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Abstract

In this work we wish to recover an unknown image from a blurry, or noisy-blurry version.
We solve this inverse problem by energy minimization and regularization. We seek a solution
of the form u + v, where u is a function of bounded variation (cartoon component), while v
is an oscillatory component (texture), modeled by a Sobolev function with negative degree of
differentiability. We give several results of existence and characterization of minimizers of the
proposed optimization problem. Experimental results show that this cartoon + texture model
better recovers textured details in natural images, by comparison with the more standard models
where the unknown is restricted only to the space of functions of bounded variation.

Keywords: image deblurring, variational models, bounded variation, Sobolev spaces, oscilla-
tory functions.

1 INTRODUCTION

We consider in this paper one of the classical problems in image analysis: the recovery of an
unknown image from its blurry version, in the presence of a known blurring operator. Suppose
that we are given a blurry (and possibly noisy) gray-scale image f : Ω → R, where Ω is either Rn

or an open, bounded and connected subset of Rn. We wish to recover a clean image f̃ from f . Let
K be a blurring operator (a linear and continuous smoothing operator, for instance a convolution
with the Gaussian kernel or with the average kernel). The standard linear degradation model that
relates f to f̃ is

f = Kf̃ + noise.

By our proposed method, we do not only recover a sharp image f̃ , but we also decompose f̃ into
the cartoon and the texture parts, which will be denoted by u and v, respectively.

The standard method for solving such inverse ill-posed problems is inspired from Tikhonov reg-
ularization [37], [38], [39], which can be written as the general minimization problem of a functional
in integral form,

inf
f̃

∫
Ω
|f −Kf̃ |pdx+ λ

∫
Ω
R(f̃)dx, (1)
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where p is chosen function of the noise type (for instance, p = 2 for Gaussian noise, p = 1 for salt-
and-pepper noise). The regularizing potential R is usually of the form R(f̃) = R(|Df̃ |), depending
on partial derivatives of f̃ , and with at most linear growth at infinity for the recovery of sharp
edges. We refer in this context to an extensive work of minimization models of the form (1), with
theoretical results, numerical algorithms, and experimental results: [17] (non-convex potentials R),
[32] (continuation of total variation minimization from [31]), [1], [11], [4], [40], [10] for the analysis
of the problem in the convex case, [19], [9], [8] with convex or non-convex regularizations, [25], [26],
[27] , [14] using total variation and wavelets principles, among other examples.

More recently, model (1) has been generalized to cases of the form

inf
f̃
‖f −Kf̃‖p + λ

∫
Ω
R(|Df̃ |), (2)

where ‖ · ‖ denotes the norm in a Banach space of generalized functions of negative degree of
differentiability, that better model oscillatory functions (such as noise or texture). This is inspired
by proposals of Y. Meyer [28] and of D. Mumford - B. Gidas [29].

Using such norms in dual spaces of distributions, for image deblurring, the work [30] imposes
f̃ ∈ BV (Ω) and f −Kf̃ ∈ Ḣ−1(Ω), and this is generalized in [23], [24] to the case f̃ ∈ BV (Ω) and
f−Kf̃ ∈ Ḣ−s(Ω), defined in terms of the Fourier transform. In these works, as in those mentioned
above, the recovered image f̃ is represented by a function of bounded variation. However, this
penalizes too much oscillatory details, such as texture. Moreover, it has been shown in [18], [2] and
[3] that natural images with finer details are not well represented by functions of bounded variation.

We propose in this paper a variational deblurring model that aims to recover the unknown image
f̃ as the sum of two components, u + v, where u is a function of bounded variation, representing
the cartoon component, and v is a function in a Sobolev space of negative degree of differentiability
(in Ẇ−s,p, more general than the choice Ḣ−s considered in [23] , [24]). The space Ẇ−s,p has been
satisfactorily proposed and used by J.B. Garnett, P.W. Jones, T.M. Le and the second author
in [15] to model oscillatory components in natural images, in the case K = identity ([15] is an
alternative way to represent oscillatory details in images, in addition to other prior work by Aujol
and collaborators [5], [6], [7], Le and collaborators [21], [16], [41], Starck et al. [33], Levine, [22],
or a hierarchical approach in Tadmor et al. [34], [35], among others). We will make this choice to
model the oscillatory component v of the recovered image, therefore the proposed deblurring model
is a continuation of the work [15]. We thus recall here the main ingredient in our model, the image
decomposition model f ≈ u+ v, previously proposed in [15]:

inf
u∈BV (Ω),v∈Ẇ−s,p(Ω)

µ‖f − (u+ v)‖2L2(Ω) + |u|BV (Ω) + λ‖v‖Ẇ−s,p(Ω).

A related prior work is by I. Daubechies and G. Teschke [12], where the authors also recover an
image from its blurry version by the following “cartoon + texture” minimization model

inf
u∈B1

1,1(Ω),v∈H−1(Ω)
µ‖f −K(u+ v)‖2L2(Ω) + |u|B1

1,1(Ω) + λ‖v‖2H−1(Ω), (3)

in the Besov-wavelets framework. Very satisfactory results are reported in [12], where the recovered
sharp image is given by f̃ = u+ v.

We also recall the earlier L. Rudin - S. Osher model [32] for image deblurring using the total
variation (as an extension of the TV denoising model proposed by L. Rudin - S. Osher - E. Fatemi
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[31]): given a degradation model of the form f = Ku + noise, the authors [32] have proposed to
recover a sharp image u in the presence of a blurring operator K and noise, by the minimization

inf
u∈BV (Ω)

µ‖f −Ku‖2L2(Ω) +
∫

Ω
|Du|, (4)

where the last term denotes the total variation of u, to be defined in the next section.
We will show numerical comparisons between our proposed model and the above Rudin-Osher

model (4), that we solve using a finite differences discretization of the following Euler-Lagrange
equation with time dependence and gradient descent: u(0, x) = f(x) in Ω, and

∂u

∂t
= 2µK∗(f −Ku) + div

( Du
|Du|

)
in (0,∞)× Ω,

∂u

∂~n
= 0 on (0,∞)× ∂Ω, (5)

where ~n denotes the exterior unit normal to ∂Ω. We will see that the recovery of the unknown
image using a u + v (cartoon + texture) model gives better results and more textured details,
than using only a cartoon model u. A recent work on image deblurring using regularized locally-
adaptive kernel regression in a variational approach is by Takeda, Farsiu and Milanfar [36], with
very satisfactory results shown on several experiments.

The outline of the paper is as follows: Section 2 is devoted to the necessary definitions and
the description of the proposed deblurring-denoising model. Section 3 contains several theoreti-
cal results and remarks regarding the existence and the characterization of minimizers. Finally,
Section 4 gives the Euler-Lagrange equations associated with the optimization problem based on
alternating minimization and the numerical algorithm, while Section 5 presents numerical results
and comparisons with models given in [32, 12, 36]. We note that a short and preliminary version
of this work has been published in the SPIE Electronic Imaging 2008 conference proceedings [20].

2 Description of the proposed model

Before we introduce our proposed minimization model for image restoration, we need the necessary
definitions of the function spaces that will be used.

Definition 1. We say that a function u : Ω → R is a function of bounded variation, u ∈ BV (Ω),
if and only if u ∈ L1(Ω) and∫

Ω
|Du| := sup

{∫
Ω
udivφdx : φ ∈ C1

c (Ω,Rn), ‖φ‖∞ ≤ 1
}
<∞.

The spaceW 1,1(Ω) is a subspace ofBV (Ω), and for u ∈W 1,1(Ω) we have
∫

Ω |Du| =
∫

Ω |Du(x)|dx,
where now Du is the usual distributional gradient in L1(Ω,Rn). The Banach space BV (Ω) is
equipped with the following norm, which extends the classical norm in W 1,1(Ω):

‖u‖BV (Ω) = ‖u‖L1(Ω) +
∫

Ω
|Du|.

We will also use the notation |u|BV (Ω) for the semi-norm
∫

Ω |Du|. The space BV (Ω) will be used
to model the cartoon component u of the recovered deblurred image f̃ .
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To model the texture component v, we use the Sobolev spaces Ẇ−s,p, s > 0, p ≥ 1, that do
not penalize oscillations in images. Since these spaces for s ∈ R are defined in terms of the Fourier
transform, we have to assume that the data is defined in Rn (obtained by extension by zero outside
of the fundamental domain Ω, or by periodicity when Ω is a rectangle). However, we will still use
the notation Ẇ−s,p(Ω).

Definition 2. The homogeneous Sobolev space Ẇ s,p(Ω) for s ∈ R, 1 ≤ p ≤ ∞ on a fundamental
domain Ω is defined by

Ẇ s,p(Ω) =
{
v : |∇|sv ∈ Lp

}
,

where |∇|sv(x) := ((2π| · |)sv̂(·))∨(x) in Ω = Rn (or if Ω is a periodic domain then we use the
discrete Fourier transform), with the norm on the quotient (homogeneous) space

‖v‖Ẇ s,p(Ω) = ‖((2π| · |)sv̂(·))∨‖Lp .

Note that |∇|sv is defined in terms of the Fourier and the inverse Fourier transforms. There is
a corresponding kernel to the operator |∇|s, denoted by ks, i.e.,

|∇|sv = ks ∗ v.

For instance, when s = 2, we have |∇|2v = ∆v.
As mentioned in the introduction, in the work [15] by J. Garnett, P. Jones, T. Le and the second

author of the present paper, the authors proposed an image decomposition model

f ≈ u+ v,

where u is the cartoon part and v = ∆g for some g ∈ Ẇ−α+2,p is the texture or noise part. The
homogeneous Sobolev spaces of functions with negative degree of differentiability turned out to be
a good choice to model texture. Notice that ∆(Ẇ−α+2,p) = Ẇ−α,p. Inspired by this model, we
consider the following degradation model for image recovery in the presence of blur and noise:

f = K(u+ v) + r = k ∗ (u+ v) + r,

where v = ∆g for some g ∈ Ẇ−α+2,p and r is a small residual. u+v = u+∆g will be our recovered
deblurred image, and this can be done by minimizing the following proposed functional

F(u, g) = |u|BV (Ω) + µ

∫
Ω
|f − k ∗ (u+ ∆g)|2dx+ λ‖g‖Ẇ s,p(Ω), (6)

where k is a standard convolution kernel (such as the Gaussian kernel or the average kernel) that
models the blurring operator, and µ, λ > 0, s ≥ 0, s = −α + 2. If there is no noise in the data,
then we can choose sufficiently large µ to ensure r = f − k ∗ (u+4g) ≈ 0, dx-a.e.; if additive noise
of zero mean and known variance σ2 > 0 is also present, then we choose µ so that the variance of
the computed residual r = f − k ∗ (u+4g) is very close to σ2.

3 Minimizers of the functional F
In this section we state and prove several theoretical results of existence, uniqueness and charac-
terization of minimizers for the proposed model.
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3.1 Existence of a minimizer for 1 < p ≤ ∞

The problem is to minimize the following functional,

F(u, g) = |u|BV (Ω) + µ

∫
Ω
|f − k ∗ u− k ∗∆g|2dx+ λ‖∆g‖Ẇα,p(Ω)

= |u|BV (Ω) + µ

∫
Ω
|f − k ∗ u− k ∗∆g|2dx+ λ‖g‖Ẇ s,p(Ω),

and we first wish to establish existence of minimizers when 1 < p <∞, µ > 0, λ > 0,.
Here and in what follows, −2 ≤ α < 0, s = α + 2 and Ω = [0,M ] × [0, N ] ⊂ R2 will be

the fundamental domain of the periodic domain such as T 2 (extension to higher dimensions can be
treated in the same way). We assume that f ∈ L2(Ω). We begin by showing existence of minimizers
assuming stronger conditions on the kernel k; then these will be relaxed.

Thus, suppose first that 1 < p < ∞ and the kernel k is in Ẇ 2−s,q(Ω), where p and q are
conjugate exponents. Notice that

k ∗∆g = |∇|2−sk ∗ |∇|sg.

Since |∇|2−sk ∈ Lq(Ω) and |∇|sg ∈ Lp(Ω), then k ∗ 4g is bounded. So k ∗∆g ∈ L2(Ω).
Now for ε > 0, let kε ∈ Ẇ 2−s,q(Ω) ∩ L1(Ω) with

∫
Ω kε = 1. We define

Fε(u, g) = |u|BV (Ω) + µ

∫
Ω
|f − kε ∗ u− kε ∗∆g|2dx+ λ‖g‖Ẇ s,p(Ω). (7)

Theorem 1. The functional Fε from (7) has a minimizer (uε, gε) in BV (Ω)× Ẇ s,p(Ω) such that

Fε(uε, gε) = inf
u∈BV (Ω),g∈Ẇ s,p(Ω)

Fε(u, g).

Proof. If we choose u = g ≡ 0, we have that Fε(u, g) <∞. Also, the functional is always bounded
from below by zero. Therefore the infimum is finite and we can consider (uεn, g

ε
n) a minimizing

sequence. Thus there is 0 < C <∞ such that Fε(uεn, gεn) < C for all n. Since ∆gεn ∈ Ẇα,p(Ω), with
α < 0, we may assume that

∫
Ω kε ∗∆gεndx = 0. We may also assume that

∫
Ω u

ε
ndx =

∫
Ω fdx since

if not, by changing uεn to uεn +
∫

Ω(f − kε ∗ uεn)dx we have

Fε
(
uεn +

∫
Ω

(f − kε ∗ uεn)dx, gεn
)
≤ Fε(uεn, gεn).

Notice that
∫

Ω

(
uεn +

∫
Ω(f − kε ∗ uεn)dx

)
dx =

∫
Ω fdx. By Poincaré-Wirtinger inequality, we know

that
‖uεn − (uεn)Ω‖L2(Ω) ≤ C ′|uεn|BV (Ω),

where (uεn)Ω =
( ∫

Ω u
ε
n(x)dx

)
/|Ω| =

( ∫
Ω f(x)dx

)
/|Ω| and C ′ > 0 is a constant. Therefore the

sequence uεn is also bounded in L1(Ω), thus the sequence uεn is bounded in BV (Ω), which means
that there is uε ∈ BV (Ω) such that uεn → uε in L1(Ω) and |uε|BV (Ω) ≤ lim infn→∞ |uεn|BV (Ω)

(passing to subsequences if necessary, still denoted in the same way).
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The sequence {gεn} is bounded in Ẇ s,p(Ω), which means that {|∇|sgn} is bounded in Lp(Ω).
Hence, there exists g̃ ∈ Lp(Ω) such that |∇|sgn ⇀ g̃ in Lp(Ω), i.e.,

gεn ⇀ gε in Ẇ s,p(Ω),

where gε = |∇|−sg̃. This implies that |∇|2−skε ∗ |∇|sgεn → |∇|2−skε ∗ |∇|sgε pointwise. Also for all
n,

‖|∇|2−skε ∗ |∇|sgεn‖∞ ≤ ‖|∇|2−skε‖q‖|∇|sgεn‖p ≤
C

λ
‖|∇|2−skε‖q <∞.

Thus, since |∇|2−skε ∗ |∇|sgεn is uniformly bounded on a bounded domain, it is uniformly bounded
in L2(Ω). We finally obtain

kε ∗∆gεn = |∇|2−skε ∗ |∇|sgεn → |∇|2−skε ∗ |∇|sgε = kε ∗∆gε in L2(Ω)

(notice that we obtain strong convergence in L2(Ω)). Therefore,

Fε(uε, gε) ≤ lim inf
n→∞

Fε(uεn, gεn) = inf
u,g
Fε(u, g).

Now we choose a C∞ function ϕ with compact support in Ω satisfying
∫

Ω ϕ(x)dx = 1, ϕ ≥ 0
and define ϕε(x) = ε−2ϕ(x/ε). We then have

∫
Ω φε(x)dx = 1 also. Suppose that k ∈ L1(Ω) with∫

Ω k(x)dx = 1. Then kε = k ∗ ϕε → k in L1(Ω) and kε ∈ Ẇ 2−s,q(Ω) ∩ L1(Ω). In what follows, we
will be using this kε for any given k ∈ L1(Ω).

Lemma 1. With the kernels k and kε just described, for any pair (u, g) ∈ BV (Ω) × Ẇ s,p(Ω)
satisfying F(u, g) <∞, we have

lim
ε→0
Fε(u, g) = F(u, g) <∞.

Proof. Since F(u, g) <∞, we know that k ∗ u, k ∗∆g ∈ L2(Ω). We have∣∣∣Fε(u, g)−F(u, g)
∣∣∣ = µ

∣∣∣‖f − kε ∗ (u+ ∆g)‖2L2(Ω) − ‖f − k ∗ (u+ ∆g)‖2L2(Ω)

∣∣∣
≤ µ

(
‖f − kε ∗ (u+ ∆g)‖L2(Ω) + ‖f − k ∗ (u+ ∆g)‖L2(Ω)

)
‖(kε − k) ∗ (u+ ∆g)‖L2(Ω).

It suffices to see that ‖(kε − k) ∗ (u+ ∆g)‖L2(Ω) → 0 as n→∞. Indeed,

‖(kε − k) ∗ (u+ ∆g)‖L2(Ω) ≤ ‖(kε − k) ∗ u‖L2(Ω) + ‖(kε − k) ∗∆g‖L2(Ω)

≤ ‖(k ∗ u) ∗ ϕε − k ∗ u‖L2(Ω) + ‖(k ∗∆g) ∗ ϕε − (k ∗∆g)‖L2(Ω) → 0 as n→∞.

Let’s go back to the original problem, and denote

A := inf
u∈BV (Ω),g∈Ẇ s,p(Ω)

F(u, g) <∞.

We can now prove the following existence theorem for our problem.
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Theorem 2. Let µ, λ > 0, −2 ≤ α < 0, s = 2 +α, 1 < p <∞, k ∈ L1(Ω) with
∫

Ω k(x)dx = 1, and
f ∈ L2(Ω). The minimization problem

inf
u∈BV (Ω),g∈Ẇ s,p(Ω)

F(u, g) = |u|BV (Ω) + µ

∫
Ω
|f − k ∗ u− k ∗∆g|2dx+ λ‖g‖Ẇ s,p(Ω) (8)

has at least one solution.

Proof. Let (un, gn) be a minimizing sequence. Lemma 1 says that there exists a sequence εn such
that εn → 0 as n→∞, εn ≥ εn+1 and∣∣∣Fεn(un, gn)−F(un, gn)

∣∣∣ < 2−n.

Then
A = lim

n→∞
Fεn(un, gn) <∞.

Without loss of generality, we assume that there exists 0 < C <∞ such that for all n,

0 ≤ Fεn(un, gn) ≤ C.

Instead of dealing with (un, gn), we will deal with another sequence (uεnn , g
εn
n ), each of which is a

minimizer of
inf

u∈BV (Ω),g∈Ẇ s,p(Ω)
Fεn(u, g),

that is, for each n
(uεnn , g

εn
n ) = arg minu∈BV (Ω),g∈Ẇ s,p(Ω)Fεn(u, g).

For simplicity, we let wn = uεnn , hn = gεnn , ϕn = ϕεn , kn = kεn and Fn = Fεn . With the same
argument as before, we can extract a subsequence wn so that there exists u0 ∈ BV (Ω) with wn ⇀ u0

in BV − w∗. Notice that for all n,

Fn(wn, hn) ≤ Fn(un, gn),

i.e.,
lim sup
n→∞

Fn(wn, hn) ≤ lim
n→∞

Fn(un, gn) = A.

Since supnFn(wn, hn) ≤ C, we have

sup
n
‖kn ∗∆hn‖L2(Ω) = sup

n
‖k ∗ ϕn ∗∆hn‖L2(Ω) <∞,

i.e., there exists ρ ∈ L2(Ω) such that for an appropriate subsequence kn ∗∆hn,

kn ∗∆hn = k ∗ ϕn ∗∆hn ⇀ ρ in L2(Ω). (9)

On the other hand,

‖ϕn ∗∆hn‖Ẇα,p(Ω) = ‖ϕn ∗ hn‖Ẇ s,p(Ω) = ‖ϕn ∗ |∇|shn‖Lp(Ω)

≤ ‖ϕn‖L1(Ω)‖|∇|shn‖Lp(Ω) = ‖|∇|shn‖Lp(Ω) = ‖hn‖Ẇ s,p(Ω) ≤ C/λ <∞.
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Hence, there exists g0 ∈ Ẇ s,p(Ω) such that for an appropriate subsequence ϕn ∗ hn,

ϕn ∗ hn ⇀ g0 in Ẇ s,p(Ω), i.e., ϕn ∗∆hn = ∆ϕn ∗ hn ⇀ ∆g0 in Ẇα,p(Ω). (10)

Notice that since ‖ϕn ∗ hn‖Ẇ s,p(Ω) ≤ ‖hn‖Ẇ s,p(Ω),

‖g0‖Ẇ s,p(Ω) ≤ lim inf
n→∞

‖hn‖Ẇ s,p(Ω).

Let B = {v ∈ C∞(Ω) : v has compact support in Ω}. B is a dense subset in Lt(Ω) and in Ẇ s,t(Ω)
for any 1 < t <∞. If v ∈ B, then k ∗ v is in Ẇ−α,q(Ω). By (10) with a notation k̄(x) = k(−x),

lim
n→∞

∫
Ω

(kn ∗∆hn)vdx = lim
n→∞

∫
Ω

(k ∗ (ϕn ∗∆hn))vdx

= lim
n→∞

∫
Ω

(ϕn ∗∆hn)(k̄ ∗ v)dx =
∫

Ω
∆g0(k̄ ∗ v)dx =

∫
Ω

(k ∗∆g0)vdx.

On the other hand, for v ∈ B, by (9),

lim
n→∞

∫
Ω

(kn ∗∆hn)vdx =
∫

Ω
ρvdx.

Hence, for all v ∈ B, ∫
Ω
ρvdx =

∫
Ω

(k ∗∆g0)vdx.

Since

‖k ∗∆g0‖L2(Ω) = sup
{∫

Ω
(k ∗∆g0)vdx : v ∈ B, ‖v‖L2(Ω) = 1

}
= sup

{∫
Ω
ρvdx : v ∈ B, ‖v‖L2(Ω) = 1

}
= ‖ρ‖L2(Ω) <∞,

we finally have kn ∗∆hn ⇀ k ∗∆g0 in L2(Ω) and k ∗∆g0 ∈ L2(Ω). Now the following inequalities
are satisfied:

F(u0, g0) ≤ lim inf
n→∞

Fn(wn, hn) ≤ lim sup
n→∞

Fn(wn, hn) ≤ A = inf
u∈BV,g∈Ẇ s,p

F(u, g).

Therefore, (u0, g0) ∈ BV (Ω)× Ẇ s,p(Ω) is a minimizer of the original problem

inf
u∈BV (Ω),g∈Ẇ s,p(Ω)

F(u, g).

Remark 1. The property
∫

Ω k(x)dx = 1 (which is a standard normalization of the blurring kernel
and not a too restrictive assumption) is necessary to show that for a minimizing sequence (un, gn),
the means

∫
Ω un(x)dx are bounded, which enabled us to find a BV −w∗ limit u0 using the Poincaré-

Wirtinger inequality. So if
∫

Ω k(x)dx = β > 0, then we can change k to 1
βk, f to 1

β f and µ to βµ,
and we can apply the above theorem.

Remark 2. When p = ∞, the theorem also remains true since the weak-∗ convergence in L∞(Ω)
guarantees that we can still find the weak-∗ limit and in the end we can pass to the limit to obtain
a minimizer.
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3.2 Characterization of minimizers

By the previous Remark 1, here and in what follows we will assume that |Ω| = 1 and
∫

Ω k(x)dx = 1.
We prove in this section additional properties of minimizers of problem (8) related to uniqueness
issues and a characterization using dual residual norm inspired from prior work [28], [10], [21] and
[35]. Note that our functional in (8) is convex, but not strictly convex in the pair variable (u, g).
Thus, we may expect non-uniqueness of its minimizers and it is natural to consider the set of
all minimizers. Therefore, we first introduce some notations to simplify the next statements and
characterizations.

Definition 3. We denote the set of all minimizers of problem (8) by M, thus

M =
{

(u, g) ∈ BV (Ω)× Ẇ s,p(Ω) : F(u, g) = inf
(v,h)∈BV (Ω)×Ẇ s,p(Ω)

F(v, h)
}
,

and also a subset M′ ⊂M by

M′ =
{

(u, g) ∈M : |u|BV (Ω) 6= 0 or ‖g‖Ẇ s,p(Ω) 6= 0
}
.

Note that M is a nonempty set, based on the existence Theorem 2. We have also introduced
the set M′ of non-trivial minimizers (e.g. minimizers (u, g) different from (constant, 0)). We will
be able to say under which conditions a trivial pair (constant, 0) is a minimizer or not. We will
define on L2(Ω) a “residual oscillatory norm” ‖ · ‖∗,λ dual to the BV + Ẇ s,p norms (with ‖ · ‖∗,λ
small for very rough, oscillatory functions), such that if ‖f − fΩ‖∗,λ is small, then a trivial pair is a
minimizer, or all of f−fΩ goes into the residual f−k(u+4g); if ‖f−fΩ‖∗,λ is not that small, then
a trivial pair cannot be a minimizer. In other words, we will see later that the assertion “either
M =M′ or M =M′ ∪ {(fΩ, 0)}” is true (where fΩ denotes the mean of f over Ω).
•We first look at uniqueness-like properties of the functional. Since the functional F is convex,

for (u1, g1), (u2, g2) ∈M and 0 < t < 1,

F(tu1 + (1− t)u2, tg1 + (1− t)g2) ≤ tF(u1, g1) + (1− t)F(u2, g2).

As a matter of fact, we have for 0 < t < 1,

F(tu1 + (1− t)u2, tg1 + (1− t)g2) = tF(u1, g1) + (1− t)F(u2, g2). (11)

Theorem 3. Let 1 < p <∞. For (u1, g1), (u2, g2) ∈M′, there exists m > 0 such that

k ∗ (u1 + ∆g1) = k ∗ (u2 + ∆g2), (12)
∆g1 = m∆g2. (13)

Proof. By (11), we know that for 0 < t < 1,

|f − (tk ∗ (u1 + ∆g1) + (1− t)k ∗ (u2 + ∆g2))|2 = t|f − k ∗ (u1 + ∆g1)|2 + (1− t)|f − k ∗ (u2 + ∆g2)|2.

Since the mapping x 7→ x2 is strictly convex, this implies that

f − k ∗ (u1 + ∆g1) = f − k ∗ (u2 + ∆g2) a.e.,

9



and therefore we obtain (12). Also by the fact that Minkowski inequality becomes equality if and
only if the functions are linearly dependent, we know that there exists m > 0 such that

|∇|sg1 = m|∇|sg2 a.e.,

which implies (13).

• Next, we analyze further the set of minimizersM introducing the dual “rougher” norm ‖·‖∗,λ
and the possibility of having, or not, a trivial minimizer (outside M′ or not).

Definition 4. Given a function w ∈ L2(Ω) and λ > 0, we define

‖w‖∗,λ = sup
u∈BV (Ω), g∈Ẇ s,p(Ω), |u|BV (Ω) 6=0 or ‖g‖Ẇs,p(Ω) 6=0

〈w, k ∗ (u+ ∆g)〉
|u|BV (Ω) + λ‖g‖Ẇ s,p(Ω)

≤ ∞, (14)

where 〈·, ·〉 is the inner product in L2(Ω).

Remark 3. Note that if
∫

Ωw 6= 0, then ‖w‖∗,λ =∞.

Theorem 4. Let f ∈ L2(Ω) and 1 < p < ∞. Also let fΩ =
( ∫

Ω f(x)dx
)
/|Ω|. Then each

(u0, g0) ∈M′ satisfies

|u0|BV (Ω) = 2µ〈f − k ∗ (u0 + ∆g0), k ∗ u0〉, (15)

‖g0‖Ẇ s,p(Ω) = 2µ
λ 〈f − k ∗ (u0 + ∆g0), k ∗∆g0〉. (16)

Furthermore,

1. ‖f − fΩ‖∗,λ ≤ 1
2µ if and only if (fΩ, 0) ∈M.

2. If ‖f − fΩ‖∗,λ > 1
2µ , then (u0, g0) ∈ M′ if and only if it satisfies the following additional

condition together with (15), (16) :∥∥∥f − k ∗ (u0 + ∆g0)
∥∥∥
∗,λ

=
1

2µ
. (17)

Proof. Let’s first prove 1. Suppose that ‖f − fΩ‖∗,λ ≤ 1
2µ . For any u ∈ BV (Ω), g ∈ Ẇ s,p(Ω),

〈f − fΩ, k ∗ (u+ ∆g)〉 ≤ 1
2µ

(|u|BV (Ω) + λ‖g‖Ẇ s,p(Ω)),

i.e.,
0 ≤ |u|BV (Ω) + λ‖g‖Ẇ s,p(Ω) + 2µ〈f − fΩ, −k ∗ (u+ ∆g)〉

or

µ

∫
Ω
|f − fΩ|2dx+µ

∫
Ω
|k ∗ (u+ ∆g)|2dx ≤ |u|BV (Ω) +λ‖g‖Ẇ s,p(Ω) +µ

∫
Ω
|f − fΩ−k ∗ (u+ ∆g)|2dx.

10



Hence, for any u ∈ BV (Ω), g ∈ Ẇ s,p(Ω),

F(fΩ, 0) = µ

∫
Ω
|f − k ∗ (fΩ)|2dx = µ

∫
Ω
|f − fΩ|2dx ≤ F(u+ fΩ, g),

which means that (fΩ, 0) ∈ M. For the opposite direction, assume (fΩ, 0) ∈ M. Then for any
u ∈ BV (Ω), any g ∈ Ẇ s,p(Ω) and ε > 0, we have

F(fΩ, 0) = µ

∫
Ω
|f − fΩ|2dx ≤ F(εu+ fΩ, εg).

After division by ε > 0, we obtain

0 ≤ |u|BV (Ω) + λ‖g‖Ẇ s,p(Ω) − 2µ〈f − fΩ, k ∗ (u+ ∆g)〉+ εµ

∫
Ω
|k ∗ (u+ ∆g)|2dx.

Letting ε ↓ 0, we obtain

〈f − fΩ, k ∗ (u+ ∆g)〉 ≤ 1
2µ

(|u|BV (Ω) + λ‖g‖Ẇ s,p(Ω)).

Since u ∈ BV (Ω) and g ∈ Ẇw,p(Ω) are arbitrary, we deduce

‖f − fΩ‖∗,λ ≤
1

2µ
.

For the direct implication of 2, to show (15) and (16), we first let (u0, g0) ∈M′. Then for any
g ∈ Ẇ s,p(Ω),

F(u0, g0) ≤ F(u0, g),

i.e.,

λ‖g0‖Ẇ s,p(Ω) ≤ λ‖g‖Ẇ s,p(Ω) + 2µ
∫

Ω
(f −k ∗ (u0 + ∆g0))k ∗ (∆g0−∆g)dx+µ

∫
Ω
|k ∗ (∆g0−∆g)|2dx.

(18)
If g = (1− ε)g0 for 0 < ε < 1, then by letting ε ↓ 0 we get

‖g0‖Ẇ s,p(Ω) ≤
2µ
λ

∫
Ω

(f − k ∗ (u0 + ∆g0))k ∗∆g0dx.

On the other hand, if g = (1 + ε)g0 for 0 < ε, then by letting ε ↓ 0 we obtain

‖g0‖Ẇ s,p(Ω) ≥
2µ
λ

∫
Ω

(f − k ∗ (u0 + ∆g0))k ∗∆g0dx.

Hence we obtain (16). Similarly for any u ∈ BV (Ω),

F(u0, g0) ≤ F(u, g0),

i.e.,

|u0|BV (Ω) ≤ |u|BV (Ω) + 2µ
∫

Ω
(f − k ∗ (u0 + ∆g0))k ∗ (u0 − u)dx+ µ

∫
Ω
|k ∗ (u0 − u)|2dx. (19)
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If we let u = (1− ε)u0 for 0 < ε < 1 and take ε ↓ 0, and then we let u = (1 + ε)u0 for 0 < ε and
take ε ↓ 0 again, then we obtain (15).

To finalize the direct implication of 2, suppose that ‖f − fΩ‖∗,λ > 1
2µ . For (u0, g0) ∈M′, if we

add (15) and (16), we obtain

|u0|BV (Ω) + λ‖g0‖Ẇ s,p(Ω) = 2µ
∫

Ω
(f − k ∗ (u0 + ∆g0))k ∗ (u0 + ∆g0)dx,

which implies that ∥∥∥f − k ∗ (u0 + ∆g0)
∥∥∥
∗,λ
≥ 1

2µ
.

Also if we use g = g0 + εh and u = u0 + εv in (18) and (19) with ε > 0 and add them together and
let ε ↓ 0, then

|v|BV (Ω) + λ‖h‖Ẇ s,p(Ω) ≥ 2µ
∫

Ω
(f − k ∗ (u0 + ∆g0))k ∗ (v + ∆h)dx.

Since v ∈ BV (Ω) and h ∈ Ẇ s,p(Ω) are arbitrary, we end up with the reverse inequality,∥∥∥f − k ∗ (u0 + ∆g0)
∥∥∥
∗,λ
≤ 1

2µ
,

thus we obtain (17).
Conversely, let (u0, g0) ∈ BV (Ω)×Ẇ s,p(Ω) satisfy (15), (16) and (17). For any u ∈ BV (Ω) and

g ∈ Ẇ s,p(Ω),

F(u0 + u, g0 + g) = |u0 + u|BV (Ω) + λ‖g0 + g‖Ẇ s,p(Ω) + µ

∫
Ω
|f − k ∗ ((u0 + u) + ∆(g0 + g))|2dx.

By (17),

|u0 + u|BV (Ω) + λ‖g0 + g‖Ẇ s,p(Ω) ≥ 2µ〈f − k ∗ (u0 + ∆g0), k ∗ ((u0 + u) + ∆(g0 + g))〉.

By this and (15), (16),

F(u0 + u, g0 + g) ≥ 2µ〈f − k ∗ (u0 + ∆g0), k ∗ ((u0 + u) + ∆(g0 + g))〉

+ µ

∫
Ω
|f − k ∗ ((u0 + ∆g0) + (u+ ∆g))|2dx

= |u0|BV (Ω) + λ‖g0‖Ẇ s,p(Ω) + µ

∫
Ω
|f − k ∗ (u0 + ∆g0)|2dx+ µ

∫
Ω
|k ∗ (u+ ∆g)|2dx

≥ F(u0, g0),

which means that (u0, g0) ∈ M. If (u0, g0) /∈ M′, then |u0|BV (Ω) = 0 = ‖g0‖Ẇ s,p(Ω), i.e., (u0, g0) =
(fΩ, 0), which contradicts our assumption ‖f − fΩ‖∗,λ > 1

2µ . Therefore, (u0, g0) ∈M′.

Remark 4. This theorem says that if ‖f − fΩ‖∗,λ ≤ 1/(2µ), then M = M′ ∪ {(fΩ, 0)} and if
‖f − fΩ‖∗,λ > 1/(2µ), then M =M′.
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4 The numerical minimization algorithm

For our computational part, we assume that the given image f is a periodic function defined in
R2 whose periodic domain is 2Ω, where Ω = [0, 1] × [0, 1]. For the practical calculation of the
Euler-Lagrange equations, we assume that we work with functions u ∈ W 1,1(Ω), thus |u|BV (Ω) :=∫

Ω |Du(x)|dx and Du is the distributional gradient as a function in L1(Ω; R2). Moreover, this
restriction is not too strong, since any BV (Ω) function can be approximated by a sequence of
functions in W 1,1(Ω) in the strong topology L1(Ω). We will formally compute the Euler-Lagrange
equations associated with the optimization problem, using alternating minimization. If (u, g) is a
minimizer of the functional F , then for any v ∈W 1,1(Ω) ⊂ BV (Ω) and for any w ∈ Ẇ s,p(Ω):

−
∫

Ω
v · div

( Du
|Du|

)
dx+ 2µ

∫
Ω

(k ∗ v) · (k ∗ (u+ ∆g)− f)dx

+ 2µ
∫

Ω
(k ∗∆w) · (k ∗ (u+ ∆g)− f)dx+ λ

∫
Ω
‖ks ∗ g‖1−pp (|ks ∗ g|p−2ks ∗ g) · ks ∗ wdx = 0.

We solve this by using a gradient descent method and a finite difference scheme, i.e., we solve the
following time-dependent system of PDE’s:

∂u

∂t
= div

( Du
|Du|

)
+ 2µk∗ ∗ (f − k ∗ (u+ ∆g)), (20)

∂g

∂t
= 2µ∆k∗ ∗ (f − k ∗ (u+ ∆g))− λ‖ks ∗ g‖1−pp ks ∗ (|ks ∗ g|p−2ks ∗ g), (21)

where k∗ is the transpose of k and the periodicity characterizes the boundary conditions. Since the
full periodic domain is 2Ω, when we compute the Sobolev norm we should use the full domain 2Ω.
Note that

‖g‖p
Ẇ s,p(Ω)

=
1
4
‖g̃‖p

Ẇ s,p(2Ω)

where g̃ is the periodic function whose periodic domain is 2Ω and g̃
∣∣∣
Ω

= g. Thus, when we compute

the second term in (21), we use g̃ instead of g and obtain the values on Ω. Also, the Sobolev norm
will be computed using the Fast Fourier Transform (FFT) since the space itself is defined in terms
of the Fourier and the inverse Fourier transforms. Recall that the Sobolev kernel ks was defined
by k̂s(ξ) := (2π|ξ|)s in the continuous case. Even if we work in the discrete case, we can still
use this definition since we use a square domain and we can encode the constant multiplication in
the parameter λ. To obtain the numerical result, we run the algorithm until we reach a possible
minimizer which will be a point after which the energy functional becomes stationary. As we will
see in the next section, this model works very well in the case of deblurring without noise.

In the presence of additive noise, in the experiments, we assume that we know the variance of the
noise σ2. So, as in [10], we adjust the parameter µ after each iteration, in such a way that the energy
functional is being minimized while keeping the fidelity term comparable with the noise variance.
The parameter µ can be seen as a Lagrange multiplier for the constraint ‖f−k∗(u+4g)‖2L2(Ω) = σ2.
Thus, we adjust the parameter µ in the following way: let V (u, g) =

∫
Ω |f − k ∗ u − k ∗∆g|2, σ2

the noise variance, γ a small threshold parameter, then:

1. With initial µ, λ > 0, especially small µ, we approximate a minimizer (u0, g0) using the
coupled system of time-dependent partial differential equations (20)-(21).
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2. If |V (u0, g0)− σ2| < γ, then we stop.

3. If |V (u0, g0)− σ2| ≥ γ and V (u0, g0) > σ2, then we update µ by µ+ V (u0, g0)− σ2.

4. If |V (u0, g0)−σ2| ≥ γ and V (u0, g0) < σ2, then we update µ by µ+ρm(V (u0, g0)−σ2), where
ρ is a fixed constant throughout the process and m counts the number of consecutive drops
of the value V (u0, g0) below σ2.

5. Go to 1. with the updated µ.

The values of µ over iterations tend to an optimal choice µ(σ).

Remark 5. When we consider a noisy case with known noise variance σ2, we look for a minimizer
(u, g) for which the fidelity term of our model matches the variance of the noise, σ2. Let λ > 0 be
fixed and σ∗(µ) be defined by

σ∗(µ) = ‖f − k ∗ (uµ + ∆gµ)‖L2(Ω),

where (uµ, gµ) is a minimizer of

inf
u∈BV (Ω),g∈Ẇ s,p(Ω)

F(u, g) = |u|BV (Ω) + µ

∫
Ω
|f − k ∗ u− k ∗∆g|2dx+ λ‖g‖Ẇ s,p(Ω).

Equation (12) shows that this function σ∗ : R+ → R+ is well-defined. In fact, it is easy to see that
the function σ∗ is non-increasing, as in [10] for the case without texture norm. Hence, if we start
the algorithm with small µ > 0, then we expect to have the initial computed σ∗(µ) > σ; then, as
we increase µ, we know that σ∗(µ) will decrease, until we reach the desired value σ. In this way,
we are able to adjust µ in such a way that the value σ∗(µ) eventually becomes σ.

The numerical discretization of the partial differential equations (20) and (21) will be as follows:
we will use a semi-implicit scheme to calculate un+1 and an explicit scheme for gn+1. We fix
∆x = ∆y = h = 1, and (i, j) will be an arbitrary spatial grid point in the interior of the domain.
Let

cn0 (i, j) =
√

(un(i+ 1, j)− un(i, j))2 + (un(i, j + 1)− un(i, j))2 + ε,

cn−(i, j) =
√

(un(i, j)− un(i− 1, j))2 + (un(i− 1, j + 1)− un(i− 1, j))2 + ε,

cn+(i, j) =
√

(un(i+ 1, j − 1)− un(i, j − 1))2 + (un(i, j)− un(i, j − 1))2 + ε,

cn(i, j) =
2

cn0 (i, j)
+

1
cn−(i, j)

+
1

cn+(i, j)
,

dn1 (i, j) = f(i, j)−
∑
a,b

k(a, b)(u(i− a, j − b) + ∆g(i− a, j − b)),

dn2 (i, j) =
∑
σ,τ

k∗(σ, τ)dn1 (i− σ, j − τ).

We have included a small ε > 0 to make sure that all the values are strictly positive in the
denominators. For (20), we have

un+1(i, j) =
un(i, j) + ∆t

(
un(i+1,j)+un(i,j+1)

cn0
+ un(i−1,j)

cn−
+ un(i,j−1)

cn+
+ 2µdn2 (i, j)

)
1 + cn(i, j)∆t

.
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To calculate ks ∗ g(i, j), we use FFT and IFFT as follows: SHIFT is responsible for translation to
have the center at the origin and ISHIFT is the inverse of SHIFT. When we apply FFT, we apply
it to the function g̃ with full periodic domain 2Ω and finally select the data at those points (i, j)
in the domain Ω:

ks ∗ g(i, j) = IFFT
(
ISHIFT

((
2π
√
ξ2

1 + ξ2
2

)s
SHIFT (FFT (g̃))(ξ1, ξ2)

))
(i, j)

h(i, j) = |ks ∗ g(i, j)|p−2ks ∗ g(i, j).

Now for (21), we have

gn+1(i, j) = gni,j +4t
[
2µ∆dn2 (i, j)− λ

(∑
a,b

|ks ∗ gn(i, j)|p
)1−p

ks ∗ hn(i, j)
]
.

As usual, the Laplacian ∆dn2 (i, j) is computed by

∆dn2 (i, j) = dn2 (i+ 1, j) + dn2 (i− 1, j) + dn2 (i, j + 1) + dn2 (i, j − 1)− 4dn2 (i, j).

Since the deconvolution problem, especially in the presence of noise, can be numerically highly
unstable, and since we use semi-implicit and explicit schemes, the choice of 4t implicitly depends
on a CFL-like condition.

5 Numerical results and comparisons

We show in this section several experimental results for deblurring and denoising real images. We
also analyze in practice the quality of restoration function of parameters and we present comparisons
with the model (4)-(5) by Rudin-Osher from [32], with the model (3) by Daubechies-Teschke [12],
and with results included in [36] by Takeda, Farsiu and Milanfar.

Deblurring Figure 1 shows blurry data images f1, f2 and f3 to be tested, and their original
versions. The original images have been artificially blurred by convolution with a blurring kernel
k. To obtain blurry image f1, a 7 × 7 averaging kernel k was used, and for the blurry images f2

and f3, a 5× 5 averaging kernel k was used.
In Fig. 2 we show deblurring results using the proposed model and comparisons with the Rudin-

Osher model [32]. To recover sharp images from the blurry images f1, f2 and f3, we have tested
several parameters and we have obtained that the Sobolev space Ẇ 0.1,1.3 was a good choice to model
g, which means that the texture part v = ∆g belongs to Ẇ−1.9,1.3. The tuning parameters µ and λ
for the three images are set to be µ = 10, λ = 0.05. Using the original clean images, we compute the
SNR (Signal-to-Noise-Ratio), and we compare with the Rudin-Osher model [32]. The parameters
for the Rudin-Osher model were also obtained to have the best possible results, 4t = 0.01, µ = 100,
and the number of iterations is 2000, 3000 and 1500 for f1, f2 and f3 respectively (for both models
in the case without noise, the SNR increases with iterations). SNR values are also given in the
caption of Fig. 2, showing that the proposed model recovers better textured images from their
blurry versions.

We show in Figure 3 plots of the numerical energy decrease versus iterations for the three
experiments with the proposed model, to illustrate that our numerical implementation is stable in
practice.
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Figure 1: Top: three original images; bottom, left to right: their blurry versions f1 (SNR=8.9183),
f2 (SNR=7.8599), f3 (SNR=10.2671).

In the next tables and figures we show additional results for the data f1 obtained with the
proposed BV/Sobolev model and give the corresponding SNR, to see the effect of changing some
of the parameters, while keeping the others fixed.

Table 1 compares the SNR values for the recovered images of the blurry image f1 with various
choices of the homogeneous Sobolev space modeling the texture component. Since we consider
−2 ≤ α < 0 (0 ≤ s < 2), we chose for the comparison s = 0, 0.1, 0.6, 1 and p = 1, 1.3, 2, 3 for
5000 and 10000 iterations, while keeping µ = 11, λ = 0.06 and 4t = 0.03 fixed. The SNR value for
(s1, p1) is better than that for (s2, p2) when s1 = α1 + 2, s2 = α2 + 2 and −2 ≤ α1 ≤ α2 < 0, 1 ≤
p2 ≤ p1. This confirms our expectation that if the Sobolev space that we use to model textures has
weaker differentiability condition, then this space better models the oscillatory component. Since
we obtained the best result with s = 0 (α = −2), we now fix s = 0 and vary p = 1, 1.3, 2, 3, 10, 25
to see the effect of the choice of the p values. Table 2 shows this comparison. Hence, we can expect
to have the best results with s = 0 and large p values in the numerical computations (note that
larger p gives a choice closer to the choice suggested by Y. Meyer [28], Ẇ−1,∞). Fig. 4 illustrates
that a much larger p improves the results for the Barbara image f1, comparing the two recovered
images (α = −1.9 and p = 1.3, and α = −2 and p = 25). Also, note that larger exponent p removes
a small artifact introduced by our proposed model: to introduce texture in non-textured regions.

Table 3 shows how the SNR values of the recovered images obtained with the parameters
s = 0, p = 25, µ = 11, λ = 0.06,4t = 0.03 change as the number of iterations increase; thus, in the
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5000 iterations 10000 iterations
p = 1 p = 1.3 p = 2 p = 3 p = 1 p = 1.3 p = 2 p = 3

s = 0 18.3998 21.6269 21.6710 21.6724 17.3166 22.8307 22.9278 22.9306
s = 0.1 16.3053 21.5517 21.6686 21.6715 15.4249 22.6477 22.9235 22.9296
s = 0.6 No conv. 17.1337 21.5254 21.6583 No conv. 17.1095 22.6467 22.9028
s = 1 No conv. 12.8413 19.2950 21.1379 No conv. 12.7765 19.4656 21.7612

Table 1: SNR values for the recovered images from the blurry data f1 after 5000 iterations and
10000 iterations with various choices for (s, p) and fixed λ = 11, µ = 0.06, 4t = 0.03. Recall that
s = α+ 2.

p = 1 p = 1.3 p = 2 p = 3 p = 10 p = 25
after 5000 iterations 18.3998 21.6269 21.6710 21.6724 21.6723 21.6724
after 10000 iterations 17.3166 22.8307 22.9278 22.9306 22.9313 22.9315

Table 2: SNR values for the recovered images from the blurry data f1 after 5000 iterations and
10000 iterations with varying p = 1, 1.3, 2, 3, 10, 25 and fixed s = 0, λ = 11, µ = 0.06, 4t = 0.03.

deblurring case (no noise), more iterations gives better results.
Finally, Table 4 shows how the results and SNR change function of the parameter λ, the weight

of the texture norm. As expected, we can conclude that if λ is very large, then the proposed model
becomes almost the Rudin-Osher model, since the allowed texture becomes too small due to a too
strong weight. Fig. 5 shows the corresponding textured components v = 4g obtained for the four
λ values. We think that too large λ produces a texture component of smaller contrast.

Denoising-deblurring We consider next restoration in the presence of both blur and noise,
assuming that we know the noise variance σ2 and updating the coefficient µ as explained before,
with threshold γ = σ/10.

Fig. 6 shows the image restoration in the presence of noise. The noisy blurry image f4 was
taken from [36] for comparison. An 11× 11 Gaussian kernel with standard deviation 1.75 was used
for blurring and then noise of standard deviation σ = 1.1531 was added. The recovered image by
the proposed model from Fig. 6 bottom right has RMSE (root mean square error) 8.86, which
is slightly smaller than the RMSE of other results obtained by various models presented on the
web-page of P. Milanfar and related with reference [36]1. Also to recover this clean image from
the noisy blurred image f4, the Sobolev space Ẇ 0,1 was used, which means that the texture part

1http://www.soe.ucsc.edu/˜ htakeda/AKTV

5000 iterations 10000 iterations 20000 iterations 60000 iterations 70000 iterations
s = 0, p = 25 21.6724 22.9315 24.2301 26.3649 26.6509

Table 3: SNR values for the recovered images from the blurry data f1 obtained with s = 0, p =
25, λ = 11, µ = 0.06, 4t = 0.03 and increasing number of iterations.
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λ 0.00035 0.06 10 1600
SNR 21.6722 21.6724 21.6413 17.3048

Table 4: SNR values for the recovered images from the blurry data f1 after 5000 iterations with
different λ values, keeping µ = 11, s = 0, p = 25, 4t = 0.03 fixed.

v = ∆g is modeled by Ẇ−2,1. The initial parameters µ and λ were set to be µ = 4, λ = 0.02. Using
the original clean image, we can also compute the SNR (Signal-to-Noise-Ratio), which is 13.5818.
Fig. 6 shows also its cartoon + texture decomposition, and a comparison with the RO model (Fig.
6 top right) obtained with the best optimal parameters. Again, we notice improvement of the
proposed model over the RO model.

As pointed out by the referees, the problem of deconvolution, especially in the presence of noise,
is a highly ill-posed problem, solved in general by regularization. However, the texture norm used
in this work is not a regularizing norm (only the BV semi-norm has regularizing effects). Thus,
it is natural to ask how well the proposed model can recover textured images from blurry and
noisy images, with increased amount of noise. We expect that, as the noise becomes stronger and
stronger, less accurate recovery is obtained. We illustrate this experiment in Fig. 7, where we
have applied our BV/Sobolev model to the chemical plant image with noise of increasing standard
deviation, σ = 1.1531 (same image f4 as before), σ = 3 and σ = 5. The threshold γ = σ/10 to
stop the process described before was used. As expected, more noise gives smaller SNR and larger
RMSE. More instability can occur if the noise is stronger. Fig. 8 shows the true noise of standard
deviation σ = 3 and the residual or computed noise f − k ∗ (u+ ∆g) for the noisy plant image with
σ = 3. The standard deviation of the computed noise f − k ∗ (u + ∆g) is 2.8226, very close to 3.
The two images in Figure 8 were scaled with the same scaling factor so that we could better see
the differences. It can be easily seen that the computed “noise” residual still contains details.

We conclude this section with a final experimental result in Fig. 9 and we show comparison
with a result by Daubechies-Teschke from [12] using the model (3), where the Ḣ−1 norm is used
to model textures in the wavelet domain. The size of the image is 256 × 256. The authors in [12]
defined a Gaussian blurring kernel in the Fourier domain. On the other hand, our discretization uses
blurring kernels defined in the spatial domain, which led us to apply the Inverse Fourier Transform
(IFFT) to the kernel defined in the Fourier domain to obtain a blurring kernel defined in the spatial
domain. This kernel is also Gaussian of size 256×256. We did not truncate this kernel even though
the values are almost 0 outside a patch of size 13× 13 centered at the origin. 4000 iterations have
been applied for our proposed algorithm, with s = 0, p = 5, µ = 15, λ = 0.1, 4t = 0.02. We
visually notice that our proposed algorithm, which is more general and allows the choice among
several Sobolev spaces, gives an improved result u+ v, recovering much more texture.

6 Conclusion

We have proposed a “cartoon+texture” minimization model to recover images degraded by blur,
or by blur & noise. The cartoon component u is modeled by a function of bounded variation, while
the texture v = 4g is modeled by a function in the Sobolev space of negative differentiability,
Ẇα,p(Ω), with −2 ≤ α < 0. The recovered image is u +4g. In the case of blur degradation only
(no noise), the recovery works very well, and the residual f − k ∗ (u+ ∆g) goes to 0 as the number
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of iterations increases (the homogeneous Sobolev spaces of negative differentiability encourages
oscillations, unlike Lp spaces, p ≥ 1 or the space of functions of bounded variation). As expected,
using α = −2, which imposes the least amount of differentiability on the homogeneous Sobolev
spaces presented the best results among −2 ≤ α < 0. Also, larger exponent p produced better
results (making sure that the choice of 4t guarantees a stable algorithm). On the other hand, in
the presence of noise, which is considered to be highly oscillatory, the texture component modeled in
a homogeneous Sobolev space of negative differentiability can attract noise as well. However, if the
noise is small enough, then this model is able to recover important oscillatory parts. Comparisons
with existing models [32], [12], [36] show that the proposed model gives improvement.
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[5] J.F. Aujol, G. Aubert, L. Blanc-Féraud and A. Chambolle, Image decomposition into a bounded
variation component and an oscillating component, Journal of Mathematical Imaging and Vision
22(1): 1-88, 2005.

[6] J.F. Aujol and A. Chambolle, Dual norms and image decomposition models, International Jour-
nal of Computer Vision 63(1): 85-104, 2005.

[7] G. Aubert and J.F. Aujol, Modeling very oscillating signals. Application to image processing,
Applied Mathematics and Optimization 51(2): 163-182, 2005.

[8] L. Bar, N. Kiryati, and N. Sochen, Image deblurring in the presence of impulsive noise, Inter-
national Journal of Computer Vision 70(3): 279-298, 2006.

[9] L. Bar, N. Sochen, and N. Kiryati, Semi-blind image restoration via Mumford-Shah regulariza-
tion, IEEE Transactions on Image Processing 15(2): 483-493, 2006.

19



[10] F. Andreu-Vaillo, V. Caselles, and J.M. Mazón, Parabolic Quasilinear Equations Minimizing
Linear Growth Functionals, Springer, Progress in Mathematics , Vol. 223, 2004.

[11] A. Chambolle and P.-L. Lions, Image recovery via total variation minimization and related
problems, Numerische Mathematik 76(2): 167-188, 1997.

[12] I. Daubechies and G. Teschke, Variational image restoration by means of wavelets: Simultane-
ous decomposition, deblurring, and denoising, Applied and Computational Harmonic Analysis
19(1): 1-16, 2005.

[13] I. Daubechies, G. Teschke and L. Vese, Iteratively solving linear inverse problems under general
convex constraints, Inverse Problems and Imaging 1(1): 29-46, 2007.
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and Ẇ−α,p, UCLA CAM Report 07-21, 2007 (to appear in Pure

and Applied Mathematics Quarterly).

[16] J.B. Garnett, T.M. Le, Y. Meyer, L.A. Vese, Image decompositions using bounded variation
and generalized homogeneous Besov spaces, Applied and Computational Harmonic Analysis 23:
25-56, 2007.

[17] S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions, and the Bayesian restora-
tion of images, IEEE Transactions on Pattern Analysis and Machine Intelligence 6: 721-741,
1984.

[18] Y. Gousseau and J.-M. Morel, Are natural images of bounded variation ?, SIAM Journal on
Mathematical Analysis 33(3): 634-648, 2001.

[19] H. Fu., M.K. Ng, M. Nikolova and J. Barlow, Efficient minimization methods of mixed L1-L1

and L2-L1 norms for image restoration, SIAM Journal on Scientific Computing 27(6): 1881-
1902, 2006.

[20] Y. Kim and L.A. Vese, Functional minimization problems in image processing, Proc. SPIE
Vol. 6814, C.A. Bouman, E.L. Miller, I. Pollak, Editors, pages 68140Q-1 – 68140Q-11, 2008.

[21] T.M. Le and L.A. Vese, Image Decomposition Using Total Variation and div(BMO), SIAM J.
on Multiscale Modeling and Simulation 4(2): 390-423, 2005.

[22] S. Levine, An adaptive variational model for image decomposition, LNCS 3757: 382-397, 2005.

[23] L. Lieu, Contribution to Problems in Image Restoration, Decomposition, and Segmentation by
Variational Methods and Partial Differential Equations, UCLA Ph.D. Thesis, June 2006.

[24] L. Lieu and L. Vese, Image Restoration and Decomposition via Bounded Total Variation and
Negative Hilbert-Sobolev Spaces, Applied Mathematics & Optimization 58: 167-193, 2008.

to appear in Applied Mathematics and Optimization.

20



[25] S. Lintner and F. Malgouyres, Solving a variational image restoration model which involves
L∞ constraints, Inverse Problems 20(3): 815-831, 2004.

[26] F. Malgouyres, Minimizing the total variation under a general convex constraint for image
restoration, IEEE Transactions on Image Processing 11(12): 1450-1456, 2002.

[27] F. Malgouyres, A framework for image deblurring using wavelet packet bases, Applied and
Computational Harmonic Analysis, 12(3): 309-331, 2002.

[28] Y. Meyer, Oscillating Patterns in Image Processing and Nonlinear Evolution Equations, Uni-
versity Lecture Series, vol. 22, Amer. Math. Soc., Providence, RI, 2001.

[29] D. Mumford and B. Gidas, Stochastic models for generic images, Quarterly of Applied Math-
ematics 59(1): 85-111, 2001.
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Figure 2: Deblurring results. 1st row: cartoon u; 2nd row: texture v = 4g; 3rd row: recovered
images u+ v by BV/Sobolev model (SNR=22.6316, 22.7535, 28.1160); 4th row: recovered images
by RO model [32] (SNR=15.5319, 14.7255, 21.0735).
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Figure 3: Numerical energy versus iterations for each of the three data f1, f2 and f3 from left to
right, illustrating that the proposed numerical algorithm is stable in practice.

Figure 4: Comparison between small p and large p for the Barbara image f1. Left: recovered image
shown in Fig. 2 using Ẇ−1.9,1.3. Right recovered image using Ẇ−2,25.
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Figure 5: Recovered texture parts v = 4g corresponding to Table 4. Top left: λ = 0.00035; top
right: λ = 0.06; bottom left: λ = 10; bottom right: λ = 1600.
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Figure 6: (Top row) Left: original image. Middle: blurry-noisy data f4 (SNR=8.9781,
RMSE=15.0602). Right: restored using RO model (SNR=13.1432, RMSE=9.3234). (Bottom
row) Left: cartoon u. Middle: texture v = 4g. Right: restored u + v using BV/Sobolev model
(SNR=13.5818, RMSE=8.8643).
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Figure 7: Top row, left to right: blurry noisy images with increasing amount of noise (noise standard
deviation σ = 1.1531, σ = 3, σ = 5). Bottom row , left to right: corresponding recovered images
using the proposed BV/Sobolev model: SNR=13.5818, RMSE=8.8643 (σ = 1.1531, s = 0, p = 1).
SNR = 11.8415, RMSE=10.8308 (σ = 3, s = 0, p = 3). SNR = 10.6843, RMSE=12.3742 (σ = 5,
s = 0, p = 3).

Figure 8: Left: true noise of standard deviation σ = 3 used in the noisy image denoted f from
Fig. 7 top middle. Right: computed noise (residual f − k ∗ (u + ∆g)) obtained by the proposed
BV/Sobolev model, with computed standard deviation σ = 2.8226.
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Figure 9: Top left: original image; top right: blurred image. Middle row (proposed BV/Sobolev
model): cartoon part, texture part, recovered u + v image. Bottom Row (result by Daubechies-
Teschke from [12]): cartoon part, texture part, recovered u+ v image.
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