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Motivated by empirical observations of spatio-temporal clusters of crime across a wide
variety of urban settings, we present a model to study the emergence, dynamics, and
steady state properties of crime hotspots. We focus on a two-dimensional lattice model
for residential burglary, where each site is characterized by a dynamic attractiveness
variable, and where each criminal is represented as a random walker. The dynamics of
criminals and of the attractiveness field are coupled to each other via specific biasing and
feedback mechanisms. Depending on parameter choices, we observe and describe several
regimes of aggregation, including hotspots of high criminal activity. On the basis of the
discrete system, we also derive a continuum model; the two are in good quantitative
agreement for large system sizes. By means of a linear stability analysis we are able
to determine the parameter values that will lead to the creation of stable hotspots. We
discuss our model and results in the context of established criminological and sociological
findings of criminal behavior.
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1. Introduction

One unfortunate aspect of modern life is the presence of crime in every major urban
area. However, while crime itself is ubiquitous, it does not appear to be uniformly
distributed within space and time. For example, while some neighborhoods tend to
be reasonably safe, others appear far more dangerous and display dense clusters of
both property and violent crimes.9,7,35,21 Also, temporal correlations between crimes
are well documented, with victims or their close neighbors often being repeatedly
targeted within short periods of time.26,27,25,1 These spatio-temporal aggregates of
criminal occurrences are commonly referred to as crime “hotspots”, and thanks to
recent advances in mapping technology it is possible to track their evolution at
fine spatial and temporal scales.44 The typical lifetimes and length scales of crime
hotspots are observed to vary depending upon the particular geographic, economic,
or seasonal conditions present. Also, depending on the specific category of crime
in question, hot spots are seen to emerge, diffuse and dissipate in ways suggestive
of a structured, albeit complex, underlying dynamics. Despite this wealth of data,
the efforts of law enforcement agencies towards utilizing empirical knowledge of
hotspots as a tool to fight crime have been hampered by uncertainty about the
predictability of such patterns.31,34

Many theories have been presented within the criminology community to under-
stand why hotspots emerge in some locations rather than others, how they evolve,
and how their “macroscopic” size and lifetime features are connected to the “mi-
croscopic” behaviors of offenders, victims, law enforcement agents, and the local
geography. In general, crimes can only occur when a motivated offender encounters
a suitable victim or target in the absence of effective security measures. In this
context, the structure of the urban environment may play an important role con-
straining the movement of offenders and potential targets. For example, features
such as traffic volume, vacant or abandoned property, population density, and the
distribution of so-called crime generators impact crime patterns.2,21,42,41,37,11

How these numerous micro-scale behavioral and environmental variables com-
bine to generate higher scale crime patterns is still a matter of debate. This is true
even for the relatively simple case of residential burglary where the spatial distribu-
tion of targets (i.e., houses) remains constant over time. What drives the emergence
of different burglary patterns must be related not only to how offenders move within
their environments, but also to how they respond to the successes and failures of
their illicit activities. For example, residential burglars prefer to return to a previ-
ously burglarized house, or the ones adjacent to it, in part because it is at precisely
these locations where they have good information about the types of property that
might be stolen and the schedules of inhabitants.25,46 These are known as repeat
or near-repeat events, depending upon whether the burglar revisits the same home
or one of its neighbors, respectively. On the other hand, the formation of crime
patterns may be driven by environmental cues, where past crimes in a certain area
create the image of a crime tolerant neighborhood and lead to the proliferation of
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Fig. 1. Dynamic changes in residential burglary hotspots for two consecutive three month periods
beginning June 2001 in Long Beach, CA. These density maps were created using ArcGIS.

illegal activity; this is the so-called “broken windows” effect.45

The goal of this paper is to present a quantitative mathematical model that
captures the essential dynamics of hotspot formation in light of the above sociolog-
ical observations. We shall focus on residential burglary, which in many ways is the
simplest crime type, since mobile offenders are coupled to stationary target sites
and further complexity arising from the relative movement between the agents at
play may be ignored.

Our starting point is a discrete lattice system where every site corresponds to
a target house. The lattice is further characterized by a series of offender agents
moving from site to site according to specific rules. As we shall better illustrate
in Sec. 2, burglar dynamics are strongly coupled to the level of attractiveness of
target sites, with offender movement and rate of burglary biased towards more
desirable locations. This bias could arise due to the fact that certain homes may
indeed be easier to break into, or that these houses might simply be perceived to be
better targets. The criminological and sociological effects described earlier will be
incorporated into our model by letting the degree of attractiveness of each site be
a dynamic, non-uniform quantity dependent upon both previous burglary events at
the same location and memory effects from burglaries at neighboring sites. We will
be interested in the role of this feedback loop on the dynamics and morphology of
the criminal hotspots.

A continuum derivation based upon the discrete model will also be presented.
Here, we coarse grain our discrete grid so that burglars are locally described by
a number density function, and interactions with the environment are embodied
via coupling of this function with the coarse grained attractiveness. Our continuum
crime model will consist of two coupled reaction-diffusion-like equations describing
the spatio-temporal evolution of number density and attractiveness, giving rise to
hotspot formation. In the limit of large criminal populations and lattice sizes, the
discrete and continuum models exhibit similar features.
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2. Discrete Model

2.1. Overview

Our discrete burglary model consists of two components - the houses at which
burglaries occur, and the criminal agents that commit these burglaries. The houses
are imagined as existing on a two-dimensional lattice; for simplicity, we choose a
rectangular grid with constant lattice spacing ` and periodic boundary conditions,
though more complicated arrangements that better reflect the layout of an actual
city are possible. In conjunction with the lattice spacing `, a discrete time unit
δt over which criminal actions will occur is also chosen. Each house is described
by its lattice site s = (i, j) and a quantity As(t), which we will refer to as the
attractiveness of the site. As the name implies, As(t) is a measure of the burglars’
perception of the attractiveness of the home at site s, and we model it as being
equivalent to the statistical rate of burglary at site s when a burglar is present.
We make no attempt to derive this attractiveness from underlying properties of the
residence, such as value, security, or location. Instead, we treat the attractiveness
in the spirit of collective behavior, modeling it after the sociological phenomena of
repeat and near-repeat victimization and the broken windows effect discussed in
the introduction. With this in mind, we let

As(t) ≡ A0
s + Bs(t) , (2.1)

where A0
s represents a static, though possibly spatially varying, component of the

attractiveness, and Bs(t) represents the dynamic component associated with repeat
and near-repeat victimization. We shall discuss the behavior of Bs(t) shortly.

The criminal agents in our model may perform one of two actions during any
given simulated time interval: burglarize the house at which they are currently
located, or move to one of the neighboring houses. Burglary is a random event that
is characterized by a probability of occurrence for each burglar located at site s

between times t and t + δt given by

ps(t) = 1− e−As(t)δt . (2.2)

This probability is in accordance with a standard Poisson process in which the
expected number of events during the time interval of length δt is As(t)δt. Whenever
the site s is burglarized, the corresponding criminal agent is removed from the lattice
at that time. This removal represents the tendency of actual burglars to flee the
location of their crime after committing it. Burglars are here assumed to simply
return home with their looted goods and to abstain from further crime for the time
being. To simulate the removed burglars returning to active status, burglars are also
generated at each lattice site at a rate Γ. This rate could in principle be spatially
varying, though we will consider only the case of a uniform value.

If the criminal agent chooses not to burglarize its current location, it will then
move to one of the neighboring spots on the grid. This movement will be treated as a
random walk process that is biased toward areas of high attractiveness; the justifica-
tion for this choice is threefold. First, it is well-known that criminals predominantly
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Fig. 2. Flowchart summarizing the discrete simulations.

search for and victimize individuals or property in very local areas surrounding the
locations that they routinely visit such as home, work, or places of recreation.10

Second, journey-to-crime distributions generally show that the distances that crim-
inals are willing to travel away from their primary residence to engage in crime is a
monotonically decreasing function.36 Third, in the case of residential burglary, the
tendency to stay close to home often outweighs gains that might be had in traveling
farther to victimize more desirable targets.5,6 Random walk models should therefore
be appropriate for studying how criminal offenders encounter criminal opportunities
because the behavior of these models is fundamentally local.

We generate the aforementioned criminal motion in our model by defining the
probability of movement from site s to the neighboring site n as

qs→n(t) =
An(t)∑

s′∼s

As′(t)
, (2.3)

where the notation s′ ∼ s indicates all of the sites neighboring site s. Note that,
by enforcing that a criminal agent will move exactly one grid-spacing ` within any
timestep δt, we have essentially defined the movement speed of the criminals, and
must choose our grid spacing ` and time interval δt in accordance with each other
so that this speed adopts a reasonable value.

In the case of residential burglary, it has been suggested that individual resi-
dences experience an elevated risk of being re-victimized in a short period of time
after a first break in.25,24 We introduce such repeat victimization by letting the dy-
namic attractiveness Bs(t) depend upon previous burglary events at site s. Specifi-
cally, every time a house is burglarized, we increase Bs(t) for that site by a quantity
θ, so that the probability for subsequent burglary events at that home increases via
Eq. (2.2). It is reasonable to suppose, however, that this increased probability of
burglary at a house has a finite lifetime, and as time progresses the attractiveness
returns to the baseline value. We model this increase and decay according to the
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update rule

Bs(t + δt) = Bs(t)(1− ωδt) + θEs(t) , (2.4)

where ω sets a time scale over which repeat victimizations are most likely to occur
and Es(t) is the number of burglary event that occurred at site s during the time
interval beginning at time t.

Finally, we model near-repeat victimization25,24 and the broken windows effect45

by allowing Bs(t) to spread spatially from each house to its neighbors. This is
accomplished by modifying Eq. (2.4) to read

Bs(t + δt) =

[
(1− η)Bs(t) +

η

z

∑

s′∼s

Bs′(t)

]
(1− ωδt) + θEs(t) , (2.5)

where z, the coordination number, is the number of sites s′ which neighbor s (four
for the square lattice), and η is simply a parameter between zero and unity that
measures the significance of neighborhood effects. Higher values of η lead to a greater
degree of spreading of the attractiveness generated by any given burglary event, and
lower values lead to the opposite. Eq. (2.5) can be rewritten in the form

Bs(t + δt) =
[
Bs(t) +

η`2

z
∆Bs(t)

]
(1− ωδt) + θEs(t) , (2.6)

where ∆ is the discrete spatial Laplacian operator

∆Bs(t) =

(∑

s′∼s

Bs′(t)− zBs(t)

)
/`2 . (2.7)

Figure 2 presents a visual summary of this section of the paper in the form of a
flowchart.

The simplest case for our discrete system is the spatially homogeneous equilib-
rium solution. Here, all sites have the same attractiveness A, and, on average, the
same number of criminals n. For the attractiveness of any given site to stay fixed,
the amount by which the attractiveness decays in one timestep must be equal to
the amount by which it increases due to burglary events:

ωB = θ n p . (2.8)

Similarly, in order for the number of criminals at a site to remain fixed, the number
of criminals removed in one timestep (equal to the number of burglary events during
that timestep) must be equal to the number of criminals produced at that site at
rate Γ:

n p = Γδt . (2.9)

Putting these two equations together allows us to solve for the homogeneous equi-
librium values

B =
θΓ
ω

, n =
Γδt

1− eAδt
. (2.10)

The question of whether or not a system placed in this homogeneous equilibrium
state will remain in it will be answered in our next section.
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Table 1. Summary of parameters present in the discrete model.

Parameter Name Meaning

` Grid spacing
δt Time step
ω Dynamic attractiveness decay rate
η Measures neighborhood effects (ranging from 0 to 1)
θ Increase in attractiveness due to one burglary event

A0
s Intrinsic attractiveness of site s

Γ Rate of burglar generation at each site

2.2. Computer Simulations

Computer simulations of the model described above follow the general outline as
shown in Fig. 2. The main purpose of the simulations is to give insight into the
behavior of the model under various combinations of the many parameters present
(see Table 1).

By varying these parameters, we observe three distinct behavioral regimes for
the attractiveness field As(t):

(1) Spatial homogeneity. In this regime, the attractiveness field has essentially the
same value at all points. Any local increases in the field due to recent burglaries
disappear very quickly.

(2) Dynamic hotspots. In this regime, localized spots of increased attractiveness
form and remain for varying lengths of time. These spots may remain mostly
fixed in space during their lifetime, or they may appear and disappear at seem-
ingly random locations. Also, the degree of disparity in attractiveness between
those areas within the hotspots and not within the hotspots depends upon
parameter choices.

(3) Stationary hotspots. In this regime, the system tends toward a steady state in
which stationary spots of high attractiveness are found, surrounded by areas of
extremely low attractiveness. The size of these spots varies depending upon the
parameters chosen.

Some example output from the simulation for each of the cases above can be
seen in Fig. 3, where we display color-maps of the attractiveness field as it evolves
in time for various sets of parameters. The spatially homogeneous equilibrium value
of the dynamic attractiveness B serves as a midpoint, and is shaded in green. Other
values of attractiveness follow the rainbow spectrum from violet, corresponding
to Bs = 0, to red, corresponding to Bs ≥ 2B. For these particular simulations,
parameters were chosen to represent possibly realistic values for those quantities
which lend themselves well to estimation. All four were run with `=1, δt=1/100,
ω=1/15, and A0=1/30, where time may be interpreted in units of days, and distance
in units of house separation. In this case, the difference between the three regimes
of behavior arises by varying η, θ, and Γ: in Fig. 3(a), η=0.2, θ=0.56, and Γ=0.019;
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Fig. 3. Output from the discrete simulation, using parameters described in the text. For the low
criminal numbers in (b) and (d), we observe dynamic hotspots. Those in (b) are more transient
in nature, while those in (d) linger but display large deformations over time. For higher criminal
numbers, we observe either (a) - no significant hotspots, or (c) - stationary hotspots.

in Fig. 3(b), η=0.2, θ=5.6 and Γ=0.002; in Fig. 3(c), η=0.03, θ=0.56, and Γ=0.019;
and in Fig. 3(d), η=0.03, θ=5.6 and Γ=0.002. All simulations were performed on
a 128x128 grid, with initial conditions Bs(0) = B, and the number of criminals at
each site ns(0) being, on average, equal to n.
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We observe that the difference between those systems that exhibit behavior
(2) (dynamic hotspots) and those that exhibit behaviors (1) (no hotspots) and (3)
(stationary hotspots) lies essentially in the relative amount of stochasticity present
for the parameters chosen. Those simulations that exhibit large numbers of criminals
or burglary events are more likely to fall into regimes (3) or (1) than (2), while those
with low criminal numbers or low numbers of events behave in the opposite way.
This seems to suggest two things: that regimes (1) and (3) are indeed two different
phenomena, and that regime (2) is really only a different manifestation of either (1)
or (3) arising due to finite size effects. In an effort to gain a better understanding
of this, we now turn to the derivation of a continuum approximation of our discrete
model

3. Continuum Limit

3.1. Derivation

Let us begin the derivation of our continuum limit by analyzing the dynamics of
Bs(t) in greater detail. We can, as a first step, express the expected value of the
dynamic attractiveness after one timestep as

Bs(t + δt) =
(

Bs(t) +
η`2

z
∆Bs(t)

)
(1− ωδt) + θns(t)ps(t) . (3.1)

We now convert ns(t) into a number density by simply dividing by `2, and renaming
it ρ(x, t). We subtract Bs(t) from both sides of the equation and then divide the
equation by δt. Finally, we take the limit as both δt and ` become small with respect
to the spatial and temporal scales of interest, with the constraints that the ratio
`2/δt remain fixed with a value we define as D, and that the quantity θδt also remain
fixed with a value ε. The resulting equation gives the dynamics of the continuum
version of the attractiveness,

∂B

∂t
=

ηD

z
∇2B − ωB + εDρA . (3.2)

The derivation of the continuum limit for ns(t) is slightly more involved. We
begin with an equation expressing the expected number of agents at a site after one
timestep, noting that our model demands that all of the agents that were at the
site s at time t must have left the site either by moving to a neighboring site or by
burglarizing the site and thereby being removed. Because of this, any agents that
are present after one timestep must have either arrived there from a neighboring
site after failing to burgle the neighbor, or have been generated there at rate Γ.
Therefore, we conclude that

ns(t + dt) = As

∑

s′∼s

ns′(t) [1− ps′(t)]
Ts′(t)

+ Γdt , (3.3)
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where, for sake of notational simplicity, we have defined

Ts′(t) ≡
∑

s′′∼s′
As′′(t) . (3.4)

Now, we perform an operation like that done previously when converting from
Eq. (2.5) to (2.6) to write the sum in Eq. (3.3) and Ts′(t) in terms of the discrete
spatial Laplacian. We then subtract ns(t) from both sides of the equation, re-express
ns(t) in terms of ρ(x, t), and divide by δt. Upon taking the limits of ` and δt as
described previously, with the further constraint that Γ/`2 = γ, we arrive at our
continuum equation for criminal number density

∂ρ

∂t
=

D

z
~∇ ·

[
~∇ρ− 2ρ

A
~∇A

]
− ρA + γ . (3.5)

Eqs. (3.2) and (3.5) are the main results of our continuum derivation, and are of
the general form of a reaction-diffusion system; such systems often lead to pattern
formation.16 The attractiveness diffuses throughout the environment while simul-
taneously decaying in time and reacting with the criminals to create even more
attractiveness. Criminals are depleted through reactions with the attractiveness
and are created at a constant rate. In addition, the criminals exhibit both diffusive
motion and advective motion up gradients of attractiveness, with a speed that is
inversely proportional to the local attractiveness field. This can be interpreted in a
sociological sense as an example of diminishing returns; if an offender is already lo-
cated at a highly attractive home, it may feel less motivation to move to neighboring
houses that are, relatively speaking, not that much more attractive.

We will now point out two interesting characteristics of our continuum equations
(3.2) and (3.5). First, if we integrate the steady state version of Eq. (3.5) over our
entire spatial domain, we find that the spatially averaged crime rate density is equal
to γ, assuming that the criminal flux is either zero at the boundaries or is periodic.
Interestingly, this means that all systems with a given γ will exhibit the same
overall rate of crime at steady state, regardless of whether that crime is or is not
concentrated in hotspots. Secondly, we see by integrating the steady state version
of Eq. (3.9) over our domain that our homogeneous equilibrium attractiveness value
B is in fact the spatially averaged attractiveness value for any steady state system.
In terms of our continuum parameters, this value is

B =
εDγ

ω
. (3.6)

So, we can now understand in some sense why the stationary hotspots observed
in our discrete simulations appear as they do, surrounded by areas of very low
attractiveness: since the average attractiveness is fixed, areas of high B must be
balanced by areas of low B.

As a final step, let us rewrite Eqs. (3.2) and 3.5 in non-dimensional form. We
first note that a natural time scale for our model is given by τ ≡ 1/ω, as discussed
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previously. A characteristic length scale `c can be defined as

`c ≡
√

D

ω
, (3.7)

which is roughly the distance over which criminal agents diffuse in the time τ it
takes for the attractiveness of a newly burgled house to return to the baseline value.
We therefore scale variables in the following way, denoting dimensionless versions
with a tilde:

Ã = A/ω, ρ̃ = ε`2cρ, x̃ =
√

zx/`c, t̃ = ωt . (3.8)

Using these new variables, our continuum equations can be re-expressed, now drop-
ping the tilde notation, as

∂B

∂t
= η∇2B −B + ρA , and (3.9)

∂ρ

∂t
= ~∇ ·

[
~∇ρ− 2ρ

A
~∇A

]
− ρA + B , (3.10)

where B should be understood as the dimensionless version of Eq. (3.6). Note at this
point that we have now transformed our original discrete system with seven param-
eters into a dimensionless continuum version that has only three free parameters:
η, A0, and B.

Deriving continuum equations from the underlying micro-scale behavior of a sys-
tem is a common procedure in mathematical biology.33,39,19,15,14,22,4,18,3 It is no sur-
prise, then, that Eqs. (3.9) and (3.10) are related to several other well-studied mod-
els. One particular model, which has a large literature in applied mathematics, is the
Keller-Segel model for aggregation based on chemotaxis.28,23,43,13,17,30,40,20,12,38 In
our model, the decay of attractiveness in equation (3.9) includes the time derivative,
which is typically supressed in the chemotaxis models. This is because the timescale
of change of attractiveness can be comparable to that of the motion of criminals,
unlike in the chemotaxis problem. Moreover, in our problem we consider a decay
of criminal density once crimes have occured, which is also not present in typical
chemotaxis models. It would be interesting to consider some basic questions such
as global existence of solutions and long time behavior from general initial data;
these questions are outside the scope of this initial study. Another related model
from population biology studies wolf and coyote territories in which scent markings
are used between animals to establish buffer zones.29,32

3.2. Computer Simulations

In order to verify the validity of our continuum equations, and to compare results
with the discrete model, we have performed numerical simulations of Eqs. (3.2)
and (3.5). Our numerical scheme is semi-implicit, using the following time-stepping



January 29, 2008 12:54 WSPC/INSTRUCTION FILE final˙draft˙math

12 M. Short, V. Pasour, M. D’Orsogna, G. Tita, P. Brantingham, A. Bertozzi, & L. Chayes

t = 730 days,  169 criminals

 0                   50                 100

 0
  

  
  

  
  

  
  

  
  

 5
0

  
  

  
  

  
  

  
  

 1
0

0

(a)

t = 730 days,  70 criminals

 0                   50                 100

 0
  

  
  

  
  

  
  

  
  

 5
0

  
  

  
  

  
  

  
  

 1
0

0

(b)

t = 730 days,  41 criminals

 0                   50                 100

 0
  

  
  

  
  

  
  

  
  

 5
0

  
  

  
  

  
  

  
  

 1
0

0

(c)

Fig. 4. Output from the continuum simulation, using parameters described in the text. Here we
present only the steady state configuration of the attractiveness. The continuum parameters used
in (a) are the equivalent of the discrete parameters used in both Fig. 3(a) and 3(b), and we
observe no hotspots forming. The continuum parameters used in (b) are the equivalent of the
discrete parameters used in both Fig. 3(c) and 3(d), and we observe stationary hotspots with
roughly the same size as those seen in Fig. 3(c). Finally, we illustrate stationary hotspots of a
different size in (c).

algorithms in which gm represents a quantity g at the mth timestep:
[
1 + ω∆t− ηD∆t

z
∇2

]
Bm+1 = Bm + εD∆tρmAm , (3.11)

[
1 + Cm − D∆t

z
∇2

]
ρm+1 = [1 + Cm − fm(A)] ρm−

2D∆t

z

~∇ρm · ~∇Am

Am
+ γ∆t , (3.12)

where

f(A) ≡ 2D∆t

z

[
∇2A

A
− (~∇A)2

A2

]
+ A∆t , (3.13)

C is the global maximum of f(A), and ∆t is the numerical timestep. Eqs. (3.11)
and (3.12) are then solved on a computational grid with spacing h and periodic
boundary conditions using standard spectral methods.8

Example output from the continuum simulation can be seen in Fig. 4, in which
we have plotted the steady state distribution of attractiveness with the same color
coding as used in the discrete simulations. In Figs. 4(a) and 4(b), we have used
continuum parameters that are the equivalent of those used to create the plots in
Fig. 3; Fig. 4(c) illustrates hotspots of a different size, using the same parameters
as in Fig. 4(b) but with η = 0.01. All three are run on a 512x512 lattice with ini-
tial conditions at homogeneous equilibrium, with the exception of a few numerical
gridpoints that start with a slightly higher B value. Since the parameters used to
create Figs. 3(a) and 3(b) give rise to the same continuum parameters (though with
a differing number of total criminals), we have only displayed the output once here
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(Fig. 4(a)); the same is true of the parameters from Figs. 3(c) and 3(d) (Fig. 4(b)).
Note that the continuum simulation output matches the output from the discrete
simulation quite well in the two cases where the number of discrete criminals is
larger. This indicates that our continuum equations are indeed good approximations
of the discrete system under these circumstances. As previously hypothesized, dy-
namic hotspots are never seen in the continuum simulations because their existence
is predicated upon stochasticity and finite size effects not present in the continuum
approximation. It still remains, however, to determine what distinguishes systems
that, in the continuum sense at least, do not exhibit hotspots from those that do.
In the following section we perform a linear stability analysis of the system in order
to address this question.

3.3. Linear Stability Analysis

For simplicity, let us consider Eqs. (3.9) and (3.10) with a spatially uniform value
for A0. The homogeneous equilibrium solutions are found to be

A = A0 + B , and ρ =
B

A0 + B
. (3.14)

We now examine the behavior of solutions of the form

A(x, t) = A + δAeσteik·x (3.15)

ρ(x, t) = ρ + δρe
σteik·x . (3.16)

We only consider here perturbations of A and ρ with the same wavenumber k, as
it can be easily shown that all perturbations of differing wavenumber will decay
in time. Upon substitution into our differential equations, we obtain the following
linearized system:

[
−η|k|2 − 1 + ρ A

2ρ

A
|k|2 − ρ −|k|2 −A

] [
δA

δρ

]
= σ

[
δA

δρ

]
, (3.17)

which we can solve to find σ. Linear instability of the system is present for all
values of σ that are greater than zero (Fig. 5), which, for our system, will occur at
wavenumbers k for which the determinant of the coefficient matrix in Eq. (3.17) is
negative:

η|k|4 − (3ρ− ηA− 1)|k|2 + A < 0 . (3.18)

This inequality will at most hold true for a finite band of wavenumbers, and only
if the parameters of the problem are such that

3ρ− ηA− 1 > 2
√

ηA . (3.19)

The inequality in Eq. (3.19) can be used, then, to differentiate between systems
that will and will not exhibit instabilities, based upon the three quantities A0, η,
and B. We can further dissect Eq. (3.19) by noting that, for any instability to be
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Fig. 5. An example of the growth rate σ for a linearly unstable system, as found by solving
Eq. (3.17). The imaginary component is only nonzero over wavenumbers for which the real com-
ponent is negative, indicating no growing oscillations in the system. The real component is positive
over a finite band of wavenumbers, and has a peak at a value |k∗|2; this maximally growing mode
should set the final size of hotspots.

possible, it must be the case that

B >
A0

2
. (3.20)

If this inequality is held, then any η that satisfies

η <
3ρ + 1−√12ρ

A
(3.21)

will lead to an instability.
A deeper understanding of the inequality of Eq. (3.19) can be found by exam-

ining the case in which A0 = 0. Under this regime, the inequality simplifies to
εηD

ω

γ

ω
< 4− 2

√
3 . (3.22)

The fractional quantity εηD/ω can be interpreted as the area of influence of any
given burglary event; i.e., the area over which the increase in B from a burglary
event can be measurably felt before it decays away. The other quantity, γ/ω, can be
interpreted as the average number of events per area in the time τ at steady state;
its inverse is therefore the average area per event at steady state. The inequality,
then, indicates that isolated burglary hotspots will only occur at steady state if the
average area per event is greater than the area of influence of any single event. In
other words, isolated spots of high B can only exist if these spots are far enough
away from each other that they do not interact.

If the system is indeed unstable, there will be a wavenumber k∗ that exhibits
the fastest growth rate of all the unstable modes. This maximally growing mode
can be shown to be given by

|k∗|2 = (1−A)/(1− η)− ρ(5− η)/(1− η)2+
√

η(1 + η)2ρ
[(

A(3− η)− 2
)
(1− η) + 2ρ(3− η)

]
/η(1− η)2 , (3.23)
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Fig. 6. A comparison between hotspot separation as measured in the continuum simulations (red
dots) and as predicted by our linear stability analysis via λ∗ = 2π/|k∗|, with |k∗| given by
Eq. (3.23) (black line). We observe good agreement between the two as we vary the parameter η,
though edge effects arising from our choice of periodic boundary conditions may be affecting the
results at large values of λ∗.

and should set the scale λ∗ = 2π/|k∗| for hotspot separation at steady state. To test
this prediction, we ran the continuum simulation with the same parameters used
to create Fig. 4(b), while varying the value of the parameter η. Fig. 6 compares
the hotspot separation as determined by the output of these simulations with the
separation that is predicted analytically by Eq. (3.23); the agreement is quite good.

We now have a very good understanding of the output of the continuum (and to
some extent, the discrete) simulations. For the parameters used to create Fig. 4(a),
Eq. (3.19) does not hold, indicating that the homogeneous equilibrium solution is
stable, which is what we observe. For Figs. 4(b) and 4(c) the opposite is true, and
we indeed see hotspots emerging at scales that we can predict using Eq. (3.23).

4. Conclusions

We re-emphasize at this point that the model described herein has been constructed
based upon the empirically known behavior of criminal offenders. First, based on
the fact that burglars most often victimize areas near where they live, work, or
spend free time, we have chosen to model their movement as a biased random walk,
as the behavior of such a model is fundamentally local in space. Second, as it is
clear that repeat victimization plays an important role in crime pattern generation,
we have developed the idea of an attractiveness field that not only determines the
rate of burglary at a given site, but is also influenced by past burglary events and
serves as the source of bias in the criminals’ movement. Finally, we have introduced
spatio-temporal scales for hotspots by allowing our attractiveness field to diffuse
within a neighborhood while simultaneously decaying in time. We thus are able
to construct a model where the two main variables at play, offender position (or
density in the continuum model) and biasing attractiveness field, create nonlinear
feedback loops which originate patterns of aggregation, reminiscent of actual crime
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hotspots.
This sociologically based model accomplishes our chief goal of exhibiting qual-

itative similarity with the hotspots observed in actual cities. However, there has
been no comparison as of yet between the quantitative aspects of the hotspots gen-
erated thereby and empirical crime data. This is partly because of the difficulty in
developing a rigorous metric by which such a comparison could be made. To wit,
there are numerous quantities that can be measured in both our simulation output
and empirical burglary data that could serve as such a rubric: the probability dis-
tribution for number of burglaries per house over a prescribed period of time, the
distribution of time to next event for houses within a fixed distance of a burglary
event, any number of tests for spatio-temporal clustering of burglary events, etc.
Choosing which one of these measures to focus our attention towards is a work in
progress.

In addition to this difficulty in determining the appropriate metric for compar-
ison is the fact that there are other variables acting within the empirical data that
are not accounted for in the model, e.g. police presence and other security mea-
sures. It is a fact that police departments often distribute crime control resources
based upon recent criminal activity, which may shorten the lifetime of hotspots,
cause them to relocate, or destroy them altogether. Despite these many difficulties,
however, we feel confident that the parameters of our model could be chosen to give
good agreement between simulation and real data.

Another area of further inquiry involves incorporating inhomogeneities into the
computer simulations. For example, it would be very interesting to construct the
background attractiveness field A0 or the burglar generation rate Γ by taking into
account the characteristics of a specific city location (neighborhood income lev-
els, security measures installed, proximity to crime generating or deterring centers,
physical hindrances to the spread of A, police response times and methods). In a
similar vein, constructing realistic urban lattices upon which to run our simulations
will be very important in the future, and allow for much better comparisons be-
tween the simulation and data, as well as possibly providing enhanced predictive
capability.

In the end, we feel that the ideas presented here will form the basis for a better
understanding of why and how crime hotspots form and of their underlying dynam-
ics. This knowledge may eventually prove useful for developing better methods of
crime prediction and prevention and allow the police and other security agencies to
more effectively control resource allocation from day to day.
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