1

0(Ω) let vτ = v − (v · z)z. As a consequence DF (u) · vτ = 0, and by (2.7),

0 = 〈∇u,∇vτ 〉 = 〈∇u,∇v〉 − 〈∇u,∇(v · z)z〉.

However, by using (2.3) the constraint implies that (∇u)tz = 0 and therefore the final inner
product above can be rewritten as

〈∇u,∇(v · z)z〉 = 〈∇u : ∇z,v · z〉.

Hence, the system (2.9) holds with

λ = −∇u : ∇z/|DF (u)| = −∇u : ∇DF (u)/|DF (u)|2, (2.10)

where the last identity again is a consequence of the constraint. Note that it follows from (2.8)
that the multiplier λ is actually in L∞(Ω).

The variational problem (2.9) is the Euler-Lagrangian equation for the constrained minimiza-
tion problem (1.1), and the system is a weak formulation of the problem

−∆u + λDF (u) = 0, in Ω,

F (u) = 0, in Ω.
(2.11)

In the simplest case when M = Sd−1, i.e. the unit disc in R
d, we have λ = −|∇u|2 and

−∆u− |∇u|2u = 0, in Ω, u = g on ∂Ω.

In the present paper we will restrict our attention to the critical points u of E over H1
g(Ω;M)

which are local minimizers. So assume that the pair (u, λ) is a solution of (2.9), satisfying the
regularity property (2.8), and let w = w(t) be a smooth curve in H1

g(Ω;M), defined for t in a
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neighborhood of the origin, such that w(0) = u, and w′(0) = v. Hence, since F (w(t)) ≡ 0 we
must have DF (u) · v = 0, and

DF (u) · w′′(0) = −D2F (u)v · v. (2.12)

Furthermore, if we define a real valued function φ = φ(t) by

φ(t) = E(w(t)) =
1

2
〈∇w(t),∇w(t)〉,

then

φ′(t) = 〈∇w′(t),∇w′(t)〉 and φ′′(t) = 〈∇w′(t),∇w′(t)〉 + 〈∇w(t),∇w′′(t)〉.

Hence, it follows from the system (2.9) that φ′(0) = 〈∇u,∇v〉 = 0, and if u corresponds to a local
minimum of E over H1

g(Ω;M) then the second order condition

φ′′(0) = 〈∇v,∇v〉 + 〈∇u,∇w′′(0)〉 ≥ 0

must hold. However, by using the system (2.9) and (2.12) we obtain that

〈∇u,∇w′′(0)〉 = −〈DF (u) · ∇w′′(0), λ〉 = 〈D2F (u)v · v, λ〉.

Therefore, the second order condition takes the form

φ′′(0) = 〈∇v,∇v〉 + 〈D2F (u)v · v, λ〉 ≥ 0. (2.13)

In fact, let us refer to a local minimum u of E over H1
g(Ω;M) as a strict local minimum if there

is a positive constant β such that

d2

dt2
E(w(t))|t=0 ≥ β‖v‖2

1

for any smooth curve w = w(t) in H1
g(Ω;M) satisfying w(0) = u and w′(0) = v. It follows from

the calculation above that the function φ(t) = E(w(t)) satisfies

φ′′(0) = 〈∇v,∇v〉 + 〈D2F (u)v · v, λ〉 ≥ β‖v‖2
1, (2.14)

for all v ∈ H1
0(Ω) satisfying DF (u) · v = 0. As we shall see below this condition is closely tied to

a stability condition for a linearization of the system (2.9).
Finally in this section, we would like to point out a relationship between the saddle point

approach and the penalty method. In the commonly used penalty approach, cf. [4, 14, 15, 16, 20],
one is seeking a local minimizer of the following regularized problem:

min
v∈H1

g
(Ω)

E(v) +
1

2ǫ

∫

Ω

|F (v)|2dx,

where the penalty parameter ǫ > 0 is small. Formally, the necessary equilibrium condition for this
problem is given by

∫

Ω

∇uǫ · ∇vdx +
1

ǫ

∫

Ω

F (uǫ)DF (uǫ) · vdx = 0, v ∈ H1
0(Ω).

A difficulty with this approach is that the penalty parameter ǫ needs to be chosen sufficiently
small in order to resolve the constraint, and usually it also needs to be related to the discretization
parameter. However, for small penalty parameters, numerical instabilities may occur.

In order to see the relation between the penalty method and the saddle point system (2.9) we
introduce λǫ = 1

ǫ
F (uǫ). The above system then reduces to

〈∇uǫ,∇v〉 + 〈DF (uǫ) · v, λǫ〉 = 0, v ∈ H1
0(Ω),

〈F (uǫ), µ〉 − ǫ〈λǫ, µ〉 = 0, µ ∈ L2(Ω).

If ǫ → 0, we see that the above system formally converges to the saddle point system (2.9), i.e.
the saddle point approach can be regarded as the limit case of the penalty system. The advantage
of the saddle point approach is that the standard mixed finite element theory, cf. [9], tells us how
to choose the finite element spaces properly to avoid possible instabilities. Furthermore, there is
no need to choose a penalty parameter.
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3 Stability of the linearized problem

Throughout the rest of this paper we will assume that the pair (u, λ) is a solution of the system
(2.9), corresponding to a local minimum of E over H1

g(Ω;M), and satisfying the regularity property

u ∈ H1
g(Ω) ∩ W1,∞(Ω), λ ∈ L∞(Ω). (3.1)

In particular, u and λ are related by (2.10), and the second order condition (2.13) holds, i.e.,

a(u, λ;v,v) ≥ 0

for all v ∈ Zu, where the bilinear form a(u, λ; ·, ·) is given by

a(u, λ;v, v̂) = 〈∇v,∇v̂〉 + 〈D2F (u)v · v̂, λ〉,

and
Zu = {v ∈ H1

0(Ω) : 〈DF (u) · v, µ〉 = 0, µ ∈ L2(Ω)}.

For the analysis below it will be useful to consider linearization of the saddle point system (2.9).
More precisely, we consider systems of the form:

Find (v, µ) ∈ H1
0(Ω) ×H−1(Ω) such that

a(u, λ;v, v̂) + 〈DF (u) · v̂, µ〉 = 〈f ,v〉, v̂ ∈ H1
0(Ω),

〈DF (u) · v, µ̂〉 = 〈σ, µ〉, µ̂ ∈ H−1(Ω),
(3.2)

where (u, λ) is the exact solution of (2.9) satisfying (3.1). Here f ∈ H−1(Ω) and σ ∈ H1
0 (Ω)

represents data.
Our goal is to show that this linear system is well–posed, i.e., we will show that the map

(f , σ) ∈ H−1(Ω) ×H1
0 (Ω) 7→ (v, µ) ∈ H1

0(Ω) ×H−1(Ω)

is well defined and bounded. This will be established by verifying the standard stability conditions
for saddle points systems, cf. [8] or [9]. We will first establish the so–called inf–sup condition.

Theorem 3.1 Let (u, λ) satisfy (3.1) and be related by (2.10). Then there is a positive constant
β1, depending on u, such that

inf
µ∈H−1(Ω)

sup
v∈H1

0
(Ω)

〈DF (u) · v, µ〉

‖v‖1‖µ‖−1
≥ β1. (3.3)

Proof. For any µ ∈ H−1(Ω), there exists a ϕ ∈ H1
0 (Ω) such that

〈µ, ϕ〉

‖ϕ‖1
= ‖µ‖−1. (3.4)

Define v = ϕ w
|w|2 , where w = DF (u). Then, by Leibniz’ rule there exists a c > 0, depending on

u, such that
‖∇v‖0 ≤ c‖ϕ‖1.

Furthermore,
〈DF (u) · v, µ〉 = 〈ϕ, µ〉 = ‖ϕ‖1‖µ‖−1.

Hence, the desired inequality holds with β1 = 1/c. �

Next we need to consider the properties of the bilinear form a(u, λ; ·, ·). It is straightforward
to check that this bilinear form is bounded in the sense that

a(u, λ;v, v̂) ≤ C(u, λ)|v|1|v̂|1, v, v̂ ∈ H1
0(Ω), (3.5)
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where the constant C(u, λ) depends on the norms of u and λ indicated by (3.1).
The final key property for the stability analysis of the linear system (3.2) is the requirement

that the bilinear form a(u, λ; ·, ·) is coercive on the linearized constraint space Zu. It should be
noted that this bilinear form is in general not coercive on the entire space H1

0(Ω). For example,
in the simplest case, when M = Sd−1, we have

a(u, λ;v,v) =

∫

Ω

(|∇v|2 − |∇u|2|v|2) dx.

On the other hand, the stability theory of [8] only requires that

a(u, λ;v,v) ≥ β‖v‖2
1, v ∈ Zu (3.6)

for a suitable positive constant β, and this is exactly the strict minimum condition (2.14). There-
fore, if u is a strict local minimum then the linear system (3.2) is well–posed.

Furthermore, if we restrict to two space dimensions, i.e. d = 2, then the coercivity condition
(3.6) always holds. This is a consequence of the following theorem, which implies that in this
case every critical point (u, λ) satisfying (3.1) is a strict local minimum, and the corresponding
problem (3.2) is well–posed.

Theorem 3.2 Assume that d = 2. Let (u, λ) satisfy (3.1) and be related by (2.10). Then there
is a positive constant β2, depending on u, such that

a(u, λ;v,v) = 〈∇v,∇v〉 + 〈D2F (u)v · v, λ〉 ≥ β2‖v‖
2
1, v ∈ Zu. (3.7)

Remark 3.1 The result of this theorem will not be true in general if the target manifold M is
of higher dimension. However, in [23] a sufficient condition on u and M, referred to as the “cut
locus condition,” is given which ensures that the operator associated the bilinear form a(u, λ; ·, ·),
restricted to the tangent space Zu, is invertible, and hence the linear system (3.2) will be well–
posed. �

Before we give the proof of the theorem we will establish an auxiliary result.

Lemma 3.1 Assume the conditions given in Theorem 3.2 holds and define w = (w1, w2)
t =

DF (u). Then,

λD2F (u)w⊥ ·w⊥ = −
w2

1 |∇w2|
2 + w2

2 |∇w1|
2 − 2w1w2∇w1 · ∇w2

|w|2
.

Proof. It follows from (2.10) that the multiplier λ can be expressed as λ = −∇u : ∇w/|w|2.
Hence,

λD2F (u)w⊥ ·w⊥ =
∇u : ∇w

|w|2
(F11w

2
2 + F22w

2
1 − 2F12w1w2), (3.8)

where Fij = ∂2F/∂ui∂uj. Furthermore, since ∇F (u) ≡ 0 we have from (2.3) that

w1∇u1 + w2∇u2 = 0,

while (2.4) implies that
∇wi = Fi1∇u1 + Fi2∇u2.

By combining these identities we obtain

(F11w
2
2 + F22w

2
1 − 2F12w1w2)∇u1 · ∇w1

= w2
2(F11∇u1 + F12∇u2) · ∇w1 − w1w2(F22∇u2 + F12∇u1) · ∇w1

= w2
2 |∇w1|

2 − w1w2∇w1 · ∇w2.
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A similar argument shows that

(F11w
2
2 + F22w

2
1 − 2F12w1w2)∇u2 · ∇w2 = w2

1|∇w2|
2 − w1w2∇w1 · ∇w2,

and hence the desired identity follows from (3.8). �

Proof of Theorem 3.2. As above we let w = DF (u). For any v ∈ Zu, there exists a α such
that v = αw⊥. In fact, we have

α =
v · w⊥

|w|2
. (3.9)

¿From the estimates (2.5)–(2.6) and condition (3.1), we see that α ∈ H1
0 (Ω). The key identity we

will use is the pointwise relation

|∇v|2 + λD2F (u)v · v = |∇(α|w|)|2. (3.10)

In order to verify this identity note that

∇(α|w|) = |w|∇α +
α

|w|
(w1∇w1 + w2∇w2).

Hence,

|∇(α|w|)|2 = |w|2|∇α|2 +
|α|2

|w|2
|w1∇w1 + w2∇w2|

2

+ 2α(w1∇α · ∇w1 + w2∇α · ∇w2).

On the other hand,

|∇v|2 = |w|2|∇α|2 + α2|∇w|2 + 2α(w1∇α · ∇w1 + w2∇α · ∇w2).

Therefore,

|∇v|2 − |∇(α|w|)|2 = α2
(

|∇w|2 −
|w1∇w1 + w2∇w2|2

|w|2
)

=
α2

|w|2
(w2

1 |∇w2|
2 + w2

2 |∇w1|
2 − 2w1w2∇w1∇w2)

= −λD2F (u)v · v,

where the last identity follows from Lemma 3.1. Hence, we have verified (3.10).
Let µ = α|w|. Then v = µ

|w|w
⊥ and hence

∇v =
1

|w|
w⊥ · ∇µ+ µ∇(

w⊥

|w|
).

Therefore, since u satisfies (3.1), Poincaré’s inequality implies that

‖∇v‖0 ≤ c(‖∇µ‖0 + ‖µ‖0) ≤ c‖∇(α|w|)‖0,

where the constant c depends on u. Together with (3.10) this implies the desired inequality of the
theorem. �

4 A stable discretization

The purpose of this section is to analyze a finite element discretization of the constrained mini-
mization problem (1.1). Due to some technical difficulties caused by the use of inverse inequlities
to treat some nonlinear terms, cf. (4.3) below, the analysis given here is restricted to the case
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d = 2. As a consequence, the bilinear form a(u, λ; ·, ·) will satisfy the coercivity bound given in
Theorem 3.2.

So, for the rest of the paper we assume that d = 2 and that Ω ⊂ R
2 is a polygonal domain.

Given a shape regular and quasi–uniform family of triangulation {Th} of Ω, with a mesh size h < 1,
let Nh denote the set of nodes associated with Th. We use Vh to denote the space of continuous
piecewise linear functions and Vh,0 = Vh ∩H1

0 (Ω). The notation Vh and Vh,0 will be used for the
vector version of the corresponding spaces. We will use πh to denote the usual nodal interpolation
operators onto the spaces Vh and Vh. Standard approximation properties of spaces of piecewise
linear functions will be used below. In particular, we will use the estimates

‖(I − πh)v‖1 ≤ Ch|v|2, v ∈ H2(Ω), (4.1)

and
‖(I − Ph)v‖−1 ≤ Ch‖v‖0, v ∈ L2(Ω). (4.2)

Here, Ph : L2(Ω) → Vh,0 is the L2 projection. Due to the quasi-uniformity of the mesh, the
operator Ph can be extended to a uniformly bounded operator on H−1. Moreover, the following
inverse inequalities hold:

‖v‖∞ ≤ C log(h−1)‖v‖1, ‖v‖1 ≤ Ch−1‖v‖0, v ∈ Vh. (4.3)

Set gh = πhg (on ∂Ω). We define

Vh,g = {v ∈ Vh : v|∂Ω = gh}.

We will consider the following discretized minimization problem:

min
v∈Vh,g

E(v) subject to F (v) = 0 on Nh. (4.4)

The Lagrange functional L : Vh,g × Vh,0 7→ R is

L(v, µ) = E(v) +

∫

Ω

µπhF (v)dx (v, µ) ∈ Vh,g × Vh,0. (4.5)

The first order condition defining the critical points of L leads to the following discrete counterpart
of the nonlinear saddle point problem (2.9):

Find (uh, λh) ∈ Vh,g × Vh,0 such that

〈∇uh,∇v〉 + 〈πh[DF (uh) · v], λh〉 = 0, v ∈ Vh,0,

〈πhF (uh), µ〉 = 0, µ ∈ Vh,0.
(4.6)

However, we shall first analyse the discrete counter part of the linearized system (3.2). For a given

(û, λ̂) ∈ Vh,g × Vh,0, let us define the bilinear form ah(û, λ̂; ·, ·) to be

ah(û, λ̂;v, v̂) = 〈∇v,∇v̂〉 + 〈πh[D2F (û)v · v̂], λ̂〉.

Similarly as in (3.2) for the continuous problem, the linearized problem for (4.6) is to find (v, µ) ∈
Vh,0 × Vh,0 such that

ah(û, λ̂;v, v̂) + 〈πh[DF (û) · v̂], µ〉 = 〈f , v̂〉, v̂ ∈ Vh,0

〈πh[DF (û) · v], µ̂〉 = 〈σ, µ̂〉, µ̂ ∈ Vh,0.
(4.7)

For a given û ∈ Vh,g, define

Zh,û = {v ∈ Vh,0 : DF (û) · v = 0 on Nh}.
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Lemma 4.1 Let Φ : R
2 × R

2 × · · · × R
2 7→ R

2 be a smooth function. Then we have the following
estimates for all v1,v2, · · · ,vk ∈ Vh:

|πhΦ(v1,v2, · · · ,vk)|1 ≤ C

k
∑

i=1

‖Dvi
Φ‖0,∞|vi|1; (4.8)

‖(πh − I)Φ(v1,v2, · · · ,vk)‖0 ≤ Ch

k
∑

i=1

‖Dvi
Φ‖0,∞|vi|1. (4.9)

Above, the constant C is independent of h, Φ and vi. The norm ‖Dvi
Φ‖0,∞ stands for

‖Dvi
Φ(v1,v2, · · · ,vk)‖0,∞.

Proof. For clarity, we shall only give the proof for k = 2. The extension of the proof for general
cases is straight forward.

For an element e ∈ Th, let pi, i = 1, 2, 3 be the vertexes of e. Under the condition that the
finite element mesh Th is regular and quasi-uniform, then we have the following equivalent H1

norms for v ∈ Vh

|v|1,e
∼=

3
∑

i,j=1

|v(pi) − v(pj)|
2, v ∈ Vh, e ∈ Th. (4.10)

In particular,

|πhΦ(v1,v2)|
2
1,e ≤

3
∑

i,j=1

|Φ(v1(pi),v2(pi)) − Φ(v1(pj),v2(pj))|
2.

Thus, we get (4.8) from the following estimate:

|πhΦ(v1,v2)|
2
1,e ≤ 2

3
∑

i,j=1

(

|Φ(v1(pi),v2(pi)) − Φ(v1(pj),v2(pi))|
2

+ |Φ(v1(pj),v2(pi)) − Φ(v1(pj),v2(pj))|
2

)

≤ 2
3

∑

i,j=1

(

‖Dv1
Φ‖2

0,∞,e|v1(pi) − v1(pj)|
2 + ‖Dv2

Φ‖2
0,∞,e|v2(pi) − v2(pj)|

2

)

.

Next, we estimate (4.9). By the definition of the interpolation operator πh, we have:

(πh − I)Φ(v1,v2)(p) =

3
∑

i=1

[Φ(v1(pi),v2(pi)) − Φ(v1(p),v2(p))]χi(p) p ∈ e,

where {χi}3
i=1 are the barycentric coordinates on e. ¿From this, we see that

‖(πh − I)Φ(v1,v2)‖
2
0,e ≤ C

3
∑

i=1

∫

e

|
(

Φ(v1(pi),v2(pi)) − Φ(v1,v2)
)

χi|
2

≤ C

3
∑

i,j=1

∫

e

(

‖Dv1
Φ‖2

0,∞,e|v1(pi) − v1|
2 + ‖Dv2

Φ‖2
0,∞,e|v2(pi) − v2|

2
)

(4.11)

≤ Ch2
3

∑

i,j=1

(

|Dv1
Φ|20,∞,e|v1|

2
1,e + |Dv2

Φ|20,∞,e|v2|
2
1,e

)

.

Thus, estimate (4.9) is verified. �
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For the lemma above, it is essential that the functions vi are finite element functions. If
v1 ∈ W1,∞(Ω) and v2 ∈ Vh, then we obtain:

‖(πh − I)Φ(v1,v2)‖0 ≤ Ch(‖Dv1
Φ‖0,∞|v1|1,∞ + ‖Dv2

Φ‖0,∞|v2|1). (4.12)

The next results, which is essential for our analysis, is a discrete version of Theorem 3.2. As
in the previous section (u, λ) is a solution of (2.9) satisfying (3.1).

Theorem 4.1 There exists positive constants γ0 and h0 such that, for (û, λ̂) ∈ Vh,g ×Vh,0 satis-
fying

‖û− πhu‖1 + ‖λ̂− Phλ‖−1 ≤ γ/ log2(h−1) (4.13)

with h ≤ h0 and γ ≤ γ0, we have

ah(û, λ̂;v,v) ≥ β3‖v‖
2
1, v ∈ Zh,û. (4.14)

Here the constants γ0, h0, β3 depend on u.

In order to prove the above theorem, we need to derive some auxiliary results. The main idea
is to relate (4.14) to the continuous problem, and then use Theorem 3.2 and some approximate
properties of the operators πh and Ph. As before, we shall use w = DF (u) with u being the true

solution, see (3.1). Given a (û, λ̂) satisfying (4.13), we define ŵ = DF (û). For any v ∈ Zh,û, let
us define

α(pi) =
v(pi) · ŵ

⊥(pi)

|ŵ(pi)|2
, pi ∈ Nh. (4.15)

¿From the above definition, it is clear that

α = πh

(

v · ŵ⊥

|ŵ|2

)

∈ Vh,0 , v = πh(αŵ⊥).

We have used the relation ŵ ·v = 0 on Nh in getting the last equality. Corresponding to the true
solution u and a given û ∈ Zh,û, let εh ∈ H1

0(Ω) be the function given by εh = αw⊥ − v. We see
clearly that

εh + v ∈ Zu. (4.16)

For a given û satisfying (4.13) one can verify by assumption (i), cf. (2.1), and the inverse
estimate (4.3) that

|w(p) − ŵ(p)| = |DF (û(p)) − DF (πhu(p))| ≤ c1γ, p ∈ Nh.

Thus, by choosing γ small enough, one can guarantee that

0 < c|w(p)| ≤ |ŵ(p)| ≤ C|w(p)|, p ∈ Nh. (4.17)

Lemma 4.2 Let (û, λ̂) ∈ Vh,g × Vh,0 satisfy (4.13). Then we have the estimate

∣

∣

∣

∣

πh

(

ϕ
ŵ

|ŵ|2

)∣

∣

∣

∣

1

≤ C|ϕ|1, ϕ ∈ Vh,0,

where the constant C depends on u.

Proof. Let ψ = πh

(

ϕ ŵ
|ŵ|2

)

. Using (4.10), we see that

|ψ|21,e ≤ C
∑

i,j

|ϕ(pi)
ŵ(pi)

|ŵ(pi)|2
− ϕ(pj)

ŵ(pj)
|ŵ(pj)|2

|2

≤ C
∑

i,j

[
|ϕ(pi)−ϕ(pj)|

2

|ŵ(pi)|2
+ |ϕ(pj)|2 · |

ŵ(pi)
|ŵ(pi)|2

− ŵ(pj)
|ŵ(pj)|2

|2].
(4.18)
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It follows from (4.10) and (4.17) that

∑

i,j

|ϕh(pi) − ϕh(pj)|2

|ŵ(pi)|2
≤ C|ϕ|21,e. (4.19)

On the other hand, we have by (4.17) and assumption (iii), cf. (2.2),

| ŵ(pi)
|ŵ(pi)|2

− ŵ(pj)
|ŵ(pj)|2

|2 ≤ C|ŵ(pi) − ŵ(pj)|2 ≤ C|û(pi) − û(pj)|2

≤ C|(û − πhu)(pi) − (û − πhu)(pj)|2 + |πhu(pi) − πhu(pj)|2.

Thus, we get by the inverse estimate (4.3) and (4.13) that

∑

i,j

[|ϕ(pj)|
2 · |

ŵ(pi)

|ŵ(pi)|2
−

ŵ(pj)

|ŵ(pj)|2
|2]

≤ C‖ϕ‖2
0,∞,e · |û− πhu|

2
1,e + ‖ϕ‖2

0,e · ‖πhu‖
2
1,∞,e (4.20)

≤ C(γ2 + ‖u‖2
1,∞,e)‖ϕ‖

2
1,e.

Substituting (4.19)–(4.20) into (4.18), we obtain the desired bound. �

Remark 4.1 If we apply Lemma 4.1 on the function ψ defined by ψ = πh

(

ϕ ŵ
|ŵ|2

)

, we will get

that
|ψ|1 ≤ C log(h−1)|ϕ|1.

The results we are getting here is better. We have removed the factor log(h−1). �

Lemma 4.3 Let (û, λ̂) ∈ Vh,g × Vh,0 satisfy (4.13). Then, there exist positive constants h0 and
γ0, depending on u, such that

a(u, λ;v,v) ≥
β2

2
|v|21, v ∈ Zh,û

for 0 < h ≤ h0 and 0 < γ ≤ γ0.

Proof. For any v ∈ Zh,û, let α and εh be as defined in (4.15) and (4.16). From πh(απhw
⊥) =

πh(αw⊥), we have
εh = (I − πh)(αw⊥) + πh[απh(w − ŵ)⊥]. (4.21)

¿From (4.12) and also using the inverse inequality (4.3), we get that

|(I − πh)(αw⊥)|21 ≤ Ch2
(

‖w⊥‖2
0,∞|α|21 + ‖α‖2

0,∞‖w⊥‖2
1,∞

)

≤ Ch2 log2(h−1)‖u‖2
1,∞|α|21. (4.22)

Note that there exists a ξ such that

πh[απh(w − ŵ)⊥] = πh

[

απh

(

πhD
2F (ξ)(πhu− û)

)⊥
]

A repeated application of (4.8) and (4.3) gives

|πh[απh(w − ŵ)⊥]|21 ≤ C log4(h−1)|α|21|πhu − û|21. (4.23)

¿From Lemma 4.2, we see that
|α|1 ≤ C|v|1. (4.24)

Combining (4.22)-(4.24) with (4.13), we see that

|εh|
2
1 ≤ C(h2 log2(h−1)‖u‖2

1,∞ + γ2)|α|21 ≤ C(h2 log2(h−1)‖u‖2
1,∞ + γ2)|v|21. (4.25)
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The following estimate follows from (3.5) and (3.7)

a(u, λ;v,v) = a(u, λ;v + εh,v + εh) − a(u, λ;v, εh) + a(u, λ; εh, εh)

≥ Cβ2|v + εh|21 − |v|1|εh|1 − |εh|21.
(4.26)

Choosing h and γ small enough, we obtain the desired result from (4.25) and (4.26). �

Proof of Theorem 4.1. In the proof, we always assume that h and γ are small. Note that

ah(û, λ̂;v,v) − a(u, λ;v,v) = 〈πh[D2F (û)v · v], λ̂〉 − 〈D2F (u)v · v, λ〉

= 〈πh[D2F (û)v · v], λ̂− λ〉 + 〈(πh − I)[D2F (û)v · v], λ〉 (4.27)

+ 〈(D2F (û) − D2F (u))v · v, λ〉 = I1 + I2 + I3.

The meaning of Ii is self explainable. Since λ ∈ L2(Ω), we obtain from (4.13) that

‖λ̂h − λ‖−1 ≤ ‖λ̂h − Phλ‖−1 + ‖Phλ− λ‖−1

≤ γ/ log2(h−1) + Ch‖λ‖0.

Using Lemma 4.1, we see that

|πh[D2F (û)v · v]|1 ≤ C|D2F (û) · v|0,∞|v|1 + ‖v‖2
0,∞‖D3F (û)‖0,∞|û|1 ≤ C log2(h−1)|v|21.

For a small h, a combination of the above two inequalities leads to

|I1| = |(πh[D2F (û)v · v], λ̂h − λ)| ≤ C log2(h−1)‖v‖2
1(γ/ log2(h−1) + Ch‖λ‖0) ≤ Cγ‖v‖2

1.

Similarly, we use Lemma 4.1 to prove that

|I2| = |((πh − I)[D2F (û)v · v], λ)|

≤ ‖(πh − I)[D2F (û)v · v]‖0 · ‖λ‖0 ≤ Ch log2(h−1)‖v‖2
1,

and

|I3| = |((D2F (û) − D2F (u))v · v, λ)|

≤ ‖(D2F (û) − D2F (u))v · v‖0 · ‖λ‖0 ≤ Cγ‖v‖2
1.

Choosing h and γ small enough, we obtain the desired result from Lemma 4.3 and the estimates
above of the three terms appearing in (4.27). �

Theorem 4.2 Assume that (û, λ̂) ∈ Vh,g × Vh,0 satisfies the condition (4.13). There exists a
constant β4 > 0, which depends on u, such that

inf
µ∈Vh,0

sup
v∈Vh,0

〈πh[DF (û) · v], µ〉

‖µ‖−1‖v‖1
≥ β4. (4.28)

Proof. For the ϕ given in (3.4), let ϕh = Phϕ. Then, we see that

〈µh, ϕh〉

‖ϕh‖1
≥ β1‖µh‖−1.

Define vh = πh

[

ϕh
DF (û)

|DF (û)|2

]

. Then,

〈πh[DF (û) · vh], µh〉 = 〈µh, ϕh〉.

¿From Lemma 4.2, one gets that |vh|1 ≤ C|ϕh|1. By collecting these estimates the theorem is
established. �

Together with the Theorems 4.1 and 4.2, the saddle point theory given in [8] or [9] assures
existence, stability and uniqueness of the solution of the linearized saddle point system (4.7), as

long as (û, λ̂) satisfies (4.13). In the next section, we shall use these properties to prove some
results for the corresponding nonlinear systems.

Remark 4.2 If we replace Vh,0 by Vh in (4.28), the inf-sup condition (4.28) may not be satisfied.
This is why we use the Vh,0, instead of Vh, as finite element space for the Lagrange multiplier. �
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5 The discrete nonlinear problem

The main purpose of this section is to establish existence and uniqueness of solutions of the
discretized nonlinear saddle point problem (4.6) in a neighborhood of a continuous solution (u, λ)
of the system (2.9). As above, we assume that (u, λ) corresponds to a local minimum of the
functional E over H1

g(Ω;M), and that the regularity assumption (3.1) holds. Furthermore, we
will show that the discrete solutions converge to the continuous solution with a linear rate with
respect to the mesh parameter h. However, we start by summarizing some properties for the
linearized saddle point system.

For notational simplicity, we shall use X , Xh and Xh,g defined by X = H1
0(Ω) × H−1(Ω),

Xh = Vh,0 × Vh,0, and Xh,g = Vh,g × Vh,0. Let ‖ · ‖X denote the norm on the product space
H1

0(Ω)×H−1(Ω), and let ‖ · ‖X∗ denote the norm on the dual space X∗ = H−1(Ω)×H1
0 (Ω). The

norm ‖ · ‖L(X,X∗) will be used to denote the norm of a bounded linear operator from X to X∗.
The spaces Xh and Xh,g are equipped with the norm of X , while X∗

h is equal to Xh as a set, but
equipped with the dual norm of X with respect to the L2 inner products. Similarly, the norm
‖ · ‖L(Xh,X∗

h
) is the associated oprator norm.

Let x = (u, λ) be a solution of (2.9). Corresponding to x, let G(x) ∈ X∗ to be given by

〈G(x), y〉 = 〈∇u,∇v〉 + 〈DF (u) · v, µ〉 + 〈F (u), µ〉, y = (v, µ) ∈ X,

As usual, 〈·, ·〉 is the duality pairing which extends the standard L2 inner product. Associated
with G, we define a mapping G′(x) : X → X∗ by

〈G′(x) · y, ŷ〉 = a(u, λ;v, v̂) + 〈DF (u) · v̂, µ〉 + 〈DF (u) · v, µ̂〉, (5.1)

for all y = (v, µ), ŷ = (v̂, µ̂) ∈ X = H1
0(Ω) ×H−1(Ω). The operator G′(x) is formally the Fréchet

differential of G at x.
Recall from the saddle point theory given in [8, 9] that Theorems 3.2-3.1 implies that the

system (3.2) has a unique solution (v, µ) which depends continuously on (f , σ) ∈ X∗. Thus we
have the following result.

Theorem 5.1 If (u, λ) satisfies the regularity assumption (3.1) then the map G′(x) defined by
(5.1) is an isomorphism from X = H1

0(Ω) ×H−1(Ω) to X∗ = H−1(Ω) ×H1
0 (Ω).

For the discretized saddle point problem, we define Gh : Xh,g → X∗
h to be the map defined by

(4.6). For any x̂ = (û, λ̂) ∈ Xh,g, Gh(x̂) is the operator that satisfies

〈Gh(x̂), ŷ〉 = 〈∇û,∇v̂〉 + 〈πh[DF (û) · v̂], λ̂)〉 + 〈πhF (û), µ̂〉, ŷ = (v̂, µ̂) ∈ Xh.

Thus, problem (4.6) is in fact to find xh = (uh, λh) ∈ Xh,g such that

〈Gh(xh), y〉 = 0, y = (v̂, µ̂) ∈ Xh. (5.2)

Let G′
h(x̂) be the Fréchet derivative of Gh at x̂ = (û, λ̂) ∈ Xh,g. Then, G′

h(x̂) : Xh → X∗
h is the

linear operator given by

〈G′
h(x̂)y, ŷ〉 = ah(û, λ̂;v, v̂) + 〈πh[DF (û) · v̂], µ〉 + 〈πh[DF (û) · v], µ̂〉,

y = (v, µ) ∈ Xh, ŷ = (v̂, µ̂) ∈ Xh. (5.3)

By Theorem 4.1-4.2, the following result is a consequence of the theory given in [8, 9]:

Theorem 5.2 Assume that x̂ = (û, λ̂) ∈ Xh,g satisfies the condition (4.13). For sufficiently small
h and γ, the map G′

h(x̂) is an isomorphism from Xh to X∗
h. Moreover,

‖G′
h(x̂)−1‖L(X∗

h
,Xh) ≤M, (5.4)

where M is a constant independent of h and x̂ = (û, λ̂).
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Define x∗ = (πhu, Phλ), and set y∗ = Gh(x∗). We can use similar techniques as for Theorems 4.1
to prove the following lemma.

Lemma 5.1 For any x̂ = (û, λ̂) ∈ Xh,g satisfying(4.13), we have

‖G′
h(x̂) −G′

h(x∗)‖L(Xh,X∗

h
) ≤ C log2(h−1)‖x̂− x∗‖X .

Proof. By the definition of G′
h, we have for any y = (v, µ) ∈ Xh and ŷ = (v̂, µ̂) ∈ Xh

〈(G′
h(x̂) −G′

h(x∗))y, ŷ〉 = 〈πh[D2F (û)v · v̂], λ̂− Phλ〉

+〈πh[(D2F (û) − D2F (πhu))v · v̂], Phλ〉

+〈πh[(DF (û) − DF (πhu)) · v̂], µ〉

+〈πh[(DF (û) − DF (πhu)) · v], µ̂〉.

(5.5)

¿From Lemma 4.1, (4.13) and (4.3), we see that

〈πh[D2F (û)v · v̂], λ̂− Phλ〉 ≤ C‖πh[D2F (û)v · v̂]‖1 ‖λ̂− Phλ‖−1

≤ C log2(h−1)‖û‖1‖v‖1‖v̂‖1‖λ̂− Phλ‖−1 ≤ Cγ‖v‖1‖v̂‖1.

Similarly, we have

〈πh[(D2F (û) − D2F (πhu))v · v̂], Phλ〉

≤ C‖πh[(D2F (û) − D2F (πhu))v · v̂]‖1‖Phλ‖−1

≤ C‖πh[(D3F (ξ)(û − πhu))v · v̂]‖1‖λ‖−1

≤ C log4(h−1)‖ξ‖1‖û− πhu‖1‖v‖1‖v̂‖1‖λ‖−1

≤ Cγ log2(h−1)‖v‖1‖v̂‖1.

Estimating the last two terms in (5.5) similarly using Lemma 4.1, (4.3) and (4.13), we obtain the
result. The constants C in the estimates depend on u and λ). �

At this point, we need to recall the implicit function theorem as for example given in Lemma
1 of [10]. From the implicit function theorem, we can conclude that if there is a δ > 0 such that

x̂ ∈ Xh, ‖x̂− x∗‖X ≤ δ implies ‖G′
h(x̂) −G′

h(x∗)‖L(Xh,X∗

h
) ≤

1

2M
, (5.6)

then the equation
Gh(x̂) = ŷ (5.7)

has a unique solution for all ŷ satisfying

‖ŷ − y∗‖X∗ ≤
δ

2M
.

Here M > 0 is the positive constant appearing in Theorem 5.2. From Lemma 5.1, we see that
the implication (5.6) is fulfilled if we choose δ = 1/(2MC log2(h−1)). Hence, we have that the
equation (5.7) has a unique solution x̂ satisfying

‖x̂− x∗‖X ≤
1

2MC log2(h−1)

for all ŷ such that

‖ŷ − y∗‖X∗ ≤
1

4M2C log2(h−1)
.

Furthermore, we can conclude from Lemma 1 of [10] that

‖x̂− x∗‖X ≤ 2M‖ŷ− y∗‖X∗ . (5.8)
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Note that our desired equation is Gh(x) = 0. Thus, if we can verify that

‖Gh(x∗)‖X∗ = ‖y∗‖X∗ ≤
1

4M2C log2(h−1)
, (5.9)

we can conclude existence and uniqueness of solution of this equation. If we assume more smooth-
ness on u, this is a consequence of the following lemma.

Lemma 5.2 Assume that u ∈ H2(Ω) ∩ W1,∞(Ω). Then we have

‖Gh(x∗)‖X∗ ≤ Ch with x∗ = (πhu, Phλ).

Proof. It suffices to prove that

|〈Gh(x∗), x̂〉| ≤ Ch‖x̂‖X , x̂ = (v, µ) ∈ Xh. (5.10)

We have by (2.9) and the definition of Gh

〈Gh(x∗), x̂〉 = 〈∇(πhu− u),∇v〉 + 〈πhF (πhu), µ〉 − 〈F (u), µ〉

+〈πh[DF (πhu) · v], Phλ〉 − 〈DF (u) · v, λ〉.
(5.11)

It is clear that
|〈∇(πhu − u),∇v〉| ≤ |πhu− u|1 · |v|1 ≤ Ch‖u‖2 · |v|1. (5.12)

Note that since πhF (πhu) = πhF (u) we obtain from (4.1) that

|〈πhF (πhu), µ〉 − 〈F (u), µ〉| = |〈πh − I)F (u), µ〉|

≤ ‖(πh − I)F (u)‖1 · ‖µ‖−1 ≤ Ch‖F (u)‖2 · ‖µ‖−1.
(5.13)

Furthermore, by the assumptions on F and the estimates (4.1), (4.2) and (4.12) we get

|〈πh[DF (πhu) · v], Phλ〉 − 〈DF (u) · v, λ〉|

≤ |〈(πh − I)[DF (u) · v], Phλ〉| + |〈DF (u) · v, Phλ− λ〉|

≤ ‖(πh − I)[DF (u) · v]‖0 · ‖Phλ‖0 + ‖DF (u) · v‖1 · ‖Phλ− λ‖−1

≤ Ch‖DF (u) · vh‖1 · ‖λ‖0 ≤ Ch‖DF (u)‖1,∞ · ‖λ‖0 · ‖v‖1.

(5.14)

Substituting (5.12)-(5.14) into (5.11), gives (5.10). �

¿From this lemma, we see that y∗ satisfies (5.9) for small h. Thus, there exists a unique solution
for equation (4.6). Moreover, the solution satisfies the estimate (5.8). We state this conclusion
more clearly in the following theorem.

Theorem 5.3 Assume that u ∈ H2(Ω) ∩W1,∞(Ω). Then, for sufficiently small h, there exists a
unique saddle point (uh, λh) ∈ Xh for (4.6) in a small neighborhood of (πhu, Phλ). Moreover, the
following error estimate holds:

‖uh − u‖1 + ‖λh − λ‖−1 ≤ Ch.

6 Preconditioned iterative methods

We shall combine a preconditioning technique with the classical Newton’s method, cf. for example
[27, chapter 7], to solve the nonlinear saddle point problem (4.6), or equivalently (5.2). Let
x0 = (u0

h, λ
0
h) ∈ Xh be a suitable initial guess. The Newton iteration is given by

xn+1 = xn −G′
h(xn)−1Gh(xn), n = 0, 1, · · · . (6.1)
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Assume that the initial guess (u0
h, λ

0
h) satisfies (4.13) with a small γ. Using Theorem 5.2, combined

with Lemma 5.1, and the standard properties of Newton’s method, it follows that all xn = (un
h, λ

n
h)

satisfy (4.13) with the same γ, and all the operators G′
h(xn) are invertible. Moreover, the sequence

{(un
h, λ

n
h)} converges with almost order 2, i.e.

‖un+1
h − uh‖1 + ‖λn+1

h − λh‖−1 ≤ C log2(h−1)(‖un
h − uh‖1 + ‖λn

h − λh‖−1)
2.

For the iteration (6.1), we need to invert G′
h(xn), i.e., we need to solve the system

G′
h(xn)(xn+1 − xn) = −G(xn). (6.2)

¿From Theorem 5.2, we obtain that G′
h(xn) is an isomorphism from Xh to X∗

h. Moreover,
‖G′

h(xn)‖L(Xh,X∗

h
) is bounded and the bound is independent of h and n if the initial value is chosen

close enough to the true solution. Hence, by following the approach to preconditioning taken for
example in [2, 3], we see that any isomorphism from X∗

h to Xh is an optimal preconditioner for
system (6.2). Due to this, we can construct some efficient preconditioners for (6.2). Let ∆h and
∆h be the finite element discretizations for the vector and scalar Laplacian operators ∆ and ∆
on Vh,0 and Vh,0 respectively. To be precise, ∆h : Vh,0 7→ Vh,0 is the mapping defined by

〈∆huh,v〉 = −〈∇uh,∇v〉, v ∈ Vh,0.

Then the operator

Th =





−∆−1
h 0

0 −∆h



 ,

is an isomorphism from X∗
h to Xh with associated operator norm bounded independently of h.

Thus, Th ◦ G′
h(xn) maps Xh to Xh, with condition numbers bounded independently of h and n.

However, in to order to make the preconditioner efficient it is necessary to to simplify the evaluation
of the operator Th. We therefore replace ∆−1

h by another spectral equivalent operator, i.e. by
a preconditioner for the discrete Laplacian using domain decomposition or multigrid methods
[31, 33]. The linear system (6.2) is then solved by the preconditioned minimum residual method,
with the modified Th operator, T̃h, as the preconditioner, cf. [28] or [18, Chapter 6]. Since the
condition number of the operator T̃h ◦ G′

h(xn) is bounded independent of h and n, so is the
convergence of the iteration.

7 Numerical experiments

Numerical experiments for the harmonic map problem with M = S1, i.e. the unit circle, will be
done. The domain Ω is always a square. The sequence of grids is made as a refinements of a 2× 2
partition of Ω , which is further divided into triangles by the diagonal with a negative slope. When
refining the mesh, each triangle is divided into four equal smaller triangles. The finite element
problem (4.6) is to find (uh, λh) ∈ Vh,g × Vh,0 such that

〈∇uh,∇v̂h〉 + 〈πh(uh · v̂h), λh〉 = 0, v̂h ∈ Vh,0,

〈πh(|uh|2 − 1), µ̂h〉 = 0, µ̂h ∈ Vh,0.
(7.1)

For the finite element method, we need to integrate over each element e ∈ Th. If we use the
three vertices of e as the integration points, then the mass matrix reduces to a diagonal matrix.
Correspondingly, the system (7.1) is reduced to:

−Lhuh + λhuh = 0 on Nh,

|uh|
2 − 1 = 0 on Nh. (7.2)
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Above Lh is the standard five-point finite difference discrete Laplacian approximation. For the
Newton iteration (6.1), we need to solve the system:





−Lh + Λn diag(un)

diag(un)t 0









un+1 − un

λn+1 − λn



 =





Lhun − λnun

(1 − |un|2)/2



 (7.3)

on Nh. Here and below we use the simplified notation (un, λn) instead of (un
h, λ

n
h). Furthermore,

Λn and diag(un) are the matrix representations of the operators v 7→ πh(λnv) and µ 7→ πh(µun)
respectively. ¿From Theorem 5.2, it is interesting to observe that the block-diagonal matrix
Th = diag(L−1

h , Lh) is a uniform preconditioner for the matrix of system (7.3).
For the Newton iteration (7.3) with the preconditioner

Th = diag(L−1
h , Lh),

the matrix L−1
h in Th is replaced by a symmetric and spectrally equivalent multigrid operator, while

the matrix Lh is simply a discrete Laplacian with homogeneous Dirichlet boundary conditions.
By doing so, no matrix needs to be inverted during the iterations. The cost per iteration is O(N),
where N is the degree of freedom for the discretization.

In the following, we will investigate if it possible to replace Newton’s method with a modified
method where the linear system (6.2) is only solved to a given accuracy. More precisely, we shall
compare the behavior of the exact and an inexact Newton solver:

• The exact Newton solver: this refers to the scheme where we solve the linear system (6.2)
with a preconditioned Minimum Residual method which is terminated when the residual is
reduced by a factor of 1010.

• The inexact Newton solver: this refers to the scheme where the Newton iterations (6.2) are
terminated when the residual is reduced by a factor of 102.

In the tables, we show the numerical errors en versus the iteration number n, where en is
defined as

en = ‖un
h − uh‖H1

h
+ ‖λn

h − λh‖H−1

h
, (7.4)

where ‖xh‖2
H1

h

= (πhxh)t(I − Lh)πhxh and ‖yh‖2
H

−1

h

= (πhyh)t(I − Lh)−1πhyh.

7.1 A smooth harmonic map

In the first example we consider a smooth harmonic map

u = (sin(θ(x, y)), cos(θ(x, y)))

with θ = k log(
√

(x− a)2 + (y − b)2) and λ = −|∇u|2 on Ω = [0, 1] × [0, 1]. We have used
a = b = −0.1 and k = 3. The initial guess was u0 = 2(πhu + ǫ), where ǫ is a random noise vector
field with values between -0.3 and 0.3, and λ0 = 0.

When using the inexact Newton solver the stop criteria is obtained in less than 20 iterations,
with a few exceptions in the first nonlinear iterations where the maximum was 80. For the exact
Newton solver the stop criteria is obtained in less than 50 iterations with a few exceptions in the
first nonlinear iterations where as much as 300 iterations were required on the finest mesh. Hence,
except for the first iterations the required number of iterations seems to be bounded independent
of the mesh size. This is due to the property of the preconditioner.

In Table 1 we estimate the L2 and H1 error of u−uh in terms of h. We have linear convergence
in H1 and quadratic convergence in L2, respectively. This is in accordance with the error estimate
of Theorem 5.3. Also λ− λh seems to converge more than linearly in L2.

A comparison of the exact Newton and inexact Newton solvers is shown in Table 2 for mesh
size h = 2−4. The convergence for other mesh sizes is similar. These tests indicate that the inexact
Newton solver is nearly as efficient as the exact Newton solver. In Table 3, the convergence of
the inexact Newton solver with different mesh sizes are shown. It shows the mesh independence
property of the preconditioned iterative solver.
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h 2−2 2−3 2−4 2−5 2−6

‖u− uh‖0 6.7e-1 3.6e-2 9.4e-3 2.4e-3 6.0e-4

‖u− uh‖1 4.6 1.1 5.7e-1 2.9e-1 1.4e-1

‖λ− λh‖0 4.2e-1 2.2e-2 1.6e-3 1.5e-4 1.2e-5

Table 1: The L2 and H1 error of u and the L2 error of λ with respect to h.

e1 e2 e3 e4 e5 e6 e7 e8

Exact 3.2e+1 9.3 1.7 2.3e-1 4.0e-3 3.4e-6 2.6e-9 -

Inexact 3.2e+1 9.5 1.7 2.4e-1 3.5e-3 1.1e-5 1.0e-7 2.7e-9

Table 2: Convergence for the exact and inexact Newton solver with h = 2−4.

7.2 A harmonic map with singularity

Here, we test a non-smooth problem with a solution that has a singularity, i.e. u = (x/r, y/r)

with r = k
√

x2 + y2 and λ = −|∇u|2 on Ω = [−0.5, 0.5] × [0.5, 0.5]. For this example, we have
‖u‖1 = ∞. The Dirichlet boundary conditions are obtained from the analytical solution, while
the initial value for λ is λ0 = 0 everywhere except in (0, 0) where λ = 1. The initial value for u is
shown in Figure 1.a. The numerical errors are shown in Table 4. The errors indicate that both uh

and λh converge linearly to the solution when measured in L2. The computed solution is shown
in Figure 1.b.

For this example, the Newton solvers are unstable and do not always converge. Thus, we have
used the following iteration to produce the initial value for the Newton solvers:





−Lh diag(un)

diag(un)t 0









un+1 − un

λn+1 − λn



 =





Lhun − λnun

(1 − |un|2)/2



 , (7.5)

Compared with (7.3), the matrix Λn has been dropped. This iterative scheme is globally conver-
gent and is normally slower than the Newton solvers. Its convergence properties will be analyzed
and discussed elsewhere. We do ten iterations of (7.5) and the inexact Newton solver is then
turned on. The results are shown in Table 5 for h = 2−4, where it is clear that we have quadratic
convergence in the last iterations.

For the smooth problem tested in Section 7.1, it seems that the iterative solution always
converges to the same solution no matter what kind of initial solution we use. For the problem
here, we have noticed that the saddle point problem may have multiple solutions. With another
initial solution, as shown in Figure 1.c, we obtain another solution which is shown in Figure 1.d.
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Figure 1: Plot of the initial solutions and the computed solutions. a) The first initial solution. b)
The solution for a). c) The second initial solution. d) The solution for c).
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