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Abstract

We present the concept of characteristic graph representations of images. Two such non-parametric
graph constructions are detailed. Their use in image denoising is demonstrated within a regularization frame-
work. The results are compared with those of more traditional approaches of total variation and Tikhonov
regularization. We show that in some denoising scenarios our methods perform more favorably in preserving
intensity levels and object boundary shape details.
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1 Introduction

We consider an interesting and useful modification to the practice of image denoising by functional minimiza-
tion methods. A standard formulation is to impose a regularization penalty weighted with respect to a data
fidelity measure. The discrete realization is the problem

u∗ = arg min
u

(
‖u− f‖qq + α‖∇u‖pp

)
. (1)

f ∈ Rn is a noisy image of n pixels, 1 ≤ p, q < ∞ (typically), u and u∗ are candidate and optimal denoised
images, respectively. The data fidelity and regularization terms are weighted by a scalar α.

The popular L2 realization of Eq. 1 (p = 2, q = 2) was first implemented in the work of Tikhonov (See [18]).
The regularization enforces smoothness in u and is equivalent to a finite-time application of the heat equation
to the noisy image. The net effect is to reduce all high-frequency content such as noise. One undesirable feature
is that sharp intensity boundaries are smoothed.

The total variation (TV) realization Eq. 1 (p = 1, q = 2), or ROF model [16], gained rapid popularity
from its ability to produce denoised images that retain sharp intensity boundaries. While successful for visual
presentation, there are known side effects [17]. First, absolute intensity levels are altered. This is most obvious
for images of piecewise constant intensity. Second, intensity regions of smooth variation become stair-stepped.
Third, shapes in images are altered by elimination of high boundary curvature, reducing object perimeter.

While Eq. 1 has been highly successful and ubiquitously applied in image processing, the side effects arising
from the regularization and choice of p are problematic for many applications. Several approaches have been
taken in order to address these issues. Additional regularization based on object boundary lengths was proposed
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by Mumford and Shah [13]. This approach requires an additional functional weight parameter and assumes
objects constrained by a smooth and minimal perimeter.

Another approach proposed a variable p. See [3] and the developments in [10, 8, 4]. In this approach p is
made a function of the gradient of the image. While this adds to the analytic complexity of the functional, the
stair-stepping is reduced.

The L1TV approach, introduced in its continuous version by Chan and Esedoḡlu in [6] after its initial dis-
crete study by Alliney [2] and Nikolova [15], does a much better job of contrast preservation. This particular
approach has generated continued interest; see for example [1, 12, 19].

Recently, Chartrand [7] has shown that solving the nonconvex optimization problem for 0 < p < 1 yields
improved results for shape and intensity preservation relative to TV. These results hold for images that can be
represented sparsely in the gradient, that is, piecewise constant intensities.

There are many other methods which can be found in the literature, each of which attempts to improve on the
initial inspiration of the Rudin-Osher-Fatemi method. Most require some input in the form of parameters that,
in effect, chooses what the noise level is. This is not unreasonable since this can be chosen from knowledge of
the noise level in the image when this information is available. But it seems to us a useful endeavor to see what
can be done without using such parameters.

We introduce the concept of non-parametric characteristic graphs and introduce two realizations. Graphs are
computed without assumptions on image content. We illustrate their use for simple image denoising and com-
pare our results with standard methods. The characteristic graph approach imposes no additional parameters
on the denoising process.

2 Approach

Consider the discretized image gradient of Eq. 1. Let ui,j be the image intensity at image pixel location (i, j).
The standard forward difference gradient approximation is

∇ui,j ≡
√

(ui+1,j − ui,j)2 + (ui,j+1 − ui,j)2. (2)

The first (second) difference term in Eq. 2 is the vertical (horizontal) gradient. We impose the Neumann
boundary condition∇ui,j = 0 if either i or j causes ui,j to fall outside of the image.

This gradient can be represented as an operation on the graph G0 = {V0, E0}, the non-directed graph
representation of u with vertex set V0 containing all image pixels and edge set E0 containing all pixel pairs that
share a pixel edge (not a graph edge). This graph has been called the grid graph [5] and is recognized as that
of a fully connected Von Neumann neighborhood (see [14]). In addition we consider the graph edges to have
weights given by the absolute value of the image intensity difference associated with the vertex pair connected
by the edge. Quite simply, G0 is the fully-connected nearest (geographic) neighbor graph in the 2-d image
space. Figure 1(b) illustrates G0 for a small sample image.

The denoising problem is now represented as

u∗ = arg min
u

(
‖u− f‖qq + α‖∇G u‖pp

)
. (3)

where the gradient operator is applied to a graph G with weights W . The fundamental graph, G = G0, is the
one typically applied. We will consider subgraphs G = {V = V0, E ⊂ E0} ⊂ G0 which we consider to be
characteristic of images for denoising purposes. In the next section we will detail two such graphs.

The optimization problem described in 3 is nice: it is convex for (1 ≤ p, q ≤ ∞) and strictly convex for
(1 < q <∞). Though the regularization term suffers from a degeneracy yielding a null space with dimension
equaling the number of components in the graph G, the data fidelity term keeps the functional coercive. Our
choice of q = 2 keeps everything strictly convex.
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In practice, the gradient computation is carried out over the fundamental graph G0 with imposed zero edge
weights that effectively define the subgraph of interest. More precisely,

‖∇G u‖pp =
∑

w∈W

|w|p. (4)

Note in particular that we are using the anisotropic version∗ of equation 3 here: this is the only version that
makes sense on the graph – we do not have differences in the x and y directions at every node in the reduced
graph G unless the graph is the complete graph G0.

We utilize the Lagged-Diffusivity method for solving Eq. 3 together with an application of the discrepancy
principle for choosing the constant α [20]. We choose this approach for its general applicability to p > 0,
q > 0, though we limit our presentation to the cases p ∈ {1, 2} and q = 2. Lezoray, et al. [11] present a general
method for solving Eq. 3 on graphs of arbitrary topology. They also present a variety of results for color image
denoising using the fundamental graph G0. Their focus is on computational aspects of very general discrete
graph-based denoising. Our main objective is the construction and application of characteristic graphs that are
natural choices for image processing applications.

3 Characteristic Graphs

In this section we present two new characteristic image graphs, detail how they are constructed, and briefly
discuss our expectations in denoising applications. An example of each graph is shown in Figure 1 as computed
from a simple example image.

Figure 1: Left to right: A simple noisy test image; and the corresponding three characteristic graphs: the full
graph or grid graph G0, the truncated Kruskal algorithm graph with next-nearest neighbor edge extension K1,
and the vertex inclusion graph, K2.

In particular, our subgraphs will have the following properties.

1. A graph should preserve spatial information. Distinct image regions should only be able to influence
each other through neighbor pixel paths through the graph. By choosing graphs as subsets of G0 this
requirement is automatically met.

2. A graph should naturally detect image intensity content. In image regions of smooth intensity variation,
the graph should be highly connected. Conversely, graphs should have few or no connections across
edges of large weight.

3. Graph construction should be non-parametric utilizing only the image intensity information without re-
lying on user judgement or prior information.

∗IN the case of G = G0, the isotropic version is given by
P

i((u
i
x)2 + (ui

y)2)p/2 instead of the anisotropic analog given byP
i(|u

i
x|p + |ui

y|p
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3.1 K1: Truncated-Kruskal Graph

We introduce a graphK1 based on Kruskal’s algorithm for constructing a minimum spanning tree of an arbitrary
graph[9]. The tree construction is prematurely terminated when all vertices are included and then additional
edges are included to improve graph density.

1. Begin with an empty graph V = {} and E = {}.

2. Add to E the edge of minimum weight in E0 that does not create a cycle in {V,E}. Add the correspond-
ing vertices to V that are not already in V .

3. Repeat step 2 until V = V0.

4. Perform step 2 one more time. If a new edge is added set w equal to the edge weight associated with this
edge and then remove the edge from E. If a new edge was not added set w =∞.

5. To each vertex of degree one add to E the associated edge from E0 that (a) has smallest weight, (b) is
not already in E, and (c) if the edge weight is less than w.

The first four steps of the algorithm retain the time complexity of Kruskal’s algorithm, O(|E| log |V |). The
last step requires aO(|E| log |E|) sorting step to determine the minimum weight edge connected to each vertex.
Due to the special structure of the grid graph derived from the image, we know that |E| is bounded from above
by 4|V |, so this complexity is equivalent to that of Kruskal’s algorithm.

The characteristic graphK1 will attempt to prevent graph connections across pixel neighbors of significantly
different intensities. The density may be low relative to the grid graph G0, and the connectivity even in regions
of like intensity may be circuitous or lacking. The third image in Figure 1 illustrates these properties. Note the
small 4-pixel disconnected subgraph near the upper left corner. Note also the somewhat circuitous graph paths
one must often take to traverse from one pixel to its neighbor even if the intensities are similar. The best graph
property is the absence of any graph edges that would connect object regions to background regions.

3.2 K2: Vertex Inclusion Graph

We also introduce the Vertex Inclusion GraphK2 in order to address the potential drawbacks ofK1, low density
and significant dis-connectivity. K2 is constructed by including all edges of weight less than or equal to a cutoff
value non-parametrically determined from the Kruskal construction.

1. Begin with an empty graph V = {} and E = {}.

2. Add the edge of smallest weight from E0 to E that is not already in E, and the corresponding vertices
from V0 to V that are not already in V .

3. Repeat step 2 until V = V0.

4. Add all edges from E0 to E that are of equal weight to the largest edge weight in E.

Graph K1, like graph K2 can be disconnected across image intensity discontinuities. Also, we expect a
significant number of graph edges in regions where the intensity variations are governed by noise. These
properties are evident in the fourth image of Figure 1. Note both the absence of edges that cross the object-
background boundary and the high graph density relative to K1. For very noisy images or images with salt
and pepper noise, K2 can produce a nearly fully connected graph K2 ∼ G0. In these cases, there is no
expected advantage to using K2. Like the construction of K1, this approach has logarithmic time complexity
of O(|E| log |E|) due to sorting the edges by edge weight.
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3.3 Discussion on Parametrization

These graphs are considered to be characteristic representations of images because they satisfy, in our estima-
tion, the criteria given at the beginning of this section. One might argue that these graph constructions contain
hidden parameters. For example, why did we choose to add edges only to leaf vertices in forming K1? And,
why did we specify only second nearest neighbors instead of, say, third nearest? Parameters such as these
are of a different nature than more intrusive and application specific parameters such as edge weight thresh-
olding, graph density thresholding, and local graph construction based on prior assumptions. We contend that
our choices are related primarily to the desired structure of the graphs independent of the consitituent intensity
distributions of the images from which they are derived. Our graphs are intended for very general application
because they capture spatial and intensity connectivity for any type of image.

4 Test Images

We consider four test images chosen to test a variety of denoising situations. These reference images are shown
in Figure 2. Each image is 200 by 200 pixels.

Figure 2: The four test images (before addition of noise): (a) simple shapes delineated by binary intensity
boundaries, (b) multiple circle object of five distinct, constant, and equally-spaced intensities, (c) a Gaussian
bump with a sign change across a modulated sinusoid boundary, and (d) a natural image of a collection of
peppers.

Figure 2(a) shows test image T1. The pixel intensity is unity inside each of four objects and is zero on the
background. The four objects have structure on a variety of length scales from a single pixel to several tens of
pixels. They were chosen to test denoising algorithms on both intensity and object shape preservation.

Figure 2(b) shows test image T2. The pixel intensities belong to the discrete set {0.00, 0.25, 0.50, 0.75, 1.00}.
The object of interest is a combination of circular individuals. This image was also chosen to test denoising
algorithms on both intensity and shape preservation.

Figure 2(c) shows test image T3. This image has smooth intensity variation everywhere except along a curved
boundary. The intensity jump varies from near zero at the left and right image edges to a value of 1 at the image
center. The upper (lower) portion of the image is a positive (negative) Gaussian bump. The curved boundary is
a sine function modulated by an exponential decay away from the image center. This image was chosen to test
denoising algorithms on ability to handle images with both continuous and discontinuous intensity variations.

Figure 2(d) shows test image T4. This natural image of a collection of peppers was chosen to test denoising
algorithms on ability to handle simple realistic images.
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5 Results

We now present some specific results that illustrate the denoising concepts of intensity level and object shape
preservation.

5.1 TO1

Figure 3 shows TV (p = 1) denoising results for the binary test image T1. The upper left image (a) shows
T1 with additive Gaussian noise of σ2 = 0.10. The remaining images show the results of denoising via three
characteristic graphs: (b) the full graph G0, the standard TV approach, (c) K1 and (d) K2. All three methods
produce visually pleasing results. Noise is significantly reduced and the general shapes are visually preserved.
Differences between the various results are more readily seen in Figure 4 which shows the image subregions of
the lower part of the square object and upper part of the star object. TheG0-denoised image is now seen to have
somewhat fuzzy boundaries. This is a consequence of graph connections across object boundaries combined
with noise. A larger value of α would sharpen the boundaries at the cost of reducing image contrast. The
K1 and K2-denoised images have more well-defined object boundaries. This is due to limited or few graph
connections across the object boundary. The K1 recovered image does show some contrast reduction along
the arms of the star. This is likely due to low graph density naturally expected in thin regions of object or
background.

Figure 3: TV denoising example for test object T1. The test image (a) is the clean image of Figure 2(a) corrupted
by a σ2 = 0.10 additive Gaussian process (note the grayscale change). Recovered images are based on three
graphs: (b) G0, (c) K1 and (d) K2.

Figure 4: TV denoising example for test object T1. The images are zoomed in representations of those in
Figure 3 to a region focused near the top of the star shape.

K1 and K2 denoising performs better than G0 at recovering object shape details. Significant loss of contrast
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with G0 in regions of high boundary curvature prevents the usual method from performing well. The reduced
graph methods maintain reasonable contrast even for object regions of single pixel width.

Intensity level preservation is also improved with the use of K1 and K2 over G0. For images I and T of
the same size and pixel index i, let IT,v ≡ mean{Ii | Ti = v}. Also, let nT indicate a noisy version of
image T and let TG indicate an image T denoised by via graph G. Table 1 shows an intensity comparison for
T1 denoising examples. The standard TV denoising reduces the binary intensity contrast by 3.1% while the
characteristic graph methods show essentially no contrast reduction.

I I(T1,0) I(T1,1)

nT1 0.001 1.000

nTG0
1 0.008 0.977

nTK1
1 0.002 1.001

nTK2
1 0.001 1.001

Table 1: Intensity preservation comparison for T1 denoising examples.

5.2 TO2

Figure 5 shows TV (p = 1) denoising results for the piecewise constant intensity test image T2. The upper
left image (a) shows T2 with additive Gaussian noise of σ2 = 0.05. The remaining images show the results
of denoising via three characteristic graphs: (b) the full graph G0, the standard approach, (c) K1 and (d) K2.
Again, all three methods produce visually pleasing results. Noise is significantly reduced and the general shapes
are visually preserved. Differences between the various results are more readily seen in Figure 6 which shows
the image subregions of the lower left arm of the object. Similar to the T1 example, the G0-denoised image is
now seen to have somewhat fuzzy boundaries. The K1 and K2-denoised images have more well-defined object
boundaries. Note that the noise level in this case is a larger in relation to some of the intensity discontinuities
than for the T1 examples.

Figure 5: TV denoising example for test object T2. The test image (a) is the clean image of Figure 2(b)
corrupted by a σ2 = 0.05 additive Gaussian process (note the grayscale change). Recovered images are based
on three graphs: (b) G0, (c) K1 and (d) K2.

Again we find that K1 and K2 denoising performs better than G0 at recovering object shape details. Signifi-
cant loss of contrast with G0 in regions of high boundary curvature prevents the usual method from performing
well. The reduced graph methods maintain reasonable contrast even for object regions of single pixel width.

Intensity level preservation is also improved with the use of K1 and K2 over G0. Table 2 shows an intensity
comparison for T2 denoising examples. K1 and K2 denoising perform better than the standard G0 approach.
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Figure 6: TV denoising example for test object T2. The images are zoomed in representations of those in
Figure 5 to a region focused on the left side of the object.

I I(T1,0) I(T1,0.25) I(T1,0.50) I(T1,0.75) I(T1,1)

nT2 0.000 0.249 0.500 0.751 1.000

nTG0
2 0.001 0.246 0.498 0.743 0.984

nTK1
2 0.000 0.249 0.502 0.744 0.992

nTK2
2 0.000 0.249 0.501 0.750 1.000

Table 2: Intensity preservation comparison for T1 denoising examples.

5.3 TO3

Figure 7 shows p = 2 denoising results for test image T3. The upper left image (a) shows T3 with additive
Gaussian noise of σ2 = 0.03. The remaining images show the results of denoising via three characteristic
graphs: (b) the full graph G0 which represents the standard approach, (c) K1 and (d) K2. Again, all three
methods produce visually pleasing results. Noise is significantly reduced and the general shapes are visually
preserved. However, even at this magnification, differences in the three solutions are readily apparent to the
eye. G0 produces a relatively noisy image with a smoothed, although narrow, intensity transition region along
the sinusoid boundary. K1 preserves the boundary very well, but suffers from a stair-stepping effect associated
with locally disconnected graph regions. K2 performs the best of the three with good noise reduction and
intensity discontinuity preservation. These observations are seen even more clearly in Figure 8.

Figure 7: p = 2 denoising example for test object T3. The test image (a) is the clean image of Figure 2(c)
corrupted by a σ2 = 0.03 additive Gaussian process (note the grayscale change). Recovered images are based
on three graphs: (b) G0, (c) K1 and (d) K2.
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Figure 8: TV denoising example for test object T3. The images are zoomed in representations of those in
Figure 7 to a region focused on the upper left intensity discontinuity.

5.4 TO4

Finally, we consider the natural image T4 denoised using p = 2. The results are shown in Figure 9. The upper
left image (a) shows T4 with additive Gaussian noise of σ2 = 0.05. The remaining images show the results
of denoising via three characteristic graphs: (b) the full graph G0 which represents the standard approach, (c)
K1 and (d) K2. The results are markedly different from the previous test cases. The G0 and K2 results are
essentially identical because, in this case K2 differs from G0 only by the removal of two graph edges. This can
happen when one or more pixels are largely isolated (in intensity) from all of its G0 graph neighbors. In order
to include these isolates, the K2 graph becomes very dense. The K1 result clearly shows graph-region intensity
stepping.

Figure 9: p = 2 denoising example for test object T4. The test image (a) is the clean image of Figure 2(d)
corrupted by a σ2 = 0.05 additive Gaussian process (note the grayscale change). Recovered images are based
on three graphs: (b) G0, (c) K1 and (d) K2.

6 Discussion

The characteristic graphs K1 and K2 are especially useful for denoising image of piecewise smooth content.
They help to preserve intensity levels because intensity jumps are not penalized if they large relative to the char-
acteristic weight determined by the truncated Kruskal algorithm. They also help to preserve object boundary
shape details for much the same reason. Intensity jump boundaries have zero penalty regardless of length or
curvature. Object details can be preserved down to the pixel level. Even in the non-ideal case, where noise has
allowed the Kruskal algorithm to build links across intensity discontinuities, these links are sparse relative to a
full graph implementation and still serve to reduce distortion effects.
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Our characteristic graphs will fail to produce significantly improved results in some cases. If images are
very noisy, are corrupted by salt and pepper noise, or contain intensity isolated pixels, then we expect their
characteristic graphs to be nearly as dense as the full graph. This simply means that the image information
needed to construct a good subgraph is lacking. We note that our results are not expected to be inferior to
methods that employ a full graph.

The use of characteristic image subgraphs is general to PDE-based methods for image processing. We have
defined here example graphs and demonstrated their potential using some simple denoising examples. Clear
extensions are applications to segmentation and texture extraction.

We have focused exclusively on non-parametric modifications to Equation 1. Other important graphs are cer-
tainly possible that make use of (problem-dependent) parameters. Some examples include graphs that achieve
a certain density or connectivity, or user-defined graph construction cutoff values. We also note that there are
certain possible parametric modifications to the denoising procedure. For example, one is tempted to employ a
variable α procedure in which the characteristic graph is updated as α is incrementally raised from some low
value to a final value. This may help to reduce graph connectivity across boundaries significantly obscured by
noise.

7 Conclusion

We have defined two characteristic image graphs, the truncated Kruskal graph K1 and the vertex inclusion
graph K2. We have demonstrated their use by application to three simple test images and one natural test
image. Comparisons were made with standard TV and L2 denoising methods. Results show that denoising by
these graphs improves intensity level and object shape preservation in images with piecewise smooth content.
We point out several areas for future investigation including applications beyond denoising and parametric
extensions.
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[6] T. F. CHAN AND S. ESEDOḠLU, Aspects of total variation regularized L1 function approximation, SIAM
J. Appl. Math., 65 (2005), pp. 1817–1837.

[7] R. CHARTRAND, Nonconvex regularization for shape preservation, in IEEE International Conference on
Image Processing (ICIP), 2007.

[8] Y. CHEN, S. LEVINE, AND M. RAO, Variable exponent, linear growth functionals in image restoration,
SIAM Journal of Applied Mathematics, 66 (2006), pp. 1383–1406.

[9] T. H. CORMEN, C. E. LEISERSON, R. L. RIVEST, AND C. STEIN, Introduction to Algorithms, The MIT
Press, second ed., 2002.

[10] S. E. LEVINE, An adaptive variational model for image decomposition, in Energy Minimization Methods
in Computer Vision and Pattern Recognition, no. 3757 in Lecture Notes in Computer Science, Springer,
2005, pp. 382–397.

[11] O. LEZORAY, A. ELMOATAZ, AND S. BOUGLEUX, Graph regularization for color and image processing,
Compter Vision and Image Understanding, 107 (2007).

[12] S. P. MORGAN AND K. R. VIXIE, L1TV computes the flat norm for boundaries, Abstract and Applied
Analysis, 2007 (2007), pp. Article ID 45153, 14 pages. doi:10.1155/2007/45153.

[13] D. MUMFORD AND J. SHAH, Optimal approximations by piecewise smooth functions and associated
variational problems, Communications on Pure and Applied Mathematics, 42 (1989).

[14] J. V. NEUMANN AND A. W. BURKS, Theory of self-reproducing automata, University of Illinois Press,
1966.

[15] M. NIKOLOVA, Minimizers of cost-functions involving nonsmooth data-fidelity terms, SIAM J. Numer.
Anal., 40 (2003), pp. 965–994.

[16] L. RUDIN, S. OSHER, AND D. FATEMI, Nonlinear total variation based noise removal algorithms, Phys-
ica D, 60 (1992).

[17] D. STRONG AND T. CHAN, Edge-preserving and scale-dependent properties of total variation regular-
ization, Inverse Problems, 19 (2003).

[18] A. N. TIKHONOV AND V. Y. ARSENIN, Solutions of ill-posed problems, Winston, 1977.

[19] K. R. VIXIE, Some properties of minimizers for the Chan-Esedoḡlu L1TV functional, arXiv.org, (2007).
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