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Abstract

In this paper, we present a new non-parametric combined segmentation and regis-
tration method. The problem is cast as an optimization problem combining a matching
criterion similar to the one defined by the active contour without edges [6] for segmen-
tation and a nonlinear-elasticity-based smoother on the displacement vector field. This
modelling is twofold: first, in a way, registration is jointly performed with segmentation
since guided by the segmentation process. It means that the algorithm produces both a
smooth mapping between the two shapes and the segmentation of the object contained
in the reference image. Secondly, the use of a nonlinear- elasticity-type regularizer al-
lows large deformations to occur, which makes the model comparable in this point with
the viscous fluid registration method. Several applications are proposed to demonstrate
the potential of this method to both segmentation of one single image and to regisration
between two images, as well as comparison tests with classical methods.

Keywords: Registration, nonlinear elasticity, Chan-Vese model for segmentation, level set
method.

1 Introduction

We propose in this paper a segmentation model based on the active contour model without
edges [6], that is no longer solved in terms of level set functions. This is now solved using
registration techniques. Therefore, a displacement field models the deformation of the initial
curve into the final segmented boundary via registration. Thus, the binary segmentation
problem from [6], recalled below

inf
c1,c2,φ

F (c1, c2, φ) =

∫

Ω

{
ν1|R(x) − c1|2H(φ) + ν2|R(x) − c2|2(1 − H(φ)) + µ|∇H(φ)|

}
dx

1



(where R is the given data, φ is a level set function, H is the 1D Heaviside function), can
be seen as a registration problem between the binary image defining the initial contour,
and the (unknown) binary segmented image. Or the proposed model can also be used for
registration between two images: having a segmentation of one of the images defined via
a displacement field, this is used as initial guess in the “registration-segmentation” model,
to segment/register the second image. The main ingredients of our proposed minimization
model are thus the active contour model without edges [6], and registration via a non-linear
elasticity smoother, which is solved in a particular, simplified way. We first review techniques
of image registration.

1.1 Prior related work on image registration

Image registration and image segmentation are challenging issues that are encountered in a
wide range of fields such as medical imaging (shape tracking, comparison of images taken at
different instants, data fusion from images that have not necessarily been acquired with the
same modality, comparison of data to a common frame of reference, etc...), pattern recognition
or geophysics (see [2]).

Considering two images called template and reference, registration consists in finding an
optimal diffeomorphic transformation (the optimality criterion being devised according to the
considered application) such that the deformed template matches in some sense the reference,
while segmentation aims at detecting and visualizing the contours of the objects contained in
a given image.

An extensive overview of registration techniques can be found in [32] but for the sake
of clarity, we briefly describe some of the possible strategies. As mentioned in [32], existing
methods can be partitioned into two classes:

• parametric methods. In this case, a finite set of image features is defined and the goal is
to find a transformation mapping any feature from the template image to its counterpart
in the reference image. Image features can be landmarks (anatomically meaningful
points, points with high-curvature, etc...), which requires the user’s intervention to
locate them or automatically-computed features such as principal axes (see [32], chapter
5). Also, the set of feasible transformations is restricted to a certain class of mappings
(polynomial mappings, splines, etc...) by expanding the transformation in terms of basis
functions.

• non-parametric methods, this class of methods being the one we are interested in.
As stressed in [32], unlike parametric methods, the transformation is in this case not
restricted to a parameterizable set. The problem is phrased as a functional minimization
problem whose unknown is the displacement vector field u. We follow the notations
of [32]. Denoting by T the template image and by R the reference, the introduced
functional combines a distance measure component D[R,T,u] and a smoother on the
displacement vector field S = S[u] to remove the ill-posed character of the problem.
Usually, the distance measure is intensity-driven and is chosen to be the L2−norm of the
difference between the deformed template and the reference (suitable when the images

have been acquired through similar sensors) i.e. D[R,T,u] =
1

2

∫

Ω

(
T (x−u)−R(x)

)2
dx,

but one could also use correlation-based or mutual information-based techniques (see
[32], chapter 6 for more details).
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Several methods to regularize the displacement vector field have been investigated (see
Part II of [32] or [17]). Generally, physical arguments motivate the way the smoothers
are built. We briefly review some of them. We first consider the case of elastic reg-
istration originally introduced by Broit [5] in which the objects to be registered are
considered to be the observations of a same elastic body before and after being sub-
jected to a deformation as mentioned in [32]. The smoother S = S[u] is chosen to
be the linearized elastic potential of the displacement vector field u and its expression
integrates the Lamé coefficients which reflect material properties. It is defined, n ∈ N

⋆

being the dimension, by:

S[u] =

∫

Ω

µ

4

n∑

j,k=1

(
∂xj

uk + ∂xk
uj

)2
+

λ

2

(
div u

)2
dx.

A drawback of this smoother is that it is not suitable for problems involving large defor-
mations. To circumvent this problem, Christensen and collaborators have introduced
in [9] a viscous fluid registration model in which objects are viewed as fluids evolving in
accordance with the fluid-dynamic Navier-Stokes equations. It consists in minimizing
the linearized elastic potential of the velocity of the displacement vector field (nonlin-
early related to the displacement vector field via the material derivative ). With time,
the constraint weakens as u reaches a steady state and large deformations are therefore
authorized. One drawback of this method is the computational cost. Numerically, the
image-related force field is first computed at time t. Fixing the force field f , the linear
PDE satisfied by the velocity is solved by means of a successive over-relaxation (SOR)
scheme. Then an explicit Euler scheme is used to advance the displacement vector in
time.

In the diffusion registration model introduced by Fischer and Modersitzki [15], the
smoother is based on the semi-norm on H1(Ω, Rn) of u = (u1, · · · , un)T , Ω being an
open bounded subset of R

n and H1(Ω, Rn) denoting the classical Sobolev space, that
is:

S[u] =
1

2

∫

Ω

[ n∑

i=1

||∇ui||2
]
dx.

Regularizing properties motivate this choice (it minimizes oscillations of both compo-
nents of u ) rather than physical ones but here again only small deformations can be
expected in this context.

Lastly, in the “curvature”-based registration model introduced by Fischer and Moder-
sitzki [16], [17], the smoother S is defined by:

S[u] =
1

2

∫

Ω

[ n∑

i=1

(∆ui)
2
]
dx.

As stressed in [32], ∆uk, k = 1, · · · , n can be viewed as an approximation of the cur-
vature so the problem boilds down to almost minimizing the “curvature” of level lines
of each component of u. Also, one can easily notice that affine linear transformations
belong to the kernel of S[u] which is not the case in elastic, viscous fluid or diffu-
sion registration. But here again, transformations are restricted to small deformations.
To circumvent this drawback, we propose in this paper, a nonlinear elasticity-based
smoother as will be seen later in Section 2.
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Many improvements or alternatives of these non-parametric methods have been proposed.
We briefly shed light on some contributions in this field. In [18], Haber and Modersitzki
address the issue of non-parametric image registration under volume-preserving constraints.
More precisely, they propose to restrict the set of feasible mappings by adding a volume-
preserving constraint which forces the Jacobian of the deformation to be equal to one.

Papers [19] and [54] are dedicated to topology-preserving constraints applied to the defor-
mation mapping so as to keep it diffeomorphic. These methods differ from classical regridding
techniques (see [10]) in which one monitors the values of the Jacobian of the deformation,
stops the process when the values drop below a threshold and reinitializes the process using
the deformed template obtained at the previous step.

Inspired by their previous work on volume-preserving registration [18], Haber et al. pro-
pose to monitor the Jacobian of the deformation in order to prevent the deformation from ex-
hibiting twists and foldings. More precisely, the authors aim at keeping the Jacobian bounded,
which leads to an inequality-constrained minimization problem. They first discretize the min-
imization problem and the constraints. The obtained finite dimensional optimization problem
is replaced by a sequence of unconstrained optimization problems derived from the log-barrier
method.

An information-theory-based approach is proposed in [54] to generate diffeomorphic map-
pings and to monitor the statistical distribution of the Jacobian. Assuming that the template
and reference images are defined on a domain Ω whose volume is equal to 1, the authors
associate a probability density function to the deformation and its inverse. Then they pro-
pose to quantify the magnitude of the deformation by means of the Kullback-Leibler distance
between the probability density function associated with the deformation and the identity
mapping.

Finally, some new frameworks have been studied.
In [28], the authors propose to quantify differences between images by matching gradient

fields. They first define an equivalence class of images, that is, an image space in which images
are considered equivalent under a similarity group action. Contrary to classical methods which
involve an intensity comparison criterion and thus that are scale-dependent, the authors
focus on the relative change of intensity in the images. This leads to consider a similarity
group action that contains translations and rescalings. The Cauchy-Schwartz-based distance
measure is then introduced. It allows to discriminate images belonging to the equivalence
class from others by comparing gradient fields regardless of the scaling, this non-negative
distance being zero only between equivalent images.

In [26], Liao et al. propose a level set-based framework for matching overlapping/non-
overlapping shapes and open curves. The underlying idea is to substitute finite pairs of shapes
or curves for the classical finite pairs of landmarks. The shapes and curves to be warped are
modelled via level set functions (input in the method): a shape is represented by means of a
level set function whose zero level line is the shape boundary while the representation of an
open curve, borrowed from the work by Smereka [44], requires two level set functions. Ac-
cording to the considered case (overlapping, non-overlapping shapes, open curves), a specific
distance measure is devised, coupled with a regularization on the displacement vector field u.
In the simplest case of one pair of shapes to be matched with no spatial overlap of the two
shapes, denoting by ϕ the level set function representing the shape in the template image, Φ
the one representing the shape in the reference image and u the sought displacement vector
field, the authors propose to minimize the symmetric difference of the two level set functions,
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that is:

min
u

∫

Ω
H(Φ(x))

[
1 − H(ϕ(x − u))

]
dx +

∫

Ω
H(ϕ(x − u))

[
1 − H(Φ(x))

]
dx,

with H the one-dimensional Heaviside function. The problem is then stated in the case of one
pair of shapes with spatial overlap by slightly modifying the distance measure, next extended
to the case of multiple pairs of shapes and finally studied in the case of open curves.

The same kind of approach is discussed in [25] with, in addition to the modelling of open
curves, the implicit representation of points. Although different, the spirit of our work is
the same in the way the shapes to be registered are modelled. But unlike the model in [26],
the only input required in our method is the level set function representing the template
image. Also, we jointly treat segmentation and registration: the distance measure is devised
using the segmentation criterion [6] while registration is jointly performed, guided by the
segmentation process. Before depicting our approach, we would like to mention some previous
works dedicated to joint segmentation and registration. We carefully describe two of them
and stress the main differences with our model.

1.2 Prior related work on segmentation-registration

In [55], Yezzi et al. also suggest to jointly treat segmentation and registration. Their work
is motivated by different remarks related to the interdependence between segmentation and
registration processes. In landmark-based registration (also referred to as feature-based regis-
tration), ones collects a number of features in the reference image using for instance, low/high
level segmentation methods and identifies their counterparts in the template image. This ex-
emplifies the dependence that may exist of registration on segmentation. Conversely, in some
fields of research such as medical imaging, a priori knowledge related to the geometry /shape
of the organ need to be incorporated in the segmentation process. This is performed by
registering the data to a common frame of reference in order to produce some statistics on
the shape, geometry, etc...This highlights this time, the dependence of segmentation on reg-
istration. The focus of Yezzi et al.’s paper was then to provide a model, in a geometric
variational framework, that interleaves segmentation and registration. In this purpose, the
authors state the problem that couples segmentation and registration as follows: denoting by
I : Ω ⊂ R

2 → R and Î : Ω̂ ⊂ R
2 → R the two images containing a common object to be

registered and segmented, find a closed curve C ⊂ Ω and a closed curve Ĉ ⊂ Ω̂ related by
Ĉ = g(C) where g : R

2 → R
2 is an element of a finite dimensional group G (for instance,

the group of rigid motions) such that C and Ĉ correctly delineate the object contained re-
spectively in I and the one contained in Î. Consequently, there are two unknowns, the closed
curve C ⊂ Ω and the mapping g. The problem is phrased in terms of an energy minimization
one. The authors exploit region-based active contour models and more precisely the piece-
wise constant Mumford-Shah energy inspired from [6] (see [55]) and propose to minimize the
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following energy:

E(g, C) = E1(C) + E2(g(C)),

=

∫

Cin

(I − u)2dx +

∫

Cout

(I − v)2dx +

∫

bCin

(Î − û)2dx +

∫

bCout

(Î − v̂)2dx,

=

∫

Cin

fin(x)dx +

∫

Cout

fout(x)dx +

∫

bCin

f̂in(x)dx +

∫

bCout

f̂out(x)dx,

with Cin and Cout the regions inside and outside C, u and v the mean values of I on Cin and
Cout and with Ĉin and Ĉout the regions inside and outside Ĉ, û and v̂ the mean values of I

on Ĉin and Ĉout. The constraint enforced on Ĉ, namely Ĉ = g(C) enables us to rewrite the
energy E using only integrals over the domain Ω as:

E(g, C) =

∫

Cin

(
fin(x) + f̂in(g(x))|g′(x)|

)
dx +

∫

Cout

(
fout(x) + f̂out(g(x))|g′(x)|

)
dx,

|g′| being the Jacobian of g. As stressed by the authors, both contours are jointly deformed,
which guarantees same detected shapes and segmentation - registration are simultaneously
performed. A weighted combination of the energies E1 and E2 could be considered in case
segmentation on one image is harder to perform. Also, a more complex energy could be built
in order to let the unknown g be more influenced by the energy E1. It would mainly consist
in assuming that the unknown curve C lives in a domain different from Ω and in considering
two mappings g1 ∈ G and g2 ∈ G: one to map C to Ω and the other one to map Ĉ to Ω̂.
A gradient descent method is applied, which yields the evolution equations of C and of the
registration parameters. The main difference with our model is that the contours C and Ĉ are
jointly deformed here through a combination of segmentation and registration methods while
in our model, we assume that the object in the template image has already been detected
(we could have considered a problem with two unknowns as well). It means that the energy-
minimization problem is only written in terms of the unknown contour Ĉ. Segmentation is
performed using a registration approach as in [55]. The model is cast in the level set setting,
which allows a straightforward modelling of the evolving curve. At last, contrary to [55], the
class of admissible deformations (rigid, etc...) is not an input in our model. Their model, first
exposed in the context of rigid deformations, has then been extended to non-rigid motions
(see [52], [51] or [46]).

We would like also to mention the very interesting work by Lord et al. which uses a
matching criterion based on metric structure comparison. In [29], Lord et al. address the
issue of quantifying differences between homologous shapes. Their work comes within the
context of hippocampi shape analysis and is motivated by the fact that disease classification
is made easier after having compared regional asymmetries. In order to perform this compar-
ative analysis, the authors propose a unified method that simultaneously treats segmentation
and registration by introducing two unknowns in the process: the deformation map and
the segmenting curve. The segmentation process is guided by the registration map and the
matching criterion, unlike classical registration methods, rests on the metric structure com-
parison of both surfaces and more precisely on the minimization of deviation from isometry.
Indeed, to devise their model, the authors formulate some fundamental assumptions: first,
”the deformity of homologous anatomical structures can be quantified as the deviation from
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isometry of the deformation map between their surfaces”. Second, ”since deformities may
be local, the evolution of the global correspondence must allow for a partial disconnection
between the normal and abnormal regions.” Several ingredients from differential geometry
are required to cast the model in a computational framework similar to the one of 2D im-
age segmentation and registration. To begin with, the authors use the argument according to
which any zero-genus closed shape is topologically equivalent to the sphere. Thus hippocampi
can be viewed as 2D Riemannian manifolds embedded in R

3 topologically equivalent to the
sphere. By excluding two poles, one gets a surface topologically equivalent to the cylinder,
which allows to parameterize it on a rectangular domain (equipped with periodic boundary
conditions). Consequently, this approach enables the authors to define the integrals involved
in the objective functional on the rectangular domain P1 related to the surface S1. The
matching criterion introduced is based on the metric structure comparison of the surfaces,
more precisely on their first fundamental form (FFF), and on a Chan-Vese-like homogeneity
constraint. The first fundamental form encodes intrinsic geometric properties of a surface, the
term ‘intrinsic’ meaning that no appeal to the ambient space is required. As mentioned in [12]
[Section 2.5 page 92], denoting by S ⊂ R

3 the surface, TpS the tangent plane at p ∈ S of the

regular surface S, the FFF is defined as the quadratic form Ip :
TpS → R

w 7→< w,w >p= |w|2 ≥ 0
,

< w1,w2 >p with w1,w2 ∈ TpS × TpS denoting the inner product of w1 and w2 as vectors
in R

3.

Assuming that the surface S is determined by x(u, v) and denoting by xu =
∂x

∂u
and

xv =
∂x

∂v
, the matrix representation of the FFF in the basis {xu,xv} is given by

(
E F

F G

)

with





E =< xu,xu >

F =< xu,xv >

G =< xv,xv >

.

The FFF is related to the intrinsic geometry of the surface and some local properties
(lengths, areas) can be computed only in terms of E,F and G. The ”element of arclength”
(also referred to as induced Riemannian metric) is defined by ds2 = Edu2 + 2Fdudv + Gdv2

and the element of area is defined by dA = ||xu × xv||dudv =
√

EG − F 2dudv.
Lastly, to compare the metric structures of the surfaces and more precisely to minimize

the deviation from isometry, the authors use the fact that an isometry between two surfaces
preserves the first fundamental form. The problem thus boils down to the comparison of
two matrices as will be seen later. We use the same notations as in [29]. Let S1 and S2 be
the two considered homologous surfaces, P1 and P2 their respective rectangular domain of
parametrization and γ1 ⊂ S1, γ2 ⊂ S2 sets of closed curves. Let x(u, v) with (u, v) ∈ P1

determine S1 and x̂(û, v̂) with (û, v̂) ∈ P2 determine S2. Lord et al.’s goal is to find a

homeomorphic map f of P1 onto P2 - f :
P1 → P2

(u, v) 7→ (û, v̂) = f(u, v)
-(diffeomorphic except

possibly on the curves γ) to register S1 and S2 and a segmenting curve γ1 such that γ1

delineates regions in S1 and its counterpart γ2, regions of S2. The FFF matrix associated

to S1 is denoted by G1, (G1 =

(
< xu,xu > < xu,xv >

< xu,xv > < xv,xv >

)
) and the one associated to S2 is

denoted by G2, (G2 =

(
< x̂bu, x̂bu > < x̂bu, x̂bv >

< x̂bu, x̂bv > < x̂bv, x̂bv >

)
).
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Denoting by J the Jacobian matrix of f , (J =




∂f1

∂u

∂f1

∂v
∂f2

∂u

∂f2

∂v


), one can easily check that

the FFF matrix related to S2 parameterized by
P1 → R

3

(u, v) 7→ x̂ ◦ f(u, v)
is defined by JT G2J .

The matching criterion resting on the measure of deviation from isometry, the authors propose
to minimize the distance between G1 and JT G2J by means of the Frobenius norm since an
isometry preserves the first fundamental form. Also, a Chan-Vese-like homogeneity constraint
is enforced in the objective functional. The region of S1 inside the curve γ1 exhibits one kind of
deformation while the region outside shows another. Thus contrary to our model in which the
expected curve (implicitly represented as the zero level set of a Lipschitz function) delineates
two regions with homogeneous intensity , their criterion is still based on metric structure
comparisons to disconnect normal regions from abnormal ones.

To conclude this section, we would like to mention the related work by Vemuri et al.
[48], [49]. The authors propose a coupled PDE model to perform both segmentation and
registration. In the first PDE, the level sets of the source image are evolved along their normals
with a speed defined as the difference between the target and the evolving source image. The
second PDE allows to explicitly retrieve the displacement vector field. In particular, in the
work of Vemuri-Chen [47] for joint registration and segmentation, the piecewise-smooth level
set segmentation model from [50] is combined with prior shape information through global
alignment, by minimizing the energy

E(φ, u+, u−, µ,R, T ) = α

∫

Ω
|u+ − I|2H(φ)dx + α

∫

Ω
|u− − I|2(1 − H(φ))dx

+β

∫

Ω
|∇u+|2H(φ)dx + βΩ|∇u−|2(1 − H(φ))dx +

∫

Ω
d2(µRx + T )δ(φ)|∇φ|dx,

where I is the given image to be segmented, φ the unknown level set function, µ is a scale,
R is rotation, T is translation, and d is the given distance function defined from the prior
shape. As we will see below, our model is different from the one in [47]. For the sake of
completeness, we also refer the reader to [8] in which a geodesic-active-contour-based model
including a shape prior is presented and [7] in which a shape prior is incorporated this time
in the Mumford-Shah model.

Related work is presented in [14], on an atlas-based segmentation of medical images locally
constrained by level sets. Finally, we wish to refer to a segmentation method, different from
ours, that also uses nonlinear elasticity to define the deformation of the evolving contour or
surface in Rouchdy et al. [40]. The segmentation criteria is based on the gradient vector flow
[53], and a deformation field is computed via non-linear elasticity using the finite element
method.

We now present our model. The outline of the paper is as follows: section 2 is devoted to
the depiction of our model. We carefully comment on the way the functional minimization
problem is defined. In section 3, the algorithm is detailed and numerical experiments are
given in order to demonstrate the potential of this method.

2 Description of the proposed model

As mentioned in the introduction, the scope of the proposed method is twofold:
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- we want to devise a model in which segmentation and registration are jointly performed.

- large and smooth deformations must be authorized while keeping the deformation map
diffeomorphic.

We see in the sequel how these criteria are fulfilled.

2.1 Distance measure criterion

Let Ω be a bounded open subset of R
n. For the purpose of illustration, we consider the case

n = 2.
Let us denote by R : Ω̄ → R the “reference” image to be segmented (later we will discuss

how the proposed method can be used for registration between a template image T : Ω̄ → R

and the reference image R). But originally, our method is defined as a segmentation method
based on [6], recalled in the introduction. Let Φ0 be a given Lipschitz level set function.
Denoting by C the zero level set of Φ0 and w ⊂ Ω the open set it delineates, Φ0 is such that:





C =
{
x ∈ Ω | Φ0(x) = 0

}

w =
{
x ∈ Ω | Φ0(x) > 0

}

Ω − w̄ =
{
x ∈ Ω | Φ0(x) < 0

}
.

The deformaton of the evolving curve is made in order to satisfy a segmentation criterion.
Indeed, the distance measure we introduce is related to the fitting term in the segmentation [6].
We recall that this method is a particular case of the minimal partition problem. Contrary
to classical methods which involve a stopping criterion based on the image gradient, this
method is region-based and aims at finding the best partition of the image as a function
taking only two values. By this way, registration and segmentation are correlated and we
expect at the end of the process to obtain the segmentation of the reference image as well as
a smooth deformation map. It results in a region-based intensity approach and no longer in
a pointwise process as usually done. The idea is to find a smooth displacement vector field

u :
Ω → R

2

x 7→ (u1(x), u2(x))
such that the zero level line of Φ defined by Φ(x) = Φ0(x − u(x))

fits the boundary of the object to be warped in the given “reference” image. Denoting by
H the one-dimensional Heaviside function, by ν1, ν2 > 0 two fixed parameters and c1 and c2

being two unknown constants depending on Φ0 and u, the distance measure functional Fd

(the segmentation criteria) is defined by:

Fd(c1, c2,u) = ν1

∫

Ω
|R(x) − c1|2H

(
Φ0(x − u(x))

)
dx

+ ν2

∫

Ω
|R(x) − c2|2

(
1 − H

(
Φ0(x− u(x))

))
dx. (1)

We need to add a regularization term of the form Freg(u) to (1), which is a substitute for
the length term of the evolving curve in [6], and therefore the unknown Φ(x) from [6] is
substituted by Φ0(x − u(x)), with Φ0 fixed now. Thus, we obtain a binary segmentation
method that can also be used for registration.
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2.2 Introduction of a nonlinear elasticity-based regularizer

A regularizing term Freg is now introduced to ensure the smoothness of the displacement
vector field u. As stressed by Fischer and Modersitzki [17], the smoother depends on the par-
ticular properties required for the displacement vector field and is related to the physics of the
object under consideration. To allow large deformations, we introduce a nonlinear-elasticity-
based smoother. For completeness, we also refer the reader to [4], [31] for a variational form
registration method for large deformations, and to [39], a much related work which also uses
nonlinear elasticity regularization but which is implemented using the finite element method.

We propose to view the deformation of the initial contour into the final segmented con-
tour as the deformation undergone by St. Venant-Kirchhoff materials. These materials are
homogeneous, isotropic, hyperelastic and the axiom of frame indifference is satisfied (see
[11] for further details). Let us denote by ǫ the Green-St. Venant strain tensor defined
by: ǫ = 1

2(C − I) with C = ∇ϕT∇ϕ, ϕ being the deformation such that ϕ = Id + u,
∇ϕ being the Jacobian matrix and I denoting the identity matrix. We have equivalently
ǫ = ǫ(u) = 1

2(∇uT +∇u+∇uT∇u). The strain tensor is a measure of the deviation between
a given deformation and a rigid deformation for which C = I. As stressed by Ciarlet [11], St.
Venant-Kirchhoff materials are the simplest among nonlinear models: they obey the simplest
constitutive equation, that is their response functions are given by Σ(ǫ) = λtrǫ I +2µǫ, λ and

µ being the Lamé constants. Their stored energy function is given by W (ǫ) =
λ

2
(trǫ)2 +µtrǫ2.

Setting C = F T F , the stored energy W can be rewritten in the form (see [11] for details):

Ŵ (F ) = W (ǫ) = −3λ + 2µ

4
trC +

λ + 2µ

8
trC2 +

λ

4
tr Cof C +

6µ + 9λ

8
. (2)

Raoult [23] (see also [38]) proved that the stored energy function of a St. Venant-Kirchhoff ma-
terial is not polyconvex. It is also not rank-1 convex and consequently not quasiconvex, which
raises a drawback of theoretical nature since we cannot obtain weak lower semi-continuity of
the introduced functional. Also, as stressed by Ciarlet in [11], the stored energy lacks a term
preventing the Jacobian matrix of ϕ to approach zero.

Nevertheless, despite all these underlying hindrances, we can expect to get better results
than those obtained with linearized models, as will be demonstrated in the following. The
nonlinear elasticity regularizer that will be coupled with the distance measure functional Fd

is defined by:

Freg(u) =

∫

Ω
W (ǫ(u)) dx =

∫

Ω

{λ

2
(trǫ(u))2 + µtrǫ2(u)

}
dx. (3)

The computation of the Euler-Lagrange equation satisfied by u is cumbersome. Following
the idea of the more theoretical work [34], we propose to circumvent this issue by introduc-
ing a second unknown, a matrix variable V , which approximates the Jacobian matrix of u.
The nonlinear elasticity regularizer is thus applied to V and no longer to ∇u, that is, the
nonlinearity is no longer in the derivatives of the unknown u. Also, as the matrix variable V

is introduced to mimic the Jacobian matrix of u, an additional term based on the Frobenius
norm denoted || · ||F of ∇u − V is incorporated in the modelling. More precisely, letting

V̂ =
V T + V + V T V

2
and α > 0 a tuning parameter, we redefine the smoothing functional

Freg = Freg(u, V ) by:

Freg(u, V ) =

∫

Ω
W (V̂ ) dx +

α

2

∫

Ω
||∇u− V ||2F dx. (4)

10



In the limit, as α → +∞, we obtain ∇u ≃ V in the L2-topology.

2.3 Total energy functional

The total energy Etotal considered in the remainder of this work is given by:

Etotal(c1, c2,u, V ) = Fd(c1, c2,u) + Freg(u, V ). (5)

3 Implementation and numerical simulations

3.1 Evolution problem

In the sequel, we give the details of the derivation of the Euler-Lagrange equations in the
two-dimensional case. In the calculations, the Heaviside function being not differentiable,
it is replaced by a smooth version denoted by Hǫ and H ′

ǫ = δǫ, regularization of the Dirac
measure. Fixing u and V and minimizing Etotal(c1, c2,u, V ) with respect to c1 and c2 yields:

c1 =

∫

Ω
R(x)H

(
Φ0(x − u(x))

)
dx

∫

Ω
H

(
Φ0(x− u(x))

)
dx

, (6)

c2 =

∫

Ω
R(x)

(
1 − H

(
Φ0(x − u(x))

))
dx

∫

Ω

(
1 − H

(
Φ0(x − u(x))

))
dx

. (7)

Computing the first variation of functional Fd(c1, c2,u) in (1) with respect to u gives the
following gradient:

∂uFd(c1, c2,u) =
(
ν2(R − c2)

2 − ν1(R − c1)
2
)
δǫ

(
Φ0(x − u(x))

)
∇Φ0(x − u(x)). (8)

Also, computing the first variation of functional Freg(u, V ) in equation (4) with respect to u

gives:

∂uk
Freg(u, V ) = −α

(
∆uk −

(∂vk1

∂x1
+

∂vk2

∂x2

))
, k = 1, 2. (9)

To finish, setting V = (vij)1≤i,j≤2 and letting

∣∣∣∣∣∣∣∣∣∣∣∣

c01 = v11 + v22 + 1
2

(
v2
11 + v2

12 + v2
21 + v2

22

)

c02 = 2v11 + v2
11 + v2

21

c03 = 2v22 + v2
12 + v2

22

c04 = v12 + v21 + v11v12 + v21v22,
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we obtain:

∂v11
Freg(u, V ) = α

(
v11 −

∂u1

∂x1

)
+ (λc01 + µc02)(1 + v11) + µc04v12.

∂v12
Freg(u, V ) = α

(
v12 −

∂u1

∂x2

)
+ (λc01 + µc03)v12 + µc04(1 + v11).

∂v21
Freg(u, V ) = α

(
v21 −

∂u2

∂x1

)
+ (λc01 + µc02)v21 + µc04(1 + v22).

∂v22
Freg(u, V ) = α

(
v22 −

∂u2

∂x2

)
+ (λc01 + µc03)(1 + v22) + µc04v21. (10)

We solve the Euler-Lagrange equations in u and V using the gradient descent method, pa-
rameterizing the gradient descent direction by an artificial time t ≥ 0.

∂V

∂t
= −∂V Freg(u, V ), (11)

∂u

∂t
= −∂uFd(c1, c2,u) − ∂uFreg(u, V ), (12)

which gives systems of 4 and 2 equations respectively, equipped with the necessary boundary
conditions originally from the computation of the Euler-Lagrange equations and the initial
conditions: u(x, 0) = 0R2 and V = 0M2(R).

3.2 Implementation and algorithm

Let ∆x1 and ∆x2 be the spatial steps, ∆t be the time step and (x1i, x2j) = (i∆x1, j∆x2)
be the grid points , 1 ≤ i ≤ M and 1 ≤ j ≤ N . For a function Ψ : Ω → R, let Ψn

ij =
Ψ(i∆x1, j∆x2, n∆t). We define the following finite difference schemes:

Dx1Ψn
i,j =

Ψn
i+1,j − Ψn

i−1,j

2∆x1
Dx2Ψn

i,j =
Ψn

i,j+1 − Ψn
i,j−1

2∆x2

Dx1x1Ψn
i,j =

Ψn
i+1,j − 2Ψn+1

i,j + Ψn
i−1,j

∆x2
1

Dx2x2Ψn
i,j =

Ψn
i,j+1 − 2Ψn+1

i,j + Ψn
i,j−1

∆x2
2

.

In the following, for the sake of simplicity, we will use the notations Ψn := Ψn
i,j, DxlΨn :=

DxlΨn
i,j, DxlxlΨn := DxlxlΨn

i,j, l = 1, 2.
To discretize (11), we use a semi-implicit finite difference scheme as follows:

vn+1
11 − vn

11

∆t
= α

(
Dx1un

1 − vn+1
11

)
− (λcn

01 + µcn
02)(1 + vn

11) − µcn
04v

n
12,

vn+1
12 − vn

12

∆t
= α

(
Dx2un

1 − vn+1
12

)
− (λcn

01 + µcn
03)v

n
12 − µcn

04(1 + vn
11),

vn+1
21 − vn

21

∆t
= α

(
Dx1un

2 − vn+1
21

)
− (λcn

01 + µcn
02)v

n
21 − µcn

04(1 + vn
22),

vn+1
22 − vn

22

∆t
= α

(
Dx2un

2 − vn+1
22

)
− (λcn

01 + µcn
03)(1 + vn

22) − µcn
04v

n
21. (13)
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In a similar way, we use a semi-implicit finite difference scheme to discretize (12):

un+1
1 − un

1

∆t
=

(
ν1(R − cn

1 )2 − ν2(R − cn
2 )2

)
δǫ

(
Φ0(x − un(x))

)∂Φn
0

∂x1
(x − un(x))

+ α

(
Dx1x1un

1 + Dx2x2un
1 −

(
Dx1vn

11 + Dx2vn
12

))
,

un+1
2 − un

2

∆t
=

(
ν1(R − cn

1 )2 − ν2(R − cn
2 )2

)
δǫ

(
Φ0(x − un(x))

)∂Φn
0

∂x2
(x − un(x))

+ α

(
Dx1x1un

2 + Dx2x2un
2 −

(
Dx1vn

21 + Dx2vn
22

))
. (14)

In most cases, no regridding was necessary. Nevertheless, in the algorithm, we have used
a regridding technique quite similar to the one proposed by Christensen et al. [10]. The
Jacobian |∇u| := det(∇u) is monitored and if it drops below a defined threshold in some
parts of the image, the process is reinitialized (necessary only when we wish to preserve the
topology of the evolving contour). The only change is that instead of doing the reinitialization
step with the last deformed template as done in [10], we use the last deformed level set function
Φ0(· − u(·)). The overall displacement vector field u is reconstructed similarly to [10]. The
algorithm can be summarized as follows:

Algorithm 1 Combined segmentation and registration framework with nonlinear elasticity
smoother
1: Read image R and define Φ0. Initialize n = 0, t = 0, u(x, 0) = 0R2 , V (x, 0) = 0M2(R),

flag = 1.
2: Compute c1 and c2 using relations (6) and (7).
3: Calculate V (x, n∆t) and u(x, n∆t) using the semi-implicit schemes (13) and (14).

V (x, n∆t) and u(x, n∆t) are jointly computed, which means that u(x, n∆t) is computed
using updated values of V (·, n∆t).

4: Compute |∇u|. If there exists (i, j) ∈ [1,M ] × [1,N ] such that |∇u|i,j < tol then set
flag = 0 and Φ0 := Φ0(· − u(·)). Save the last computed displacement vector field un−1,
reinitialize u(x, n∆t) = 0R2 , V (x, n∆t) = 0M2(R) and go to step 2.

5: If the cost functional Etotal decreases by sufficiently small amount compared to the pre-
vious iteration, then if flag = 0 compute the global displacement vector field u and stop
else stop.

6: Let n := n + 1 and go to step 2.

3.3 Numerical experiments

We conclude this paper by presenting several results and comparisons on both synthetic and
real images in 2 dimensions. The experiments have been performed on a 2.21GHz Athlon
with 1.00 GB of RAM. In all our experiments, ∆x1 = ∆x2 = 1, ν1 = ν2 = 1 and the C∞

regularization of the Heaviside funtion (see [6]) is Hǫ(z) =
1

2

(
1 +

2

π
arctan

z

ǫ

)
. Our first

experimental test is an academic one and is similar to those performed by Modersitzki in
[32] (pp 114-115, pp 129-130, pp 150-153, pp 168-170). The problem is to warp a black
disk to the letter C both defined on the same image domain (size 80 × 80). The given data

13



are the template and reference images as well as the curve delineating the disk boundary.
We wish to demonstrate that our method qualitatively performs in a way similar to the
fluid model without requiring the expensive Navier-Stokes solver employed for its numerical
discretization and provides two results: the segmentation of the reference image as well as
a smooth diffeomorphic displacement vector field u. The implementation is simple, based
on finite difference schemes as previously depicted, and allows to remove the nonlinearity in
the derivatives of the unknown u. The method allows large deformations unlike the linear
elasticity model, diffusion model, curvature-based model for which the registration cannot be
accomplished, the images differing too much (see pages 114-115, 150-153, 168-171 from [32]).
In this example, two regridding steps were necessary: the transformation was considered as
admissible if the Jacobian exceeded 0.03. Note that regridding steps were also necessary with
the fluid registration model.

The second example illustrates how the method can be used in the case of topology-
preserving segmentation (see [1], [20], [21], [24], [45] for instance, for this topic). This synthetic
reference image represents two disks (similar to tests performed in prior related works by Han
et al. [21] and by Sundaramoorthi and Yezzi [45]). The template image, defined on the same
image domain (size 100×100) is made of a black ellipse such that, when superimposed on the
reference image, its boundary encloses the two disks. We aim at segmenting these two disks
while maintaining the same topology throughout the process (one path-connected component)
and at obtaining a smooth displacement vector field u. In this example, one regridding step
was necessary: the transformation was considered as admissible if the Jacobian exceeded 0.03.

The method has been tested on complex slices of the brain. The goal is to register a disk to
a slice of the brain. The template image, defined on the same image domain (size 128 × 192)
is made of a disk such that, when superimposed on the reference image, its boundary encloses
the slice of the brain. In this example, one regridding step was necessary: the transformation
was considered as admissible if the Jacobian exceeded 0.03.

4 Conclusion

This paper was devoted to a combined segmentation and registration framework allowing
large deformations. The proposed variational model is based on a nonlinear elasticity regu-
larizer and a distance measure related to the Chan-Vese model for segmentation. Contrary
to prior works on nonlinear elasticity using the finite element method, the implementation is
made introducing a second unknown that mimics the Jacobian matrix of the displacement
vector field u, thus removing the nonlinearity on the derivatives of u and decreasing the
computational cost. The method produces both the segmentation of the object contained in
the reference image and a smooth deformation between the template and reference images.
For experiments requiring relatively large deformations, in most cases, no regridding step is
necessary. For extreme cases such as the warping of the black disk to the letter C, only a few
regridding steps (≃ 2) is required. We also demonstrated how this method could be used in
the case of topology-preserving segmentation.

In the future, we plan to investigate other topology-preserving techniques to ensure that
the deformation is diffeomorphic and extend our model to piecewise-constant images with
more than two intensities or textured images. Also, we are currently working on a model in
which the shapes to be registered are viewed as Ogden materials. In this case, theoretical
results on the existence of minimizers can be obtained.
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Figure 1: On the left, the reference image, on the right the template.

Figure 2: On the left, the boundary of the disk (zero level set of Φ0) superimposed on the
reference image, on the right the segmentation of the letter C.

Figure 3: Deformed grid using nonlinear elasticity regularization. The parameters are: ∆t =
0.01, Lamé coefficients λ = 0 and µ = 1000, α = 20000.
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Figure 4: On top, the boundary of the ellipse (zero level set of Φ0) superimposed on the
reference image, on the bottom, the topology-preserving segmentation of the two disks.
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Figure 6: On the left, the boundary of the disk (zero level set of Φ0) superimposed on the
reference image, on the right, the segmentation of the slice of the brain.

Figure 7: Deformed grid using nonlinear elasticity regularization. The parameters are: ∆t =
0.01, Lamé coefficients λ = 0 and µ = 1000, α = 20000.
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