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Abstract. In this paper, we propose a segmentation method based on the Generalized Fast Marching
Method (GFMM) developed by Carlini et al.([6]). The classical Fast Marching Method (FMM) is
a very efficient method for front evolution problems with normal velocity (see also [13]) of constant
sign. The GFMM is an extension of the FMM and removes this sign constraint by authorizing
time-dependent velocity with no restriction on the sign. In our modelling, the velocity is borrowed
from the Chan-Vese model for segmentation ([9]). The algorithm is presented and analyzed and some
numerical experiments are given, showing in particular that the constraints in the initialization stage
can be weakened and that the GFMM offers a powerful and computationally efficient algorithm.
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1 Introduction

The main goal of this paper is to propose a segmentation model based on the Generalized Fast Marching Method
(GFMM). Let us recall that segmentation is the process that consists in detecting and visualizing the boundaries
of the objects contained in an image.

While the Fast Marching Method (FMM) is useful when tracking a propagating front that evolves with
a constant sign speed, the GFMM offers more general assumptions on the velocity and in particular no sign
restrictions. This last element motivates the proposed work in the sense that many of the well-known variational
segmentation methods require a careful choice of the initial condition. One of the most famous variational
methods to process this partition of the image is the Active Contour model introduced by Kass, Witkin and
Terzopoulos ([18]). It consists in evolving a parameterized curve so that it matches the object boundary. The
shape taken by the curve through the process is related to an energy minimization. This energy comprises a
regularization term and a data-fitting term and is non-convex. Thereof, we can only expect local minimizers. In
practice, it means that the contour to be deformed must be initialized near the object boundary. Cohen ([12])
has proposed a way to alleviate this constraint by adding an inflating/deflating force in the modelling defined
by k~n, ~n denoting the unit outward normal to the curve and k being a constant. According to the sign of the
constant k, the curve inflates or deflates. Thereby, in practice, the contour to be deformed is either initialized
inside the object or it encloses the object of interest.
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In [37], Xu and Prince address both the problem of initialization and the one of slow/poor convergence
near boundaries with strong concavities by introducing a new static external force called gradient vector flow.
The initialization constraint is removed, that is, initialization can be made inside, outside or across the object
boundaries and the front evolution is easily handled even in boundary concavities.

The main idea behind this model is to increase the capture range of the external edge-map-related force
field and to make the contour progress toward the desired boundaries, here where classical methods would fail
to. Unlike classical active contours, the introduced external force does not derive from a potential function and
cannot be computed straightforwardly from the image edge map. More precisely, the model cannot be phrased in
terms of a unique functional minimization problem but is defined in two steps. In a first step, the external force
(gradient vector flow) v is obtained by minimizing an energy functional in a variational framework. Denoting
by ∇f the gradient field of an edge map, the energy is designed such that when |∇f | is large, it is minimized
by setting v = ∇f and when |∇f | is small, the resulting v is smooth and slowly varying. The Euler-Lagrange
equations are computed and lead to solve a linear partial differential equation decoupled system, each equation
traducing an equilibrium state. A gradient descent method is then applied and the discretization is made using
finite difference schemes.

The second step consists thus in replacing, in the dynamic snake equation, the classical potential force by
the newly computed external force v.

In the proposed model, we aim, as done in [37], at alleviating the choice of the initial curve but contrary
to [37], the algorithm we propose is not a two-step one. Moreover, our model authorizes a larger choice of
initializations.

Coming back to the classical active contour model, another drawback is that it is non-intrinsic. It means
that a reparameterization of the curve modifies the expression of the energy. In [8], Caselles et al. address this
issue and prove that with certain assumptions, the classical active contour model is equivalent to searching for a
geodesic curve in a Riemann space whose metric is linked to the image content (see also [19], [10] or [4] for fast
global minimization of the geodesic active contour model, and [16], [15] or [21] for applications of this method

with geometrical constraints). More precisely, if the considered curve is defined by C :

{
[0, 1] → R

2

q 7→ C(q)
, Caselles

et al. prove that it boils down to minimize the following functional:

∫ 1

0

g(|∇I(C(q))|)|C′(q)|dq, (1)

with I the image and where g is an edge-detector function satisfying the following properties:

g : [0,+∞[→ [0,+∞[, g positive, strictly decreasing such that g(0) = 1 and lim
r→+∞

g(r) = 0. (2)

Let us stress that in this case, the problem is intrinsic since a reparameterization of the curve leaves the energy
unchanged.

The evolution equation of the curve C to deform the initial contour C(·, 0) towards a local minimum of (1)
is established (see [8] for further details) and one obtains:

∂C

∂t
(q, t) = g(|∇I(C(q, t))|)κ(q, t)~n(q, t)− < ∇g(|∇I|)(C(q, t)), ~n(q, t) > ~n(q, t), (3)

with κ(q, t) the curvature at point C(q, t), ~n(q, t) the unit inward normal vector to the curve at point C(q, t) and
< ·, · > the euclidean scalar product in R

2. The model is then cast in the level set setting to allow topological
changes.

Here again, in this modelling, the initial contour generally encloses the objects one aims at detecting. By
adding a constant evolution term of the kind kg(|∇I(C(q, t))|)~n(q, t) in (3) however, it can be initialized inside
the object.
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In [22], Malladi and Sethian propose a shape-detection method that combines Fast Marching and Level Set
methods. We will give more details in the section dedicated to FMM. But in this method as well, the contour
is initialized inside the desired region and grows.

In [9], Chan and Vese introduce a segmentation method that aims at establishing the best partition of the
image as a set of two regions with approximatively piecewise-constant intensities. The model is related to the
Mumford-Shah functional (see [25]), is stated in the level set framework and contrary to the methods presented
above, boundaries are not defined by the image gradient. In practice, the initial contour can be anywhere in the
image and the method allows simultaneous detection of interior and exterior contours. Extensions have been
proposed to partition the image in more than two piecewise-constant intensity regions using several level set
functions (see [36]) or several isocontours of a same level set function (see [11]).
The model we propose is grounded on the region-based approach developed by Chan and Vese [9]. But as
will be seen later, our presented approach is different in several aspects: first, our model does not stem from
an energy-minimization problem but is directly stated in terms of a propagating front with a suitable normal
velocity. Besides, the mathematical formulation of our model leads to consider a problem whose unknown is
the passing time of the front over the nodes of the grid. The front will stop moving as soon as the passing
time on nodes becomes infinite. In [9], the energy-minimization problem is cast in the level set framework. The
unknown is thus a lipschitz continuous function Φ defined on the image domain Ω̄, whose zero level-line is the
contour of interest. The Euler-Lagrange equation satisfied by the unknown is established and a gradient-descent
method is applied. The discretization, in our case, is new.
Lastly, the initialization step in our method is straightforward and maybe more flexible than in [9]. Indeed,
as previoulsy mentioned, in [9], the initial contour is implicitly represented via an higher-dimensional level set
function Φ. Usually, this function is preferred to be a signed distance function for the stability of numerical
computations, which implies that one may periodically reinitialize the level set function as the signed distance
function to the set {x ∈ Ω | Φ(x) = 0}. In our case, the initialization can be made, for instance, of several
shapes, no particular procedure being required.

These elements motivated the work proposed below. The outline of the paper is as follows: in Section 2, we
describe the classical Fast Marching Method, and we then introduce the Generalized Fast Marching Method.
Section 3 is devoted to the algorithm of the model. We conclude the paper with experimental results on various
synthetic and real images in Section 4.

2 The Generalized Fast Marching Method (GFMM)

2.1 A Brief Review of the Fast Marching Method

The Fast Marching Method (Tsitsiklis [35], Sethian [32], [31], [33]) has proved to be very efficient when tracking
hypersurfaces moving according to their normal with a constant-sign velocity. Indeed, the evolution problem is
rephrased in such a way that one considers the stationary problem whose unknown is the arrival time at the
grid points. It means more precisely that we switch from an initial value problem to a boundary value one as
shown in [32], both methods being formulated in a Eulerian way as stressed by Sethian .

Let us consider, for the purpose of illustration, an open bounded subset Ω of R
2 and an oriented curve

C ⊂ Ω, C :

{
[0, 1] × R

+ → R
2

(q, t) 7→ C(q, t)
in two dimensions, separating two regions, that is evolving according to its

normal with a positive sign velocity F .
In the boundary value formulation prospect, the unknown is the arrival time of the front T (x) when it

crosses the point x ∈ Ω. T is obviously a single-valued function since the front crosses once and only once a
grid point while evolving, no time step is required since the time is itself the unknown (see Carlini et al. [6])
and consequently no CFL conditions. Thus the boundary value problem can be formulated as follows:

|∇T |F = 1 (4)
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with T = 0 on C(·, 0).

The front is therefore characterized at each time t as the set of points for which the arrival time T is equal to t

that is
C(t) =

{
x ∈ Ω | T (x) = t

}
.

As for the initial value problem, it is linked to the level set formulation of the model (cf. Osher and Sethian
[28], Osher and Fedkiw [26], Osher and Paragios [27], Sethian [32],[33], [30]). The evolving contour is embedded
in a higher-dimensional lipschitz continuous function Φ and at each time t, is defined as the zero isocontour of
the function Φ. (We assume Φ < 0 on the interior w of C and Φ > 0 on Ω − w̄). The evolution equation of
Φ is straightforwardly derived. Since ∀q ∈ [0, 1], ∀t ∈ R

+, one has Φ(C(q, t), t) = 0, by differentiating this last
relation with respect to t, one gets the following PDE:

∂Φ

∂t
(C(q, t), t)+ < ∇Φ(C(q, t), t),

∂C

∂t
(q, t) >= 0,

< ·, · > denoting the euclidean scalar product in R
2.

The front evolving in the outward normal direction with a speed F (no tangential component), one has
∂C

∂t
(q, t) = F~n(q, t) where ~n(q, t) is the unit outward normal vector to the curve at point C(q, t). Introducing

this component into the previous equation and replacing ~n(q, t) by its level set counterpart, we finally get the
following PDE:

∂Φ

∂t
(C(q, t), t) + F |∇Φ(C(q, t), t)| = 0.

The advantage of the Level Set method is that this equation can be considered as defined on the whole domain
Ω × R

+. It implies in particular that the velocity F should be known not only on the zero isocontour but also
off this level line. This extrapolation is sometimes natural in the considered problem or requires the use of
numerical devices (see chapter 8 of [26] or chapter 11 of [32]). This finally yields:

∂Φ

∂t
+ F |∇Φ| = 0, on Ω × R

+. (5)

equipped with the initial condition Φ(x, 0) = Φ0. The relation between equations (4) and (5) stems from the
following change of variable

Φ(x, t) = T (x) − t.

In fact, it is equivalent to searching for the zero level set of Φ(x, t) or the level set t of T (x).

Coming back to the boundary value problem (4), a powerful discrete algorithm can be run (see Sethian
[32], [31], Bærentzen [2]), using numerical schemes borrowed from hyperbolic conservation laws. Let us notice
that information flows outward (if we consider F > 0) from smaller values of T to bigger ones. To match this
property, Sethian ([32],[31]), Rouy and Tourin [29] devised upwind numerical schemes. Considering a uniform
mesh, denoting by h the space step in both directions and denoting by Ti,j an approximation of T at the node
(xi, yj) = (ih, jh), Rouy and Tourin [29] propose the following scheme to approximate the gradient of T :

|∇T |ij ≃

[
max

(
D−x

ij T,−D+x
ij T, 0

)2
+ max

(
D

−y
ij T,−D

+y
ij T, 0

)2

] 1
2

, (6)

with D−x
ij T =

Ti,j − Ti−1,j

h
and D+x

ij T =
Ti+1,j − Ti,j

h
.
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Thus starting from an initial band made of grid points that have been assigned the value zero, the idea is
to march out in the normal direction and update the values of the grid points that are crossed over. We briefly
describe the algorithm: a more detailed depiction can be found in Bærentzen’s technical report [2] or in [32].

In order to alleviate the computational cost, a classification of the grid points is introduced. The idea is
to concentrate the computational effort on the points contained in a narrow band around the front. The grid
points belonging to the initial band (it can be either one grid point or several ones) are declared frozen and are
assigned the value zero. The 4-neighborhood grid points of the frozen points which are not yet frozen are said
to belong to the narrow band. For each of them, a tentative value of the arrival time T is computed.

To compute this tentative value, one only uses the values of the frozen grid points, it means that the obtained
value does not depend on the other tentative values (see chapter 7 from [26] or chapter 8 from [32]). The first
grid point from the narrow band to be updated is the one first crossed over by the front, that is the one for which
the tentative value is the smallest. This point is tagged frozen and its value is no longer changed. The process
is then repeated: the narrow band has almost not changed. Only the 4-neighborhood grid points of the newly
accepted grid point must be looked into. Either their tentative value had not been computed and consequently
they must be tagged ‘narrow band’ and assigned a value, or their tentative value must be recomputed to take
into account the value of the newly frozen grid point. As stressed by Bærentzen, this method consists therefore
in propagating the narrow band grid points. At each step of the algorithm, one needs to extract the narrow
band grid point with the smallest value. A convenient data structure to store the different tentative values is
the binary heap (see Sethian ([32]), Bærentzen ([2])). It can be seen as a particular case of a binary tree, which
is either a balanced tree (all the leaves are at the same depth) or at least with all leaves at the depth l or l − 1
(all the children on the last level occupying the leftmost spots) and such that one node is always greater than
the nodes of its parents. Therefore, to access the element with the smallest tentative value, one just needs to
extract the root of the tree.

Adding an element to the binary heap is a O(log n) procedure with n the number of grid points in the
narrow band. (This is linked to the height of the binary heap). The grid point to be inserted is first added
to the lower level of the binary heap. If the heap property is violated, that is, if one of its parents is greater,
one just swaps these two elements and repeat the process if needed. In the same way, the deleting operation
is a O(log n) procedure. From the above, we can infer that the algorithm complexity is thus in O(N logN)
where N is the number of grid points. Many extensions of this method have been proposed to reduce the overall
complexity of the algorithm such as fast sweeping methods [34], [39]. We also would like to point out the recent
work by Yatziv et al. [38]. They have developed an implementation of the FMM that reduces the complexity
to O(N) using a data structure named untidy priority queue. The main idea is that errors can be allowed in
the computation of the tentative values when establishing the priority of each grid point. In practice, it means
that a quantization of the priorities is introduced which implies some possible ordering errors. But as stressed
by Yatziv et al., the misordering generated by this technique creates few and small errors and thereby does not
affect the overall accuracy of the process.

If we now go back to the segmentation problem, as previously mentioned, Malladi and Sethian (see [22]
and [32]) have developed an algorithm that both uses fast marching and level set methods. They consider the
following flow, the evolving contour being embedded in the level set function Φ:

∂Φ

∂t
+ gI(1 − ǫκ)|∇Φ| − β < ∇P,∇Φ >= 0. (7)

Three components appear in this equation:

• An inflating force gI |∇Φ| which is obtained from the image gradient. The speed is defined by gI(x) =
1

1 + |∇(Gσ ∗ I)(x)|p
, p ≥ 1, (Gσ ∗ I, smoother version of the image I, is the convolution of the image I

with a Gaussian filter) so that the front stops propagating when localized on an edge.
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• a curvature-depending term −gIǫκ|∇Φ| (see [23]).

• A force that guarantees a good attraction of the evolving contour towards the desired boundary with
stabilizing effects (see [8]): −β < ∇P,∇Φ >.

The algorithm is divided into two steps: Malladi and Sethian [22] propose to first solve the flow
∂Φ

∂t
+

gI |∇Φ| = 0 using the FMM, that is, to solve the problem |∇T | =
1

gI

. It is done until the contour has almost

reached the boundary. It makes sense insofar as the time becomes very large when the desired boundary is
nearly reached.

The last stage consists in solving the problem (7) taking as initial condition the one provided by the obtained
contour in the previous step.

2.2 Introducing the GFMM

In this section, we will recall the Generalized Fast Marching Method developed by Carlini et al. in [6] (see also
[5]) for tracking hypersurfaces moving according to their normal with a sign-changing velocity. More precisely,
the initial front is the boundary of an open set Ω0, which is represented by a characteristic function 1Ω0

− 1Ωc
0
,

equal to 1 on Ω0 and −1 on its complementary set. Mathematically, we are interested in the discontinuous
viscosity solution θ(x, t) of the following equation

{
θt(x, t) = c (x, t) |∇θ(x, t)| on R

N × (0, T )
θ(·, 0) = 1Ω0

− 1Ωc
0

(8)

where c(x, t) is a given velocity with a changing sign. The only assumptions on c are that it is Lipschitz
continuous in space and time (this allows in particular to have a comparison principle for (8), see Barles [3]).
Here the support of the discontinuities of the function θ localizes the front we are interested in.

The first algorithm developed in [6] has been improved by the first author in [14] where he has proposed
a monotone scheme (the one proposed in [6] was not completely monotone). In [7], Carlini et al. have also
proposed a simpler scheme which is monotone if the velocity does not change sign in time. This is the algorithm
we will describe and that we will use for our problem.

The main idea of this generalized algorithm is to make two different Fast Marching: one for which the
velocity is positive and another one for which the velocity is negative. To do so, we need to introduce a band
where the numerical speed is zero, in order to separate the sets where the velocity is respectively positive and
negative (see Definition 2 in the algorithm).

At a discrete time tn, the front will be represented by the boundary of an open set Ωn and by a phase field
θn defined equal to 1 on Ωn and −1 on its complementary set. The field θn can be seen as a discretization of
the solution θ of equation (8). In view of equation (8), where the velocity is positive, this will be the region
{θn = 1} that will grow whereas where the velocity is negative, this will be the region {θn = −1} (see Figure
1).

As in the classical FMM, we define the Narrow Band NBn as the points that can be reached by the front.
More precisely, the Narrow Band is defined by

NBn = {J ∈ Z
N , ∃I ∈ V (J), θn

J = −θn
I and θn

Jcn
J < 0},

where θn
J denotes the value of the field θn taken at point J at time tn, cn

J the value of the velocity at point J

at time tn and V (J) denotes the neighborhood of the point J (see Definition 1).
We also define the set of useful points

Un = {I ∈ Z
N , ∃J ∈ V (I) ∩ NBn, θn

J = −θn
I }.
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Narrow Band

θ = 1

c = 0
c > 0

θ = −1

c < 0

Figure 1: Schematic representation of the GFMM. The red balls represent the points of the Narrow Band, while
the blue squares represent the useful points.

In fact, this set consists more or less of the points that the front has already crossed and for which we know the
crossing time. This corresponds to the ”frozen” region of the classical FMM. These are the values of the points
that we will use in the computation of the candidate time.

With this new definition, the algorithm is now essentially the same as the classical FMM: for all point J of
the Narrow Band NBn, we compute a candidate time (ũn

J) by solving (6) using only the values of the useful
points. We denote by t̃n+1 the value of the minimum of the candidate times and we accept (i.e we change θ) at
time tn+1 all the points that realize the minimum. In most cases, we have tn+1 = t̃n+1, except if t̃n+1 < tn or
t̃n+1 ≫ tn (see Step 6 of the algorithm).

In [6, 14], the authors have proved the convergence of the algorithm in the framework of discontinuous
viscosity solutions. To explain their result, we need to introduce some notations.

Let us denote by {tnk
, k ∈ N} a strictly increasing subsequence of the physical sequence of time {tn, n ∈ N}

given by the algorithm (and which is only non-decreasing), such that

tnk
= tnk+1 = ... = tnk+1−1 < tnk+1

.

We denote by Sk
I the square cell Sk

I = [xI , xI + ∆x[×[tnk
, tnk+1

[ with

[xI , xI + ∆x[= ΠN
α=1[xiα

, xiα
+ ∆x[.

We denote by θǫ an extension of θn on the whole space:

θǫ(x, t) = θ
nk+1−1

I if (x, t) ∈ Sk
I . (9)

Finally, we define the half-relaxed limits of θǫ by

θ
0
(x, t) = lim sup

ǫ→0,y→x,s→t

θǫ(y, s), θ0(x, t) = lim inf
ǫ→0,y→x,s→t

θǫ(y, s). (10)

The convergence result for this scheme is the following one: θ
0

is a sub-solution of (8) and θ0 is a super-
solution. In particular, if the solution θ of (8) is unique and if the Lebesgue measure of ∂{θ = 1} is zero, then
we have the convergence in the L1 sense (see [7] for an exact setting). The key fact to obtain the convergence
is that the algorithm is monotone (in [6], it is monotone on the region where the velocity is non zero, which is
sufficient). We also refer to [7] for the convergence of the scheme for a non-local motion in which the velocity
depends on all the front.
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3 Image Segmentation using the GFMM

With the mathematical background previously outlined, the question that remains to be dealt with is how to
build a normal velocity suitable for the segmentation problem which should allow to simultaneously have parts
moving inward and others moving outward. As previously mentioned, the way the velocity is designed is related
to the work by Chan-Vese. We think here that a region-based approach, as they do, should be preferred insofar
as classical methods which use local detection criteria (geodesic active contours, etc...) require the computation
of geometrical properties of the front (normal vectors, ...). This, without regularization constraint, may lead to
artefacts or inappropriate behaviour of the front.
In subsection 3.1, we recall the main ideas of the Chan-Vese model and give the modelling of our approch. Its
corresponding algorithm is detailed in subsection 3.2.

3.1 Modelling

Let Ω be a bounded open subset of R
n, ∂Ω its boundary and let I be a given bounded image function defined

by I : Ω̄ → R. For the purpose of illustration, we consider n = 2 although the model can be easily extended
to the case n = 3. As mentioned by Aubert and Kornprobst in [1], the Chan-Vese model aims at finding the
best approximation of the image as a function taking only two values. It is a particular case of the minimal
partition problem and it is based on the piecewise-constant Mumford-Shah functional (see [25]). Contrary to
classical methods which involve a stopping criterion based on the image gradient (that is, a local criterion),
the Chan-Vese model is region-based and does not require the computation of an edge-detector function. The
evolving contour C is embedded in a higher-dimensional lipschitz continuous function Φ. More precisely, it is
implicitly represented as the zero level line of the function Φ such that:






C = ∂w =
{
(x, y) ∈ Ω | Φ(x, y) = 0

}
,

inside(C) = w =
{
(x, y) ∈ Ω | Φ(x, y) > 0

}
,

outside(C) = Ω − w̄ =
{
(x, y) ∈ Ω | Φ(x, y) < 0

}
.

An energy minimization problem is then introduced including both a fidelity term that ensures that the curve
will match the edge(s) of the object(s) to be detected and a regularizing term based on the length of the curve
(in order to penalize oscillations). Chan and Vese consider the following problem:

inf
c1,c2,C

F (c1, c2, C),

with

F (c1, c2, C) =µ

∫

Ω

δ(Φ)|∇Φ|dxdy + λ1

∫

Ω

(I(x, y) − c1)
2H(Φ(x, y))dxdy+

λ2

∫

Ω

(I(x, y) − c2)
2(1 − H(Φ(x, y)))dxdy,

c1 and c2 being two unknown constants depending on C, H and δ being respectively the Heaviside function

and Dirac delta function and µ, λ1, λ2 > 0 fixed tuning parameters. Note that

∫

Ω

δ(Φ)|∇Φ|dxdy is the level

set representation of the length of the curve C. The constants c1 and c2 are expressed keeping Φ fixed and
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minimizing F with respect to c1 and c2, it yields:

c1 =

∫

Ω

I(x, y)H(Φ(x, y))dxdy

∫

Ω

H(Φ(x, y))dxdy

,

c2 =

∫

Ω

I(x, y)(1 − H(Φ(x, y)))dxdy

∫

Ω

(1 − H(Φ(x, y)))dxdy

and the Euler-Lagrange equation for the unknown Φ is computed using regularized versions of H and δ denoted
by Hǫ and δǫ. A gradient descent method is applied and the evolution equation of Φ is eventually defined by:

∂Φ

∂t
= δǫ(Φ)

(
µ div(

∇Φ

|∇Φ|
) − λ1

(
I − c1

)2
+ λ2

(
I − c2

)2

)
.

The segmentation criterion in this modelling can be easily understood. Let us consider the following synthetic
image (Figure 2) and the evolving contour in red. Let us also consider the green point of the curve. It is obvious
that in this case (I − c2)

2 ≃ 0 and (I − c1)
2 is bigger. As a consequence, this part of the curve will move

according to the inward normal vector to the curve. On the contrary, the yellow point is such that (I − c2)
2 is

bigger thus this part of the curve will move outward.

Figure 2: Illustration of the segmentation criterion in the modelling.

Our velocity is based on the fitting component of the Chan-Vese model and is defined as follows (we use the
notation x as space variable): at time tn, with the previous notations,

c(x, tn) = (I(x) − c2)
2 − (I(x) − c1)

2,

with c1 =

∫

Ω

I(x)1Ωn
dx

∫

Ω

1Ωn
dx

and c2 =

∫

Ω

I(x)1Ωc
n
dx

∫

Ω

1Ωc
n
dx

, c depending on time through c1 and c2 that are both time-

varying. (A weighted combination of (I(x) − c2)
2 and (I(x) − c1)

2 could be used).
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3.2 Algorithm

In this subsection, we want to propose a numerical scheme of Fast Marching Method type (see Sethian [32, 31])
to compute the evolution of a front driven by its normal velocity c(x, t) given by

c(x, t) = (I(x) − c2)
2 − (I(x) − c1)

2, (11)

with c1 and c2 defined above. This velocity is easily computed at each time tn with the characteristic functions
of the sets Ωn and Ωc

n. In particular, we do not have a constant sign for c during the evolution. The goal
is to use the generalization of the Fast Marching Method proposed by Carlini et al. in [6, 7] for the eikonal
equation with changing-sign velocities. More precisely, the initial front is the boundary of an open set Ω0, which
is represented by a characteristic function 1Ω0

− 1Ωc
0
, defined equal to 1 on Ω0 and −1 on its complementary

set. Mathematically, we are interested in the discontinuous viscosity solution θ(x, t) of the following equation

{
θt(x, t) = c (x, t) |∇θ(x, t)| on R

N × (0, T )
θ(·, 0) = 1Ω0

− 1Ωc
0
.

(12)

Here the support of the discontinuities of the function θ localizes the front we are interested in.

3.2.1 Notations and preliminary definitions

Let N be the dimension. Let us consider a lattice Q ≡ {xI = (xi1 , .., xiN
) = (i1∆x, .., iN∆x),

I = (i1, .., iN ) ∈ Z
N} with space step ∆x > 0. We will also use a time step ∆t > 0.

The following definitions will be useful in the sequel.

Definition 1. The neighborhood of the node I ∈ Z
N is the set

V (I) ≡ {J ∈ Z
N : |J − I| ≤ 1}.

As mentioned above, we have to somehow regularize the velocity in space by introducing a band of zero
to separate the region where the velocity is positive from the one where it is negative. This prevents the case
where two neighboring points are respectively in NB+ and NB− from occurring.

Definition 2. We define the speed cn
I by:

cn
I = c(xI , tn)

We then define the numerical speed by:

ĉn
I ≡

{
0 if there exists J ∈ V (I) such that (cn

I cn
J < 0 and |cn

I | ≤ |cn
J |),

cn
I otherwise.

Definition 3. The numerical boundary ∂E of a set E ⊂ Z
N is

∂E ≡ V (E)\E

with
V (E) =

{
J ∈ Z

N , ∃I ∈ E, J ∈ V (I)
}

Definition 4. Given a field θn with values +1 and −1, we define the two phases

Θn
± ≡ {I : θn

I = ±1},

and the fronts
Fn
± ≡ ∂Θn

∓, Fn ≡ Fn
+ ∪ Fn

−.
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In the description of the algorithm, we will use the notations:

±g ≥ 0 for I ∈ F±

means
+g ≥ 0 for I ∈ F+ and − g ≥ 0 for I ∈ F−.

Moreover,
min
±

{0, g±} ≡ min{0, g+, g−} and max
±

{0, g±} ≡ max{0, g+, g−}

and
Ik,± = (i1, .., ik−1, ik ± 1, ik+1, .., iN ). (13)

To present the algorithm, we need to define, for each point K ∈ Z
N , the set of points I that are useful to

compute the candidate time ũn
K , namely, the set:

Un(K) = {I ∈ V (K), θn
I = −θn

K and θn
I ĉn

K > 0}, Un = ∪KUn(K).

We also define the Narrow Band:

NBn = {I,∃ J s.t. J ∈ Un(I)}, NBn
± = NBn ∩ {I, θn

I = ±1}.

We observe that the Narrow Bands NBn
± are related to the previous definitions of front sets by:

NBn
+ = Fn

+ ∩ {I, ĉn
I < 0}, NBn

− = Fn
− ∩ {I, ĉn

I > 0}.

3.2.2 The algorithm step-by-step

We now describe our algorithm. As one can see, to correctly track the evolution, we need to introduce a discrete
function un

I ∈ R
+ defined for I ∈ Un to represent the approximated physical time for the front propagation at

nodes I = (i1, .., iN ) of the fronts and at the n-th iteration of the algorithm.

Initialization

1. Set n = 1

2. Initialize the field θ0 as

θ0
I =

{
1 for xI ∈ Ω0

−1 elsewhere

3. Initialize the time on F 0

u0
I = 0 for all I ∈ U0

Main cycle

4. Compute ũn−1 on NBn−1 as follows:
Let I ∈ NBn−1, then we define ûn−1

J→I as

ûn−1
J→I =

{
un−1

J if J ∈ Un−1(I)
∞ otherwise.

We compute ũn−1
I as the solution of the following second order equation:

N∑

k=1

(
max
±

(
0, ũn−1

I − ûn−1

Ik,±→I

))2

=
(∆x)2

|ĉn−1
I |2

, (14)

where Ik,± is defined in (13) (see [32] for numerical details).
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5. t̃n = min
{
ũn−1

I , I ∈ NBn−1
}
.

6. tn = max(tn−1, t̃n)

7. if tn = tn−1 + ∆t and tn < t̃n go to 4 with n := n + 1, θn = θn−1 and un = un−1.

8. Initialize the new accepted point
NAn

± = {I ∈ Fn−1
± , ũn−1

I = t̃n}, NAn = NAn
+ ∪ NAn

−

9. Reinitialize θn

θn
I =

{
∓θn−1

I if I ∈ NAn
±

θn−1
I otherwise

10. Reinitialize un on Un

(a) If I 6∈ Un−1, then un
I = tn,

(b) If I ∈ Un−1, then un
I = un−1

I .

11. Set n := n + 1 and go to 4

Remark 1.

• In step 4, we use the regularized velocity ĉ and not c in order to stabilize the front. Indeed, if we do not
do that, this typically leads to a duplication of the front.

• The sequence of time (t̃n) is not necessary non-decreasing in time. Indeed, if the velocity increases in
time, we can have t̃n < t̃n−1 and so we have to do something to have an increasing sequence of time. In
fact, step 8 guarantees that the physical time tn does not decrease.

• In step 10, for the reinitialization of un
I , we change its value only if a point of the neighborhood of the

point I has been accepted. Moreover when un
I is updated, we use the physical time tn and not t̃n.

3.2.3 Implementation and computational complexity

In this subsection, we give some rough asymptotic bounds on the computational complexity of our GFMM
algorithm for image segmentation and we give some remarks on the implementation.

From a complexity point of view, it is not interesting to recompute the velocity at each iteration. Indeed, in
the implementation, we will fix a time step ∆T and we will recompute the velocity only at each k∆T for k ∈ Z.

To fix the ideas, we work on a (spatial) grid box of width ∆x ≃
1

M
1
2

, and therefore with a total number of

grid points equal to M . We assume that the velocity is normalized |c| ≃ 1 and then the time T necessary for
the front to pass once on the whole grid box is roughly T ≃ 1. The typical size (as a number of grid points) of

the front is M
1
2 in the box.

Since the time T necessary for the front to pass once on the whole grid box is roughly T ≃ 1, we deduce that
the number of time intervals [k∆T, (k + 1)∆T ) is T

∆T
= 1

∆T
. On each interval [k∆T, (k + 1)∆T ), we will use a

binary heap (as in the classical FMM). Because the velocity is independent of time, we only need to recompute
the values of the time at the points I whose neighbors have been accepted (i.e., I ∈ V (NAn)). This implies
that our GFMM is equivalent to two FMM algorithms and so we recover the complexity in Mk log Mk where
Mk is the number of points crossed by the front during this interval of time (with

∑
k Mk = M). This gives a

complexity
1

∆T∑

k=1

Mk log Mk.
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Moreover, at each k∆T , we have to recompute the velocity (only for the points of the Narrow Band),
the candidate times and the binary heap (since the velocity changes). The complexity for these operations is

O(M
1
2 log M). Therefore, the total complexity is:

1
∆T∑

k=1

Mk log Mk +

1
∆T∑

k=1

M
1
2 log M ≤ M log M +

1

∆T
M

1
2 log M.

If ∆T ≥ 1

M
1
2

, we then get a complexity in O(M log M) (as in the classical case).

4 Numerical results

We conclude this paper by presenting several numerical results. These experiments have been performed on
a 2.21GHz Athlon with 1.00 GB of RAM. As previously stressed, the computation cost of this method is
comparable to the one of the classical Fast Marching Method. For the presented experimentations, it is of the
order of the second.
We first give a basic example that emphasizes the robustness of the GFMM with regards to initialization. It
requires a non-constant sign of the normal velocity for the last two tests. Three kinds of initialization are given:

• A first one (figure 3) which shows that the GFMM handles splits.

• A second one (figure 4) which stresses that the initial set Ω0 can be made of several shapes without
additional procedure. The classical FMM would fail to detect both shapes. The shape below would just
collapse and disappear.

• A last one (figure 5), showing that the initial condition can be anywhere in the image.

Figure 3: Segmentation of two balls. Different steps of the process. The GFMM handles topological changes
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Figure 4: Segmentation of two balls. Different steps of the process. The initial set Ω0 can be made of several
shapes.
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Figure 5: Segmentation of two balls. Different steps of the process. The initial set Ω0 can be anywhere in the
image.

The following examples (figures 6 and 7) show that the initial condition can intersect the object to be detected
and that the method can handle intricate shapes. The proposed method qualitatively performs in a way similar
to the Chan-Vese model in this case. This, again, would not be possible with the classical FMM.
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Figure 6: Segmentation of a hand. Different steps of the process. The initial front intersects the object.

Figure 7: Segmentation of a brain. Different steps of the process. The initial front intersects the object.

Of course, the proposed method cannot automatically detect interior contours but this drawback is overcome
by the flexibility in the initialization step induced by the modelling. We illustrate this remark with the following
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examples. In figure 8 (Courtesy of the Laboratory of Neuro Imaging, UCLA, School of Medicine), the initial
set Ω0 is a deformed tore.

Figure 8: Different steps of the process. The initial set Ω0 is a deformed tore.
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In figure 9, the initial shape contains three holes. This stresses the ability of the GFMM to handle any kind
of initialization.

Figure 9: Different steps of the process. The initial set Ω0 is a shape with three holes.
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5 Conclusion

We have proposed a new approach based on the FMM and on the Chan-Vese model for segmentation. This
new model keeps the advantages (fast, efficient, robust) of the well-known FMM. The GFMM also offers the
possibility of having a velocity with a non constant sign. Theoretical results, modelling and applications have
been given, and they demonstrated the potentiality of this method. Many other applications (in combustion,
fluid simulations, interface evolution, 3D sculpting in CAGD...) are in progress.
We now expect to extend this new approach to more complicated images with textured components for which the
region-based velocity alone would be inaccurate, or simply noisy images (this last point requiring a regularization
term to penalize oscillations). We believe that, in this prospect, the expression of the velocity should include
both a non-local term and a local term. This local term could use geometrical properties of the propagating
front such as normal vectors or mean curvature (for regularizing properties). In [24], Merriman, Bence and
Osher address the issue of evolving the boundary of a region (with characteristic function χ) with a normal
speed equal to the mean curvature. The procedure is simple since it consists in convolving the characteristic
function with a Gaussian kernel, which can be done by solving the heat equation.
An area to think about would then be to propose an alternating framework: our proposed GFMM algorithm
with some periodic regularizing steps using the approach proposed by Merriman et al.. This is a work in
progress.
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cations (Berlin) [Mathematics & Applications]. Springer-Verlag, Paris, 1994.

[4] X. Bresson, S. Esedoglu, P. Vandergheynst, J. Thiran, and S. Osher. Fast global minimization of the active
contour/snake models. J. Math. Imaging. and Vision, 28(2):151–167, 2007.

[5] E. Carlini, E. Cristiani, and N. Forcadel. A non-monotone fast marching scheme for a hamilton-jacobi
equation modeling dislocation dynamics. ENUMATH 2005, Santiago de Compostela (Spain), 2007.

[6] E. Carlini, M. Falcone, N. Forcadel, and R. Monneau. Convergence of a Generalized Fast Marching Method
for a non-convex eikonal equation. submitted, 2007.

[7] E. Carlini, N. Forcadel, and R. Monneau. Generalized fast marching method for dislocation dynamics.
work in progress, 2007.

[8] V. Caselles, R. Kimmel, and G. Sapiro. Geodesic Active Contours. International Journal of computer
Vision, 22(1):61–87, 1993.

[9] T. Chan and L. Vese. Active Contours Without Edges. IEEE Transactions on Image Processing, 10(2):266–
277, 2001.

[10] T.F. Chan, S. Esedoglu, and M. Nikolova. Algorithms for finding global minimizers of image segmentation
and denoising models. SIAM J. Appl. Math., 66(5):1632–1648, 2006.

[11] J. T. Chung and L. Vese. Image Segmentation Using a Multilayer Level-Set Approach. EMMCVPR 2005:
439-455, 2005.

[12] L.D. Cohen. On active contour models and balloons. CVGIP:IU, 52(2), 1991.

[13] C.L. Epstein and M. Gage. The curve shortening flow. Wave motion: Theory , Modelling and Computation,
A. Chorin and A. Majda Eds, 1997.

[14] N. Forcadel. Comparison principle for the generalized fast marching method. work in progress.

[15] C. Gout and C. Le Guyader. Segmentation of complex geophysical structures with well data. Comput.
Geosci., 10(4):361–372, 2006.

[16] C. Gout, C. Le Guyader, and L. Vese. Segmentation under geometrical conditions using geodesic active
contours and interpolation using level set methods. Numerical Algoirthms, 39(1,3):155–173, 2005.

[17] A. Herbulot, S. Jehan-Besson, M. Barlaud, and G. Aubert. Shape gradient for image segmentation using
information theory. IEEE ICASSP, pages 21–24, 2004.

[18] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models in Proceeding. First international
conference on computer vision, London, England, IEEE, Piscataway NJ, pages 259–268, 1987.

[19] S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, and A. Yezzi. Gradient flows and geometric active
contour models. Proceedings, Fifth International Conference on Computer Vision, pages 810–815, 1995.

20



[20] J. Kim, J.W. Fisher III, A. Jr Yezzi, M. Cetin, and A.S. Willsky. Nonparametric methods for image
segmentation using information theory and curve evolution. IEEE ICIP, pages 797–800, 2002.

[21] C. Le Guyader, D. Apprato, and Gout C. The level set methods and image segmentation under interpolation
conditions. Numerical Algorithms, 39((1-3)):221–235, 2005.

[22] R. Malladi and J.A. Sethian. An O(n logn) Algorithm for Shape Modeling. Proceedings of the National
Academy of Sciences, 93:9389–9392, 1996.

[23] R. Malladi, J.A. Sethian, and B. Vemuri. Evolutionary Fronts for Topology-independent Shape Modeling
and Recovery. Proceedings of Third European Conference on Computer Vision, pages 3–13, 1994.

[24] B. Merriman, J. Bence, and S. Osher. Diffusion Generated Motion by Mean Curvature. In J.E. Taylor,
editor, Proceedings of the Computational Crystal Growers Workshop, American Mathematical Society,
Providence, Rhode Island, pages 73–83, 1992.

[25] D. Mumford and J. Shah. Optimal approximation by piecewise smooth functions and associated variational
problems. Commun. Pure Appl. Math., 42:577–685, 1989.

[26] S. Osher and R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces. Springer Verlag, 2003.

[27] S. Osher and N. Paragios. Geometric Level Set Methods in Imaging, Vision, and Graphics. Springer Verlag,
2003.

[28] S. Osher and J.A. Sethian. Fronts propagation with curvature dependent speed : Algorithms based on
Hamilton-Jacobi formulations. Journal of Computational Physics, 79, 1988.

[29] V. Rouy and F. Tourin. A Viscosity Solutions Approach to Shape-From-Shading. SIAM J. Num. Anal.,
29(3):867–884, 1992.

[30] J.A. Sethian. A review of recent numerical algorithms for hypersurfaces moving with curvature dependent
flows. J.Differential Geometry, 31:131–161, 1989.

[31] J.A. Sethian. A Fast Marching Level Set Method for Monotonically Advancing fronts. submitted for
publication: Proceedings of the National Academy of Sciences, 1995.

[32] J.A. Sethian. Level Set Methods and Fast Marching Methods: Evolving interfaces in Computational Ge-
ometry, Fluid Mechanics, Computer Vision and Material Science. Cambridge University Press, Londres,
1999.

[33] J.A. Sethian. Evolution, Implementation and Application of Level Set and Fast Marching Methods for
Advancing Fronts. Journal of Computational Physics, 169(2):503–555, 2001.

[34] Y.R. Tsai, L. T. Cheng, S. Osher, and H. K. Zhao. Fast sweeping algorithms for a class of Hamilton-Jacobi
equations. SIAM Journal on Numerical Analysis, 41(2):673–694, 2002.

[35] N. Tsitsiklis. Efficient algorithms for globally optimal trajectories. IEEE Tran. Automatic. Control,
40:1528–1538, 1995.

[36] L. Vese and T. Chan. A Multiphase Level Set Framework for Image Segmentation Using the Mumford and
Shah Model. International Journal of Computer Vision, 50(3):271–293, 2002.

[37] C. Xu and J.L. Prince. Snakes, shapes, and gradient vector flow. IEEE Transactions on Image Processing,
7(3):359–369, 1998.

21



[38] L. Yatziv, A. Bartesaghi, and G. Sapiro. O(n) Implementation of the Fast Marching Algorithm. Journal
of Computational Physics, 212(2):393–399, 2006.

[39] H.-K. Zhao. Fast sweeping method for Eikonal equations. Mathematics of Computation, 74:603–627, 2004.

[40] H.-K. Zhao, T. Chan, B. Merriman, and S Osher. A variational level set approach to multiphase motion.
J. Comput. Phys., 127:179–195, 1996.

22


