
On Total Variation Minimization and Surface Evolution using
Parametric Maximum Flows

Antonin Chambolle∗ and Jérôme Darbon†

To appear in International Journal of Computer Vision
Original version: April 2008, revised version: April 2009

Abstract

In a recent paper [15], Y. Boykov et al. propose an approach for computing curve and
surface evolution using a variational approach and the geo-cuts method of Boykov and Kol-
mogorov [13]. We recall in this paper how this is related to well-known approaches for mean
curvature motion, introduced by F. Almgren et al. [3] and S. Luckhaus and T. Sturzen-
hecker [50], and show how the corresponding problems can be solved with sub-pixel accuracy
using Parametric Maximum Flow techniques. This provides interesting algorithms for com-
puting crystalline curvature motion, possibly with a forcing term.

Keywords: crystalline and anisotropic mean curvature flow, variational approaches, total vari-
ation, submodular functions, max-flow/min-cut, parametric max-flow algorithms.

1 Introduction

In [15], Y. Boykov, V. Kolmogorov, D. Cremers and A. Delong discuss the possibility of evolving
curves and surfaces by their mean curvature by solving a discrete minimal surface problem, using
a maximum flow/graph-cut algorithm [1]. This kind of technique has become very popular in the
past year in image processing, for segmentation problems but also stereo correspondence, etc., in
particular since the apparition of quite efficient algorithms [14] for graphs with low-connectivity,
typically in use in this kind of applications.

The idea of Boykov et al. consists of evolving a contour Ct by finding Ct+dt through the
minimization of the following variational problem

min
C

F (C) +
1

2dt
dist (C,Ct) , (1)

where F (C) is an energy (in general, the length or surface of C) and dist (C,Ct) is (approximately)
the L2-distance, given by

dist (C,Ct) = 2
∫

∆C

dist (p, C) dp ,

where ∆C is the region between the two curves or surfaces C and Ct. They conjecture that if for
instance F is the Euclidean length or surface of C, then this process will approximate the Mean
Curvature Flow, which is in this case the gradient flow of F .

It turns out that this approach to the mean curvature flow has been proposed in the early 90’s
by Almgren, Taylor and Wang [3] and simultaneously by Luckhaus and Sturzenhecker [50], in the

∗CMAP, Ecole Polytechnique, CNRS, 91128 Palaiseau, France. antonin.chambolle@polytechnique.fr. Re-
search supported by ANR project “MICA”, grant ANR-08-BLAN-0082.
†UCLA mathematics department, Los Angeles, USA. jerome@math.ucla.edu. Research supported by ONR

grant N000140710810.

1

following way: we consider φ a convex, one homogeneous function in RN (with (1/c)|x| ≤ φ(x) ≤
c|x| for some c > 0) and the corresponding anisotropic perimeter of E ⊂ RN

Per φ(E) =
∫
∂E

φ(νE(x)) ds ,

where ν(x) is the inner normal to E at x and ds the surface integral on ∂E (more generally,
ds = dHN−1, the (N − 1)-dimensional Hausdorff measure). Given a set E, let

dE(x) = dist (x,E)− dist (x,RN \ E)

be the signed distance to the boundary of E (negative inside, and positive outside). Then, for
E ⊂ RN (bounded, or of bounded complement, so that ∂E is bounded), and given a time-step
h > 0, we define ThE as a solution of

min
F⊂RN

Per φ(F) +
1
h

∫
F4E

|dE(x)| dx , (2)

where F4E is the symmetric difference between the sets F and E: this is exactly another way of
writing (1). Then the above-mentioned authors define a discrete-in-time evolution Eh(t) starting
from E by letting Eh(t) = T

[t/h]
h E where [·] denotes the integer part. It is shown in [3] that if

E and φ are smooth enough, then as h → 0, ∂Eh(t) converges (in the Hausdorff sense) to ∂E(t)
where E(t) is the Mean φ-Curvature Flow starting from E, which is in some sense, as expected,
the gradient flow of the perimeter Per φ(E) (this is defined as the motion where ∂E evolves along
its normal by the opposite of its “anisotropic mean curvature” κφ, see for instance [3, 10] for a
complete definition). Convergence results for generalized evolutions are found in [19, 22].

The idea, here, is that the Euler-Lagrange equation for Problem (2) is

hκφF (x) + dE(x) = 0 (3)

and since dE(x) measures exactly how far the point x has moved away from ∂E along its (outer)
normal, this may be seen as a implicit time-discrete scheme for the mean curvature motion.

Remark 1.1. Since∫
F4E

|dE(x)| dx =
∫
F\E

dE(x) dx−
∫
E\F

dE(x) dx =
∫
F

dE(x) dx−
∫
E

dE(x) dx ,

we observe that, whenever E is bounded, it is equivalent to minimize (2) and to solve

min
F⊂RN

Per φ(F) +
1
h

∫
F

dE(x) dx. (4)

It can be shown (see [19]) that this algorithm enjoys a monotonicity property, in the sense
that if E ⊂ E′ then the minimal (respectively maximal) solution ThE is contained in the minimal
(resp., maximal) solution ThE

′. This yields the convergence of Eh(t) to the generalized flow, in
the sense of viscosity solutions, at least when this is unique. See also [22].

Adding an external force (forcing term along the normal) in this formulation is quite easy: if
dE is replaced in (4) with a term of the form dE(x)− hg(t, x), then equation (3) turns into

dE(x) = −hκφF (x) + hg(x, t))

which means that now, x moves along the normal of h times the opposite of the curvature plus
the forcing term g.

This approach has been widely studied in the past years, mostly as a tool for the theoretical
study of the anisotropic and “crystalline” mean curvature motion (the crystalline case is the case

2

where φ is non smooth, and is of particular importance here since the discrete approaches we
consider will only work in such cases). See in particular [8, 17, 19, 21].

In this paper, we provide a framework for computing such evolutions by maxflow/mincut algo-
rithms. The idea in [15] is to solve a discrete version of (1) using such combinatorial optimization
techniques. However, such an approach produces a discrete set C defined on a discrete grid, and
this has then to be refined a lot to capture the motion with a good precision. We show that
problems (1) or (2) are related to a convex minimization problem known in image processing
as the “Rudin-Osher-Fatemi” (ROF) problem (Total Variation minimization with a quadratic
penalization). This connection, exploited both in the continuous and discrete setting, allows
simultaneously to (i) use maxflow/mincut approaches, in a “parametric” way [34, 40], to solve
efficiently the discrete ROF problem; (ii) solve a discretized (ROF) problem to derive with a good
(sub-pixel) precision an approximation of the set F which minimizes (2). In her seminal work [40],
Hochbaum proposes an approach to solve the ROF model using parametric maximum-flow. This
approach has been considered in [37] and we also refer the reader to [43, 44] for similar ideas used
in computer vision.

In the next section, we recall some results that link Problem (4) to the celebrated “Rudin-
Osher-Fatemi” problem in computer vision, and provide an approach for its resolution. Then, in
Section 3, we introduce our discrete setting, “discrete total variation” functionals, and basically
state the same results as in Section 2 in this new setting. These properties lead to an efficient
algorithm for the ROF problem, which we describe in Section 4. It is essentially a variant of the
parametric max-flow algorithm [34] and has been first proposed by D. Hochbaum [40]. Its most
salient features are that it solves the problem in polynomial time and up to an arbitrary precision.
Eventually, we propose our technique for solving surface evolution problems in Section 5 and show
numerical examples in Section 6. Various appendices complete the paper. A modified version of
the Boykov and Kolmogorov’s maximum flow code [14], that implements the parametric approach
to solves the ROF problem, is available through the authors’ personal web page.

Let us point out that while a first version of this paper was under complete rewritting, very
similar ideas were published in [45] by Kolmogorov, Boykov and Rother, with applications to the
precise computation of energy-minimizing contours.

2 Minimal surface problems and total variation minimiza-
tion

The total variation |Du|(Ω) of a function u ∈ L1(Ω) (in this section, Ω is an open subset of RN ,
N ≥ 1 — and typically N = 2, 3), is classicaly defined by duality as follows [35]

|Du|(Ω) =
∫

Ω

|Du| := sup
{∫

Ω

udiv ξ : ξ ∈ C1
c (Ω; RN) , ‖ξ(x)‖ ≤ 1 ∀x ∈ Ω

}
, (5)

while the perimeter of a set in Ω is the total variation of its characteristic function. It is well known
that level sets of function which minimize the total variation are themselves minimal surfaces (that
is, sets with minimal perimeter, at least up to compactly supported perturbations), and this fact is
a main tool for the study of these surfaces and their regularity [32, 35]. However, the relationship
between surfaces with prescribed curvature (minimizing their perimeter plus an external field) and
total variation minimization with an additional penalization of the function seems to have been
less often noticed, though it relies on the same celebrated “co-area formula” [32, 35]:

|Du|(Ω) =
∫ +∞

−∞
Per ({u > z},Ω) dz (6)

Let us just state the main equivalence:

Proposition 2.1. Let u be the (unique) solution of

min
u∈BV (Ω)

λ

∫
Ω

|Du| +
1
2

∫
Ω

|u(x)− g(x)|2 dx . (7)

3

Then, for all z > 0, the super-level sets Ez = {u ≥ z} and E′z = {u > z} are both minimizers of

min
E⊆Ω

λPer (E,Ω) +
∫
E

z − g(x) dx. (8)

Conversely, any minimizer E of (8) is between E′z and Ez: E′z ⊆ E ⊆ Ez. In particular, for all
z but a countable set in R, {u = z} has zero measure and the solution of (8) is unique up to a
negligible set.

The proof of this proposition is relatively easy, and quite classical, but is out of the scope
of this paper. The first part (the super-level sets are minimizing) is shown for instance in [19],
while the second (the converse) comes from a comparison principle for the minimizers of (8) which
appears in [5]:

Lemma 2.2 ([5], Lemma 4, (i)). Let z > z′ and Ez, Ez′ minimize (8) for the respective values z
and z′: then Ez ⊆ E′z.

An observation which is clear from the proofs is that these properties remain true if the
term 1

2

∫
Ω
|u(x)− g(x)|2 dx in (7) is replaced with a term of the kind

∫
Ω

Ψ(x, u(x)) dx where Ψ is
uniformly convex and C1 with respect to u(x), and

∫
E
z−g(x) dx is replaced with

∫
E
∂Ψ/∂z(x, z) dx

in (8). The cases where Ψ is simply convex, or lacks regularity, are also interesting, and partial
results still hold in these cases: see [23, 28] where similar ideas are developed. We mention that
theses principles have also been used in a series of recent papers for studying the properties of
minimizers of (7), see [2, 18].

Also, in a more general setting, one may replace the total variation (5) with an anisotropic
total variation∫

Ω

φ(Du) := sup
{∫

Ω

udiv ξ : ξ ∈ C1
c (Ω; RN) , φ◦(ξ(x)) ≤ 1 ∀x ∈ Ω

}
,

where φ◦ is the polar of φ, defined by φ◦(ξ) = supφ(ν)≤1 ν · ξ (and φ(ν) = supφ◦(ξ)≤1 ν · ξ). Then
the perimeter in (8) is replaced by the corresponding anisotropic perimeter

Per φ(E) =
∫

Ω

φ(DχE) =
∫
∂E

φ(νE) dσ ,

where the last expression holds if E is smooth enough and νE is then the inner normal to ∂E.
This will be useful in the sequel, since the total variations and perimeters that are approximated
by discrete methods in this paper are strongly anisotropic.

The equivalence in Proposition 2.1 is interesting for both studies of problems (7) and (8), since
it extends the knowledge of some properties of solutions of one to the other, see for instance [18].

It also gives a practical way to solve (4). Indeed, we deduce that a solution is given by
F = {u ≤ 0} where u is the minimizer of

min
u∈BV (Ω)

∫
Ω

φ(Du) +
1

2h

∫
Ω

(u(x)− dE(x))2 dx (9)

at least as soon as Ω is “large enough” (with respect to E). Problem (9) is the classical convex
problem in image processing known as the “Rudin-Osher-Fatemi” denoising problem, and can be
solved in many ways. Although it does not seem that standard ways for solving (9) yield very
efficient algorithms for the mean curvature flow, we will introduce now a discrete setting in which
the resolution of such problems is very fast using combinatorial optimization approaches, and
leads to efficient algorithms for the crystalline mean curvature flow (and probably many other
applications in shape computation/optimization).

We now introduce the discrete setting and what can be seen as the discrete analogs of Propo-
sition 2.1 and Lemma 2.2.

4

3 Discrete perimeters and discrete total variation

Most of the results in these section are well known in combinatorial optimization, we present
them for completeness [48, 53], and, also, to stress the similarities with the continuous setting (in
the continuous setting, a general overview of these topics is found in [12]). By analogy with this
setting, we define a discrete total variation as a convex, nonnegative function J : RN → [0,+∞]
satisfying a discrete co-area formula:

J(u) =
∫ +∞

−∞
J(χ{u≥z}) dz (10)

where χ{u≥z} ∈ {0, 1}N denotes the vector such that χ{u≥z}i = 0 if ui ≤ z and χ
{u≥z}
i = 1 if

ui ≤ z.
By analogy, given E ⊆ {1, . . . , N} we also define a discrete perimeter as PJ(E) := J(χE) where

the characteristic vector χE is defined by χEi = 1 if i ∈ E and χEi = 0 else.
We assume that J is not identically +∞. Under these assumptions, it is easy to derive from (10)

the following properties:

Proposition 3.1. Let J be a discrete total variation. Then:

1. J is positively homogeneous: J(λu) = λJ(u) for any u ∈ RN and λ ≥ 0.

2. J is invariant by addition of a constant: J(c1+u) = J(u) for any u ∈ RN and c ∈ R, where
1 = (1, . . . , 1) ∈ RN is a constant vector. In particular, J(1) = 0.

3. J is lower-semicontinuous.

4. p ∈ ∂J(u)⇔ (∀z ∈ R, p ∈ ∂J(χ{u≥z}).

5. J is submodular: for any u, u′ ∈ {0, 1}N ,

J(u ∨ u′) + J(u ∧ u′) ≤ J(u) + J(u′). (11)

More generally, this will hold for any u, u′ ∈ RN .

Conversely, if J : {0, 1}N → [0,+∞] is a submodular function with J(0) = J(1) = 0, then the
co-area formula (10) extends it to RN into a convex function, hence a discrete total variation.

In the 4th point, the subgradient ∂J(v) of J at v is defined as the set of vectors p such that
J(v′) ≥ J(v) + p · (v′ − v) for any v′. Equivalently, in this case, it is the set of p ∈ ∂J(0) with
J(v) = p · v. See [31, 58] for details.

Remark 3.2. If J is a general real-valued submodular function with J(0) = 0, then it can be
extended in a similar way to a convex functions of non-negative vectors u ∈ RN+ , by the same
formula as (10) but where the integal on R is replaced with an integral on R+ = [0,+∞). This
is well-known in optimization theory as the Lovász’ extension of J [49], or the Choquet integral
(see for instance [48, Chap. 8] and [53]).

We prove the proposition in Appendix A. A typical example of discrete total variation (and
associated perimeters) is (for u = ui,j a 2D image in RM×M , hence N = M2 here)

J(u) =
∑

1≤i<M
1≤j≤M

|ui+1,j − ui,j |+
∑

1≤i≤M
1≤j<M

|ui,j+1 − ui,j | (12)

but infinitely many other examples can be build, involving interaction between neighboring pixels
further and further apart. Also, less standard convex functions enter this framework, such as the
“oscillation”

J(u) =
∑

1≤i<M
1≤j<M

max{ui,j , ui+1,j , ui,j+1, ui+1,j+1} −
∑

1≤i<M
1≤j<M

min{ui,j , ui+1,j , ui,j+1, ui+1,j+1} (13)

5

which is also, in some sense, an approximation of an anisotropic total variation. See Appendix B
for how the minimization of this example can be implemented.

Another particular example is a pairwise circulant oscillation involving three pixels (which
might be useful for images defined on 2D hexagons lattice endowed with the 6-connectivity) defined
as follows:

J(u) =
∑

1≤i<M
1≤j≤M

max{|ui,j − ui+1,j |, |ui,j − ui,j+1|, |ui+1,j − ui,j+1|} . (14)

The latter reduces to pairwise interactions of the form given by Eq. (12) by considering the
following: without loss of generality we can assume that we have ui,j ≤ ui+1,j ≤ ui,j+1 and by
noticing that |ui,j − ui,j+1| = |ui,j − ui+1,j |+ |ui+1,j − ui,j+1| we get that Eq. (14) amounts to:

J(u) =
1
2

∑
1≤i<M
1≤j≤M

(|ui,j − ui+1,j |+ |ui,j − ui,j+1|+ |ui+1,j − ui,j+1|) .

Using similar arguments, one can show that any circulant oscillations involving any odd number
(greater than 1) of pixels can be casted into a pairwise interactions form.

If J is a discrete total variation, then the discrete counterpart of Proposition (2.1) holds:

Proposition 3.3. Let g ∈ RN and let u ∈ RN be the (unique) solution of

min
u∈RN

λJ(u) +
1
2
‖u− g‖2 (15)

Then, for all z > 0, the characteristic functions of the super-level sets Ez = {u ≥ z} and E′z =
{u > z} (which are different only if z ∈ {ui, i = 1, . . . , N}) are respectively the largest and smallest
minimizer of

min
θ∈{0,1}N

λJ(θ) +
N∑
i=1

θi(z − gi) . (16)

Observe that a consequence of this proposition is that problems (16) have at most N different
solutions, as z runs from −∞ to +∞, however in practice this number can be much smaller, since
the level sets {u = z}, when nonempty, often contain more than just one vertex (up to containing
all vertices when λ is large enough). This proposition is shown in [20, 29], but is also a consequence
of the representation we will introduce in the next section for problems (15) and (16). Again, here,
the quadratic term ‖u−g‖2 can be replaced with any term of the form

∑
i Ψi(ui), with Ψi strictly

convex and C1, replacing then θi(z − gi) in (16) with Ψ′i(z). We postpone the proof of this result
to the Appendix C. Let us just mention here that it relies on the following discrete counterpart
of Lemma 2.2 which is a consequence of the submodularity of J :

Lemma 3.4. Let z > z′ and θ, θ′ solve (8) for the respective values z and z′ of the parameter.
Then θ ≤ θ′ (in other words, {θ = 1} ⊆ {θ′ = 1}).

This key property is proved, at least for a particular case of submodular functions, in [34,
Lemma 2.4] (see also the references therein and in particular [30]). We also refer the reader to [51]
for further extensions of this approach. A proof based on stochastic arguments is found in [29],
while we present in Appendix C the elementary proof given in [20].

Quantized total variation minimization problem. We will discuss in the next section how
Problem (15) can be (efficiently) solved by successive minimizations of (16). It seems that effi-
ciently solving the successive minimizations has been first proposed in the seminal work of Eisner
and Severance [30] in the context of augmenting-path maximum-flow algorithms. It was then
developed, analyzed and improved by Gallo, Grigoriadis and Tarjan [34] for preflow-based al-
gorithms. Successive improvements were also proposed by Hochbaum [40], specifically for the

6

application in view in this paper, that is, the minimization of (15). We also refer to the work
of [45] for detailed discussions about this approach. (The authors of the present note rediscovered
the latter algorithm [20, 29], following quite different paths.)

Following [30], and assuming that one can perform exact floating point operations, one could
solve (16) for all values of z. We will follow a different approach and introduce the following
quantized version of Problem (15):

min
{
λJ(v) +

1
2
‖v − g‖2 : v ∈ RN , vi ∈ {l0 . . . , ln} ∀i = 1, . . . , N

}
(17)

where the real levels (lk)nk=0 are given. That is, we minimize (15) only among functions that take
values in a prescribed, finite set. Without loss of generality, we assume that l0 < l1 < · · · < ln, and
for simplicity that for all k = 1, . . . , n, lk−lk−1 = δ > 0 (adaption to other cases is straightforward).

Our approach is therefore suboptimal. In fact, the problem which is solved (exactly) by (17) can
also be interpreted as an approximate problem where the quadratic potential |vi−gi|2/2 is replaced
for each node i with a piecewise affine potential, taking the same values for vi ∈ {l0, . . . , ln}. It is
a very general approach, in the sense that if ‖v − g‖2/2 is replaced with an arbitrary convex (C1,
otherwise some — simple — adaption is required) potential

∑
i Ψi(vi), then (17) can be tackled

in the same way with obvious modification (and this is, in general, optimal). However, for some
“simple” potentials and in particular the one in (17), the method described in [30, 34, 40] computes
the exact solution (of course, in practice, up to machine precision) and is therefore optimal. We
will return to this later on, when discussing the practical implementation, see Section 4.3.2..

Concerning (17), the following result is true:

Proposition 3.5. Let v be a solution of (17), and u be the solution of (15). Then for each
i = 1, . . . , N , if l0 ≤ ui ≤ ln, |ui − vi| ≤ δ/2.

In particular, if l0 ≤ m and ln ≥ M , maxi |ui − vi| ≤ δ/2. This means that the quantized
problem (17) produces exactly a quantization of the solution of (15). We note that this approach
leads to algorithms which solve our problem with an L∞ a priori error bound. This is quite
different from more standard (PDE-based) techniques (see for instance [20, Sec. 4]) which typically
will produce a solution up to some L2 error. Again, the proof of this proposition is given in
Appendix C.

In the next section, we describe well-known algorithms for solving (16) and how to use them
to solve (15).

4 Parametric and dyadic-parametric maximum flow

4.1 Graph representation of binary energies

It was first observed by Picard and Ratliff [57] that binary Ising-like energies, that is, of the form∑
i,j

αi,j |θi − θj | −
∑
i

βiθi ,

could be represented on a graph and minimized by standard optimization techniques, and more
precisely using maximum flow algorithms. Kolmogorov and Zabih [47] showed that submodularity
is a necessary condition, while, up to sums of ternary submodular interactions, it is also a sufficient
condition in order to be representable on a graph. Sufficient conditions for higher order interactions
are given in [33]. In general, it does not seem to be known whether any submodular J can be
represented on a graph in the way proposed in [57, 47]. For instance, it is easy for the particular
example (13), although it may involve much more than three variables, see Appendix B. Note
that other efficient algorithms exist for minimizing submodular functions [27, 39, 42, 60].

Let us apply this to (16), in the simpler case where J has only pairwise interactions, hence:

J(u) =
∑
i,j

αi,j(ui − uj)+

7

The construction we will describe has been presented in [16, 38, 47, 57].
We consider problem (16), for a given value of t. We build a graph as follows: we consider E =

{1, . . . , N}∪{s}∪{t} where the two special nodes s and t are respectively called the “source” and
the “sink”. We consider then oriented edges (s, i) and (i, t), i = 1, . . . , N , and (i, j), 1 ≤ i, j ≤ N ,
and to each edge we associate a capacity defined as follows:

c(s, i) = (z − gi)− i = 1, . . . , N ,

c(i, t) = (z − gi)+ i = 1, . . . , N ,

c(i, j) = λαi,j 1 ≤ i, j ≤ N .

(18)

By convention, we consider there is no edge between two nodes if the capacity is zero. Let us
denote by E the set of edges with nonzero capacity and by G = (V, E) the resulting oriented graph.

We then define a “cut” in the graph as a partition of E into two sets S and T , with s ∈ S and
t ∈ T . The cost of a cut is then defined as the total sum of the capacities of the edges that start
on the source-side of the cut and land on the sink-side:

C(S, T) =
∑

(µ,ν)∈E
µ∈S,ν∈T

c(µ, ν) .

Then, if we let θ ∈ {0, 1}N be the characteristic function of S ∩ {1, . . . , N}, we clearly have

C(S, T) =
N∑
i=1

(1− θi)(z − gi)− + θi(z − gi)+ +
N∑

i,j=1

λαi,j(θi − θj)+

= λJ(θ) +
N∑
i=1

θi(z − gi) +
N∑
i=1

(z − gi)− .

Hence, up to a constant, it is nothing else than the energy in (16).
So far, the problem has just been reformulated. The interesting part is that very efficient algo-

rithms are available for finding a minimum cut, based on a duality result of Ford and Fulkerson [1].
The idea is to find the maximum flow in the graph, in the following sense: starting from s, we
“push” a quantity along the oriented edges of graph, with the constraint that the flow along each
edge (µ, ν) should remain between 0 and c(µ, ν), and that each “interior” node i must get as much
as it sends (while the source s only sends flow to the network, and the sink t only receives). It is
clear that the total flow which can be such sent is bounded from above, less clear, but not hard
to show, that this bound is given my a minimal-cost cut (S, T). The duality theorem of Ford
and Fulkerson expresses the fact that this bound is actually reached, and the partition (S, T) is
obtained by cutting along the saturated edges, where the flow is equal to the capacity while the
possible reverse flow is zero. More precisely, we can find starting from s the first saturated edge
along the graph, and cut there, or do the same starting from t and scanning the reverse graph,
this will usually give the same solution except for a finite number of levels z. Several efficient
algorithms are available to compute a maximum flow in polynomial time [1]. Although the time
complexity of the Boykov and Kolmogorov’s maximum flow described in [14] is not polynomial,
this algorithm outperforms others in terms in time computations. We now describe how these
techniques can be adapted to solve efficiently a series of problems, corresponding to varying levels
z = z1, . . . , zn, with the global complexity of a single one. These approaches follow from the semi-
nal work of Eisner and Severance [30] and Gallo, Grigoriadis and Tarjan [34], with an improvement
due to Hochbaum [40].

4.2 Parametric max-flow algorithm

The main idea idea of a parametric max-flow is to reuse the flow found for a given problem for
the next one. It works for a series of problem where the capacities from the sink to the source are

8

nondecreasing while those from the source to the sink are non-increasing and all other capacities
remain unchanged. The authors of [34] show that under these assumptions the monotony of the
solutions given by Lemma 3.4 hold. In terms of graph it means the the set of nodes connected
to the source is growing as the level z is decreasing. They take benefit from this property by
modifying the preflow-push algorithm of Goldberg and Tarjan [36] using the “residual” preflow
obtained at the previous stage as a starting point for the next one. Using this strategy, they show
that the total time complexity of solving these series of max flows is exactly the one for solving a
single one.

Of course, the same idea can also be embedded in augmented path-based algorithms, such as
the one of Boykov and Kolmogorov [14]. Let us describe quickly how it works. A convenient way
to describe a flow f in a graph G = (V, E) is the notion of the residual network Gf = (V, Ẽ). It
has the same set of nodes as G, but the set of edges with positive capacity may be different. For
each arc the flow sent along an edge is deduced from its capacity while it is added to the capacity
of the opposite arc. More precisely, for all arcs (µ, ν) we have c̃(µ, ν) = c(µ, ν)− f(µ, ν) + f(ν, µ)
and c̃(ν, µ) = c(ν, µ) − f(ν, µ) + f(ν, µ). After one run of an augmented path-based max-flow
algorithm, the initial graph is usually replaced with a residual network whose saturated arcs (µ, ν)
have been removed (i.e., their capacity has been set to zero, while c̃(ν, µ) = c(ν, µ) + c(µ, ν) is
maximal).

The implementation of the parametric algorithm is based on this representation. We start with
a minimal level z = z1 in (18) (assuming we want to solve our problem for z1, z2 = z1 +δ, . . . , zn =
z1 + (n − 1)δ), and compute a first residual network. Then, in this new network, we increase by
δ all residual capacities c̃(i, t), i = 1, . . . , N , and start again the augmented path algorithm. If
i was in T , it can not get any new flow from any node (since all path from s are still saturated
at some point), hence nothing will happen there (and actually, the real implementation of the
algorithm does not even increase the corresponding capacity c(i, t)). In particular, edges from i
to some node of S (which need not be saturated) do not get any new flow, and the output would
remain the same if these edges had been deleted before starting again the algorithm. This remark
is crucial for the variant of this algorithm we will discuss in the next section. On the other hand,
if i was in S, then it gets connected to the sink t again and flow may pass through. This flow
will saturate some edge closer to the source, so that i may either stay connected to the source
or become connected to the sink after the next run. This shows again why as z increases, the
corresponding set S decreases.

This procedure is iterated until the last level is reached.
For simple cases ([1] for instance, when the complexity is deduced from the properties of a

nondecreasing distance function) one can verify that the global complexity of the parametric max-
flow algorithm is the one of a maximum flow plus O(Nn). The latter corresponds to the number
of operations required to update the capacities and retrieve the solution.

To our knowledge, the general case remains unknown. Considering this scheme applied with
the algorithm of Boykov and Kolmogorov [14], we do not know the complexity. However, we
observe a much faster convergence, compared to a naive approach that consists in re-creating a
new graph for each zk (we take into account the monotonicity property by deleting from this new
graph the nodes where the solution is already found to be below the level zk−1 < zk, see [29]).

This approach provides a first, fast method for solving (17). See Subsection 4.4 for some
experiments. Note that [44] describes an efficient approach to recompute a maximum-flow that
handles arbitrary changes in the graph. The next section describes a slightly faster approach
which can even be modified to produce solutions with high precision (up to machine precision),
see Section 4.3.2

4.3 Dyadic-Parametric max-flow algorithm

4.3.1 A fast algorithm for (17)

It was first observed by Hochbaum [40] that this parametric approach could be improved according
to the following observation: a pixel only needs to be involved in O(log2(n)) computations (by a

9

dichotomy approach) instead of O(n). this fact has also been noted and used in [20, 29]. For the
sake of clarity we adopt a dyadic scheme to implement this dichotomic approach and we assume
n = 2Q − 1 for some Q > 1.

The algorithm works as follows. Instead of starting with z1 we begin with z(n+1)/2, and we
compute the max-flow. We find a set S1\{s} of pixels i with value ui ≥ z(n+1)/2 and a complement
T1 \ {t} of pixels i with ui ≤ z(n+1)/2. On the first one, we solve now for the level z3(n+1)/2, while
on the second one we solve for the level z(n+1)/4. This can be done in many ways: in [20], a new
(disconnected) graph with N nodes was built to implement the corresponding energy, while in [29]
a more clever (and faster) approach, separating the various connected components of these two
sets, was implemented. It is more efficient, however, to try to “continue” the previous graph-cut,
as described in [40] in the framework of a preflow-push implementation. In an augmented path
algorithm, we are left with a residual graph, such that no arc from S1 to T1 has positive capacity.

We then continue as follow: we first set to zero the capacities of the residual edges from T1 to S1

which means, we eliminate the corresponding edge, ending up with a totally disconnected graph.
Then, for i ∈ S1 we increase by ∆ = z3(n+1)/2 − z(n+1)/2 = z(n+1)/2 − z(n+1)/4 the capacity c(i, t)
while if i ∈ T1 we increase by ∆ the capacity c(s, i). We continue the augmented path algorithm,
to find a new cut (S2, T2). The discussion in the previous section shows that if i ∈ S1 ∩ S2, then
ui ≥ z3(n+1)/2, if i ∈ S1 ∩ T2, z(n+1)/2 ≤ ui ≤ z3(n+1)/2, if i ∈ T1 ∩ S2, z(n+1)/2 ≥ ui ≥ z(n+1)/4

and if i ∈ T1 ∩ T2, ui ≤ z(n+1)/4.
After the qth step, we are left with a new cut (Sq, Tq). Again we disconnect this partition,

setting to 0 the capacities c(i, j) for i ∈ Tq and j ∈ Sq), replace ∆ with ∆/2 and update the
capacities c(i, t) and c(s, i) as before: if i ∈ Sq, c(i, t) is increased by ∆, while if i ∈ Tq, c(s, i) is
increased by ∆. We repeat this until q = Q: in the end, we have partitioned the nodes into sets
where ui is between two consecutive values of zk.

Our modified version of the maximum flow code of Boykov and Kolmogorov (cite [14]) that
has been adapted for solving efficiently problem (17) is available through the authors’ web site.

Again, Hochbaum shows that this procedure, implemented upon the preflow-push algorithm,
has a complexity which is roughly the same as one of a max-flow computation, plus O(NQ) (that
is, O(N log2 n)), leading to a globally polynomial algorithm for (17). We do not know if this is
still true for the variant we have implemented upon Boykov and Kolmogorov’s algorithm, but it
clearly outperforms the previous implementations presented in [20, 29] in which new graphs were
rebuilt at each step (see the next subsection).

(a) (b)

Figure 1: Two original images: (a) Cows, (b) Girl.

10

(a) (b) (c)

Figure 2: Regularized Girl (2562) images (a) λ = 10, (b) λ = 20, (c) λ = 60.

(a) (b) (c)

Figure 3: Regularized Cows (400× 600) images (a) λ = 10, (b) λ = 20, (c) λ = 60.

4.3.2 Towards the exact solution of (15)

In fact, it is observed by Eisner and Severance [30] and Hochbaum [40] that a variant of the
parametric algorithm can produce the exact solution of the problem. We now explain how the
code can be modified (as well as the standard parametric approach, see [30]) in order to produce
(still in polynomial time in its preflow-push version, [40]) the exact solution of (15), up to machine
precision. The idea is to update the capacities, not with a constant factor ∆, but in a way to
detect the “breakpoints”, that is, the values of z for which the solution to (16) is multiple (or,
equivalently, changes), which are nothing else as the values {ui : i ∈ 1, . . . , N} of the exact
solution to (15). To be more specific, assume z̄ > z̄′, and θ̄, θ̄′ are solutions to (16) with the
values z̄ and z̄′ respectively. From Lemma 3.4, we know that θ̄ ≤ θ̄′. If θ̄ and θ̄′ are different,
there must a breakpoint in [z̄′, z̄]. Then, there are two closed sets [z1, z2] 3 z̄, [z′1, z

′
2] 3 z̄′, with

z′1 < z′2 ≤ z1 < z2 such that for z ∈ [z1, z2], θ̄ solves (16) while if z ∈ [z′1, z
′
2], θ̄′ solves (16). In

particular, the minimal energy in [z′1, z
′
2] is given by

e′(z) =

(
λJ(θ̄′)−

N∑
i=1

θ̄′igi

)
+ z]{i ∈ {1, . . . , N} : θ̄′i = 1}

11

while if z ∈ [z1, z2], it is

e(z) =

(
λJ(θ̄)−

N∑
i=1

θ̄igi

)
+ z]{i ∈ {1, . . . , N} : θ̄i = 1}

which has a strictly lower slope, since θ̄ ≤ θ̄′ and they are different. Let ẑ ∈ [z̄′, z̄] be the value
for which e′ = e, and let us solve (16) for this new value: then, either the energy is strictly below
e(ẑ) = e′(ẑ), meaning that the solution θ̂ is neither θ̄ nor θ̄′, and there are two breakpoints, one
in [z̄′, ẑ) and the other in (ẑ, z̄]: then we will divide again these intervals. Or, the new energy is
equal to the common value e(ẑ) = e′(ẑ), which means that θ̄ and θ̄′ are respectively the minimal
and maximal solution of (16) for z = ẑ and ẑ is a breakpoint.

In practice, it seems that implementing this dichotomic search will be expensive (although
still polynomial), since one needs to compute the values of the energy (and more precisely, of
(λJ(θ) −

∑N
i=1 θigi) and]{i ∈ {1, . . . , N} : θi = 1}), for each new minimizer θ of (16) which is

computed. However, the residual graph makes it easier. Assume we start at a first stage with
z̄′ < mini gi and z̄ > maxi gi. Then, θ̄i = 0 while θ̄′i = 1, for all i, and one easily checks that the
new value ẑ for which e(ẑ) = e′(ẑ) is simply the average (

∑N
i=1 gi)/N . In the graph representation,

it means that one updates the capacities c(s, i) and c(i, t), by adding a value ∆ to either all c(s, i)
or all c(i, t) in such a way that the new values satisfy

∑
i c(s, i) =

∑
i c(i, t). One can easily show

that this is the correct update to perform, also at the subsequent steps. We now describe two
ways to implement this version.

A first variant of the dyadic algorithm described in Section 4.3.1 is as follows. Recall that
each time a maximum-flow is computed, the solution is refined. This means that the level sets
that are not yet within the given precision are divided into two subsets (one connected to the
source, one connected to the sink), in which a new value will be computed. If one of these subsets
is empty, this means that a breakpoint has been discovered (i.e., the value on the level set was
the exact value of the solution). The corresponding level set should not be considered for further
optimization and is thus removed from the graph.

For each level set that is actually divided into two non-empty new sets, the value in each
new set is updated as follows: we average the values of the residual capacities from the source
minus the residual capacities to the sink, and we add this average to the old value in the level set,
while updating the residual capacities accordingly (as explained above). After this update, we can
compute the largest residual capacity from the source or to the sink: if this is less that the given
precision, then we know that the value of this level is correct up to the precision. Then, again,
this set should not be considered for further optimization. It is thus removed from the graph.

The latter procedure can be further improved using ideas similar to the ones described in [29].
Note that the way the above process adjusts the levels of the next cuts does not take into account
the geometry. Indeed, only the current gray-level values, and the associated level sets, are consid-
ered for the update. However, following [29], one sees that once a maximum-flow is computed it
separates the problem into smaller problems that involve the connected components of the level
sets of the current solution. More precisely, after a cut, the solution restricted to a connected
component can be computed independently from any other connected components. This means
that the update of the residual capacities can be performed independently on each connected com-
ponent of the level sets rather than on each level set. One can expect that less iterations are
needed to reach a solution with the desired precision since the refinement is performed in a finer
way.

4.4 Comparisons

We now compare these different approaches for solving the discrete ROF model (7). Two kinds of
discrete total variations are considered: the first one is given by Example (12), i.e., the image is
defined on a regular lattice endowed with the 4-connectivity while the second one assumes the 8-
connectivity. For the latter, the interactions terms involving the 4-nearest neighbors are weighted
by 1 while diagonal interaction terms are weighted by 1√

2
.

12

Table 1: Time results for several regularization parameter λ using 4-connectivity and a precision
of 1. Time results are in seconds.

Images (size) Approach λ = 10 λ = 20 λ = 60
Darbon-Sigelle 0.57 0.69 1.03
Parametric PR 3.08 4.63 8.34

Cows (400× 600) Dyadic Parametric PR 1.05 1.65 3.81
Parametric BK 3.74 3.94 4.41
Dyadic Parametric BK 0.34 0.43 0.59
ESH Parametric BK 0.38 0.45 0.73
ESH CC Parametric BK 0.41 0.50 0.83
Darbon-Sigelle 2.4 2.91 4.55
Parametric PR 14.81 24.65 111.35

Cows (800× 1200) Dyadic Parametric PR 5.58 9.36 23.21
Parametric BK 16.25 17.03 19.02
Dyadic Parametric BK 1.42 1.81 2.75
ESH Parametric BK 1.76 2.04 3.00
ESH CC Parametric BK 1.85 2.31 3.61
Darbon-Sigelle 0.16 0.19 0.27
Parametric PR 0.95 1.06 1.3

Girl (2562) Dyadic Parametric PR 0.34 0.54 0.86
Parametric BK 0.83 0.88 1.03
Dyadic Parametric BK 0.08 0.10 0.14
ESH Parametric BK 0.08 0.10 0.16
ESH CC Parametric BK 0.09 0.13 0.18
Darbon-Sigelle 0.63 0.79 1.25
Parametric PR 8.65 20.01 21.26

Girl (5122) Dyadic Parametric PR 2.07 3.58 5.03
Parametric BK 4.09 4.27 4.87
Dyadic Parametric BK 0.41 0.51 0.81
ESH Parametric BK 0.44 0.56 0.94
ESH CC Parametric BK 0.50 0.65 1.11

Two parametric maximum-flows algorithm have been implemented. The first one relies on the
push-relabel (PR) approach with the highest label strategy, a gap strategy and a global relabeling
heuristics (that we implemented, see for instance [26] and [1, p. 233] for more details), while the
second is our adaptation of the maximum-flow implementation of Boykov-Kolmogorov (BK) [14].
We have considered the following versions of the parametric approach: the standard parametric
one, the dyadic-parametric version (Section 4.3.1), the Eisner-Severance/Hochaum one (referred
to as ESH) and its connected component variation (referred to as ESH CC). Note that the ESH
versions have only been implemented upon the BK maximum-flow algorithm, which experimentally
appears to be much faster that the standard push-relabel algorithm, as already observed in [14]. We
also compare with the previous approach of [29]. Time results for these seven different algorithms
are given for an Intel Core2 Q9650 processor running at 3GHz. Figure 1 depicts two images, cows
(400× 600 and 800× 1200) and girl (2562 and 5122) used for our experiments. The original grey-
level values are integer values ranging from 0 to 255. Minimizers with the 8-connectivity for the
girl and cows images are respectively depicted in Figure 2 and Figure 3 for several regularization
parameters used for our experiments.

Time results with different regularization parameters for 4- and 8-connectivity, and with a
precision of 1 on the result, are respectively given in Table 1 and Table 2. Results show that
the dyadic and ESH-based approaches clearly outperforms the pure parametric one by an order of

13

Table 2: Time results for several regularization parameter λ using 8-connectivity and a precision
of 1. Time results are in seconds.

Images (size) Approach λ = 10 λ = 20 λ = 60
Darbon-Sigelle 1.06 1.34 2.18
Parametric PR 5.24 11.89 14.10

Cows (400× 600) Dyadic Parametric PR 2.68 4.45 9.16
Parametric BK 7.99 8.45 9.67
Dyadic Parametric BK 0.71 0.98 1.43
ESH Parametric BK 0.72 1.08 1.69
ESH CC Parametric BK 0.77 1.19 1.93
Darbon-Sigelle 4.41 5.84 10.06
Parametric PR 83.67 157.72 174.13

Cows (800× 1200) Dyadic Parametric PR 14.80 29.40 63.46
Parametric BK 30.24 32.17 37.49
Dyadic Parametric BK 3.33 4.32 7.15
ESH Parametric BK 3.47 4.47 8.74
ESH CC Parametric BK 4.01 5.01 10.93
Darbon-Sigelle 0.29 0.37 0.57
Parametric PR 2.90 5.03 6.83

Girl (2562) Dyadic Parametric PR 0.82 1.10 1.84
Parametric BK 1.65 1.80 2.24
Dyadic Parametric BK 0.21 0.27 0.40
ESH Parametric BK 0.21 0.23 0.36
ESH CC Parametric BK 0.23 0.30 0.47
Darbon-Sigelle 1.24 1.63 2.67
Parametric PR 23.50 40.12 78.48

Girl (5122) Dyadic Parametric PR 5.74 7.36 12.51
Parametric BK 7.05 7.77 9.87
Dyadic Parametric BK 0.97 1.34 2.25
ESH Parametric BK 0.94 1.34 2.24
ESH CC Parametric BK 1.13 1.54 2.92

magnitude. We note that the Push-Relabel-based version of the parametric approach is much more
dependent on the regularization parameter λ than BK’s. We also observe that the performance
order depends on the content of the image and on the value of the regularization parameter.
Indeed, for small regularization (λ = 10), PR performs better for cows but worse on girl. This
order is reversed for larger regularization. The overall performance of these two versions are
comparable.

Considering the dyadic approaches, the order is stable over regularization parameters and
image contents: the best one is the dyadic parametric BK algorithm followed by the Darbon-Sigelle
approach while the dyadic parametric PR comes third. Finally note that our implementation of
PR parametric maximum-flow with the highest label approach has not been fully tuned. We refer
the reader to [37] where an efficient implementation of a Push-Relabel approach is described for
TV minimization.

At precision 1, we observe that the the dyadic parametric approach relying on BK is also faster
the ESH versions. This is probably explained by the fact the speed up that we get by computing
more cleverly the capacities does not compensate the computational cost of these updates. We
shall check that this is not true anymore for higher precisions.

Tables 3 and 4 present the time results with 4- and 8-connectivity for minimizers that have a
precision of 2−8 using the three fastest approaches: namely the dyadic parametric version using

14

Table 3: Time results for several regularization parameter λ using 4-connectivity and a precision
of 2−8. Time results are in seconds.

Images (size) Approach λ = 10 λ = 20 λ = 60
Cows (400× 600) Dyadic Parametric BK 0.79 0.97 1.37

ESH Parametric BK 0.85 1.22 1.66
ESH CC Parametric BK 0.79 1.01 1.25

Cows (800× 1200) Dyadic Parametric BK 3.89 4.86 7.74
ESH Parametric BK 4.77 9.64 15.60
ESH CC Parametric BK 3.79 9.21 15.26

Girl (2562) Dyadic Parametric BK 0.18 0.23 0.34
ESH Parametric BK 0.16 0.20 0.31
ESH CC Parametric BK 0.14 0.17 0.28

Girl (5122) Dyadic Parametric BK 0.96 1.26 1.95
ESH Parametric BK 0.91 1.24 2.09
ESH CC Parametric BK 0.71 1.06 1.83

Table 4: Time results for several regularization parameter λ using 8-connectivity and a precision
of 2−8. Time results are in seconds.

Images (size) Approach λ = 10 λ = 20 λ = 60
Cows (400× 600) Dyadic Parametric BK 1.62 1.98 2.98

ESH Parametric BK 1.64 2.37 3.34
ESH CC Parametric BK 1.33 1.90 3.21

Cows (800× 1200) Dyadic Parametric BK 7.85 9.61 15.85
ESH Parametric BK 8.14 9.67 16.61
ESH CC Parametric BK 8.13 8.50 15.81

Girl (2562) Dyadic Parametric BK 0.42 0.51 0.75
ESH Parametric BK 0.39 0.47 0.62
ESH CC Parametric BK 0.34 0.42 0.60

Girl (5122) Dyadic Parametric BK 2.00 2.64 4.64
ESH Parametric BK 2.02 2.56 4.77
ESH CC Parametric BK 1.83 2.54 5.29

BK, the ESH and the connected component-based ESH ones. These experiments show that, at
this level of precision, the ESH parametric version running BK performs similarly as the simpler
dyadic approach. We also note that the connected component-based ESH version turns out to
be faster the standard ESH approach. This behavior is amplified when using a 2−16 precision
(which, for these experiments, roughly corresponds to the machine precision) as can be seen on
Tables 5 and 6. At this precision level, spending time to perform better updates clearly improves
the performances, compared to the direct dyadic approach. This is further improved when using
the connected component version.

Concerning the actual results, results with a precision of 1 for the dyadic or parametric ap-
proaches are excellent and cannot be distinguished visually from the solutions with very high
precision (this is also true for the shape evolution examples shown later in the paper, although
it is less obvious in this case). However, note that the possibility of computing solutions of the
TV −L2 problem with a very high precision may be of particular interest for solving some image
restoration (deconvolution, reconstruction) problems with TV regularization through proximal
algorithms (forward-backwards splitting, see [25] or [7] and [54, 55]).

15

Table 5: Time results for several regularization parameter λ using 4-connectivity and a precision
of 2−16. Time results are in seconds.

Images (size) Approach λ = 10 λ = 20 λ = 60
Cows (400× 600) Dyadic Parametric BK 1.61 1.88 2.62

ESH Parametric BK 0.85 1.22 1.66
ESH CC Parametric BK 0.79 1.02 1.26

Cows (800× 1200) Dyadic Parametric BK 10.10 12.43 17.84
ESH Parametric BK 5.17 10.49 16.80
ESH CC Parametric BK 3.79 9.38 16.09

Girl (2562) Dyadic Parametric BK 0.48 10.54 0.84
ESH Parametric BK 0.17 0.22 0.33
ESH CC Parametric BK 0.15 0.18 0.28

Girl (5122) Dyadic Parametric BK 1.69 2.24 3.65
ESH Parametric BK 0.93 1.29 2.18
ESH CC Parametric BK 0.74 1.07 1.90

Table 6: Time results for several regularization parameter λ using 8-connectivity and a precision
of 2−16. Time results are in seconds.

Images (size) Approach λ = 10 λ = 20 λ = 60
Cows (400× 600) Dyadic Parametric BK 2.92 3.91 5.88

ESH Parametric BK 1.79 2.51 3.47
ESH CC Parametric BK 1.40 2.44 3.26

Cows (800× 1200) Dyadic Parametric BK 16.19 21.76 31.31
ESH Parametric BK 9.19 11.27 19.67
ESH CC Parametric BK 12.86 11.00 18.31

Girl (2562) Dyadic Parametric BK 0.82 0.98 1.60
ESH Parametric BK 0.40 0.50 0.64
ESH CC Parametric BK 0.34 0.42 0.63

Girl (5122) Dyadic Parametric BK 3.36 4.72 8.58
ESH Parametric BK 2.12 3.04 5.10
ESH CC Parametric BK 1.90 2.82 4.93

5 Surface evolution using parametric maximum flows

We now show how all this can be used to approximate the mean curvature flow of an hypersurface
(in some anisotropic geometry). Boykov et al [15] simply solve (1) by a simple graph cut (one run
of the maxflow algorithm), so that the output is a discrete set. In this way, subpixel motion cannot
be grasped (and in particular surfaces of very low curvature may remain stuck). We propose to
use (15) as a discretization of the continuous problem (7) (for an anisotropy φ related to J) and
then to estimate (by a linear interpolation) the position of the new hypersurface with a subpixel
precision. In particular, it means that we estimate, for the next step, the new distance function to
the zero level set of the function obtained at the previous step. Hence our algorithm is as follows:
the initial surface is given as the zero level set of a function u0, defined on our discrete grid. We fix
a time-step h > 0, and assume for the sake of clarity that our discrete grid has a spatial resolution
of 1. Given a discrete perimeter J , we alternatively, for n ≥ 0,

• Compute the signed distance function dn to the boundary of {un ≤ 0}, by (for instance) a
fast-marching algorithm [61, 62];

16

• Solve the discrete version of (9):

min
u
J(u) +

1
2h
‖u− dn‖2 (19)

by the dyadic-parametric max flow algorithm, and call un+1 the solution.

Then, the surfaces Γn = {un = 0} will be approximation of the anisotropic curvature flow with
normal velocity κφ if J is an approximation, in some variational sense, of the perimeter Per φ.

Figure 4: Evolutions with a square anisotropy (thick line: original curve, left: iterations 10, 20,
30, right: iterations 50, 100, 150, 200, 228).

For instance, the two-dimensional function

J(u) =
∑
i,j

|ui+1,j − ui,j |+ |ui,j+1 − ui,j | (20)

is an approximation (as the grid step goes to zero), of the anisotropic perimeter

Per φ(E) =
∫
∂E

|ν1|(x) + |ν2|(x) dx

corresponding to the anisotropy φ(ν) = |ν1| + |ν2|. Less anisotropic examples are easily built by
considering more interactions (in other directions) in the definition of J (but this is not the only
way).

The crystalline curvature motion in the sense of [10] is obtained by computing in the first step
a non-euclidean distance function, and more precisely, the signed distance function given by the
polar of φ

dφE(x) = inf
y∈E

φ◦(x− y)− inf
y 6∈E

φ◦(y − x) (21)

with φ◦(ξ) = supφ(ν)≤1 ν · ξ (see [10] for details). In the case of φ(ν) = |ν1| + |ν2|, one has
φ◦(ν) = max{|ν1|, |ν2|} and the fast marching algorithm has to be modified accordingly to compute
the appropriate distance (See Fig. 4 for an example of this crystalline flow).

Numerous improvements to the algorithms can be done: for instance, one may compute the
distance function up to some given threshold (that might be adapted to the current shape), and
solve the Total Variation problem only in a neighborhood of the surface (where |dn| is small).

Also, an additional normal force g (depending on the space and the time) is implemented by
replacing (19) with

min
u
J(u) +

1
h
‖u− dn + hgn‖2 . (22)

17

6 Numerical examples

6.1 (Anisotropic) curvature flow

We have computed several 2D and 3D evolutions with this technique. The simplest cases corre-
spond to the square (in 2D) or cubic (in 3D) anisotropy, that is, with φ(ν) =

∑
i |νi|. Indeed,

these cases are discretized on graphs with only nearest-neighbour interaction, for instance, in 2D,
the discrete energy is given by (20). The two examples illustrated by figures 4 and 5 follow the def-
inition of the crystalline motion in [10]; in each case, the distance function is computed using the
polar φ◦: in practice, a fast-marching algorithm is implemented with a local solver implementing
the discretization of φ(∇dφ) = 1, taking into account the direction of the incoming characteristics
just as in the isotropic case [59].

Figure 5: 3D evolutions with a cubic anisotropy: original shape and shape at times 1, 4, 7, 10.

In the 3D example of Figure 5, one observes the celebrated “facet-breaking” phenomenon: a
L-shaped facet of the original shape breaks into two rectangular facets which evolve at different
speed, as predicted, and observed, in [9, 56], see Figure 6.

It is possible, now, to compute “more isotropic” motions, or motion with more complex
anisotropies (see [13] for a general discussion on this topic). For instance, a hexagonal anisotropy
can be implemented using nearest-neighbour interaction on a triangular lattice: see Figure 7, left.
Nearly-isotropic evolutions are computed using more complex interactions, for instance, involving
next-nearest neighbours and even further neighbours: see figure 7, right. However, in this last
case, one still sees that the evolution looks crystalline, with a shape presenting a small number of
facets after some time.

6.2 Flows with forcing term

The mean curvature flow with constant volume is the simplest flow with a forcing term that can
be implemented using this approach with little extra cost. In this case, a normal force is added
(following eq. (22)) which keeps the volume of the shape equal to the volume of the initial shape.
In this particular case, this is simply done by thresholding the solution u of (19) not at the level
u = 0, but at the level s such that |{u < s}| = |{dn < 0}| = V , V being the initial volume. Such
an evolution (with a square anisotropy) is depicted on Figure 8.

18

Figure 6: Detail of the “facet breaking” at time 1.

Figure 7: Evolution with a hexagonal anisotropy (left), and nearly-isotropic curvature motion
(right), both at times 0, 20, 40, 60, 80, 100.

We briefly show, without entering into the details, two other flows with forcing term computed
with this technique. The first one is a basic 2D implementation of a crystal growth problem
(Stefan’s system of equations). We have followed the variational numerical method described
in [4], where it is implemented in a more standard way. At each step, we solve problem (22) where
the external forcing field gn depends on the temperature and is recomputed at each iteration.
Results are shown on figure 9.

Our last example is an implementation of an active contour (snake) model, more precisely
a “balloon”, firstly introduced in [24]. Here, the curve follows the gradient flow of a modified
perimeter which takes into account the intensities of the original image (and is cheaper when the
curve goes through higher gradients). An internal (here, constant) inflating force is added in order
to try to invade a whole region of interest. Figure 10 depicts an image of a heart in which we wish
to segment a vein. We initialize the process with a little circle in the middle of the image. As is,
this implementation is probably not very efficient with respect to more standard snake models,

19

Figure 8: Evolution of a volume preserving crystalline curvature motion.

Figure 9: Two examples of 2D crystal growths.

Figure 10: An image of the heart (left) and the segmentation of a vein using an active “balloon”
(right, final state).

but this very simple approach gives good results.

20

A Proof of Proposition 3.1

In this appendix, we prove shortly Proposition 3.1. Let us prove the lower-semicontinuity and the
last assertion: first of all, J is lower semicontinuous because if un → u, then for all z 6∈ {ui, i =
1, . . . , N}, χ{un>z} = χ{u>z} as soon as n is large enough. Hence, J(χ{u

n>z}) → J(χ{u>z}) for
a.e. z, so that (Fatou’s lemma)

J(u) =
∫ +∞

−∞
J(χ{u>z}) dz ≤ lim inf

n→∞

∫ +∞

−∞
J(χ{u

n>z}) dz = lim inf
n→∞

J(un) .

(If J is everywhere finite, then it follows from the convexity that it is locally Lipschitz-continuous.)
Let us now show the submodularity: assume first u and u′ are binary. Then, ui + u′i =

ui ∨ u′i + ui ∧ u′i = 0 if ui ∨ u′i = 0, 1 if ui ∨ u′i = 0 but ui ∧ u′i = 1, and 2 if ui ∧ u′i = 1. Hence,
by (10),

J(u+ u′) =
∫ 2

0

J
(
χ{u∨u

′+u∧u′≥z}
)
dz = J(u ∨ u′) + J(u ∧ u′).

On the other hand, since J is 1-homogeneous and convex,

J(u+ u′) = 2J
(
u+ u′

2

)
≤ 2

(
1
2
J(u) +

1
2
J(u′)

)
= J(u) + J(u′).

Hence (11) holds. If now u, u′ are not binary, we still have

J(u ∨ u′) + J(u ∧ u′) =
∫ +∞

−∞
J
(
χ{u∨u

′≥z}
)

+ J
(
χ{u∧u

′≥z}
)
dz

=
∫ +∞

−∞
J
(
χ{u≥s} ∨ χ{u

′≥s}
)

+J
(
χ{u≥z} ∧ χ{u

′≥z}
)
dz ≤

∫ +∞

−∞
J
(
χ{u≥z}

)
+J

(
χ{u

′≥z}
)
dz

= J(u) + J(v) .

We now want to consider the converse assertion, that is, the convexity of the extension
through (10) of a nonnegative submodular function. We consider J : {0, 1}N → [0,+∞] a submod-
ular function, i.e., such that (11) holds for any pair of binary vectors u, u′. We assume moreover
that J(0) = J(1) = 0, and we still denote by J its extension to RN by the co-area formula (10).
(We observe that thanks to J(1) = 0, if u ∈ {0, 1}N then (10) is already true.)

Then J is convex: hence it is a “discrete total variation”. This extends quite easily to the
continuous case. In the discrete case, however, this result is well known and usually proved in
the framework of the linear optimization theory, using duality [52, 48]. We propose here a very
elementary proof.

First of all, points (1-3) of the thesis of Proposition 3.1 are deduced only from (10) and therefore
hold for J even if it were not convex.

Let us now show the convexity of J . Since it is 1-homogeneous it is equivalent to show that

J(u+ v) ≤ J(u) + J(v) (23)

for any u, v ∈ RN . We first consider nonnegative, integer-valued vectors u, v. We observe that if
u is integer-valued, then J can be defined by the following inf-convolution formula:

J(u) = min

{
n∑
l=1

J(θl) : n ≥ 0, θl ∈ {0, 1}N ,
n∑
l=1

θl = u

}
. (24)

Indeed, denote by H(u) the right-hand side of 24. Since

J(u) =
∫ ∞

0

J(χ{u>z}) dz =
n∑
l=1

J(χ{u≥l}) ,

21

where n = maxi ui, we have H(u) ≤ J(u). The reverse inequality will hold if we show that
the minimum in (24) is reached precisely for n = maxi ui and θl = χ{u≥l} (and, of course, any
permutation of these), or, equivalently, if we show that it is reached for a monotone sequence of
binary vectors θl.

This follows from the submodularity of J . If J is strictly submodular (that is, if the inequality
in (11) is strict whenever the vectors are not ordered), then it is obvious: indeed, if the minimum
in (24) is reached for (θl)nl=1 and there are l, l′ such that θl 6≤ θl

′
nor θl 6≥ θl

′
, then, replacing θl

with θl ∧ θl′ and θl
′

with θl ∨ θl′ we see that we strictly decrease the value of the minimum, a
contradiction. Hence the minimum is reached for θl = χ{u≥l}, l = 1, . . . , n = maxi ui.

If J is not strictly submodular, we choose a strictly submodular function Ĵ (for instance,
Ĵ(θ) = g(

∑N
i=1 θi), where g is a strictly concave function with g(0) = g(N) = 0), and for ε > 0

small we let Jε = J + εĴ . Then, the minimal value in (24) for Jε will be attained for θl = χ{u≥l},
l = 1, . . . , n = maxi ui. Passing to the limit, we still get that H(u) = J(u) so that (24) is true.

Let us now show (23) for a general pair of vectors u, v. We may obviously assume that
J(u) < +∞ and J(v) < +∞. In particular (since u and v take at most N value) we have
J(χ{u>z}) < +∞ and J(χ{v>z}) < +∞ for any z ∈ R. Let m < min{ui, vi, i = 1, . . . , N} and
M > max{ui, vi, i = 1, . . . , N}. We have u = m1 +

∫M
m
χ{u>z} dz and the same holds for v. Now,

for ε > 0 small, we let

uε = m1 + ε
∑
k∈Z

m≤kε≤M

χ{u>kε} and vε = m1 + ε
∑
k∈Z

m≤kε≤M

χ{v>kε} ,

clearly, uε → u and vε → v as ε → 0, and J(uε) → J(u), J(vε) → J(v). Now, letting uε# =
(uε −m1)/ε and vε# = (vε −m1)/ε, we have two non-negative integer-valued vectors to which we
can apply (23), and we find

J(uε + vε) = εJ(uε# + vε#) ≤ ε(J(uε#) + J(vε#)) = J(uε) + J(vε).

Since the right-hand side converges to J(u)+J(v) as ε→ 0, and J is l.s.c., we deduce (23). Hence
J is convex.

Remark A.1. By standard convex analysis (see e.g. [31, 58]), we deduce that

J(u) = sup
q∈K

q · u

where

K =

{
q ∈ RN :

N∑
i=1

qiθi ≤ J(θ), ∀ θ ∈ {0, 1}N
}

= ∂J(0) ,

the subgradient of J at 0. Then, it is standard that for any u, ∂J(u) = {q ∈ K : q · u = J(u)}
and using (10) one shows easily that q ∈ ∂J(u) ⇒ q ∈ ∂J(χ{u>s}) for any s ∈ R (point 4 of
Proposition 3.1).

B Representation of submodular functions on graphs

Following [46, 47], we say that the (necessarily submodular) J(θ1, . . . , θN) can be represented on
a graph if there exists M additional nodes i ∈ {N + 1, . . . , N +M} and weights αi,j ≥ 0, βi ∈ R
(i, j ∈ {1, . . . , N +M}) such that for any θ ∈ {0, 1}N ,

J(θ1, . . . , θN) = min
(θN+1,...,θN+M)∈{0,1}M

N+M∑
i,j=1

αi,j(θi − θj)+ +
N+M∑
i=1

βiθi . (25)

The energy in the right-hand side of (25) is clearly representable on a graph, following the stan-
dard construction in (4.1): hence (25) shows that J can be represented on a graph involving M

22

additional nodes. Of course, this is really interesting only if M remains small, at most of the
order of N . In [46, 47], it is shown that this is possible if N ≤ 3 (and, of course, for total energies
that are the sum of representable energies), at the cost of adding M = 2 additional nodes. See
also [33, 11].

Note, however, that it is not difficult to build many other examples, involving more than 3
variables, which still enter this category. For instance, the energy in (13) is a sum of terms of the
following type:

J0(θ1, · · · , θN) = max{θi, i = 1, · · · , N} −min{θi, i = 1, · · · , N} .

Such energies are representable: it is enough to add two additional nodes, corresponding to two
additional variables w and w, and observe that

J0(θ1, · · · , θN) = min
w,w∈{0,1}

Ĵ0(θ1, · · · , θN , w, w)

where

Ĵ0(θ1, · · · , θN , w, w) = (w − w)+ +
N∑
i=1

(
(θi − w)+ + (w − θi)+

)
.

It is clear that if θ is a constant vector, then taking w = w = θi give the value 0, while if θ is not
constant, then the only way to make both terms in the sum less than 1 is by letting w = 1 and
w = 0, but then the first term is 1.

Other examples are easily built, for instance if g is a concave function with g(0) = g(N) = 0,
then

J1(θ1, . . . , θN) = g(
N∑
i=1

θi)

is also representable.

C Proofs of Propositions 3.3 and 3.5

We give in this appendix short proofs of Propositions 3.3 and 3.5. As mentioned before, the first
relies on the comparison lemma 3.4.

Proof of Lemma 3.4. , We have

λJ(θ) +
N∑
i=1

θi(z − gi) ≤ λJ(θ ∧ θ′) +
N∑
i=1

(θi ∧ θ′i)(z − gi) , and:

λJ(θ′) +
N∑
i=1

θ′i(z
′ − gi) ≤ λJ(θ ∨ θ′) +

N∑
i=1

(θi ∨ θ′i)(z′ − gi) .

Summing both inequality and using the submodularity of J , we end up with

N∑
i=1

θi(z − gi) + θ′i(z
′ − gi) ≤

N∑
i=1

(θi ∧ θ′i)(z − gi) + (θi ∨ θ′i)(z′ − gi) .

This is nothing else than

z

N∑
i=1

θi − θi ∧ θ′i ≤ z′
N∑
i=1

θi ∨ θ′i − θ′i ,

but since θi − θi ∧ θ′i = θi ∨ θ′i − θ′i = (θi − θ′i)+, we find that if z > z′, (θi − θ′i)+ = 0 for all
i = 1, . . . , N , that is, θ ≤ θ′.

23

Proof of Prop. 3.3. We easily derive Proposition 3.3: indeed, if θz solve (16) for all values of z,
and if we define u ∈ RN by

ui = sup{z : θzi = 1}

then clearly χ{u>z} ≤ θz ≤ χ{u≥z} for all z, as a consequence of Lemma 2.2. Also, m = minj gj ≤
ui ≤ maxj gj = M for all i (since 1 is the unique solution of (16) if z ≤ m, while 0 is the solution
if z ≥ M). Hence, if v ∈ RN and m′ ≤ m ∧ (mini vi), we have (using (10) and the minimality of
each θz)

λJ(u) +
1
2
‖u− g‖2 =

∫ +∞

m′
λJ(θz) +

N∑
i=1

θzi (z − gi) dz +
N∑
i=1

(m′ − gi)
2

2

≤
∫ +∞

m′
λJ(χ{v≥z}) +

N∑
i=1

χ
{v≥z}
i (z − gi) dz +

N∑
i=1

(m′ − gi)
2

2

= λJ(v) +
1
2
‖v − g‖2

which shows our claim.

We give now the proof that the quantized ROF problem actually produces a solution which is
exact (in the sup norm), up to the quantification.

Proof of Prop. 3.5. In fact, For an admissible v in (17), we can write

v = l0 +
n∑
k=1

(lk − lk−1)θk = l0 + δ

n∑
k=1

θk

where for each k ≥ 1, θk is the binary vector defined by θki = 1 iff vi ≥ lk. Then, the fact θk ≤ θk−1

for any k ≥ 2, and the co-area formula (10), yield J(z) =
∑n
k=1 δ J(θk). On the other hand,

‖g − v‖2 =
N∑
i=1

(gi − l0)2 + 2δ
n∑
k=1

N∑
i=1

(
lk + lk−1

2
− gi

)
θki ,

hence, up to a constant, problem (17) is the same as

min
θk

n∑
k=1

(
λJ(θk) +

N∑
i=1

(
lk + lk−1

2
− gi

)
θki

)
,

where the min is taken on all binary fields (θk)nk=1, with the constraint that θk ≤ θk−1 for
any k = 2, . . . , n. Each term in the sum is the energy that appears in problem (16), for z =
zk = (lk + lk−1)/2. Now, by Lemma 3.4, if for each k = 1, . . . , n, θk is a minimizer of the
corresponding energy, then, zk > zk−1 yields θk ≤ θk−1: hence the minimum problem above is
in fact unconstrained. In particular, by Proposition 3.3 each θk is the between the characteristic
functions of {u > zk} and {u ≥ zk}. This shows that Proposition 3.5 is true.

Acknowledgements

The authors would like to thank the referees for their careful reading of the paper, their comments
and encouraging remarks, as well as for mentionning the references [45] and [30]. We were unaware
of the first one, and had missed the particular relevance of the second.

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows. Prentice Hall Inc., Englewood
Cliffs, NJ, 1993. Theory, algorithms, and applications.

24

[2] W. K. Allard. Total variation regularization for image denoising, I. Geometric theory. SIAM
J. Math. Anal., 39(4):1150–1190, 2007.

[3] F. Almgren, J. E. Taylor, and L.-H. Wang. Curvature-driven flows: a variational approach.
SIAM J. Control Optim., 31(2):387–438, 1993.

[4] R. Almgren. Variational algorithms and pattern formation in dendritic solidification. J.
Comput. Phys., 106(2):337–354, 1993.

[5] F. Alter, V. Caselles, and A. Chambolle. A characterization of convex calibrable sets in RN .
Math. Ann., 332(2):329–366, 2005.

[6] M. A. Babenko, J. Derryberry, A. V. Goldberg, R. E. Tarjan, and Y. Zhou. Experimental
evaluation of parametric max-flow algorithms. In Proceedings of WEA 2007, pages 256–269,
2007.

[7] A. Beck and M. Teboulle. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear
Inverse Problems SIAM J. Imaging Sciences, 2(1):183–202, 2009.

[8] G. Bellettini, V. Caselles, A. Chambolle, and M. Novaga. Crystalline mean curvature flow of
convex sets. Arch. Ration. Mech. Anal., 179(1):109–152, 2006.

[9] G. Bellettini, M. Novaga, and M. Paolini. Facet-breaking for three-dimensional crystals evolv-
ing by mean curvature. Interfaces Free Bound., 1(1):39–55, 1999.

[10] G. Bellettini and M. Paolini. Anisotropic motion by mean curvature in the context of Finsler
geometry. Hokkaido Math. J., 25(3):537–566, 1996.

[11] E. Boros and P. L. Hammer. Pseudo-boolean optimization. Discrete Appl. Math., 123(1-
3):155–225, 2002.

[12] G. Bouchitté. Recent convexity arguments in the calculus of variations. (lecture notes from
the 3rd Int. Summer School on the Calculus of Variations, Pisa), 1998.

[13] Y. Boykov and V. Kolmogorov. Computing geodesics and minimal surfaces via graph cuts.
In International Conference on Computer Vision, pages 26–33, 2003.

[14] Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-flow algorithms
for energy minimization in vision. IEEE Trans. Pattern Analysis and Machine Intelligence,
26(9):1124–1137, 2004.

[15] Y. Boykov, V. Kolmogorov, D. Cremers, and A. Delong. An integral solution to surface
evolution PDEs via Geo-Cuts. In A. Leonardis, H. Bischof, and A. Pinz, editors, Euro-
pean Conference on Computer Vision (ECCV), volume 3953 of LNCS, pages 409–422, Graz,
Austria, May 2006. Springer.

[16] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts.
IEEE Transactions on Pattern Analysis and Machine Interaction, 23(11):1222–1239, 2001.

[17] V. Caselles and A. Chambolle. Anisotropic curvature-driven flow of convex sets. Nonlinear
Anal., 65(8):1547–1577, 2006.

[18] V. Caselles, A. Chambolle, and M. Novaga. The discontinuity set of solutions of the TV
denoising problem and some extensions. Multiscale Modeling & Simulation, 6(3):879–894,
2007.

[19] A. Chambolle. An algorithm for mean curvature motion. Interfaces Free Bound., 6(2):195–
218, 2004.

25

[20] A. Chambolle. Total variation minimization and a class of binary mrf models. In Energy Min-
imization Methods in Computer Vision and Pattern Recognition, Lecture Notes in Computer
Science, pages 136–152, 2005.

[21] A. Chambolle and M. Novaga. Implicit time discretization of the mean curvature flow with
a discontinuous forcing term. Interfaces Free Bound., 10(3):283–300, 2008.

[22] A. Chambolle and M. Novaga. Approximation of the anisotropic mean curvature flow. Math.
Models Methods Appl. Sci., 17(6):833 – 844, 2007.

[23] T. F. Chan and S. Esedoḡlu. Aspects of total variation regularized L1 function approximation.
SIAM J. Appl. Math., 65(5):1817–1837 (electronic), 2005.

[24] L. D. Cohen. On active contour models and balloons. CVGIP: Image Underst., 53(2):211–218,
1991.

[25] P. L. Combettes and V. R. Wajs. Signal recovery by proximal forward-backward splitting.
Multiscale Model. Simul., 4(4):1168–1200 (electronic), 2005.

[26] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The
MIT Press, 2001.

[27] W.H. Cunningham. On submodular function minimization. Combinatoria, 5:185–192, 1985.

[28] J. Darbon. Total Variation minimization with L1 data fidelity as a contrast invariant filter. In
Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis
(ISPA 2005), Zagreb, Croatia, September 2005.

[29] J. Darbon and M. Sigelle. Image restoration with discrete constrained Total Variation part
I: Fast and exact optimization. Journal of Mathematical Imaging and Vision, 26(3):261–276,
2006.

[30] M. J. Eisner and D. G. Severance. Mathematical techniques for efficient record segmentation
in large shared databases. J. Assoc. Comput. Mach., 23(4):619–635, 1976.

[31] I. Ekeland and R. Témam. Convex analysis and variational problems, volume 28 of Classics in
Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia,
PA, english edition, 1999. Translated from the French.

[32] H. Federer. Geometric measure theory. Springer-Verlag New York Inc., New York, 1969.

[33] D. Freedman and P. Drineas. Energy minimization via graph cuts: settling what is possible. In
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR),
pages 939–946, 2005.

[34] G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. A fast parametric maximum flow algorithm
and applications. SIAM J. Comput., 18(1):30–55, 1989.

[35] E. Giusti. Minimal surfaces and functions of bounded variation, volume 80 of Monographs in
Mathematics. Birkhäuser Verlag, Basel, 1984.

[36] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum flow problem. In STOC
’86: Proceedings of the eighteenth annual ACM symposium on Theory of computing, pages
136–146, New York, NY, USA, 1986. ACM Press.

[37] D. Goldfarb and Y. Yin. Parametric maximum flow algorithms for fast total variation mini-
mization. Technical report, Rice University, 2007.

[38] D. M. Greig, B. T. Porteous, and A. H. Seheult. Exact maximum a posteriori estimation for
binary images. J. R. Statist. Soc. B, 51:271–279, 1989.

26

[39] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequences in
combinatorial optimization. Combinatoria, 1:169–197, 1981.

[40] D. S. Hochbaum. An efficient algorithm for image segmentation, Markov random fields and
related problems. J. ACM, 48(4):686–701 (electronic), 2001.

[41] D. S. Hochbaum. Complexity and algorithms for convex network optimization and other
nonlinear problems. 4OR, 3(3):171–216, 2005.

[42] S. Iwata, L. Fleischer, and S. Fujishige. A combinatorial, strongly polynomial-time algorithm
for minimizing submodular functions. Journal of the ACM, pages 97–106, 2000.

[43] O. Juan and Y. Boykov. Active graph cuts. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR), pages 1023–1029, 2006.

[44] P. Kholi and P. Torr. Efficient solving dynamic markov random fields using graph cuts. In
Proceedings of the 10th International International Conference on Computer Vision, pages
922–929, 2005.

[45] V. Kolmogorov, Y. Boykov, and C. Rother. Applications of parametric maxflow in computer
vision. In Proceedings of the IEEE 11th International Conference on Computer Vision (ICCV
2007), pages 1–8, 2007.

[46] V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph cuts? In
European Conference on Computer Vision, volume 3, pages 65–81, may 2002.

[47] V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph cuts? IEEE
Trans. Pattern Analysis and Machine Intelligence, 2(26):147–159, 2004.

[48] J. Lee. A first course in combinatorial optimization. Cambridge University Press, 2004.

[49] L. Lovász. Submodular functions and convexity. In Mathematical programming: the state of
the art (Bonn, 1982), pages 235–257. Springer, Berlin, 1983.

[50] S. Luckhaus and T. Sturzenhecker. Implicit time discretization for the mean curvature flow
equation. Calc. Var. Partial Differential Equations, 3(2):253–271, 1995.

[51] S. T. McCormick. Fast algorithms for parametric scheduling come from extensions to para-
metric maximum flow. In Proceedings of the twenty-eighth annual ACM symposium on Theory
of computing, pages 319 – 328, 1996.

[52] K. Murota. Discrete convex analysis. SIAM Monographs on Discrete Mathematics and
Applications. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,
2003.

[53] K. Murota. Discrete Convex Optimization. SIAM Society for Industrial and Applied Mathe-
matics, 2003.

[54] Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Kluwer, 2004.

[55] Y. Nesterov. Gradient methods for minimizing composite objective function. Technical Report
CORE Discussion Paper 2007/76, Catholic University of Louvain, 2007.

[56] M. Paolini and F. Pasquarelli. Numerical simulation of crystalline curvature flow in 3D by
interface diffusion. In Free boundary problems: theory and applications, II (Chiba, 1999),
volume 14 of GAKUTO Internat. Ser. Math. Sci. Appl., pages 376–389. Gakkōtosho, Tokyo,
2000.

[57] J. C. Picard and H. D. Ratliff. Minimum cuts and related problems. Networks, 5(4):357–370,
1975.

27

[58] R. T. Rockafellar. Convex analysis. Princeton Landmarks in Mathematics. Princeton Uni-
versity Press, Princeton, NJ, 1997. Reprint of the 1970 original, Princeton Paperbacks.

[59] E. Rouy and A. Tourin. A viscosity solutions approach to shape-from-shading. SIAM J.
Numer. Anal., 29(3):867–884, 1992.

[60] A. Schrijver. A combinatorial algorithm minimizing submodular functions in strongly poly-
nomial time. Journal of Combinatorial Theory (B), 80:436–355, 2000.

[61] J. A. Sethian. Fast marching methods. SIAM Rev., 41(2):199–235 (electronic), 1999.

[62] J. N. Tsitsiklis. Efficient algorithms for globally optimal trajectories. IEEE Trans. Automat.
Control, 40(9):1528–1538, 1995.

28

