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Abstract

We propose a new sweeping algorithm which utilizes the Legendre
transform of the Hamiltonian on triangulated meshes. The algorithm is a
general extension of the previous proposed algorithm by Kao et al. (SIAM
J. Numer. Anal. 42(2005), 2612-2632.) The algorithm yields the numeri-
cal solution at a grid point using only its one-ring neighboring grid values
and is easy to implement numerically. The minimization that is related
to the Legendre transform in the sweeping algorithm can either be solved
analytically or numerically. The scheme is shown to be monotone and
consistent. We illustrate the efficiency and accuracy of the new method
with several numerical examples in two and three dimensions.

1 Introduction

Hamilton-Jacobi equations arise from a multitude of applications, ranging from
classical mechanics, semi-classical quantum mechanics to contemporary image
processing and computer vision. Therefore it is crucial to develop efficient, accu-
rate numerical methods for these equations. In this paper, we develop Legendre-
transform-based fast sweeping methods for the following static Hamilton-Jacobi
equation on unstructured meshes:

H(z,Vé(x)) = R(z), zeQ\T, 1)
o(x) = g(x), zxel CQ, (2)

where g(x) is a positive, Lipschitz continuous function, ) is an open, bounded
polygonal domain in R?, and I is a subset of 2; H(z, p) is Lipschitz continuous
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in both arguments, and it is convex in the second argument. If H(z,p) =
|p|H (z, ‘—5‘) = |p|V(z), then the eikonal equation for isotropic wave propagation
results; otherwise, the so-called anisotropic eikonal equation results.

Fast sweeping methods are a family of efficient methods for solving static
Hamilton-Jacobi equations [26, 23, 9, 10, 5, 18, 19, 27, 12], and some essen-
tial ideas of these methods may trace back to [20, 3]. In [26] the fast sweep-
ing method was systematically analyzed for eikonal equations. Since then the
fast sweeping methods have undergone intensive development for general static
Hamilton-Jacobi equations in [26, 23, 9, 10, 5, 18, 19, 27, 12] and have found
many different applications; see [11, 8] for examples. On the other hand, the
fast marching method and its relatives consist of another family of numerical
methods for solving Hamilton-Jacobi equations [24, 21, 7, 22].

A fast sweeping method consists of the following three essential ingredients:
1) an efficient local solver for a Hamilton-Jacobi equation on a given Cartesian
mesh or triangulation, 2) systematic orderings of solution nodes according to
some pre-determined information-flowing directions, and 3) Gauss-Seidel type
iterations based on a given order of solution nodes. As is well known by now,
a Cartesian mesh provides the fast sweeping method with natural orderings of
nodes so that efficient sweeping strategies can be easily designed as illustrated
in [26, 23, 9, 10, 25]. On a triangulated mesh, however, such natural orderings
no longer exist. In [18, 5, 19] some novel ordering strategies based on refer-
ence points and [P-distances have been proposed, which are demonstrated to be
effective.

As for local solvers for Hamilton-Jacobi equations, in general they are based
on some monotone numerical Hamiltonians which discretize continuous Hamil-
tonians on a Cartesian mesh or a triangular mesh. Such monotone numerical
Hamiltonians can be Godunov-type [1, 13], Lax-Friedrichs-type [13], or optimal-
control-type [24, 2]|. In [10] a Legendre-transform-based numerical Hamiltonian
on Cartesian meshes is proposed to design a fast sweeping method for static
Hamilton-Jacobi equations, and the resulting method is shown to be efficient
and accurate; on Cartesian meshes this numerical Hamiltonian can be inter-
preted as Godunov-type Hamiltonians [10]. In [13] Osher and Shu derive the
Riemann solver on Cartesian meshes for Hamilton-Jacobi equations from the
Godunov scheme [1]; it might be possible to do the same on triangulated meshes
for Hamilton-Jacobi equations. In this paper we propose a new Legendre-
transform-based numerical Hamiltonian on triangulated meshes to discretize a
continuous convex Hamiltonian; incorporating this new numerical Hamiltonian
into a sweeping strategy on unstructured meshes [18] yields a new fast sweeping
method for static Hamilton-Jacobi equations on triangulated meshes.

The rest of the paper is organized as follows. Section 2 presents Legendre-
transform-based numerical Hamiltonians for 2-D and 3-D convex Hamilton-
Jacobi equations. Section 3 details numerical Hamiltonians for a class of quadratic
Hamiltonians, including classical eikonal equations. Section 4 gives some algo-
rithmic and implementation details. Section 5 gives various examples to demon-
strate the efficiency and accuracy of the new schemes.



2 Legendre-transform-based numerical Hamilto-
nians

2.1 Spherical Legendre transforms

Let v : S9! — R* be a continuous function defined on a curved space S¢~!.
Then the following results hold.
1. The first Legendre transformation of ~ is:

Ve (V) = 9-1/;%:1\1(14:1 {(z(@)} ;

2. the second Legendre transformation of + is:

7 (v) = o, [v(0)(0 - v)].

The first and second Legendre transformations are dual to each other in the
following sense: (r.)* = r if r is convex, and (r*), = r if r is polar-convex; see
[14]. We can extend 7 to the whole space R? by defining

) = lal ().

where the extension 7 is homogeneous of degree one and = € R?.
Using the Legendre transformations we can rewrite the convex Hamiltonian
H in equation (1) in the following form,

H(Vo(x)) = max((V6 - Oyuw(0)], 05,

where
w(f) =

Voo {(Ij%))] 3)

In the above, for the sake of clarity in notation, we have suppressed the depen-
dence of H on z. In addition, the € notation will denote either the directional
angle or the corresponding unit vector, and the specific meaning will be clear in
the context.

Using homogeneity of H in equation (3), we can rewrite w(f) as

P
. . H (Ipl)
w®) = nin —t
7 °0>0, 0 2
o7 0>0,1pl# (‘p‘ 9)
[ H(p)
= —. 4
pr»%glo[(pﬂ)} “)
Then the minimization with respect to p implies that
(p-0)
0=-—-V,H(p). 5
H(p) p ( ) ( )



According to the method of characteristics for the static Hamilton-Jacobi equa-
tion, V, H (p) is the ray direction. Therefore, the above condition indicates that
0 is exactly the local ray direction; see [19] for illustration of this in another
setting.

Notice that if H(p) is strictly convex in p, then the mapping

VPH(p) c Sd*l

p € {p: H(p) = const.} — ¥ H(p)]

is one-to-one and onto; in turn, this implies that given 6 there is a unique
p € {p : H(p) = const.} so that equation (5) holds. This relation has been
used in [16, 17] to formulate paraxial anisotropic eikonal equations and in [19]
to design a fast sweeping method for anisotropic eikonal equations.

2.2 2-D numerical Hamiltonians

To illustrate the idea, we derive the 2-D numerical Hamiltonian first. We con-
sider a triangulation 73 of Q) into non-overlapping, nonempty and closed trian-
gles 7, with diameter h7 which is the longest side of a triangle 7', such that
Q:UTeq—hyT. We assume that 7}, satisfies the following conditions:

e there are no obtuse triangles;
e no more than p triangles have a common vertex;
® h=supreg, hr <1

e 7, is regular in the sense that there exists a constant wg, independent of
h, such that if p7 is the diameter of the largest ball B C 7, then for all
T €Ty, hr < wopT.

Therefore, equation (1) is solved in the domain €2, which has a triangulation
Tr. We consider every vertex and all the triangles which are directly associated
with this vertex; see Figure 1 for a vertex O and its n triangles 77, 7o, - -,
7,. For a typical triangle AOP, P>, we denote O : (2,,¥0), P1 : (z1,y1) and
Py : (22,y2); |OPy|, |OPy| and |P, Py| are the lengths of the edges OP;, OP;
and P, P, respectively.

Figure 1: A neighborhood of a vertex in a triangular mesh.



During the solution process we need a local solver at the vertex O for each
triangle. To achieve such a purpose, we construct the numerical Hamiltonian as
follows: .

H(Vo(x)) = max[(Vo - O)w(6)], 6 €5,

where VE\-H is obtained by piecewise linear approximation.

Consider a vertex O and its associated triangles in a triangular mesh as
shown in F1g_1> Takin_g) one typical triangle, such as AP,OP;, as an example,
the vectors OP; and OP, have directional angles 6, and 65, respectively. Thus
by linear approximation, we have

% ~ Vo - (61) = [cos(61),sin(61)] [ 2; } ,
and b ;

% ~ Vo - (62) = [cos(b2),sin(6)] [ 2; }
Thus

[te) )% ][ sl |

and this implies that
. . ¢(P1)—¢(O
Vo= [ o 1 [ sin(f)  —sin(6q) ] l — \(%P1|( ) ]

by ] - sin(fy — 61) | —cos(f2) cos(f1) %

_d(P) - ¢(0) sin(02) | 9(F) —¢(0) —sin(61)
|OPy|sin(fy — 61) | —cos(fh) |OPs|sin(fy — 61) | cos(f1) |-
Now consider the ray starting from the segment P, P, and reaching O with
the direction #, which has the same meaning as in the Legendre transform. Then
0 — 7 points to the sector defined by P, and P,. Thus

Py

~ 20) —¢(P1) sin(0> — (0 — 7)) | $(0) — $(Py) sin((0 — 7) — 61)
|OP1| sin(92 — 91) |OP2| sin(b’g — 6‘1)

where 6; < 68— < 05. Since the triangle is acute, sin(62—61) > 0. Consequently,
we also have that 0 < % <land 0< % <1.
Therefore, locally in the neighborhood of O, the numerical Hamiltonian can

be written as

Vﬂe) = —[cos( — ), sin(f — )] [ Oz ]

B(V6(0): ) = max {sin(ﬁg—‘(ﬂ—}ﬂ')) %sin((ﬁ—‘w)—ﬂ{)}w97
(Ve(O)ip1-p2) 0 {p sin(03 — 67) * sin(03 — 67) (6)



where . .
i GOV 0P, 9(0) = o(F).
' jorj| 7 opj|

the Hamilton-Jacobi equation (1) reduces to

. {pj sin(0y = (0 —m) ,,sin(6 — ) ~ 6]) } w(6) — R(O) = 0,

Y sin(6) — 69) sin(6) — 67)

where j is the index of all triangles sharing the same vertex O.
The consistency of the numerical Hamiltonian H is a simple consequence of
the definition.
Since R )
op; op),
the above numerical Hamiltonian is monotone, and the resulting scheme is a
monotone scheme [6].

2.3 2-D local solvers

Simplifying the above discretized Hamilton-Jacobi equation further, we can solve
for ¢(O) in terms of its neighbors:

H(P7) sin(0—(0—7)) . ¢(P?) sin((0—7)—067)
(|OP1{| siniegfe{) T |OP22j| sin(egfgi)l )w(‘g) + R(0)
1 sin(eg—.(e—ﬂ')) 1 sin((@—jr)—@{))

(|OP1]| sin(65—61) + |OPJ| sin(65—61) w(e)

= mein K(0), (6)

6(0) = min

where 6] <60 — 7 <6}, and 0 < 0} — 6] < Z.
Introducing the following notations,

1
a; = - . — 7
0P [sm(@] — 6] ™
o= ®)
(OP|sin (6] — 0]) -
[1(0) = a1p(P)sin(6 — 03) + b1p(Py) sin(6y — 0), 9)
91(0) = aysin(d — 6)) + by sin(6] — 0), (10)
f0) = f[1(0w(0) + R(O), (11)
9(0) = g1(0)w(), (12)
the formula (6) becomes
= min = min @
$(0) K(0) Ok



and the minimum must be achieved in one of the following three cases: Case (i)
6] + 7 for some j; Case (ii) 63 + 7 for some j; Case (iii) arge{dK(g) =0}.
Case (i). If @ = 6 + 7, then

_ j R(O) ‘
K(9)—¢(Pf)+m|opf|'

Case (ii). If § = 6} + , then
_ j R(O) ‘
K(9)—¢(P2])+m|opzj|'

Case (iii). If #] < § — 7 < 6}, we can verify that dK(e) = 0 yields

0 = [(0)g(0) - f(6)g (0)
= (fi;1 — flgl) 2 R(O)(glw—l—glw ) )
= abi(¢(P}) — ¢(P])) sin(6] — 0))w? — R(gjw + grw),

/ /

where ’ denotes the derivative with respect to 6. Therefore, we have

arbi (p(P]) — ¢(P}))sin(0) — 6])  gyw + 1w’
R(O) =T

= F(0), (13)

which is a nonlinear equation for 6. For some special cases, such as eikonal
equations or quadratic type Hamilton-Jacobi equations, this equation can be
solved exactly. Otherwise, numerical algorithms are needed to find the roots for

arbi(¢(P3) — ¢(P}))sin(6] - 6])

RO) = 0.

F(0) -

2.4 3-D numerical Hamiltonians

Next we consider equation (1) in a domain € in R, which has a triangulation 7},
consisting of tetrahedrons. We consider every vertex and all tetrahedrons which
are associated to this vertex. Again the question reduces to how to compute
the numerical solution at the current central vertex for each tetrahedron.

Taking a typical @;al&dr}on with four vertexes O, Py, P,, and P3 as an
example, the vectors OP;, OPs, OP; have directional angles (61, 63), (62, 62) and
(63,63), respectively where the subscripts 1 and 2 indicate the angles intersecting
with the z-axis and Tr-axis, respectlvely In the c_putauon we assume that
the angles between OP1 and OPg, OP2 and OP3, OP; and OP3 are non-obtuse;
such a tetrahedron is termed acute [4]. If a tetrahedron is not acute, then one
may use the splitting strategy proposed in [4] to pre-process this tetrahedron
first.

Thus by linear approximation, we have

_ o
M R~ V(;S-(H%,Hé) = [sin(G}) 005(9;), sin(ei) sin(@%),cos(G})] by |
|OP; | b,



o12) —6(0) ~ V- (07,05) = [sin(07) cos(03), sin(07) sin(03), cos(67)]

O]
and
Py) — ¢(O . e
A 70 (61,09) = sin(81) cos(63)sin(67) im0, cos(6)
Let (ol 1y w01 «in (01 1
sin(f7) cos(A3) sin(67)sin(63) cos(7)
O = | sin(6?)cos(63) sin(67)sin(03) cos(6?) | .
sin(63) cos(03) sin(63)sin(03) cos(63)
Then we have
$(P)—¢(0)
0 S (O)
O ¢y | = |2OP2\ ,
b B(F)—6(0)
|OPs|
and this implies that
6(P1)~6(0)
O11 O21 O13 |OP1 ]
O21 Oz ©Og3 ¢(P‘2(%;j|(o)
o O31 O3 Oz ¢(P3)—(0)
v¢ (b ‘OP3|
¢y cos(0})O1 + cos(62)O2 + cos(63)O3
where
O11 = sin(0?) sin(63) cos(63) — sin(03) sin(63) cos(6%),
O21 = sin(#3) sin(63) cos(0}) — sin(07) sin(63) cos(63),
O31 = sin(#1) sin(63) cos(6%) — sin(#3) sin(63) cos(6}),
O12 = sin(#3) cos(63) cos(03) — sin(6?) cos(63) cos(03),
O = sin(#7) cos(63) cos(03) — sin(63) cos(63) cos(07),
O32 = sin(6?) cos(63) cos(0}) — sin(61) cos(63) cos(07),
O13 = sin(#3) sin(6%) sin(05 — 6?),
Oa3 = sin(#1) sin(63) sin(03 — 63),
O33 = sin(#?) sin(6]) sin(03 — 61),
and
©; = sin(0?)sin(63)sin(05 — 63)
Oy = sin(#3)sin(67)sin(03 — 63)
O3 = sin(#])sin(07)sin(63 — 63).
Thus
$(P1) 1
A (| R | o
Vﬁb = Qby =0~ ‘01322| - ¢(0)@7 |Of32\
¢(Ps
> o o




Now consider the ray starting from the plane P; P» P3 and reaching O has the
direction (61, 602), which has the same meaning as in the Legendre transform.
Then (7 — 61,02 — ) points to the plane defined by P, P, and Ps;. Thus

_ o
V¢ (9) = —’I’L(Ql, 92) . d)y = n(91, 6‘2) . @_lp
¢

where
sin(m — 61) cos(f2 — )

n(f1,02) = | sin(w —01)sin(f2 — ) |,
cos(m — 61)

p' = (p1,p2,p3),

_ 9(0) — ¢(P) o
pi—w, (i=1,2,3).

Substituting this into the numerical Hamiltonian, we have
fI(V¢(O);p1,p2,p3) = meax{(n(G) . @71p)w(9)} .

Hence, the Hamilton-Jacobi equation reduces to

P(P1) 1
\011;1\ \Ofﬂ
max { —n(61,05)" { O | {5 | —4(0)07" | opy | p w(br,02) p—R(0) = 0.
(61,02) 6(Ps) L
[OPs| OP;s]|
Thus
d(P1)
OP1|
n(91,02)T®—1 f(gllij ’LU(91,92) +R(O)
¢(Ps3)
#(0) = min [OF] .
01,02
\O{’l\
n(91, 92)T671 ‘Olpz‘ w(@l, 92)
[OPs]

which yields a formula for ¢(O) in terms of its neighbors.

The consistency of the numerical Hamiltonian H is a consequence of the
definition. To show that the numerical Hamiltonian H is monotone, we rewrite
the matrix O in terms of unit vectors

n; = (sin(0%) cos(6%), sin(6) sin(63), cos(0%))t, (i =1,2,3),

and
@t = (nl, na, ng).

Letting
Bt = (61562763) = nt@715



we have
n =1 ny + P2 ng + B3 n3

and
H(V$(0); p1,p2,ps) = max {(B1 p1 + P2 p2 + O3 p3)w(f)} .
Accordingly, the following holds:

n-(ny X n3) n-(ny X n3) n-(ny X ng)
) 2 = ’ 3 = :
ny - (7’L2 X ng) ng - (n1 X ng) ns - (n1 X ng)

pr =

Notice that nq - (ng x n3) is the volume of the parallelepiped whose edges are
ni, na, nz. Therefore, if n lies inside the cone defined by n1, ny and ng, then
we conclude that 0 < 3; < 1(i = 1,2, 3), and the monotonicity of the numerical
Hamiltonian follows.

3 A 2-D quadratic Hamiltonian

If

H(cosv,sinv) = Vacos2 v+ bsin? v — 2csinv cos v, (14)

where a, b, and ¢ are given functions, then we can compute w(6) directly,

ab — 2
w(e) = ) B N .
asin® @ + bcos? 6 + 2¢cos(h) sin()
Therefore, on a typical triangle AOP! PJ, by equation (13) we have

FO) = giw+ grw’ B sin(0)(aag + cb2) + cos(0)(bbe + caz)

w? \/(ab — ¢2) (asin® 6 + beos?(0) + 2csin(6) cos(9))

where a1 and b; are defined in equations (7) and (8), respectively,
ag = ap sin(6}) — by sin(6?),

by = aj cos(#}) — by cos(6?).

Letting
_ abi(¢(P3) — ¢(PY)) sin(6 — 67)
- R(0) ’

the nonlinear equation (13) is quadratic in tan 6 if cos(f) # 0:

g2 tan?(0) + gy tan(6) + go = 0,

where
@2 = (aaz +bac)? —am?(ab — c?),
@1 = 2(aaz + bac)(bby + caz) — 2em?(ab — c2),
@ = (bby+ caz)? —bm?(ab— c?).

10



If the leading coefficient ¢ is not zero, we have

| —a g4
¢’ = tan~! ( n 2q1 qoq2> + km, (15)
q2

where £ is chosen such that 0{ <@ —7< 0% and F(67) = m; if go = 0, then we
choose 67 = tan™1(— L) + k.

q1
3.1 2-D eikonal equations

Notice that for the eikonal equation, we have a = b =1 and ¢ = 0; as a result,
we have the following simplified equation,

arbi (p(P3) — p(P})) sin(6] — 67)
R(O)

= agsin(f) + by cos(6),

leading to

_ _ _ ‘ iy o pi
|OPJ| cos(6} — 0) — |OP]|cos( — 67) = %

By using the subtraction formula of cosine, we have

o(P3) — 6(P})

sin O(|OPj | sin fy—|OP | sin 6, )+cos O(|OPJ | cos Ba—|OP! | cos b, ) = RO)

Let a3 = |OP]|sinfy — |OPJ|sin6y, by = |OP]| cos By — |OPJ| cosf;, and

¢s = \Ja3 + 03 = \/|OP][? + [OP]|2 — 2/OP{||OPj| cos(8: — 61) = | PP}

Furthermore, introduce angle 4 by letting 22 = cos(u) and i—z = sin(p). There-
fore, we have

. _o(P)) —o(P))
WO = oNpP

Only when _ _
RO)PP]| |7

we have a solution for 6 + p. This condition is essentially a causality condition
as stated in [18] for eikonal equations.

Letting
Jy _ J
v = arcsin M ,
R(O)|P; P |
we have

0=v—pu or O=7m—v—pu

11



Since #; < 8 — 1 < 65, we need to have
Oh+rm4+p<v<bs+m+p,

or
—92—M<V<—01—

The algorithm for a typical simplex can be summarized as the following.

Step 1. Find 6 by solving (13) for a general Hamiltonian or (15) for a
quadratic Hamiltonian. Choose 6 which satisfies #; < § — © < 63. Compute
PP = ¢(0) in (6).

Step 2. Compute ¢{"" = ¢(P{) + 7t +7r)|opﬂ| and ¢S = ¢(PJ) +

R(O
9(2+)7r) |OP2Jl|

Step 3. Update ¢(O) = min(¢(0), ¢!, @™ p57P).

If we go through each simplex j one by one, due to the sharing of vertexes of
the adjacent simplexes, the update from a specific vertex in Step 1 is computed
twice which is unnecessary. Also, a simplex need not considering if both ¢(P})
and qS(PQj ) are larger than the current new candidate value. Thus a more efficient
way to implement the above algorithm is:

Step 1. Compute ¢¥ = min; qS(Plj) w(01+7'r |OPJ|

Step 2. Only consider the simplex j such that either ¢(P1j ) or ¢(P2j ) is
greater than ¢¥. Find 6 by solving (13) for a general Hamiltonian or (15) for
a quadratic Hamiltonian. Choose 6 which satisfies 1 < 6 — m < 65. Compute
¢¢ = ¢(0) in (6).

Step 3. Update ¢(O) = min(¢(0O), ¢, ¢°).

4 Algorithms and implementation

We now describe the complete algorithm combining the local solver explained
in the previous sections with the fast sweeping strategy developed in [18].

e Step 1, sorting. Sort all the nodes (vertexes) according to the [P distance
to a few reference points. In all our tests we use the [!' distance.

e Step 2, initialization. Assign large positive values to all vertexes except
those that belong to or near the boundary (the initial front). Those bound-
ary nodes are assigned exact values or approximated values by a shooting
method, and these values are fixed in later iterations.

e Step 3, sweeping. Start Gauss-Seidel iterations with alternating sweep-
ing orderings according to the distances of nodes to the chosen reference
points.

12



Notice that the local solver is carried out at each node by the theoretical
formula for a quadratic Hamiltonian mentioned in Section 3 or numerical mini-
mization. Basically one-ring neighboring vertexes at each node are stored at the
beginning of the algorithm. Taking the three dimensional case as an example,
a tetrahedral mesh is constructed by subdividing each cube with eight vertexes
in a rectangular mesh into six tetrahedrons as shown in Figure 2. Denoting the
neighboring grids (i —1:4+1,7—1: 5+ 1,k—1:k+1) of anode (i,J,k) as
v1 to vo7, the one-ring neighbors are vy, vy, vs, v, Vs, Vg, V10, V11, V13, V15, V17,
V18, V19, V20, V22, V23, U4, and veg. Totally there are 18 neighboring vertexes
which form 48 different triangular faces and 24 tetrahedral elements. In a gen-
eral irregular mesh, the number of the neighboring vertexes may be different.
Following a similar updating process mentioned in Section 3.1, we first find the
minimum ¢V of the candidate values by using one neighboring point (traveling
along a line). Second, we find the minimum ¢¢ of the candidate values by using
two neighboring points (traveling on a face) when at least one of the neighboring
points is smaller than ¢°. Third, we find the minimum ¢° of the candidate val-
ues by using three neighboring points (traveling through a tetrahedron) when at
least one of the neighboring points is smaller than ¢¢. In this way, unnecessary
computation can be avoided at each node.

Figure 2: A tetrahedron mesh is constructed by subdividing each cube with
eight vertexes in a rectangular mesh into six tetrahedrons.
5 Numerical Results

5.1 2-D Examples

Example 1. We start with the simplest example which is the eikonal equation
with the unit speed function. The value of ¢ is specified as 0 at (x,y) = (0,0).

13



The exact solution is the distance function to the origin, i.e.,

d(z,y) = 2% +y2.

We first obtain a triangularization of the computational domain Q = [—1, 1]x
[-1,1]. This can be done by using Matlab Toolbox “pdetool” or other mesh
generation software. Here we simply use the “pdetool” toolbox to specify a
square computational domain and then generate an initial mesh. The mesh
can be further refined by dividing each triangle into four smaller ones. The
data which includes points, edges, and triangles of refined meshes can then
be exported for usage. In Figure 3(a), we show a triangulated mesh with 448
triangles and 249 vertexes for the square domain. Furthermore, the refined mesh
with 1792 triangles and 945 vertexes is shown in Figure 3(b). In Figure 4, we
show the numerical result on a further refined mesh with 114688 triangles and
57729 vertexes. In Table 1, the [! error is computed for various meshes. We can
clearly see the first-order convergence after the mesh is fine enough.

1 VAVAVAVAVAVAVAN
AN VAVAVA) R R R R RO
NS
N AN VAV AaVay, 4%
KA
0 KINSRRRNA 0.5 RN e o
<SERRRNAA SRR ARRRRERRRAA e e
</ ““ "" % RIS RINNSR I AAAAANIAIIN
S % QT RS RRARRS IO
PREEENNAAAAKN B NNy A A
KPKPKPRISSSSSSNNAAAAAAAAAKPKK]
oKD KIS oA
NS AVAVAVAY NANANANS o PP PRI
CEAAA NSNS A A RRORRREEEK
A ARSI A ARSI
R AN RN NN o A RN
08 GATAZANNRRIS 05 IR
A AR <N A AORONSINSOR R ISIRR
VAVAvAVAYS A I NORRR
VavavaVNNANANAN S RSN
1 \VAVAVAVANANAV _1 RO ORRRRRRRRNNNRRRR
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Figure 3: (a) A triangulated mesh with 448 triangles and 249 vertexes. (b) The
refined mesh with 1792 triangles and 945 vertexes.
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| Nodes | Elements | L' error | order |

249 448 0.0600

945 1792 0.0362 | 0.7264
3681 7168 0.0219 | 0.7303
14529 28672 0.0113 | 0.9513
57729 114688 0.0055 | 1.0439

Table 1: Accuracy tests for |V¢| = 1 with ¢(0,0) = 0 on the domain Q =

[—1,1] x [-1,1].

=y

05
1 (©
05 \
= -0.5 0 0.5 1

Figure 4: |V¢| = 1 with ¢(0,0) = 0 on the domain Q = [-1,1] x [-1,1]. (a)
Left: ¢(x,y). (b) Right: The contour lines of ¢ from ¢ = 0.1 to ¢ = 1.4.

Example 2. The second example is an eikonal equation with two boundary
points at (0.5,0.5) and (—0.5, —0.5). The solution is the minimum distance to
these two seed points, and it is not smooth (non-differentiable) along the equal
distance line x4y = 0 shown in Figure 5. In Table 2, the first order convergence

is observed.
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Figure 5: |V¢| = 1 with ¢(0.5,0.5) = ¢(—0.5,—0.5) = 0 on the domain Q =
[—1,1]x[-1,1]. (a) Left: ¢(x,y). (b) Right: The contour lines of ¢ from ¢ = 0.1
to ¢ = 1.5.

| Nodes | Elements | L' error | order |

249 448 0.0850
945 1792 0.0516 | 0.7198
3681 7168 0.0285 | 0.8543
14529 28672 0.0143 | 0.9935
57729 114688 0.0070 | 1.0261

Table 2: Accuracy tests for |V¢| = 1 with ¢(0.5,0.5) = ¢(—0.5,—0.5) = 0 on
the domain 2 = [-1,1] x [-1,1].



Example 3. In Figure 6, we consider the shape-from-shading examples.
The computational domain is the unit square = [0, 1] x [0, 1]. The governing
equation is

Vol = f(z,y)

where

f(,) = 27/ (cos(2ma) sin(2y))? + (sin(2mz) cos(2my)) .

404/ 272
consisting of five isolated points and the boundary of 2. We consider two dif-
ferent cases.

Case I:

The boundary condition is given at T' = {(1,1),(2,3),(3,2),(3,1). (3.3},
0

and
¢(z,y) =0 for (z,y) € ON.

The exact solution is
o(z,y) = sin(2rz) sin(27y).

Case II:

and
d(x,y) =0 for (z,y) € 00.

The exact solution is

max(| sin(27x) sin(27y)|, 1 + cos(2mx) cos(27y)),
o(z,y) = if [z+y—1/<iandlz—y|l <3
| sin(27z) sin(27y)|, otherwise

In Figure 6, we show the numerical results for both cases on the mesh with
458752 triangles. The accuracy results in Table 3 also demonstrate the first
order convergence.
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Figure 6: Shape-from-shading examples. Left: case I; right: case IT; top: three-
dimensional view; bottom: contour lines, 20 equal spaced contour lines from
¢ = —0.95 to ¢ = 0.95 for case I, and from ¢ = 0.05 to ¢ = 1.95 for case II.

| Nodes | Elements | L' error | order || Nodes | Elements | L' error | order |
945 1792 0.0664 945 1792 0.0374
3681 7168 0.0349 0.9276 3681 7168 0.0211 0.8266

14529 28672 0.0179 | 0.9645 14529 28672 0.0114 | 0.8886
57729 114688 0.0091 | 0.9817 57729 114688 0.0060 | 0.9253
230145 | 458752 0.0046 | 0.9901 || 230145 | 458752 0.0031 | 0.9528

Table 3: Accuracy tests for shape-from-shading examples. Left: Case I; Right:
Case II

Example 4. Now we consider anisotropic eikonal equations in the high fre-
quency asymptotics for linear elastic wave equations. Since our algorithm works
for a general convex Hamiltonian, we compute the traveltime function for the
quasi-SH wave in a typical anisotropic elastic model, the transversely isotropic

18



solid with horizontal symmetry [15]. Then the quasi-SH eikonal equation is
defined by the following equation:

%(all — a12)¢7 + asd, =1,

where a;; are given elastic parameters. Figure 7(a) shows the simulation for
a11 = 15.6038, a12 = 6.5616 and a4q = 3.1258. Figure 7(b) shows the compu-
tational result for a model with two layers, so that the corresponding Hamil-
ton—Jacobi equations have discontinuous coefficients; therefore, this model is
used to test the stability and robustness of the sweeping scheme. As we can see
from the figure, the Snell law for anisotropic media is well enforced.

1 1

0.5 0.5

-0.5

.

1 1
-1 -0.5 0 0.5 -1 -0.5 0 0.5

=y
g

Figure 7: Left: a1; = 15.0638, a12 = 6.5616 and a44 = 3.1258, contour difference
= 0.05, mesh with 114688 triangles and 57729 vertexes. Right: a;; = 15.3871,
a12 = 3.4993, and a4y = 5.6074 for upper half domain; a1; = 15.0638, a2 =
6.5616 and a44 = 3.1258 for the lower half domain; contour difference = 0.05,
mesh with 114688 triangles and 57729 vertexes.

Example 5. Another important application for the quadratic type Hamilto-
nian (14) is related to the geodesic distance on a Riemannian manifold. Suppose
that P(x,y) is a point on a manifold M defined as the graph of a smooth func-
tion f(z,y) and that -y are the curves connecting P and I"' C M on the manifold.
The minimizing curve of + is called the geodesic. Let ¢ be the distance function
such that

¢(z,y) = min / ds.
v

yCM

Then ¢ is the solution of

—1+fy2 1+f§ fmfy _ _
\/(1+f12+f5)¢%+ (m) ¢Z—2m¢m¢y—l7 ¢lr = 0.

We show the result for f(x,y) = cos(2nz) cos(2my) in Figure 8.
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Figure 8: (a) The surface f(z,y) = cos(2mz) cos(27y); (b) The distance con-
tour from (x,y, f(x,y)) = (0,0,1) on the f(z,y) = cos(2nx) cos(2my); contour
difference = 0.1; the mesh consists of 114688 triangles and 57729 vertexes.

| Nodes | Elements | Fig. 4 | Fig. 5 | Fig. 6 Case I | Fig. 6 CaseII |

945 1792 2 2 3 3
3681 7168 2 2 4 3
14529 28672 2 2 4 4
57729 114688 2 2 4 4

| Nodes | Elements | Fig. 7(a) | Fig. 7(b) | Fig. 8 |

945 1792 2 2 12
3681 7168 2 2 12
14529 28672 2 2 12
57729 114688 2 2 12

Table 4: The number of iterations.

5.2 3-D examples

Example 6. Figures 9(a) and 9(b) show numerical results for the eikonal
equation with different boundary conditions. In Figure 9(a), one seed point
in the center (0,0,0) is given. The exact solution is the distance function to
(0,0,0). In Figure 9(b), two seed points, (—0.5, —0.5, —0.5) and (0.5,0.5,0.5),
are given. The exact solution would be the minimum of the distance functions
to these two seed points. These two simple examples provide an easy check for
the numerical accuracy.
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Figure 9: The numerical results for eikonal equations with (a) one boundary
condition ¢(0,0,0) = 0 (b) two boundary conditions ¢(—0.5,—0.5,—-0.5) = 0
and ¢(0.5,0.5,0.5) = 0. The isocontours are plotted for contour difference 0.25.

Example 7. In Figure 10, we generalize one of the shape-from-shading
examples to the 3-D case. The computational domain is the unit cube 2 =
[0,1]3. The governing equation is

|V¢| = f(mvya Z)

flay,z) =m\/fi+ [+ 3,

fi(z,y, z) = cos(wz) sin(ry) sin(wz),

where

and

fa(z,y, z) = sin(rwz) cos(ry) sin(wz),

f3(x,y, z) = sin(ma) sin(wy) cos(rz).
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The boundary condition is ¢|sq = 0. The exact solution is
¢(z,y, z) = sin(mz) sin(my) sin(wz).

The isosurface for ¢ = 0.1, 0.4 and 0.7 are shown in Figure 10(a),(b),and (c)
and the isocontour for z = 0.5 is shown in Figure 10(d).

Figure 10: The 3-D shape-from-shading example. (a) The isosurface for ¢ = 0.1.
(b) The isosurface for ¢ = 0.4.(c) The isosurface for ¢ = 0.7.(b) The isocontour
for z=10.5

Example 8. We demonstrate an example with anisotropy. The governing
equation is

\ A9+ b3 + ¢ — 20,0, — 20,6 — 2f6.05 = 1

where

d:

r e SN U0 o0 NN o) o il
TG T T

= fy o — ufz R
24+ 2+ f+F L+ f2+f+f2
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and f(z,y,z) = cos(wz) cos(my) cos(nz). The function w is

1
01,05) =
w(f1,62) \/1 + (fzsin6; cos Oy + f, sinby sinby + f, cosby)?

The boundary condition is ¢(0,0,0) = 0 and the computational domain is
[-1,1]3. The isosurface for ¢ = 0.8, 1.6 and 2.3 are shown in Figure 11(a),(b)
and (c) and the isocontour for z = 0.0 is shown in Figure 11(d).

Figure 11: The 3-D anisotropic example. (a) The isosurface for ¢ = 0.8.(b) The
isosurface for ¢ = 1.6.(c) The isosurface for ¢ = 2.3. (d) The isocontour for
z=0
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6 Conclusion

The new sweeping algorithm utilizes the Legendre transform of Hamiltonians
on triangulated meshes. The algorithm yields the numerical solution at a grid
point using only its one-ring neighboring grid values and is easy to implement
numerically. We illustrate the efficiency and accuracy of the new method with
several numerical examples in two and three dimensions.

Future work includes developing high order schemes based on this first or-
der scheme and developing a fast algorithm for non-convex Hamilton-Jacobi
equations.
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