
University of California

Los Angeles

Visibility of Point Clouds and Exploratory Path

Planning in Unknown Environments

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Mathematics

by

Yanina Landa

2008

c© Copyright by

Yanina Landa

2008

The dissertation of Yanina Landa is approved.

Stefano Soatto

Luminita A. Vese

Andrea L. Bertozzi

Stanley J. Osher, Committee Chair

University of California, Los Angeles

2008

ii

To my wonderful family and,

in particular, to my newborn Lea,

with hope to inspire her curiosity.

iii

Table of Contents

List of Figures . vi

List of Algorithms . xiv

1 Introduction . 1

1.1 Visibility Overview . 2

1.2 Representations of Visibility . 3

1.2.1 Computational Geometry and Combinatorial Approach . . 4

1.2.2 Level Set Visibility . 7

1.3 Robotic Path Planning with Visibility Considerations 10

1.3.1 Tasks and Strategies for Robotic Navigation 12

1.3.2 Gap Navigation Tree . 15

1.3.3 Level Set-based Motion Planning 19

1.4 Contributions and Dissertation Organization 21

2 Visibility of Point Clouds and Surface Reconstruction 23

2.1 Projection and Filtering of Data Points 25

2.2 Smoother Reconstruction by ENO Interpolation 27

2.2.1 Overview of ENO Polynomial Interpolation 28

2.2.2 The Two-dimensional Case 29

2.2.3 Processing and Denoising 31

2.2.4 Curved Lines of Sight . 33

iv

2.2.5 Conversion to Cartesian Level Set Formulation 34

2.2.6 Error Analysis . 37

2.2.7 Dynamics . 42

2.3 Smoother Reconstruction in Three Dimensions 45

2.3.1 Rectangular Grid Construction and Interpolation 49

2.3.2 Level Set Representation 55

2.3.3 Numerical Examples . 56

3 Mapping of Unknown Environments 66

3.1 Horizon-chasing . 68

3.1.1 Single Observer . 69

3.1.2 Statistics . 77

3.1.3 Multiple Observers . 80

3.2 Experimental Results: Robotic Path Planning with Limited Sensor

Data . 84

3.2.1 Test-bed and Range Sensors 87

3.2.2 Results . 90

3.3 Postprocessing of the Path: Exposure Optimization 92

3.4 Complexity Estimates . 99

3.4.1 Two-dimensional Case . 100

3.4.2 Three-dimensional Case 110

4 Summary and Future Work . 114

References . 119

v

List of Figures

1.1 The observer’s view of environment according to [TGL05]. The

position of observer is marked by a black disk. (a) The environment

and respective labeling of the detected gaps. The free space F is

white. (b) Relative angular position of gaps in the visibility space. 8

1.2 Gap critical events. (a) Appearance and disappearance of gaps

when crossing the inflection ray. (b) Splitting and merging when

crossing the bitangent complement rays. 17

2.1 Projection of the point cloud onto Sd−1 centered at x0. Filtering

of the visible data: x is visible, y and z are invisible from x0.

Values of the visibility function ρx0(ν1) = x−x0

|x−x0| , ρx0(ν2) = M ,

where ν1, ν2 ∈ Sd−1. 26

2.2 Piecewise constant approximation of ρx0 by ρ̃x0 using formula (2.2).

Squares are the filtered out visible points serving as “originators”

of constant values of ρ̃x0 . 27

2.3 Comparison of standard Newton’s divided differences interpolation

to ENO interpolation. The order of interpolation is 8. 30

2.4 (a) Visibility map generated from artificial data: dark regions - in-

visible, light regions – visible. Also marked are the vantage point

(−0.2, 0.6), actual obstacles’ boundaries, visible obstacles’ bound-

aries, and horizon points. (b) Forth order interpolation of the

visibility function ρ corresponding to (a), computation of dρ
dθ
, d2ρ

dθ2 ,

and the curvature κ via formula (2.5) away from the discontinuities

(dashed vertical lines). 32

vi

2.5 (a) Visibility map generated from noisy data: dark regions – invis-

ible with respect to the denoised visibility function, light regions

– visible. Also marked are the vantage point (−0.2, 0.6), actual

obstacles’ boundaries (light outline), noisy visible boundaries (di-

amonds), denoised visible boundaries (dark circles), and horizon

points (dark squares). (b) Visibility function ρ corresponding to

(a), edges/horizon points are marked by circles. 33

2.6 Visibility under a bending ray field. The refraction index is 1 in the

left half-plane and 2 in the right half-plane. (a) Contours of the

ray field, observer’s position (−0.2,−0.4), obstacles’ boundaries,

visible boundaries, and horizon locations. Dark regions are invisi-

ble, light are invisible from the vantage point. (b) Corresponding

visibility function ρ. Discontinuities are marked by circles. 35

2.7 (a) Environment with obstacles, observer at (0.6,−0.4), and shadow

boundary. (b) Visibility level set function φ corresponding to setup

(a). 37

2.8 (a) Joint visibility from three observers located at (0.8, 0.7), (0, 0),

and (−0.8,−0.3) (stars). Also depicted are the obstacles’ bound-

aries and the shadow boundary. (b) Visibility level set function

φ(·; x0, x1, x2) = maxi=0,1,2 φ(·; xi). 38

2.9 Filtered out visible data pi ∈ P̃ along with surface normals. Error

in the approximation of horizon locations. 42

2.10 Derivation of the dynamics equations for the visibility function (a)

and the horizons (edges) (b). 45

2.11 Points visible from the vantage point at (−0.5, 1, 0.7). Point cloud

size is 35947 points, the number of visible points is 2678. 46

vii

2.12 The Delaunay triangulation for 50 randomly generated points. . . 48

2.13 Triangulation of S2 based on filtered visible points. The number

of triangles is 5329. 49

2.14 Rectangular grid construction: circles – rectangular grid vertices

Xi,j, squares – triangular mesh vertices corresponding to diagonal

neighbors of Ki,j. 51

2.15 Rectangular grid construction and interior set detection based on

triangulation of visible points on the surface of the bunny. Circles

are in the interior set and have four neighbors to satisfy the criteria

(2.29), squares are inside the elongated triangles or do not have a

complete set of neighbors to satisfy the criteria (2.29), and points

are outside the triangulation. (a) Portion of the grid covering the

triangular mesh. (b) Close-up detail of the rectangular grid. The

resulting grid size is 158× 315. 52

2.16 (a) Initial coarse grid interpolation. (b) Final fine grid ENO in-

terpolation. Grid is refined by the factor of 4. The order of ENO

interpolation is 5. 54

2.17 (a) Signed distance function to the shadow boundary. (b) Trian-

gulation of the visible data points. 56

2.18 (a) Point cloud of David’s head, 78,958 points. (b) Point cloud of

urban environment, 190,704 points. 57

2.19 Data visible from the two vantage points: (a) (400, 200, 500) and

(b) (200,−700, 700). 58

viii

2.20 Top row: coarse level visibility interpolation corresponding to the

vantage point (a) (400, 200, 500) and (b) (200,−700, 700). The

grid sizes are 131 × 261 and 120 × 240. Bottom row: fine level

fifth order ENO interpolation of the visibility function. A mesh

refinement factor is 4. 60

2.21 Top row: level set reconstruction of the visible occluding sur-

faces corresponding to the vantage points (a) (400, 200, 500) and

(b) (200,−700, 700). Bottom row: triangulation of the visible data

points. The number of triangles used in reconstruction is (a) 2482

and (b) 2154. 61

2.22 (a) Data visible from the two vantage points: (400, 200, 500) (star)

and (200,−700, 700) (diamond). (b) Level set representation of

joint visibility corresponding to two distinct vantage points. . . . 62

2.23 Data visible from the three vantage points: (a) (7.2, 0, 12), (b) (4, 10, 13),

and (c) (−2, 4, 13). 62

2.24 Top row: coarse level visibility interpolation corresponding to the

vantage points (a) (7.2, 0, 12), (b) (4, 10, 13), and (c) (−2, 4, 13).

The grid sizes are 95×190, 134×267, and 179×358. Bottom row:

fine level fifth order ENO interpolation of the visibility function.

A mesh refinement factor is 4. 63

2.25 Top row: level set reconstruction of the visible occluding surfaces

corresponding to the vantage points (a) (7.2, 0, 12), (b) (4, 10, 13),

and (c) (−2, 4, 13). Bottom row: triangulation of the visible data

points. The number of triangles used in reconstruction is (d) 24807,

(e) 27857, and (f) 47444. 64

ix

2.26 (a) Data visible from the three vantage points: (7.2, 0, 12) (star),

(4, 10, 13) (circle), and (−2, 4, 13) (diamond). (b) Level set repre-

sentation of joint visibility corresponding to two distinct vantage

points. 65

3.1 Approaching a horizon through a bitangent: (a) horizon θe visible

from xk, (b) intermediate step xk+ 1
2

to reveal a previously occluded

portion of the obstacle’s boundary, (c) complete the move at xk+1. 71

3.2 Three non-overlapping shapes and a sine wave. (a) Exploration

path and visibility map at the final step: dark circle – initial posi-

tion, star – final position, white line with circles – observer’s path

steps. (b) Signed distance to occluding boundaries. 73

3.3 Two spirals. (a) Exploration path and visibility map at the fi-

nal step: dark circle – initial position, star – final position, white

line with circles – observer’s path steps. (b) Signed distance to

occluding boundaries. 74

3.4 Grand Canyon terrain. (a) Exploration path and visibility map at

the final step: dark circle – initial position, star – final position,

white line with circles – observer’s path steps. (b) Signed distance

to occluding boundaries. 75

3.5 Stages of exploration under a bending ray field. 76

3.6 Sample environment for statistics experiment. 78

x

3.7 Statistics experiment: (a) number of steps histogram for Algo-

rithm 3.1; (b) number of steps histogram for the random walk;

(c) path length histogram for Algorithm 3.1; (d) path length his-

togram for the random walk. The simulation of random walk is

stopped if the step count is greater than 400. 79

3.8 Joint visibility of two observers. Visible horizons, θ1,2, θ1,3, θ1,5,

θ2,2, θ2,5, and θ2,6, are removed from the list of unexplored horizons. 82

3.9 Stages of environment exploration with two observers, obstacle: a

circle. Dark circles – initial position’s, stars – final positions, white

lines with circles – observers’ path steps. 84

3.10 Stages of environment exploration with two observers, obstacles:

three shapes. Dark circles – initial position’s, stars – final posi-

tions, white lines with circles – observers’ path steps. 85

3.11 Stages of environment exploration with three observers, obstacles:

four circles. Dark circles – initial position’s, stars – final positions,

white lines with circles – observers’ path steps. 86

3.12 (a) Tank with the attached sensor. (b) Schematic sensor layout

and ray patterns. 88

3.13 Sensor ADC output corresponding to distance to reflective object

measured along the normal to the surface; green vertical lines mark

working sensor range . 89

3.14 Sensor ADC output corresponding to distance to reflective object

measured along different angles to the normal to the surface; red

marks correspond to points on the range curves with similar sensor

output. 90

xi

3.15 Exploration of environment with two observers. Stars are the ob-

servers’ positions; small circles are the sensor output converted to

range data; big dark circles are the next edges to be approached;

boxes are the actual obstacles’ outlines; dark regions are currently

invisible; light regions are currently visible. 92

3.16 Map resulting from the environment exploration. Dark regions are

invisible and light regions are visible. Boxes are the actual outlines

of obstacles. 93

3.17 Path postprocessing corresponding to Problem 3.1, obstacles – two

circles: (a) initial path (dashed) and optimized path (solid); (b)∫
Ω\D I(x; γ; t)dx/

∫
Ω\D I(x; γ; 0)dx. Here C = 15, λ = 0.1, μ = 1. . 95

3.18 Path postprocessing corresponding to Problem 3.1, obstacles –

Grand Canyon terrain: (a) initial path (dashed) and optimized

path (solid); (b)
∫

Ω\D I(x; γ; t)dx/
∫
Ω\D I(x; γ; 0)dx. Here C =

20, λ = 0.1, μ = 1. 96

3.19 Path postprocessing corresponding to Problem 3.1, obstacles –

Grand Canyon terrain, the weights are centered at (0.9, 0) and

(−0.5, 0.25) (diamonds); (a) initial path (dashed) and optimized

path (solid); (b)
∫

Ω\D I(x; γ; t)dx/
∫
Ω\D I(x; γ; 0)dx. Here C =

20, λ = 0.1, μ = 1. 97

3.20 Path postprocessing corresponding to Problem 3.2, obstacles – two

circles: (a) initial path (dashed), four original observers’ locations

(triangles), and optimized path (solid); (b)
∫

Ω\D I(x; γ; t)dx/
∫

Ω\D I(x; γ; 0)dx.

Here C = 100, λ = 0.001, μ = 1, ds = 0.01, total number of steps

along the path is 26. 99

xii

3.21 Path postprocessing corresponding to Problem 3.2, obstacles –

Grand Canyon terrain: (a) initial path (dashed), original observers’

locations (triangles), and optimized path (solid); (b)
∫

Ω\D I(x; γ; t)dx/
∫

Ω\D I(x; γ; 0)dx.

Here C = 150, λ = 0.001, μ = 1, ds = 0.01, total number of steps

along the path is 71. 100

3.22 Constructing a three-step path around a single convex obstacle. . 101

3.23 Constructing a path around a convex obstacle under restrictions. . 102

3.24 Constructing a path around a star-shaped obstacle. 103

3.25 Sample environment with closed, convex, disjoint obstacles. 104

3.26 Setup for Proposition 3.6. A bold arc is the unexplored portion of

C1. 105

3.27 Four bitangents to two disks. 106

3.28 Portions of Cj visible from zm+ 1
2
∈ C ′

j and zm+1 ∈ C ′
j. 107

3.29 Detecting horizons on the neighbors of Cj. 108

xiii

List of Algorithms

2.1 One-dimensional ENO polynomial interpolation 29

3.1 Navigation in planar environment by single observer 70

3.2 Navigation in planar environment by multiple observers (based on

Algorithm 3.1) . 81

xiv

Acknowledgments

First of all, I would like to express my gratitude to my advisor, Professor Stanley

Osher, for his very generous support and guidance, and the invaluable knowledge

gained during his lectures and the Level Set Collective meetings.

I would also like to thank my other mentor and collaborator, Professor Richard

Tsai, whose innovative ideas always presented the problem in a new light and

sometimes lead to unexpected yet exciting turns in the research. He has also

been a great host, when I visited the University of Texas in Austin.

I am grateful to my committee members: Professor Andrea Bertozzi, Professor

Stefano Soatto and Professor Luminita Vese for their encouragement and valuable

suggestions in my research and studies.

The energy and enthusiasm of Professor Bertozzi has always been a motiva-

tion for me to keep pushing forward towards achieving my academic and career

goals. Our collaboration during the summer of 2006 has been very enjoyable and

productive.

Professor Luminta Vese has played the key role in my decision to continue

study Mathematics at the graduate level. She introduced me to Applied Math-

ematics research during the Research in Industrial Projects for Students (RIPS)

program held by the Institute of Pure and Applied Mathematics (IPAM) during

the summer of 2002.

Additionally, I would like to thank all the people, who helped me in my studies

and supported me while at UCLA: Professor Russell Caflisch, Professor Chris-

tian Ratsch, Professor Chris Anderson, Professor Inwon Kim, Professor Mark

Green, Professor Allon Percus, Maggie Albert, Babette Dalton, Rocie Carrillo,

Igor Yanovsky, Pradeep Thiyanaratnam, and many others.

xv

Chapters 2 and 3 of the dissertation are partially based on versions of [LTC06]

and [LGH07], and on unfinished manuscripts by myself and Richard Tsai, titled

“Visibility of point clouds and exploratory path planning in unknown environ-

ments” and “Visibility of three dimensional point clouds and ENO surface recon-

struction”.

This work was supported by ONR MURI subcontract from Stanford Univer-

sity and ARO MURI subcontract from University of South Carolina.

The experimental results described in Section 3.2, were obtained during the

RIPS program at the IPAM, and funded in part by NSF grant DMS-0439872 and

NSA grant H98230-06-1-0057. I would like to thank Doctor Matthew Sottile who

was a RIPS industrial mentor from Los Alamos National Laboratory, Professor

Andrea Bertozzi for her aid in conducting the experiments in the Applied Math-

ematics Laboratory, and the students, who participated in the project: David

Galkowski, Yuan R. Huang, Abhijeet Joshi, Christine Lee, Kevin K. Leung, Gi-

tendra Malla, Jennifer Treanor, and Vlad Voroninski.

Most importantly, my deepest gratitude goes to my parents, Asya and Michael

Landa, for their continuous encouragement and support, and to my husband,

Yevgeniy Segal, for his care, patience, and assistance. Finally, I am endlessly

grateful to my American family: Wendy Japhet and Jared Seide for making it all

possible.

xvi

Vita

1981 Born, Dnepropetrovsk, Ukraine

2003 B.S. Applied Mathematics with Specialization in Computing,

B.A. Design and Media Arts, University of California, Los An-

geles

2003-2008 Research and Teaching Assistant, Department of Mathematics,

University of California, Los Angeles

Publications and Presentations

Y. Landa, D. Galkowski, Y. R. Huang, A. Joshi, C. Lee, K. K. Leung, G. Malla,

J. Treanor, V. Voroninski, A. L. Bertozzi, and Y.-H. R. Tsai, “Robotic path

planning and visibility with limited sensor data”, American Control Conference,

2007. ACC ’07, pp. 5425–5430, 2007.

Y. Landa, R. Tsai, and L.-T. Cheng, “Visibility of point clouds and mapping

of unknown environments”, Advanced Concepts for Intelligent Vision Systems,

2006. ACIVS ’06, pp. 1014–1025, 2006.

C. Ratsch, Y. Landa, and R. Vardavas, “The asymptotic scaling limit of point

island models for epitaxial growth”, Surface Science, 578:196–202, 2005.

xvii

Abstract of the Dissertation

Visibility of Point Clouds and Exploratory Path

Planning in Unknown Environments

by

Yanina Landa

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2008

Professor Stanley J. Osher, Chair

The problem of visibility involves the determination of regions in space that are

visible to a given observer when obstacles to sight are present. In this thesis

we investigate the problem of visibility of point clouds. The problem is defined

as follows: given a point cloud sampled from opaque objects in two- or three-

dimensional space, the regions in space that are visible to a given observer must

be determined and the visible portions of the occluding surfaces must be re-

constructed. In this dissertation, we present an algorithm that projects point

clouds onto a sphere centered at the observing position and performs essentially

non-oscillatory (ENO) [HEO87] interpolation of the projected data. Further-

more, it is demonstrated how our visibility formulation can be incorporated into

novel algorithms for mapping unknown environments with a single or multiple

observers. Experimental results are presented as a validation of the proposed

algorithm. Moreover, theoretical estimates of the algorithm’s convergence are

discussed. Also, postprocessing optimization techniques are considered to obtain

a more uniform exposure of the explored region along the path.

xviii

CHAPTER 1

Introduction

The problem of visibility can be formulated as follows: given a collection of hy-

persurfaces representing the boundaries of objects, called the occluders, in two- or

three-dimensional space, establish the regions of space or on the surfaces that are

visible to a given observer. When the observer is replaced by a light source in the

simplified geometrical optics setting with perfectly absorbing boundary condition

at the obstacles, the problem translates to that of finding illuminated regions. In

this regard, the visibility problem is highly related to the high frequency wave

propagation problems [LOT06] and is needed in many computational high fre-

quency wave approaches.

Below is a brief survey of the research related to visibility. Section 1.1 summa-

rizes main applications of visibility in different fields of science. It also formulates

general problems that will be addressed in the thesis. In Section 1.2, different

representations of visibility are considered with the emphasis on combinatorial

and variational approaches. A robotic path planning with visibility considera-

tions is described in Section 1.3. The chapter terminates with an overview of the

main contributions and organization of this dissertation.

1

1.1 Visibility Overview

The visibility problem arises as an essential part of various applications a num-

ber of scientific fields, e.g. computer graphics and visualization [FDF90, Rog97,

Dur99], robotic motion planning [Can88, Lat91, Lau98, LaV06], tool paths gen-

eration [DM97], computational geometry [GO04], etching [SA97], modeling of

melting ice [Bet01], and inverse problems [TCO04], to name a few. In the field of

computer graphics and visualization, for example, visibility information can be

used to improve the efficiency of a complicated rendering process by skipping over

an occlusion. In robotics mission planning, achieving certain visibility objectives

may be a part of the mission. One such example is a video camera surveillance

design. In modeling problems, such as etching and ice melting, visibility is used

as a physical condition to advance the surface given a radiating source. There

are also variational problems that minimize the corresponding energy functionals

over the visible regions of the ambient space, see e.g. [CT05]. Visibility problems

have also been studied by geometers. For example, Wente asked if connectedness

of the surface shadow is sufficient to imply convexity of the occluding surface

[Gho02].

In general, one may consider the following categories of visibility problems:

Category 1: Given occluders, construct shadow volume and its boundary.

Category 2: Given a projection of visible regions, construct the occluders.

Category 3: Find vantage location(s) that maximize visibility using certain pre-

defined metric.

In many visualization applications, the problems in category 1 are solved by pro-

jecting triangles. The question studied in [Gho02] can be viewed as in category 2.

2

Problems related to surveillance fit in category 3. This thesis addresses problems

that fall under all these categories. Below we summarize the main problems under

consideration.

Problem 1.1. A vantage point and a set of points (a point cloud) that are evenly

distributed over solids are given. The surfaces of the solids are piecewise smooth.

Construct a high order accurate representation of the portions of the solid surfaces

that are visible from the vantage point. Also, generate the corresponding occlusion

volume.

Problem 1.2. A bounded domain with unknown solid obstacles and a vantage

point are given. Assume an evenly distributed set of points can be sampled from

the portions of the unknown solids that are visible to a given vantage location.

Construct a piecewise linear path so that (a) any point on the solid surfaces is

seen by at least one vertex of the path; and (b) an accurate representation of the

solids is constructed from the point clouds that are collected at the vertices of the

path.

In practice, the point cloud can be obtained from sensors such as LIDAR or

even from triangulated surfaces (here the point cloud would be the set of vertices).

1.2 Representations of Visibility

Today, computational geometry and combinatorics are the primary tools to solve

the visibility-based problems [Urr00], [GO04]. These techniques are mainly con-

cerned with defining visibility on polygons and more general planar environments

with special structure. An alternative approach to represent visibility is consid-

ered in [TCO04]. The authors construct an implicit framework, where obstacles

to sight are represented by a level set function [OS88]. Then, the visibility prob-

3

lem is formally stated as a boundary value problem (BVP) of a first order partial

differential equation.

The above techniques vary greatly in their treatment of the visibility prob-

lem, each offering a number of advantages in particular settings. For example,

the combinatorial approach leads to fast and elegant solutions in simplified planar

polygonal environments. However, this approach becomes increasingly complex

in more realistic settings, especially in three dimensions. On the other hand,

the implicit level set framework allows great flexibility in the structure of the

environment. Still, the variational approach may be too computationally expen-

sive for some applications. The visibility representation introduced in this thesis

is tied to both techniques, utilizing their advantages while working around the

aforementioned shortcomings. Therefore, below we present a brief survey of the

main results in both areas.

1.2.1 Computational Geometry and Combinatorial Approach

A class of visibility problems in computational geometry was originated by Klee

in 1973. He asked: How many guards are necessary, and how many are sufficient

to patrol the paintings and works of art in an art gallery with n walls? Equiva-

lently, one can imagine light bulbs instead of guards and require full direct-light

illumination. The most general results obtained to date are summarized in the

book by O’Rourke [OR87] as well as surveys [She92, Urr00].

Numerous variations of the art gallery problems have been studied in the

last two decades, including mobile guards, guards with limited visibility and/or

mobility [TML07], illumination of families of convex sets on the plane [Gho02],

guarding of rectilinear polygons [LSS02], and others. The classical art gallery

theorems revolve around polygons [Chv75, CN91]. Another cluster of problems

4

requiring guarding (or illumination) of the boundaries of planar regions with spe-

cial geometries, such as convex sets, circles, triangles, congruent squares, and

line segments have all been investigated [Urr00, GO04]. The art gallery prob-

lem is related to many questions raised in vision and robotics as presented in

Section 1.3, and, recently, in computer graphics, where the acquisition of models

from photographs requires the choice of good viewpoints.

Whereas the art gallery theorems seek to encapsulate environment’s visibility

into a single function of n (where n is the number of walls in a gallery), visibility

graphs allow to consider a more detailed structure of visibility. Visibility graph

is defined as a graph with nodes for each object and arcs between objects that

can see each other. Given any abstract graph, one may ask: is it the visibility

graph of any scene?

In [PV96], the visibility complex of a finite collection of pairwise disjoint con-

vex sets in plane is considered. The search-domain is decomposed into cells,

such that all the points inside a cell see the same set of objects in the environ-

ment. This two-dimensional complex may be thought of as a generalization of

the tangent visibility graph of the region with obstacles.

More generally, a space may be decomposed into equivalence classes of similar

visibility of an object. All the elements inside a class have a similar qualitative

view, or an aspect, of the object. In this context, an aspect is the set of views of

the object that share the same combinatorial structure. This leads to the study

of aspect graphs [BD90].

In [GMR97], a planar polygonal environment is decomposed into cells with

equivalent visibility properties. The combinatorial structure of the region is de-

fined in terms of spurious and non-spurious edges. A spurious edge is an edge

that does not exist in the environment’s boundary, but is formed by the occluding

5

surface. The sequence of spurious and non-spurious edges defines the visibility

skeleton. The environment is then decomposed into cells which share the same

visibility skeleton. Such a decomposition is called the visibility cell decomposition.

In the aforementioned decompositions, there is no significant change in infor-

mation if the observer moves inside a cell. However, once the observer crosses the

cell boundary, there are drastic changes in the visibility structure. Such sudden

changes are referred to as visual events [Dur99].

The classical approaches often lack reliability when applied in practice due

to problems such as mapping uncertainty, registration, segmentation, localiza-

tion errors, and unpredictable control errors. Furthermore, previous algorithmic

efforts have often assumed the availability of perfect geometric models. An al-

ternative approach that minimizes information requirements has been developed

by LaValle et al. [RL01, TGL05, LaV06]. In order to avoid traditional problems

such as complete map building and exact localization, the authors introduce a

minimal visibility representation based on detecting discontinuities in depth in-

formation (called gaps) and their topological changes in time, (referred to as

gap critical events). Note that this formulation does not require any geometric

measurements.

In LaValle’s approach, the observer is modeled as a moving point in a con-

nected open set R in the plane. Let O = {o1, o2, ..., on} be the possibly empty

set of pairwise disjoint obstacles, in which oi ⊂ R for i = 1, 2, . . . , n is a closed

set. Let ∂oi be the boundary of oi ∈ O. Then F = R\ ∪n
i=0 oi is the free space.

The observer is free to move in F . The boundary ∂F of F consists of piecewise

smooth closed curves.

Assume the observer is equipped with a sensor that is capable of producing

representation as shown in Figure 1.1. A sample region R with obstacles O is

6

displayed in Figure 1.1 (a). The observer’s position is marked by a black point

in the center of the region. The shaded regions are invisible to the observer

from its current position. In a sense, Figure 1.1 (b) indicates how the world

appears to the observer at all times. All the gaps are marked on a disk centered

at the observer’s position, relative to observer’s heading. Note that each gap

corresponds to a connected portion of R that is not visible to the observer. The

precise distances or angular directions of the discontinuities are unknown.

The simplified representation of the environment is the major limitation of

the combinatorial approach. All the results are based on an underlying as-

sumption of straight lines of sight. Furthermore, the extension of these algo-

rithms to three dimensional problems may be extremely complicated. Exam-

ples of visibility construction algorithms in three dimensions can be found in

[AS96, CT97, Dur99, DDP02]. Such algorithms often combine special data struc-

tures and related algorithms for the efficient decomposition and the information

retrieval of the configuration space.

1.2.2 Level Set Visibility

While explicit surfaces, e.g. triangulated surfaces, are used in the majority of

computer graphics and vision applications, implicit surface representation be-

comes increasingly popular. This is partly due to the fact that in many applica-

tions the data, i.e. surfaces, are obtained and stored in an implicit form. Thus,

it is natural to work directly with the implicit data rather then convert to an

explicit representation. Another reason is the increasing popularity of the level

set methods, first introduced by S. Osher and J. Sethian in [OS88].

In the level set method an interface is represented as the zero level set of

a continuous real valued function, called the level set function. Denote this

7

a

b
c

d

e

f

g
h

i

j

(a)

a

b

c
de

f

g
h

i j

(b)

Figure 1.1: The observer’s view of environment according to [TGL05]. The posi-

tion of observer is marked by a black disk. (a) The environment and respective

labeling of the detected gaps. The free space F is white. (b) Relative angular

position of gaps in the visibility space.

function by φ. Then the interface Γ is embedded as the zero level set of φ:

Γ = {x ∈ Rn|φ(x) = 0}. Such a representation retains geometric information of

the interface. Furthermore, the level set function can be used to capture a given

dynamics of the interface using a time dependent partial differential equation.

Note that the level set function is not unique. For example, αφ, where α �=
0 is also a level set function corresponding to the same interface. The most

important form of the level set function is the one that results in small errors when

numerically solving the time dependent PDE for the dynamics of the interface or

when extracting the interface location [CT07].

The idea behind most visibility algorithms with implicit surfaces is to send

rays out of the vantage point to the point of interest (or the reverse) and test for

8

intersections of the ray with the obstacle’s surface, based on information arising

from implicit formulation. Alternatively, in order to determine visibility of a given

point one may compare geodesic and Euclidean distances between the observer

and this point [Set99]. Here, the geodesic distance is the distance between two

points in space in the presence of obstacles.

The algorithm proposed by Y.-H. Tsai et al. in [TCO04] is based on the

causality relation of visibility : if a point is occluded, then all other points farther

away from the vantage point along the same ray are also occluded. The key

distinction of this formulation from all the previous approaches is that the rays

are sent out from the vantage point in an implicit manner so as to propagate the

causality relation of visibility.

The algorithm from [TCO04] works with an implicit representation of obstacle

surfaces and generates an implicit description of the visibility information with

a PDE-based method. Using the notation from [TCO04], let D be the occluding

objects in a bounded domain Ω. Let x0 be the location of the observer. Denote

by ψ the level set function representing obstacles, such that ψ is negative in

the interior of the objects. The level set visibility function φ is generated in an

implicit manner, proceeding along the rays emanating from x0. Analytically,

φ(x) = min
z∈L(x,x0)

ψ(z), (1.1)

where L(x, x0) is the integral curve of the vector field r(x) of not necessarily

straight rays connecting x and x0. Thus φ(x) is negative when x is occluded.

The visibility problem can then be formulated as a boundary value problem of a

first order partial differential equation [TCO04].

The advantage of this formulation is in the substantial amount of informa-

tion that can be extracted. Simple operations allow to obtain accurate location

9

of shadow boundaries, their normal vectors, curvatures, and surface areas. One

may also easily compute the distance from any point in space to a shadow bound-

ary. The visible and invisible regions can be accurately classified using the level

set representation. Moreover, the formulation retains nearly all the benefits of a

level set method, including painless Boolean operations on sets, incorporation of

the geometric information, and handling of various surface topologies afforded.

The dynamics of the visibility with respect to a moving vantage point or dynamic

surfaces can be derived and tracked implicitly within the same framework. Impor-

tantly, this formulation allows simple solutions to a class of visibility optimization

problems [CT05].

The disadvantage of the method is in its inefficiency in typical computer

graphics applications. For example, in rendering only the visibility of the two-

dimensional object surfaces is of interest, as opposed to the entire three-dimensional

space used in the level set computations. In many cases, the existing hardware

allows for fast polygon rendering, but not implicit surface operations. Moreover,

the representation of open surfaces is problematic using the level set approach.

In addition, the level set visibility may not be used in some applications, e.g.

navigation in unknown environments, where no map of the region is available a

priori. In such cases, an online sensing is used to determine visibility [TML07].

1.3 Robotic Path Planning with Visibility Considerations

The motion planning is a fundamental problem in robotics. It has been an active

area of research since 1980’s. A comprehensive presentation of motion planning

techniques can be found in the book by Latombe [Lat91]. In [HKL99, HKL04], the

authors provide a broad review of problems specific to the research in robotics.

In the most general form, motion planning consists of finding a robot’s path

10

from a start position to a goal position, while avoiding obstacles and satisfying

some constraints [Lat91]. One may also consider multiple observers and moving

obstacles [WS03].

This thesis is primarily concerned with visibility-based navigation. Those

robotics tasks, for which sensor information can be modeled as a visibility region

are of particular interest. The visibility region is the set of points that can

be joined with a line segment to the observer’s position, without intersecting

the obstacles’ boundaries. As the observer moves in space, its visibility region

changes, thus modifying information available to the observer about the space or

progress towards the goal.

Similarly to the previous section, the navigation algorithms discussed below

are split into two groups according to the underlying visibility formulations: the

graph-based and the level set-based. After a brief general survey of typical goals

of robotic path planning and the corresponding strategies, we concentrate on the

“gap-chasing” algorithm by S. LaValle, B. Tovar et al. [TML07]. Their navigation

strategy has inspired the navigation algorithm introduced in this dissertation, and

thus requires a detailed account.

As with most combinatorial techniques, the algorithm from [TML07] becomes

more complex in general types of environments. For example, several modifica-

tions to the original algorithm are required in multiply-connected domains. More-

over, in mapping applications, the graph-based representation of the environment

does not provide any physical description of the explored region, which may be

very important in applications. Due to lack of the geometric representation, op-

timality of the navigational path may be difficult to achieve in some cases, e.g.

in multiply-connected regions.

In contrast, the implicit visibility formulation [TCO04] provides simple tools

11

to construct optimal paths for the observers in general types of environments.

Unfortunately, the level set method is inapplicable to the problem of mapping

of an unknown environment, where the level set map of the region may not be

constructed in advance.

The mapping algorithm proposed in Chapter 3 combines the implicit geomet-

ric representation of the explored environment with the underlying idea of the

“gap-chasing” algorithm. Moreover, the optimization techniques from [CT05] are

used to postprocess the resulting path.

1.3.1 Tasks and Strategies for Robotic Navigation

Visibility tasks include but are not limited to robot localization, target-finding,

pursuit-evasion, and environment exploration. In this review we are going to

concentrate on robot localization and exploratory map-building strategies. Both

problems require an autonomous observer to navigate in a bounded region to

accomplish a certain task.

The task of localization refers to the technique through which a robot can

determine or update its location in a known environment through analysis of

sensor data [Wan90]. That is, we are dealing with a robot at an unknown location

in an environment for which it does have a map. The problem of localization arises

in settings that range from the digital analysis of aerial photographs [YD92] to the

design of autonomous Mars rovers [SN89, MAW90]. Another application comes

from robots that follow a planned path through a scene: as the robot navigates

along the planned path, its guiding control system gradually accumulates errors

due to mechanical drift. Thus it is desirable to use localization from time to time

to verify the actual position of the robot in the map, and apply corrections as

necessary to return it to the planned path [Wan90].

12

A diverse collection of works have studied the localization problem on theo-

retical and practical levels. An overview of the existing approaches can be found

in [Wan90, BEF96, CT00]. In [Kle94], the author utilizes an on-line algorithm

to address the following question: given a map of a polygonal environment, how

should a robot equipped with a vision system move around in the environment so

as to determine its location while traveling as little as possible? The subject of

[GMR97] is localization in two-dimensional polygonal environments using a range

finder and a compass. The algorithm is based on the visibility cell decomposition

of the environment. In [OL07], a robot, whose configuration is composed of its

position and orientation, moves in a fully-known, simply connected polygonal

environment. A sequence of visual events (compass) helps uniquely identify the

robot’s position up to a rigid body transformation of the environment.

In contrast to localization problems, where the environment is known a priori,

the exploratory motion planning deals with navigation problems in which the

environment is not known before the observer starts motion. It is assumed that

the observer is equipped with a sensory device such as a range sensor or a camera.

As the observer is placed in an unknown environment, it is asked to construct a

map, which can be used for subsequent navigation. The decision as to where to

go next? is formed only by the data contained in the partially complete map.

The probabilistic road-mapping methods provide a heuristic approach to gen-

erate a road map through the space, then search to find the lowest cost path

[KSL96]. In particular, Yamauchi [Yam97] introduced the frontier based ap-

proach, where the robot equipped with a laser-limited sonar is repeatedly di-

rected towards the nearest frontier between the open explored space and the

unexplored space. In contrast, possible control sequences of [TBF05] are evalu-

ated by combining the entropy in the pose posterior with expected entropy of the

13

map averaged over all paths, and selecting the control that minimizes the result-

ing entropy (or uncertainty). The heuristic nature of the path generation leads

to difficulty in characterizing the algorithms in terms of performance, robustness,

complexity, and reliability [KKL98].

Feature-based methods use landmarks extracted from the environment to

guide the exploration. In [NBL03], each feature within the map is responsible

for determining nearby unexplored areas that, if visited, are likely to constitute

exploration. The location of the features is uncertain and represented by a set of

probability distribution functions. A utility function is used in [MWB02] to trade

off between information gain, the cost of moving to the next sensing location, and

the utility of localization based on the covariance matrix in selecting the next po-

sition. The weakness of the feature-based methods lies in their reliance on the

use of uniquely identifiable landmarks in the environment during the exploration.

Such landmarks may not always be available.

A recurring theme in robotics research has been the notion of minimal sensing,

that is, completing a given task with minimum information necessary [Don95].

Moreover, an abstract sensor may be designed that suits a particular task. For

example, in [RL01], a gap tracking sensor is introduced to track discontinuities

in depth information, as described in previous section. In [Rim97], the minimal

sensing philosophy is applied towards the classical path-planning problem. A

critical-point detector and a passage-point detector are the abstract sensors which

provide a complete characterization of what the robot should look for in its

configuration space to achieve a globally convergent navigation. Minimal sensing

techniques are used in [CN01] to localize robot on a partially constructed map.

The generalized Voronoi graph is used to encode the topological map of the

environment. Then, a graph-matching process leads to localization of the robot.

14

Although providing a compact representation, the lack of metric information

makes localization extremely difficult. Hence, some topological approaches are

hybrids that also incorporate geometric maps [VR04].

1.3.2 Gap Navigation Tree

Another topological strategy for navigating unknown environments has been in-

troduced by S. LaValle, B. Tovar et al. [TGL05, LaV06, TML07]. It relies on

the construction of a Gap Navigation Tree (GNT), which is described below in

detail, as it motivated the exploration algorithm introduced in this thesis.

The algorithm of [TML07] constructs a topological representation of the en-

vironment in the form of a tree with the aid of an abstract gap sensor described

in Subsection 1.2.1. The key idea behind GNT is to avoid traditional problems,

such as complete map building and exact localization, by constructing a minimal

representation, based entirely on critical events in online sensor measurements

made by the robot. In [TML07], the authors propose the use of GNT for optimal

robot navigation in simply-connected environments, locally optimal navigation

in multiply-connected environments, pursuit-evasion, and robot localization.

A typical environment representation obtained through a gap sensor is de-

picted in Figure 1.1. Each gap hides a connected region of the environment that

is occluded to the robot from its current position. It is assumed that the robot

may track gaps at all times and record any topological changes. The robot is

equipped with a single motion primitive. It enables the robot to rotate itself

towards the location of a gap and approach the gap at a constant speed. This is

referred to as chasing the gap. The chase gap operation can only terminate when

the gap disappears from the gap sensor.

Construction of the GNT begins with the addition of nodes as children to the

15

root of a tree. Each node corresponds to a gap detected by the gap sensor at

the starting position of the robot. As the robot moves through the environment,

changes to the tree are triggered by the gap critical events. These events occur

when the robot crosses either an inflection ray or a bitangent ray of the environ-

ment boundary. As illustrated in Figure 1.2, gaps appear and disappear when

the robot crosses the line of inflection, while crossing a bitangent line will trigger

a split or merge of two gaps, depending on the direction of crossing. Each event

requires updating of the GNT:

Event of gap appearance: A node is added as a child of the root node.

Event of gap disappearance: The node is removed from the tree.

Event of gaps merging: When two gaps g1 and g2 merge into a single gap g,

g is added to the tree as a child of the root node. The existing nodes g1

and g2 become children of g.

Event of gaps splitting: If a gap splits, the corresponding child of the root

will be replaced with two children.

According to [TML07], these four operations are sufficient to represent all feasible

changes to the environment.

Furthermore, nodes in a GNT fall into two categories. A non-primitive node

corresponds to an unexplored occluded region. It arises as a result of gap ap-

pearance or from the splitting of one of the nodes or its non-primitive children.

Non-primitive nodes are used to motivate exploration. Primitive nodes are added

to the tree as a result of a previously visible area becoming occluded. Hence,

chasing a primitive gap will only result in its disappearance and the retracing of

previously covered territory.

16

gap

inflection ray

(a)

gap

bitangent

gaps

(b)

Figure 1.2: Gap critical events. (a) Appearance and disappearance of gaps when

crossing the inflection ray. (b) Splitting and merging when crossing the bitangent

complement rays.

The robot is said to be exploring, if it is building the GNT of an environment.

When the robot is placed in an unknown environment, all the nodes, or leaves, of

the GNT are marked as non-primitive, since the robot has not seen what is behind

each corresponding gap. The robot proceeds in the environment by approaching

any one of the gaps. The navigation triggers one of the gap critical events. The

construction of the tree terminates when all of the leaves are marked as primitive.

This condition indicates that the robot has explored the entire environment.

Several complications come up when the robot is placed in a multiply-connected

environment [TLM03a]. A problem arises when the environment boundary has

no inflections or bitangents, e.g. there is a single convex obstacle. In this case,

if the robot chases any of the gaps, it will go around the obstacle forever, since

the gap will never disappear. In terms of the GNT, no gap-chasing movement

modifies the current information state of the robot. In order to resolve this com-

plication, one needs to introduce a marker, which the robot would pick up when

it returns to the same position again.

Another drawback of the algorithm is its inability to discriminate one ob-

17

stacle from another with only gap sensing information in a multiply-connected

environment. If assume that the obstacles are uniquely identifiable, e.g. have dif-

ferent colors, a second sensor can indicate which gap has already been explored.

In this case, a simple strategy to construct a GNT is to follow the wall of each

obstacle [TLM03a]. The exploration is complete when the robot has surrounded

every obstacle in the environment. We remark that this strategy requires a wall

following algorithm [LS87] in addition to gap-chasing, which further complicates

its practical implementation.

Optimality of the motion planning is important in practical applications. Be-

low, we provide a few remarks on the optimality of the GNT-based algorithm. It

is demonstrated in [TML07] that the path encoded in a GNT between the root

of the GNT and any point in the interior of a simply-connected region is opti-

mal. Thus, the GNT is equivalent to the shortest-path tree in simply-connected

environments. This observation is applied towards target-finding problem in

[TLM03b]. Using the GNT, the location of the target could be associated with

the neighboring gap. Therefore, the observer is able to find the shortest path to

the target in a known simply-connected environment. This technique also has

applications in maze-searching problems.

Unfortunately, global optimality is not guaranteed in multiply-connected re-

gions, since no distance information is encoded in the GNT. In case multiple

paths to same location exist, the algorithm chooses the one with fewest gaps.

That is, the robot would proceed along the least cluttered but not necessarily the

shortest path.

The main limitation of the GNT-based algorithms is that no geometric rep-

resentation of the explored region is produced as a result of exploration. Also,

as with most combinatorial techniques, the extension of the algorithm to three

18

dimensional environments may be extremely complicated.

1.3.3 Level Set-based Motion Planning

A wide range of problems is related to optimal motion planning, which has a

great importance in practical applications. Different notions of optimality re-

sult in different algorithmic considerations. The central and most basic question

concerning optimal visibility posed in [CT05] is: What are the optimal positions

{xi} for a collection of observers, so that jointly the volume of the visible region

in Ω is maximized? This question is chosen as the central one due to numer-

ous extensions to a continuous path, weighted regions of importance in space,

human visual detail, illumination of the region along a path, shortest path, and

accumulation of visibility over time, to name a few. Applications of the above

problems include geometric optics [OCK02], scattering [BR94], path planning

[CM04, CM06, AS07], surface reconstruction [KS01, JYT03], photolithography

[SA97], and differential games [GLL99].

The above question may be addressed under the framework of [TCO04] de-

scribed in Subsection 1.2.2. One strategy involves producing a visible volume

function whose local maxima are the preferred locations for the observers to

maximize visibility. Visibility level set functions and gradient flows are applied

to obtain the local maxima of this function. The numerical algorithms for a

variety of optimization visibility problems considered in [CT05], rely on the con-

tinuity of the visibility representation provided by the level set function. For

example, the strategy for a more uniform view of space along a path involves the

construction of an energy whose minimum achieves the desired effect.

The authors of [CM04] propose a variational approach for finding a search path

through a two-dimensional domain, where some information about the location of

19

the targets and obstacles is available. The level set framework of [TCO04] is used

to define an energy integral along the path. Then, the gradient flow is applied to

evolve the entire path until a locally optimal steady state is reached. Moreover,

the paths are allowed to have positive varying widths, which, in particular, makes

the algorithm suitable for computing tool paths trajectories. Other applications

include obstacle avoidance, multiple-intersecting paths, paths through multiple

prescribed points, and self-intersecting paths. The technique may also be applied

towards segmentation of thin objects. In [CM06], the algorithm is extended to

three-dimensional problems.

In [KS01], path planning for robots is studied using level sets in a two-

dimensional domain with obstacles. Instead of a point robot, a two-dimensional

rectangle with given width and length is used to model the observer. The method

of solution is to construct a weighted distance function over the entire domain.

Then, from a final position, back-propagate the solution orthogonally to the level

sets of the distance function, resulting in an optimally shortest path.

While direct optimization techniques provide high performance and robust-

ness, they tend to be computationally intensive. Combining the optimization

techniques with more pragmatic heuristic approaches can lead to some guarantees

on performance and robustness while reducing the complexity and computation

time. For example, in [AS07] the authors consider the problem of finding optimal

paths to navigate a terrain with various speeds and obstacles, while reaching a

given number of fixed stations. The solution technique combines the fast march-

ing algorithm [Tsi94, Tsi95] with the classical algorithms for the discrete traveling

salesman problem to obtain an O(MN logN) optimal solution, where M is the

number of stations and N is the computational grid size. Remark that the task

of path optimization while navigating an unknown environment is much more

20

difficult then when the environment is known. The level set based algorithms

may not be applied any more, since the map of the region is not provided.

1.4 Contributions and Dissertation Organization

In current chapter we have provided a brief survey of the visibility problem, the

representation of visibility, and the visibility-based motion planning. In par-

ticular, we have concentrated on two classes of algorithms: the computational

geometry and combinatorial-based algorithms and the implicit level set-based al-

gorithms. A special attention has been paid to the visibility formulation and

subsequent navigation algorithm of S. LaValle, B. Tovar et al. [TML07] and

the level set methodology of R. Tsai, L.-T. Cheng et al. [TCO04]. The above

strategies motivate the visibility representation and the environment-mapping al-

gorithm introduced in this thesis. Further dissertation organization is outlined

below.

Chapter 2 presents a proposed algorithm for interpolating the visible portions

of a point cloud that are sampled from opaque objects in space. A piecewise

high-order reconstruction of the visible obstacle boundary is obtained via Essen-

tially Non-oscillatory (ENO) interpolation. Furthermore, the extension of the

algorithm to curved light rays is considered in Subsection 2.2.4. Error analysis of

the resulting visibility reconstruction is performed in Subsection 2.2.6, whereas in

Subsection 2.2.7 the dynamics of the visibility function with respect to observer’s

motion is derived. While the algorithm is straightforward in a two-dimensional

setting, its extension to three dimensions is much more complicated as demon-

strated in Section 2.3.

In Chapter 3, we consider application of visibility to problem of exploration

21

of unknown bounded regions, which may contain obstacles. An algorithm for a

single and multiple observers is introduced. The robustness of the algorithm is

discussed in Section 3.2. We also present the experiment of mapping an unknown

environment using multiple mobile inexpensive sensors where noise is an issue.

In Subsection 3.1.2, we present the statistical control experiments demonstrating

the superiority of our proposed strategy for environment exploration, comparing

to the random walk strategy. In Section 3.3 postprocessing of the exploration

path via optimization with respect to a more uniform illumination of the region

of interest is considered. Finally, theoretical complexity estimates of our single-

observer exploration algorithm in two- and three-dimensional environments with

special structure are provided in Section 3.4.

Chapter 4, summarizes the main contributions of the dissertation and states

the problems for future investigation.

22

CHAPTER 2

Visibility of Point Clouds and Surface

Reconstruction

During the past decade a point-based representation (a point cloud) has gained

increasing popularity [RL00, ZOF01, ZPK02, ABC03, PKK03, KB04]. A point

cloud is a set of points in two or three dimensions, which are “uniformly” sampled

from a continuous surface of an object. In practice, this data could be obtained

from sensors such as LIDAR [LPC00] or even from triangulated surfaces (here

the point cloud is formed by the set of vertices). Apart from coordinates, point

clouds may possibly be associated with additional information, such as colors

and normals. This representation is extremely simple and flexible. Moreover, it

offers additional advantage of avoiding connectivity information and topological

consistency.

This chapter investigates visibility of point clouds. One possible technique

to determine visibility is to reconstruct the surface [ZOM00, ABC03, CBM03].

Once a surface is reconstructed, it is certainly possible to determine which of the

points are visible. This implies that a point cloud inherently contains the visibil-

ity information of the points. The challenge is to avoid the full reconstruction,

which is a difficult problem, both theoretically and implementation-wise. It often

requires additional information, such as normals and sufficiently dense input.

In current chapter we discuss the algorithms for extraction of visibility directly

23

from the point cloud. The visibility information could then be used to reconstruct

and visualize visible surfaces. Consider, for example, the algorithm described

in [KTB07]. The proposed hidden point removal operator (HPR) extracts the

points residing on the convex hull of the transformed point cloud. This procedure

amounts to filtering out the visible points. The algorithm works on both sparse

and dense point clouds. However, it requires the point cloud to be sampled from

a continuous surface. If the scene contains several disjoint objects, each object

has to be considered individually. This restriction may not be appropriate when

dealing with point clouds sampled in an environment with multiple objects.

Below we propose an approximation scheme to determine the visibility of a

point cloud sampled from a given occluding surface, possibly with many dis-

connected components. Given a vantage point, our algorithm would produce

a subset of visible data points and a piecewise polynomial interpolation of the

visible portions of the surface.

The first step of our algorithm, in some sense, can be viewed as the reverse

action of ray-tracing, where discrete rays are sent out from the origin to sam-

ple given surfaces. However, instead of assuming a complete explicit or implicit

representation of the surfaces, we assume that a set of points is “uniformly” sam-

pled from the surfaces of occluding objects. Unlike the level set representation

[TCO04], our algorithm can handle open surfaces and does not require a priori

knowledge of occluding surfaces to construct visibility. Our scheme can be re-

garded as a surface reconstruction scheme for the portions of surfaces that are

visible to the given vantage point.

The algorithm consists of the following steps:

Step 1: Begin with the point cloud P sampled from the occluding surfaces.

24

Step 2: Project P onto a unit sphere centered at the vantage point x0.

Step 3: Filter out portions of P visible to the observer at x0.
1

Step 4: Interpolate visible data to obtain a piecewise smooth reconstruction.

The details of the suggested approach are presented in the following sections.

2.1 Projection and Filtering of Data Points

Our approach is based on the observation that visibility along each ray emanating

from the vantage point satisfies a causality condition: if a point is occluded, then

all other points farther away from the vantage point along the same ray are also

occluded.

Let Sd−1 be the unit sphere in Rd, centered at the origin. We set up a

spherical coordinate system centered at the vantage point x0 by y = x0 + rν,

where ν ∈ Sd−1 and r = |y − x0|.

Define the projection operator πx0 : Rd �→ Sd−1, mapping a point onto the

unit sphere centered at x0, by πx0(x0 + rν) = ν. Let Ω be a subset of Rd. Define

ρx0 : Sd−1 �→ [0,M) by

ρx0(ν) := min
x0+rν∈Ω̄

�
∂B(x0,M)

r. (2.1)

where B(y,M) = {y′ ∈ Rd : |y−y′| < M} is the unit disc with radius M centered

at y. The filtering procedure is illustrated in Figure 2.1.

The points ỹ = ỹ(r̃, ν) = x0 + r̃ν ∈ Ω are classified as occluded for all r̃ >

ρx0(v). A point y(r, ν) = x0 + rν ∈ ∂Ω is called a horizon point if and only if

ν · n(y) = 0, where n(y) is the outer normal of ∂Ω at y.

1Note that this step is optional if P has only been sampled from x0.

25

Ω

ρ(ν) = M
2

ρ(ν) = |x-x |
1 0

x 0

S
d-1

x

y

z

ν = = = 1 |y-x | |z-x ||x-x |0 0 0

x-x0 y-x0 z-x0

Figure 2.1: Projection of the point cloud onto Sd−1 centered at x0. Filtering of

the visible data: x is visible, y and z are invisible from x0. Values of the visibility

function ρx0(ν1) = x−x0

|x−x0| , ρx0(ν2) = M , where ν1, ν2 ∈ Sd−1.

In practice, points cannot occlude one another (unless they accidentally fall

along the same ray from the viewpoint), and therefore no point is actually hidden.

Given the set of data points {yj}, we start with a partition of the unit sphere

Sd−1 = ∪N
i=0K̄i, where Ki are open regions with diameter ε. Similar to the step of

performing cell averaging in the Godunov method for conservation laws [LeV92],

we define a piecewise constant approximation of ρx0 by

ρ̃x0(y) = min
yj

|x0 − yj|, for every y, πx0y ∈ Ki, i = 0, · · · , N. (2.2)

Figure 2.2 illustrates the construction of ρ̃x0 .

Consequently, we classify y as occluded if ρ̃x0

(
πx0(y)

)
< |y − x0|. Thus we

may define the visibility indicator

Ξ(y) := ρx0

(
πx0(y)

)− |y − x0|, (2.3)

26

θ
ρ

(θ
)

x 0

~

M

Sd-1

Figure 2.2: Piecewise constant approximation of ρx0 by ρ̃x0 using formula (2.2).

Squares are the filtered out visible points serving as “originators” of constant

values of ρ̃x0.

such that {Ξ ≥ 0} is the set of visible regions and {Ξ < 0} is the set of regions

invisible from x0.

In case the surface normals are available for each data point, we can use an

ellipse instead of a ball in the above construction. A similar approach is also used

by QSplat in rendering of the digitized data of Michelangelo’s statues [RL00].

2.2 Smoother Reconstruction by ENO Interpolation

Analytically the visibility function ρx0 is piecewise continuous with jumps corre-

sponding to the locations of horizons. Smoothness of ρx0 in each of its continuous

pieces relates to the smoothness of the corresponding visible part of ∂Ω. In the

previous section we obtained a piecewise constant approximation ρ̃x0 to ρx0 using

formula (2.2). Along the way, we also extracted a subset of visible data points

P̃ ⊆ P serving as “originators” of each constant value of ρ̃x0 .

We will use ρ̃x0 to construct a piecewise polynomial approximation ρint
x0

to the

visibility function which would preserve jump discontinuities. Essentially non-

27

oscillatory (ENO) interpolation is used to compute such ρint
x0

. ENO interpolation,

first introduced by E. Harten et al., is a nonlinear polynomial interpolation that

has been widely and successfully used in shock problems of computational fluid

dynamics [HEO87, SO88, SO89].

2.2.1 Overview of ENO Polynomial Interpolation

Since its introduction in [HEO87], ENO schemes have been influential in numer-

ical solutions of nonlinear hyperbolic equations. This pioneering work was built

upon an adaptive algorithm to choose a local stencil among several possible can-

didates so that the resulting polynomial interpolant yields high order accuracy

whenever the function is smooth but avoids Gibbs phenomena at discontinuities.

In this subsection we briefly review the procedure of constructing one-dimensional

ENO polynomial interpolants. For our purposes we will always assume that we

have a point x0 where we will evaluate the interpolant P (x), and that x0 is be-

tween the two values x−1 < x0 < x1 that are on the stencil of points used to con-

struct P . Begin with the stencil {x−1, x1}. Define L = −1 and R = 1 as left and

right endpoints of the stencil. Denote by fi ≡ f(xi) the function values used in the

interpolation. Let r be a maximum polynomial degree. Then the corresponding

set of candidate stencil points has the size 2r: {x−r < x−r+1 < . . . < xr−1 < xr}.
The procedure to construct P is described in Algorithm 2.1.

An example comparing the results of ENO interpolation to a standard New-

ton divided differences algorithm is depicted in Figure 2.3. The effects of Gibbs

phenomena can be clearly seen in Newton’s interpolation near the discontinu-

ities at x = −0.3 and x = 0.3, while the adaptive stencil of ENO interpolation

preserves the smoothness of the function up until the discontinuity.

ENO interpolation can be easily extended to multiple dimensions on stan-

28

Algorithm 2.1 One-dimensional ENO polynomial interpolation

1: if R− L < r + 1 then

2: continue to step 7

3: else

4: evaluate P (x0) using the interpolation stencil {xL, . . . , xR}
5: return

6: end if

7: form divided differences a = f [xL−1, . . . , xR], b = f [xL, . . . , xR+1]

8: if |a| < |b| then

9: L← L− 1

10: else

11: R← R + 1

12: end if

13: go to step 1

dard rectangular grids. The idea is to interpolate the multidimensional data

dimension-by-dimension, repeatedly applying Algorithm 2.1.

2.2.2 The Two-dimensional Case

Below we describe the interpolation procedure on S1 for two dimensional prob-

lems. Possible extension of the strategies to the three dimensional problems will

be described in Section 2.3.

Denote the extracted visible data points by pi ∈ P̃ . Since S1 can be parame-

terized by angles θ ∈ [−π, π), we can sort the points in P̃ in the increasing order

of the angle they form with respect to our chosen spherical coordinate system;

that is, points in P̃ are sorted in the increasing order of ρ̃−1
x0

(pi) = arg(pi − x0).

29

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

f(
x)

data
Newton’s divided differences
ENO

Figure 2.3: Comparison of standard Newton’s divided differences interpolation

to ENO interpolation. The order of interpolation is 8.

The edges, or discontinuities in the visibility function ρ typically occur near

the locations of horizons. A standard in image processing choice for the edge-

detection function g : R �→ (0, 1], is g(s) = 1/ (1 + s′2) [AK02]. If the value of

g(s) is below some threshold value, we get an edge. The threshold value depends

on the sampling of s.

We implement a modified version of the edge-detection function. Using the

piecewise constant values of the visibility function ρ̃x0 , we substitute a finite

difference approximation for the derivative of ρ. The resulting edge-detection

function g : S1 �→ [0, 1) maps θ onto

g (ρ̃x0(θ)) = 1/

(
1 +

(
ρ̃x0(θi+1)− ρ̃x0(θi)

θi+1 − θi

)2
)
, θi ≤ θ < θi+1. (2.4)

Periodic boundary conditions are used in this formulation. A natural choice of

the threshold value is the polar grid size δθ.

We can then construct ρ
(1)
x0 by linearly interpolating between each successive

30

pair of pi and pi+1 if ρ̃x0(θ) �= M for θ ∈ [ρ̃−1
x0

(pi), ρ̃
−1
x0

(pi+1)
)
. Instead of linear

interpolation, we use ENO interpolation Algorithm 2.2.1 to construct ρ
(p)
x0 , a

piecewise p-th order approximation of ρx0.

We use the piecewise p-th order approximation ρ
(p)
x0 to compute derivatives on

the occluding surfaces (away from the edges) and to extract various geometric

quantities. For example, the curvature of the occluding surface away from the

discontinuities can be computed via

κ =
ρ2 + 2ρ2

θ − ρρθθ

(ρ2 + ρ2
θ)

3/2
. (2.5)

In Figure 2.4 (a) we illustrate visibility from the vantage point at (−0.2, 0.6).

A corresponding visibility function ρ(4)(θ), its derivatives, and the curvature κ

are displayed in Figure 2.4 (b). We obtain a high order approximation of the

derivatives and, subsequently, the curvature along the visible occluding bound-

aries away from the discontinuities corresponding to horizons.

2.2.3 Processing and Denoising

In real-life applications we frequently deal with noisy data. There are different

sources of noise. For example, noise may be introduced by the measuring device

as in [LGH07] and [ZOL04]. As one can see from [ZOL04], even a high accuracy

sensor produces significant error in curvature computations. Filtering is used in

[ZOL04] to clean up the sensor data. In addition to sensor error, noise in the

data can be introduced from an uneven terrain and/or presence of foliage, cars,

and people in the scene, as in [WHS05].

We propose the use of a simple edge-preserving total variation based noise

removal algorithm [ROF92], which can be applied to the interpolated data to

reduce the effect of noise in the scene. In Figure 2.5 (a), we plot visibility based on

31

(a)

−2 0 2
0

5

10

θ∈S1

ρ(4
)

−2 0 2
−4
−2

0
2
4

θ∈S1

dρ
(4

) /d
θ

−2 0 2
0

5

10

θ∈S1

d2 ρ(4
) /d

θ2

−2 0 2
−15
−10

−5
0
5

θ∈S1

κ

(b)

Figure 2.4: (a) Visibility map generated from artificial data: dark regions - invis-

ible, light regions – visible. Also marked are the vantage point (−0.2, 0.6), actual

obstacles’ boundaries, visible obstacles’ boundaries, and horizon points. (b) Forth

order interpolation of the visibility function ρ corresponding to (a), computation

of dρ
dθ
, d2ρ

dθ2 , and the curvature κ via formula (2.5) away from the discontinuities

(dashed vertical lines).

the denoised visibility function ρ depicted with black diamonds in Figure 2.5 (b).

Here, an artificial noise of variance σ = 0.05 is added to the projected point

cloud. The obtained data is then filtered and interpolated. Afterwards we apply

the denoising algorithm from [ROF92].

32

(a)

−2 0 2
0

0.5

1

1.5

2

θ∈S1

ρ

without noise
noisy
denoised

(b)

Figure 2.5: (a) Visibility map generated from noisy data: dark regions – invisi-

ble with respect to the denoised visibility function, light regions – visible. Also

marked are the vantage point (−0.2, 0.6), actual obstacles’ boundaries (light out-

line), noisy visible boundaries (diamonds), denoised visible boundaries (dark cir-

cles), and horizon points (dark squares). (b) Visibility function ρ corresponding

to (a), edges/horizon points are marked by circles.

2.2.4 Curved Lines of Sight

To demonstrate the flexibility of our formulation, consider the case when the

integral curves of ν(x) are more complicated than straight lines. In this case,

we may no longer use the relation ν(x) = (x − x0)/|x − x0| in the definition

of the visibility 2.1. As in [TCO04, LTC06], we consider instead the flow lines

connecting x0 to x. The construction of the visibility function is done as follows.

We begin by constructing the distance function ϕ to the vantage point x0 on the

entire domain D by solving the eikonal equation

|∇ϕ(x)| = r(x), in D, ϕ(x0) = 0, (2.6)

33

where r(x) > 0 is the variable index of refraction. We employ the fast sweeping

technique from [TCO03] to solve (2.6).

To determine the polar coordinates (θ, ρ(θ)) corresponding to the point p on

the occluding surface we need to trace p back to the vantage point x0 along the

line of sight connecting them:

ẋ = −∇ϕ(x),

x|t=0 = p.
(2.7)

Then θ is the angle made by ∇ϕ at x0, and the distance from x0 to p is sim-

ply ϕ(p). The visibility function ρ can then be constructed using the causality

condition with respect to ϕ.

An example of visibility computation under refraction is depicted in Fig-

ure 2.6. The index of refraction r is set to be 1 for x ∈ [−1, 0) and 2 for x ∈ [0, 1].

The contour lines of ϕ are represented in Figure 2.6 (a). The observer is positioned

at (−0.2,−0.4). The resulting visibility function ρ is shown in Figure 2.6 (b).

Such computations may be useful when determining visibility in regions with

variable refraction such as water or fog, or in an anisotropic medium.

2.2.5 Conversion to Cartesian Level Set Formulation

The piecewise polynomial reconstruction of the visibility function ρ may be used

to obtain a smooth level set visibility function φ defined on a Cartesian coordinate

system. The following construction yields a level set visibility function that is

smooth across the discontinuities. Begin by defining a set

G := {(θ, r) : r < ρ(θ)} (2.8)

containing the visible points on polar coordinates. We proceed to construct a

smooth signed distance function φ to the shadow boundary ∂G using redistancing

34

x

y

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(a)

−2 0 2
0

1

2

θ∈S1

ρ

(b)

Figure 2.6: Visibility under a bending ray field. The refraction index is 1 in

the left half-plane and 2 in the right half-plane. (a) Contours of the ray field,

observer’s position (−0.2,−0.4), obstacles’ boundaries, visible boundaries, and

horizon locations. Dark regions are invisible, light are invisible from the vantage

point. (b) Corresponding visibility function ρ. Discontinuities are marked by

circles.

[CT07]:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φ(θ, r) > 0, if (θ, r) ∈ G,
φ(θ, r) < 0, if (θ, r) ∈ GC ,

φ(θ, r) = 0, if (θ, r) ∈ ∂G.

(2.9)

The resulting signed distance function may then be easily converted from

polar to Cartesian coordinates φ(x, y) = φ(x(θ, r), y(θ, r)) via

x(θ, r) = r cos(θ) + x01 ,

y(θ, r) = r sin(θ) + x02 . (2.10)

35

On the grid level, this is done by interpolation. Thus obtained level set visibility

representation is consistent with the one obtained in [TCO04]. In Figure 2.7 we

present the smooth level set visibility function corresponding to the vantage point

marked by the red star.

Level set formulation on a fixed Cartesian coordinate system allows for easy

boolean operations on visibility of different vantage locations. For example, let

x0, x1, . . . , xm denote the locations of m + 1 separate observers. For each i =

0, 1, . . . , m we can construct the visibility level set function φ(·, xi) associated

with xi. Visibility information of all the observers can be determined from the

visibility information of individual ones, using the definition that a point is visible

with respect to multiple observers if it is visible by at least one observer.

In the level set framework, there is an analogy to unions and intersections.

For two level set functions φ1 and φ2, the union of their negative regions is

implicitly captured as the negative region of min{φ1, φ2}. Correspondingly, the

positive region of this function is the intersection of positive regions of φ1 and

φ2. Similarly, the intersection of the negative regions of φ1 and φ2 is the negative

region of max{φ1, φ2}, and its positive region is the union of positive regions of

φ1 and φ2.

From this, we can construct a visibility level set function for multiple ob-

servers, φ(·; x0, x1, . . . , xm), by taking the maximum value of the visibility level

set function for individual observers:

φ(y; x0, x1, . . . , xm) = max
i=0,1,...,m

φ(y; xi). (2.11)

Joint visibility from three vantage points is depicted in Figure 2.8.

36

x

y

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(a) (b)

Figure 2.7: (a) Environment with obstacles, observer at (0.6,−0.4), and shadow

boundary. (b) Visibility level set function φ corresponding to setup (a).

2.2.6 Error Analysis

In this section we discuss the accuracy of the visibility function resulting from

the projection method that uses ENO interpolation. For simplicity, we consider

sample environments containing a finite number of disjoint strictly convex objects.

The observer is positioned outside the obstacles. We demonstrate how the error

relates to the distance from the observer, the view direction, and the size of the

fan δθ. In particular, we demonstrate how the quality of interpolant deteriorates

as the view direction becomes orthogonal to the outer surface normal near the

horizon locations.

Without loss of generality, we may assume that there is no partially occluded

object. The analysis for the case of partially occluded objects is a straightforward

generalization. Due to the convexity assumption, there are exactly two horizons

corresponding to each object in the scene, as illustrated in Figure 2.9. Let the

horizon locations correspond to θL and θR. Suppose Θ := {θi ∈ [θL, θR], i =

37

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

y

(a) (b)

Figure 2.8: (a) Joint visibility from three observers located at (0.8, 0.7), (0, 0), and

(−0.8,−0.3) (stars). Also depicted are the obstacles’ boundaries and the shadow

boundary. (b) Visibility level set function φ(·; x0, x1, x2) = maxi=0,1,2 φ(·; xi).

0, · · · , ν} ⊂ [−π, π) are distinct angles sorted in the increasing order. The angles

in Θ correspond to view directions from x0 to points pi ∈ P̃ on a visible region

of occluding surface that is bounded by two horizons. These angles and points

are obtained using the projection described in Section 2.1.

Assume the occluding surface between θL and θR is smooth such that the

visibility function ρ(θ) ∈ Cn+1(θL, θR). Then for each θ ∈ [θL, θR], we have the

standard error estimate

ρ(θ) = ρENO n(θ)+
ρ(n+1)(ξ(θ))

(n + 1)!
Πn

i=0(θ−θi), for some mean value ξ(θ) ∈ (θL, θR),

(2.12)

where ρENO n(θ) is the n-th order ENO polynomial approximation and

En :=
ρ(n+1)(ξ(θ))

(n+ 1)!
Πn

i=0(θ − θi) (2.13)

is the error term. Since ρ is smooth in [θL, θR], depending on the order of ap-

proximation, the error term En is bounded according to the regularity of ρ. For

38

example, with the third order ENO, for any θ ∈ [θ3, θν−4], we have

∣∣E3
∣∣ ≤ max

ξ∈(θ3,θν−4)

∣∣ρ(4)(ξ)
∣∣

4!
(2δθ)4 .

Note that in order for the above bound to hold, we have to assume that ENO

interpolation would not choose a stencil that goes across the discontinuities of

ρ. Otherwise, if ENO stencil includes the jump location, the remainder term

(2.13) can be very big. In order to avoid this problem we introduce the following

assumption on the size of the fan used in filtering:

Assumption 2.1. δθ is small enough, so that g(ρ(θ)) < δθ implies there is a

discontinuity in the visibility function ρ at θ.

In the above, g is the edge-detector function defined in (2.4). Such δθ can

always be found in the asymptotic limit. However, it may not always exist in

practical applications, as will be demonstrated in the next chapter.

Furthermore, we require that δθ is small enough, so that the arc connecting

pi and pi+1 may be approximated by a straight line segment. This translates into

the following assumption:

Assumption 2.2. δθ2|κ| < ε if κ �= 0. Here 0 < ε� 1 is a small constant.

The above assumption can be easily derived using the Taylor’s expansion: for

any θ ∈ [θi, θi+1] we can write ρ(θ) = ρ(θi) + (θ − θi)ρ
′(θi) + 1

2
(θ − θi)

2ρ′′(ξ) for

some ξ between θ and θi. A linear approximation of ρ is obtained by setting the

second order term in Taylor’s approximation to 0. Precisely, we have δθ2κ = 0,

where κ is the curvature of the occluding surface. Then, Assumption 2.2 follows.

Thus we have derived the two conditions on the size of the fan δθ which

guarantee a bounded error term in the estimate (2.12).

39

Note that the accuracy of ENO polynomial approximation of ρ is not uniform

along the occluding surface. It depends on the view direction and the proximity

to the observer. We would like to find an upper bound on the derivatives of ρ,

and thus obtain an expression for the remainder term En, which relies on the

properties of the projection and filtering method.

Without loss of generality, assume |pi+1 − x0| ≥ |pi − x0|. Denote the outer

normal to the surface at pi+1 by �n and let the angle between �n and the view

direction θi+1 be π − φ. Let M = maxpi∈P̃ |x0 − pi|. Using simple trigonometry,

we obtain the following bounds

|pi − pi+1| = sin (θi+1 − θi) |x0 − pi|
cosφ

≤ M sin (2δθ)

cos φ
, (2.14)

|ρ(θi+1)− ρ(θi)| =
sin
(
φ− θi+1−θi

2

)
|pi+1 − pi|

cos
(

θi+1−θi

2

) ≤ 2M tanφ

cos δθ
:= K. (2.15)

From the above estimates we see that the shortest distance between the two

neighboring sample points pi and pi+1 as well as the smallest difference in their

corresponding visibility values is obtained when φ = 0, i.e. when the view direc-

tion is parallel to the outer normal �n. As φ approaches π/2, which happens near

the horizon locations, both |pi+1 − pi| and |ρ(θi+1) − ρ(θi)| tend to infinity, see

Figure 2.9. Also, as δθ decreases to 0, the difference |ρ(θi+1)− ρ(θi)| decreases to

2M tanφ.

Denote the minimum distance to a point in P̃ by m. From the relation (2.14),

|pi − pi+1| ≥ m sin (2δθ)

cosφ

for any points pi and pi+1 in P̃ . Then

θi+1 − θi ≥ ψ := 2 sin−1

(
m sin (2δθ)

M cosφ

)

40

for any angles θi, θi+1 ∈ Θ. Using the estimate on divided differences

ρ[θ0, θ1, ..., θn] =
ρ(n)(ξ)

n!
. (2.16)

and the relation (2.15), we obtain the following bounds on derivatives of the

visibility function

|ρ′(ξ)| =
|ρ (θi+1)− ρ (θi)|

θi+1 − θi

≤ 1

ψ
K,

|ρ′′(ξ)|
2!

= min{|ρ [θi, θi+1, θi+2]| , |ρ [θi−1, θi, θi+1]|} ≤ 2

2!ψ2
K,∣∣ρ(3)(ξ)

∣∣
3!

≤ 22

3!ψ3
K,

...∣∣ρ(n)(ξ)
∣∣

n!
≤ 2n−1

n!ψn
K. (2.17)

Then the error term (2.13) can be bounded by

|En| =

∣∣∣∣ρ(n+1) (ξ (θ))

(n+ 1)!
Πn

i=0 (θ − θi)

∣∣∣∣
≤ 2nKΠn

i=0 |θ − θi|
(n+ 1)!ψn+1

≤ 2nK (θR − θL)n+1

(n+ 1)!ψn+1
. (2.18)

Furthermore, in a bounded domain Ω = BR(x0), we can estimate the error in

the shadow boundary location near the horizon (as θ approaches π/2), i.e. the

area of the grey regions in Figure 2.9. The maximum angle of the resulting fan

is δθ. Then the error in the shadow boundary corresponding to a given horizon

is only linear

Ahorizon ≤ δθ

2
(R2 −m2). (2.19)

41

x0

θL
θR

Figure 2.9: Filtered out visible data pi ∈ P̃ along with surface normals. Error in

the approximation of horizon locations.

2.2.7 Dynamics

Below we derive the dynamics equations of the visibility function and horizon

points with respect to the moving vantage point. In two dimensions let us consider

a coordinate system centered at x0 with the visible portions of the occluding

surfaces parameterized by polar coordinates. A point z on the occluder is visible

from x0. Assume the observer moves with the velocity v = (v1, v2). The value

of the visibility function is ρx0(θ) = |z − x0|. Suppose during the period of time

Δt the observer has moved to a new location x0 + vΔt. The corresponding value

of the visibility function is ρ̃x0+vΔt(θ̃) = |z − (x0 + vΔt)|. The angle between

the velocity vector v and the x-axis is ϕ = tan−1 v2

v1
. The angle between z − x0

and the velocity vector v is ψ. Then, the angle between z − x0 and the x-axis is

42

θ = ϕ+ ψ, see Figure 2.10(a). Then we can compute

d

dt

(
ρ2
)

= lim
Δt→0

ρ̃2 − ρ2

Δt

= lim
Δt→0

|z − (x0 + vΔt)|2 − |z − x0|2
Δt

= −2v · (z − x0)

= −2ρv ·
⎛
⎝ cos θ

sin θ

⎞
⎠ . (2.20)

On the other hand,

d

dt

(
ρ2
)

= 2ρ
dρ

dt
= 2ρ

(
ρ̇+ ρθ θ̇

)
. (2.21)

Therefore,

ρ̇+ ρθθ̇ = −v ·
⎛
⎝ cos θ

sin θ

⎞
⎠ . (2.22)

To find an expression for θ̇, note from Figure 2.10 (a) that

ρ sinψ = ρ̃ sin ψ̃ = L. (2.23)

Since L is the distance from z to x0 + vt, it is independent of the motion of x0

once the direction v is fixed. Therefore,

dL

dt
=
dρ

dt
sinψ + ψ̇ρ cosψ = 0. (2.24)

Then

θ̇ = ψ̇ = −
dρ
dt

sinψ

ρ cosψ
=
v

ρ
·
⎛
⎝ sin θ

− cos θ

⎞
⎠ . (2.25)

Combining (2.25) with (2.22) we finally obtain

ρ̇ = −ρθ

ρ
v ·
⎛
⎝ sin θ + cos θ

sin θ − cos θ

⎞
⎠ . (2.26)

43

The above equation (2.26) describes the change of the visible portion of the

occluding surface, i.e. between the horizons. In order to have a complete de-

scription of the visibility we must derive the motion of horizons e1 and e2 on

Figure 2.10 (b) with respect to the observer.

Note that (ei−x0)·nei
= 0, where nei

is the outer unit normal to the occluding

surface at the point ei for i = 1, 2. That is, the vector ei − x0 is tangent to the

occluding surface at the horizon point. Without loss of generality, in all the

computations below we will consider just e1.

In the coordinate system defined as above, θ = ϕ + ψ is the angle between

e1 − x0 and the x-axis. The value of the visibility function is ρx0(θ) = |e1 − x0|.
Now suppose the observer moves to a new position x0 + vΔt, moving with the

velocity v = (v1, v2). For this new location, the position of the edge has changed

to ẽ1 and the corresponding value of the visibility function is ρ̃x0+vΔt(θ̃) = |ẽ1 −
(x0 + vΔt)|. Here θ̃ = ϕ+ ψ̃ is the angle between ẽ1 − (x0 + vΔt) and the x-axis

in the coordinate system centered at x0 + vΔt. Our goal is to find the change in

the position of horizon, i.e. ė1.

First, note that the curvature of the occluding surface at the point (θ, ρ (θ))

is given by formula (2.5). Also, since e1 − x0 is tangent to the occluder at e1, we

obtain

n⊥(e1) =
e1 − x0

|e1 − x0|

n(e1) =
(
n⊥ (e1)

)⊥
=

(
e1 − x0

|e1 − x0|
)⊥

. (2.27)

Now we can plug in the above into the formula for horizon dynamics from [TCO04]

to get

ė1 =
v · n (e1)

κρ
n⊥ (e1) . (2.28)

Therefore, from the equations (2.26) and (2.28) we obtain a full description

44

of the change in the visible portion of the occluder with respect to the observer’s

motion. The corresponding expressions can also be derived in three dimensions,

see [TCO04] for details.

θ = ϕ + ψ

θ = ϕ + ψ
∼ ∼

ρ ρ∼

ψ

ψ∼

ϕ

ϕ
Δx + v t0

x 0

L

v

z

(a)

θ

θ
∼

ρ∼

ρ

e1
e1
∼

e2
∼

e2

Δx + v t0

x 0

v

(b)

Figure 2.10: Derivation of the dynamics equations for the visibility function (a)

and the horizons (edges) (b).

2.3 Smoother Reconstruction in Three Dimensions

Below we discuss the possible extensions to three dimensions of the algorithm for

interpolating visible portions of the point clouds that are sampled from opaque

objects in the environment. Section 2.1 describes the algorithm for extracting

the subset of visible data points P̃ from a point cloud P and a piecewise constant

visibility function ρ̃x0 via the projection of the point cloud onto a unit sphere

Sd−1 ∈ Rd, centered at the vantage point x0. This simple procedure can be

applied in both two- and three-dimensional environments.

Consider an example of a point cloud of the Stanford Bunny, one of the

most commonly used test models in computer graphics [TL94]. The point cloud

45

consists of 35947 points. Figure 2.11 displays the filtered visible points on the

surface of the bunny from the vantage point at (−0.5, 1, 0.7). The number of

visible points is 2678. More examples will be discussed in Subsection 2.3.3.

Figure 2.11: Points visible from the vantage point at (−0.5, 1, 0.7). Point cloud

size is 35947 points, the number of visible points is 2678.

The last step of the visibility reconstruction algorithm, presented at the be-

ginning of the Chapter, involves a piecewise smooth reconstruction of the visible

occluding surfaces through interpolation of the extracted visible data. The details

of interpolation on S1 in two-dimensional setting can be found in Section 2.2.2.

ENO interpolation allows to reconstruct a piecewise high order polynomial rep-

resentation of the visible boundaries of the obstacles.

The problem arises when we try to interpolate the projected data on S2. The

46

standard dimension-by-dimension approach may not be applied in this case since

the projected data is generally not on a grid. Below we are going to describe the

two procedures to obtain a better approximation of the visibility function and

the corresponding reconstruction of the visible occluding surfaces. The next two

subsections include the detailed description of our selected approach, while the

Subsection 2.3.3 illustrates the proposed technique with numerical examples.

The first approach is to use the projected data points as vertices for a tri-

angulation on S2. Classical Delaunay technique [Del34] can be used to con-

struct the triangulation of unstructured data points. For locally high order re-

constructions, we can use the ENO interpolation approaches described in, e.g.

[LO96, HS99, ZS03], to construct ρENO
x0

. Thus obtained high order interpolant

can be easily mapped back to Cartesian coordinates to obtain a reconstruction

of the visible surface in R3.

The proposed technique highly depends on the triangular mesh generation

of the projected data points. Mesh generation is a complicated problem, partly

because of the difficulty of forcing a mesh to conform to objects’ sharp creases

and corners without sacrificing the quality of the resulting triangles. While De-

launay triangulation aims to maximize the minimum angle of all the angles of

the triangles in the triangulation, in practice it is difficult to avoid the so called

“sliver” triangles near the mesh boundary. In Figure 2.12, we demonstrate the

Delaunay triangulation based on 50 randomly generated points on a plane. One

can see the narrow and long triangles along the right and bottom boundaries.

Such irregular triangles introduce difficulties in computation of the derivatives

as well as high order interpolation techniques near the edges of the mesh, which

correspond to the locations of the horizons in our visibility formulation.

The second approach is to continue working on a rectangular grid that dis-

47

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

x

y

Figure 2.12: The Delaunay triangulation for 50 randomly generated points.

cretizes S2. We propose to use an ENO-based preprocessing step to map the fil-

tered data to a coarse rectangular grid in S2. Then a straight forward dimension-

by-dimension ENO interpolation can be applied on the refined rectangular grid

to obtain a high order approximation, which then can be mapped to R3. Below

are the main steps of the algorithm to construct a high order interpolation of the

visible data:

1. Construct a Delaunay triangulation on S2 using as vertices the filtered data

points π(P̃).

2. Set up a coarse rectangular grid based on the triangulation.

3. Compute a preliminary interpolant on a coarse rectangular grid.

4. Refine rectangular grid and ENO interpolate the data dimension-by-dimension.

The following subsections contain a detailed description of each step of the algo-

48

rithm and provide the evaluation of its performance on sample data sets.

2.3.1 Rectangular Grid Construction and Interpolation

Assume we have a triangulation T = {K1, . . . , Km} of m non-overlapping trian-

gles Ki, such that no vertex of one triangle lies on the edge of another triangle

(as in Figure 2.12). The vertices of the triangles are the projections of the fil-

tered visible points p ∈ P̃ onto S2. Figure 2.13 represents the triangulation on

S2, based on the filtered out points on the visible surface of the bunny depicted

in Figure 2.11. One can see the irregular triangles corresponding to the horizon

locations.

1.4
1.6

1.8
2

2.2

−0.8

−0.6

−0.4

0.8
1

1.2

θ
2θ

1

ρ x 0(θ
1,θ

2)

Figure 2.13: Triangulation of S2 based on filtered visible points. The number of

triangles is 5329.

We would like to set up a rectangular grid based on the triangulation T .

49

Denote the grid nodes of the rectangular grid byXi,j. We may interpolate through

the values ρ̃x0 , which are given at the vertices of the triangles, to obtain the values

of the visibility function on the rectangular grid nodes Xi,j. We use the following

procedure to construct a preliminary second order interpolant on the rectangular

grid Xi,j.

Let Ki,j ⊂ T be the triangle enclosing the grid node Xi,j. In order to be able

to construct a quadratic interpolant, we require the rectangular grid to satisfy

the following conditions:

Ki,j ∩Ki+1,j+1 = {∅},
Ki,j ∩Ki+1,j−1 = {∅},
Ki,j ∩Ki−1,j+1 = {∅},
Ki,j ∩Ki−1,j−1 = {∅}. (2.29)

Figure 2.14 illustrates the requirements (2.29) for the rectangular grid {Xi,j}.

Since the triangles in T are not uniform, it would not be possible to satisfy

the criteria (2.29) everywhere on S2, unless the rectangular mesh is very sparse.

Therefore, we choose to satisfy the requirements only partially, that is only on

triangles K ⊂ T , which satisfy

diam(K) < diam(Kmax). (2.30)

Here, diam(K) is the diameter of K, i.e., the length of the longest side of the

triangle K, and diam(Kmax) denotes the threshold value for the “big” triangles.

As noted above, the elongated triangles correspond to the locations of horizons.

Thus, the thresholding (2.30) allows us to filter the interior triangles that are

away from the discontinuities. In order to partially satisfy the requirements (2.29)

in the interior set, in all our experiments we set the rectangular mesh size

h = C modeK⊂T{diam(K)| diam(K) < diam(Kmax)}. (2.31)

50

In the above, C is a constant parameter, which is usually set to 1. Thus, h is the

most frequently occurring side length of the interior triangles.

Ki,j

Ki-1,j+1

Ki-1,j-1 Ki+1,j-1

Ki+1,j+1

Figure 2.14: Rectangular grid construction: circles – rectangular grid vertices

Xi,j, squares – triangular mesh vertices corresponding to diagonal neighbors of

Ki,j.

Figure 2.15 illustrates the rectangular grid construction for the bunny data

set. The grid is based on the triangulation depicted in Figure 2.13. The red

circles correspond to the interior set. That is, each node marked by the red

circle satisfies the conditions (2.29). The green squares are inside the elongated

triangles or do not have four neighbors to satisfy (2.29), and the blue points are

entirely outside of the triangulation. Note that most of the triangles along the

edges have irregular shapes. Thus we can automatically classify the grid points

near the horizons as the points inside the elongated triangles (marked by the

green squares in our example).

When mapping the data onto the rectangular grid, we wish to construct a high

order interpolation across the discontinuities along curves. Therefore, we use the

51

−1 −0.8 −0.6 −0.4 −0.2

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

θ
1

θ 2

(a)

−0.7 −0.65 −0.6 −0.55 −0.5 −0.45

1.4

1.45

1.5

1.55

1.6

1.65

θ
1

θ 2

(b)

Figure 2.15: Rectangular grid construction and interior set detection based on

triangulation of visible points on the surface of the bunny. Circles are in the

interior set and have four neighbors to satisfy the criteria (2.29), squares are

inside the elongated triangles or do not have a complete set of neighbors to

satisfy the criteria (2.29), and points are outside the triangulation. (a) Portion

of the grid covering the triangular mesh. (b) Close-up detail of the rectangular

grid. The resulting grid size is 158× 315.

data clusterings at different directions of the point being interpolated. For each

interior grid point Xi,j (marked by a red circle in Figure 2.15), we construct four

quadratic interpolants:

f++ using the vertices of �Ki,j,�Ki+1,j+1

f+− using the vertices of �Ki,j,�Ki+1,j−1

f−+ using the vertices of �Ki,j,�Ki−1,j+1

f−− using the vertices of �Ki,j,�Ki−1,j−1. (2.32)

52

The 6×6 linear systems for the interpolation coefficients are invertible, since the

triangles are well separated due to the condition (2.29). Note that the choice

of the diagonal neighbors in (2.29) instead of the nearest neighbors allows for a

smaller rectangular mesh size h, and therefore, a denser rectangular grid.

Following the ENO philosophy, we choose the interpolating polynomial fint to

be the “smoothest” out of the four quadratic polynomials constructed in (2.32).

The smoothness of a quadratic polynomial is determined by analyzing its second

derivative. In two dimensions, the Laplacian Δf = fxx+fyy is a poor choice, since

Δf can be small at saddle points, where positive and negative partial derivatives

cancel. Instead, we set fint to be one of the four polynomials in (2.32) with the

smallest

|fxx|+ |fxy|+ |fyx|+ |fyy|.

at Xi,j. Finally, we evaluate fint(i, j) = fint(Xi,j).

A linear interpolation is used to obtain the values on the grid points inside

the degenerate triangles with the diameter exceeding diam(Kmax). These grid

points are marked by the green squares in Figure 2.15. The values at the grid

points outside of triangulation (blue points) are set toM , which is a large constant

corresponding to infinity or finite sensor range, as in the definition of the visibility

function (2.1).

The interpolation procedure can be extended similarly to a standard ENO

algorithm to obtain a higher order interpolant instead of quadratic. For example,

in order to construct a third order interpolant at Xi,j, one needs to compare all

the possible cubic polynomials whose stencil includes the triangle enclosing the

grid node Xi,j. Through numerical experiments, it has been determined that a

quadratic polynomial is sufficient for our purposes.

During the next stage of the algorithm, we refine the rectangular grid {Xi,j} to

53

obtain a denser grid {Zμ,ν} ⊃ {Xi,j}. ENO interpolation is performed dimension-

by-dimension using the values of fint on {Xi,j} to obtain a higher order recon-

struction on {Zμ,ν}. The dimension-by-dimension procedure to obtain a p-q ENO

interpolant ρENO p,q is the following:

1. For every ν, construct ρENO p,∗(·, θ2ν) by performing a p-th order ENO in-

terpolation on the selected points from the values of fint(·, θ2).

2. For every μ, construct ρENO p,q(θ1μ , ·) by performing a q-th order ENO in-

terpolation on the selected points from the values of ρENO p,∗(θ1μ , ·).

Figure 2.16 displays the results of the initial quadratic coarse grid interpola-

tion (a), and a fine grid fifth order ENO reconstruction (b). The initial coarse

grid size is 131 × 261, and the refined grid size is 629 × 1257. Thus we have

obtained a piecewise high-order representation of the visibility function on S2.

θ
1

θ 2

−1 −0.8 −0.6 −0.4 −0.2

1.4

1.6

1.8

2

2.2

(a)

θ
1

θ 2

−1 −0.8 −0.6 −0.4 −0.2

1.4

1.6

1.8

2

2.2

(b)

Figure 2.16: (a) Initial coarse grid interpolation. (b) Final fine grid ENO inter-

polation. Grid is refined by the factor of 4. The order of ENO interpolation is

5.

54

2.3.2 Level Set Representation

A piecewise polynomial representation of the visibility function can be used to

obtain a high-order reconstruction of the visible portion of the occluding surfaces.

We use the implicit level set function to represent the final reconstruction on a

Cartesian coordinate system. Similarly to (2.8), we define the visibility set

G := {(θ1, θ2, r) : r < ρ(θ1, θ2)}. (2.33)

A smooth signed distance function φ to the shadow boundary ∂G can be con-

structed using redistancing [CT07] in three dimensions:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φ(θ1, θ2, r) > 0, if (θ1, θ2, r) ∈ G,
φ(θ1, θ2, r) < 0, if (θ1, θ2, r) ∈ GC ,

φ(θ1, θ2, r) = 0, if (θ1, θ2, r) ∈ ∂G.

(2.34)

Finally, we map φ to Cartesian coordinates via

x(θ1, θ2, r) = φ(θ1, θ2, r) cos(θ1) sin(θ2) + x01 ,

y(θ1, θ2, r) = φ(θ1, θ2, r) sin(θ1) sin(θ2) + x02 ,

z(θ1, θ2, r) = φ(θ1, θ2, r) cos(θ2) + x03 . (2.35)

A linear interpolation is used on a grid. Figure 2.17 (a) represents the zero level

set of the signed distance function to the shadow boundary of the bunny, corre-

sponding to a point cloud depicted in Figure 2.11. In contrast, Figure 2.17 (b)

displays the triangulated surface obtained via mapping to Cartesian coordinates

of the initial triangulation from Figure 2.13. One can see that the initial quality

of detail is preserved in the level set representation. In addition, a high-order

reconstruction of the visible surface is available through ENO interpolation.

Furthermore, the level set formulation allows for easy reconstruction of the

joint visibility from multiple viewpoints. The level set surface representations

55

can be “stitched” together using the boolean operation (2.11). In contrast, it can

be very tricky to combine together the triangulated surface patches.

In the next section, we are going to discuss more numerical examples that

illustrate the performance of our algorithm.

(a) (b)

Figure 2.17: (a) Signed distance function to the shadow boundary. (b) Triangu-

lation of the visible data points.

2.3.3 Numerical Examples

In this section we are going to present two examples of visibility construction

out of the three-dimensional point clouds. The first sample data set is a portion

of the scan of the Michelangelo’s David statue [LPC00]. To better illustrate the

fine details of the reconstruction, we only consider the point cloud corresponding

to the David’s head. It contains 78,958 points. The second point cloud is a

simulated city block consisting of 190,704 points. Both sample data sets are

displayed in Figures 2.18 (a) and (b). Below we illustrate the steps leading to the

56

reconstruction of the visible surfaces based on visibility interpolation techniques

described in the previous section.

(a) (b)

Figure 2.18: (a) Point cloud of David’s head, 78,958 points. (b) Point cloud of

urban environment, 190,704 points.

On Figure 2.19 we present the data visible from two distinct vantage points:

(400, 200, 500) and (200,−700, 700). Figures 2.20 (a) and (b) display the corre-

sponding initial coarse level interpolations of the visibility functions, while Fig-

ures 2.20 (c) and (d) correspond to a fine level fifth order ENO interpolation.

The respective fine grid sizes are 521× 1041 (a) and 477× 953 (b). The grid size

has been refined by a factor of four from the initial coarse level interpolation.

The interpolated visibility function ρENO(θ1, θ2) is used to construct an im-

plicit level set representation of the visible occluding surfaces displayed in Fig-

ures 2.21 (a) and (b). In contrast, Figures 2.21 (c) and (d) depict the triangulation

of the visible surfaces with vertices at the extracted visible points. One can note

57

(a) (b)

Figure 2.19: Data visible from the two vantage points: (a) (400, 200, 500) and

(b) (200,−700, 700).

that the reconstructions from the top and bottom rows of Figure 2.21 have the

same amount of detail. However, the reconstructions in the first row are piecewise

smooth, which allows us to compute derivatives on the surfaces away from the

discontinuities.

Figure 2.22 (b) depicts the surface obtained by stitching together the two

level set reconstructions corresponding to two distinct vantage points. The cor-

responding visible point cloud is depicted in Figure 2.22 (a.) The joint visibility

formula (2.11) is used to obtain the union of the two reconstructions. Note that it

would be extremely difficult to combine the triangulations from Figures 2.21 (c)

and (d) into a single piecewise smooth surface.

In the next example we are going to consider the point cloud representing

an urban environment. Figures 2.23 (a), (b), and (c) display the data visible

from three distinct vantage points: (7.2, 0, 12), (4, 10, 13), and (−2, 4, 13). Once

the visible points have been filtered out, use them to construct a triangulation

58

on S2. The next step is a preliminary coarse level interpolation depicted in

Figures 2.24 (a), (b), and (c). The corresponding coarse grid sizes are 95× 190,

134 × 267, and 179 × 358. Finally, the rectangular mesh is refined to perform

the fifth order ENO interpolation. The mesh refinement factor is 4. Fine level

interpolants are displayed in Figures 2.24 (d), (e), and (f).

The resulting level set surface reconstructions are depicted in Figures 2.25 (a),

(b), and (c). The triangulations based on filtered visible data are presented in

Figures 2.25 (d), (e), and (f). Note the sharp corners and flat surfaces of the

buildings are preserved by the high order interpolation. Linear interpolation is

used to reconstruct the data near the horizon locations.

The surface resulting from combining the three visibility reconstructions is de-

picted in Figure 2.26 (b). The underlying point cloud is shown in Figure 2.26 (a).

The three vantage points turn out to be sufficient to reconstruct all the surfaces

of the buildings. Some irregularity of the walls and, especially, the ground is due

to expression (2.11) for combining the level set surfaces corresponding to different

vantage points.

Sometimes a less accurate region near the horizon with respect to one vantage

point replaces a more accurate representation corresponding to a different vantage

point, thus diminishing the overall quality of the resulting joint reconstruction.

This problem can be avoided by checking the reliability of a given reconstruction,

i.e. the proximity to a horizon, prior to applying the formula (2.11).

The examples David’s head and the city block reconstruction lead to the

following questions: How many vantage points are sufficient to “see” the entire

environment, and how to choose the vantage points to accomplish the desired

visibility? These questions can be addressed as a part of environment exploration

problem and will be discussed in the following chapter.

59

θ
1

θ 2

−1 −0.8 −0.6 −0.4

1

1.2

1.4

1.6

1.8

(a)

θ
1

θ 2

0 0.2 0.4 0.6

1.4

1.6

1.8

2

(b)

θ
1

θ 2

−1 −0.8 −0.6 −0.4

1

1.2

1.4

1.6

1.8

(c)

θ
1

θ 2

0 0.2 0.4 0.6

1.4

1.6

1.8

2

(d)

Figure 2.20: Top row: coarse level visibility interpolation corresponding to the

vantage point (a) (400, 200, 500) and (b) (200,−700, 700). The grid sizes are

131 × 261 and 120 × 240. Bottom row: fine level fifth order ENO interpolation

of the visibility function. A mesh refinement factor is 4.

60

(a) (b)

(c) (d)

Figure 2.21: Top row: level set reconstruction of the visible occluding surfaces

corresponding to the vantage points (a) (400, 200, 500) and (b) (200,−700, 700).

Bottom row: triangulation of the visible data points. The number of triangles

used in reconstruction is (a) 2482 and (b) 2154.

61

(a)
(b)

Figure 2.22: (a) Data visible from the two vantage points: (400, 200, 500) (star)

and (200,−700, 700) (diamond). (b) Level set representation of joint visibility

corresponding to two distinct vantage points.

(a) (b) (c)

Figure 2.23: Data visible from the three vantage points: (a) (7.2, 0, 12),

(b) (4, 10, 13), and (c) (−2, 4, 13).

62

θ
1

θ 2

2 2.5 3

1.8
2

2.2
2.4
2.6
2.8

(a)

θ
1

θ 2

−2.5 −2 −1.5 −1 −0.5

2

2.5

3

(b)

θ
1

θ 2

−1 −0.5 0 0.5 1

2

2.5

3

(c)

θ
1

θ 2

2 2.5 3

1.8
2

2.2
2.4
2.6
2.8

(d)

θ
1

θ 2

−2.5 −2 −1.5 −1 −0.5

2

2.5

3

(e)

θ
1

θ 2

−1 −0.5 0 0.5 1

2

2.5

3

(f)

Figure 2.24: Top row: coarse level visibility interpolation corresponding to the

vantage points (a) (7.2, 0, 12), (b) (4, 10, 13), and (c) (−2, 4, 13). The grid sizes

are 95× 190, 134× 267, and 179× 358. Bottom row: fine level fifth order ENO

interpolation of the visibility function. A mesh refinement factor is 4.

63

(a) (b) (c)

(d) (e) (f)

Figure 2.25: Top row: level set reconstruction of the visible occluding surfaces cor-

responding to the vantage points (a) (7.2, 0, 12), (b) (4, 10, 13), and (c) (−2, 4, 13).

Bottom row: triangulation of the visible data points. The number of triangles

used in reconstruction is (d) 24807, (e) 27857, and (f) 47444.

64

(a) (b)

Figure 2.26: (a) Data visible from the three vantage points: (7.2, 0, 12) (star),

(4, 10, 13) (circle), and (−2, 4, 13) (diamond). (b) Level set representation of joint

visibility corresponding to two distinct vantage points.

65

CHAPTER 3

Mapping of Unknown Environments

In this chapter we discuss the navigation algorithms based on visibility. In par-

ticular, we address the solution to Problem 1.2 defined in Section 1.1, i.e. the

problem of exploration of unknown bounded environments, which may contain

obstacles. Our goal is to obtain an algorithm that would utilize visibility infor-

mation to allow an autonomous observer(s) equipped with a range sensor to fully

explore the region and to map the obstacles’ boundaries. The latter refers to the

construction of an accurate mathematical representation of the obstacles.

The following constraints on the observer’s path ensure that the algorithm is

practical in applications:

Constraint 1: The path is continuous and consists of discrete steps.

Constraint 2: The number of steps is finite.

Constraint 3: The total distance traveled is finite.

The motivation for our algorithm comes from the work of S. LaValle, B. To-

var et al. [TGL05, LaV06, TML07] described in detail in the introductory Sec-

tions 1.2.1 and 1.3.2. At each step of the navigation algorithm, the observer

randomly chooses to approach one of the gaps, i.e. depth discontinuities pro-

jected onto S1. The visibility map, represented by the dynamic data structure,

a Gap Navigation Tree, is then updated as a result of gap critical events. The

66

process is repeated until the entire region has been explored, that is, there are

no more unexplored gaps left. As a result of exploration, the region is character-

ized by the number of gaps and their relative positions. No distance or angular

information is accumulated.

Quite the opposite, the algorithm presented in this chapter maps the obstacles

in Cartesian coordinates as the observer proceeds through the environment and

utilizes the recovered information for further path planning. At the termination

of the path all the obstacles’ boundaries are reconstructed. Thus, a complete

representation of the environment is obtained.

In contrast to our simple discrete approach, a practical implementation of

the algorithm from [TML07] requires a constant gap tracking. Furthermore,

a wall-following procedure needs to be implemented to navigate the robot in

the environment. Additional modifications of the algorithm are required when

dealing with multiply connected environments, i.e. markings of the visited gaps.

Meanwhile, our algorithm does not require any special treatment of certain types

of environments.

In addition, the strategy proposed in this thesis is easily scalable to allow for

multiple observers. In [LGH07], the algorithm has been validated on a group of

autonomous micro-cars. The vehicles, equipped with range sensors, have been

used to explore an unknown bounded region and construct the map of the ex-

plored environment.

The organization of the rest of the chapter is as follows. Section 3.1 provides

the description of the navigation algorithm for a single and multiple observers

in unknown planar environments. Section 3.2 discusses the experiments with

multiple autonomous vehicles. In Section 3.3, the optimization techniques are

applied to the constructed paths, to obtain a more uniform illumination of the

67

explored region. Finally, Section 3.4 introduces the complexity estimates of the

paths in two and three dimensions.

3.1 Horizon-chasing

Consider a bounded region which may contain an unknown number of arbitrary

positioned obstacles of unknown general shapes. Our objective is to construct

a path for an observer, so that at the termination of the path the observer has

seen the entire domain. In addition, a map of the explored region representing

the boundaries of obstacles would be constructed. The navigation algorithm is

designed with the consideration of handling general geometries.

The intuition behind our algorithm is the following. Assume some portions of

the obstacles boundaries are visible to the observer from a given vantage point.

Each continuous portion of the visible boundary terminates with the horizon

points, or edges on the visibility map, as in Figure 2.4. These horizon points are

similar to an edge of the door that is ajar. One must proceed beyond the edge

of the door to see more. Similarly, an observer must proceed beyond the horizon

point to gain new information about the environment.

At this point, we need to decide how far the observer should march beyond

the chosen horizon point. Our strategy relies on the geometry of the obstacle near

the horizons. Briefly, if the obstacle is a simple circle, then naturally the march

distance should depend on the radius of the circle; this corresponds directly to

the curvature at horizon points. These simple insights allow us to construct a

path consisting of discrete steps.

In the following subsections we are going to describe our horizon-chacing

algorithm for a single observer and its extension to the case of multiple observers.

68

We also provide the results of navigation simulations in sample environments. In

Subsection 3.1.2, we provide the statistics of our algorithm for some general types

of environments.

3.1.1 Single Observer

Below we discuss the navigation algorithm for a single observer operating in two

dimensions. The details are provided in Algorithm 3.1 below. The key idea

behind our algorithm is to proceed in the environment Ω by approaching one of

the currently visible horizons. When a new horizon appears, it is stored in a list

L. Once the horizon has been explored, it is removed from the list. The observer

must explore every horizon in the list before the algorithm terminates. The

observer is allowed to return and inspect previously skipped horizons if no more

new horizons are available, as done in step 10 of the algorithm. The exploration

is complete once there are no more horizons left to approach. The following

discussion in this subsection applies to Algorithm 3.1.

First, we are going to address the choice of the next horizon to approach in

step 7. In all our numerical experiments, the observer always approaches the

nearest previously unexplored horizon, unless stated otherwise. Intuitively, this

choice would minimize the total length of the path. The convergence proof in

Section 3.4 is based on the nearest edge approach.

However, other choices may be more applicable under different circumstances.

For example, one may choose to approach a random horizon as was done in

[TGL05], or a horizon with the largest curvature κ (so that the overshoot step

size r2 is the smallest). In [LGH07], the choice of the next horizon is dictated

by the specifics of sensor design: to minimize the errors produced by the sensors

in the experiments, it is always preferable to navigate around the objects in

69

Algorithm 3.1 Navigation in planar environment by single observer

1: k = 0, L: list of unexplored edges, initially empty

2: repeat

3: ρxk
: visibility function corresponding to vantage point xk

4: update the map Ξ of the explored region {Ξ was defined in (2.3)}
5: find all the edges/horizons on the (θ, ρxk

(θ)) map

6: if edge is found then

7: choose θe – the edge to approach {choice depends on the problem}
8: store the rest of the edges in a list L

9: remove those edges from L that are currently visible

10: else {no edges found}
11: pick an edge θe from the list of unexplored edges L

12: backtrack xk to one of the previous positions corresponding to θe

13: end if

14: if ρxk
(θe) < ρxk

(θe + δ) then

15: choose the direction Θ = θe + δ

16: else

17: choose the direction Θ = θe − δ
18: end if{δ > 0 is chosen to allow a buffer between the observer and obstacles}
19: xk+ 1

2
is obtained by moving from xk in the direction Θ by amount

r1 = min{ρxk
(Θ), ρxk

(θe)− tan
(π

3

) 1

κe
}

{κe: curvature near the edge θe (if κe ≡ 0, shift xk by small amount)}
20: ρx

k+ 1
2

: visibility function corresponding to xk+ 1
2

21: update the map Ξ of the explored region

22: remove those edges from L that are currently visible

23: xk+1 is obtained by overshooting from xk+ 1
2

by

r2 = min{ρxk
(Θ)− r1, 2 tan

(π
3

) 1

κe
}

24: until L �= {∅} 70

the counterclockwise fashion. Thus, the observer always prefers to approach the

right-most edge of the obstacle. The details of the experiment will be discussed

in Section 3.2.

In step 19 of Algorithm 3.1, we define an intermediate position xk+ 1
2
. The

main motivation for this additional step is to have a homogeneous coverage of the

obstacles’ boundaries. By keeping the observer a uniform distance away from the

boundary, we are able to obtain the same level of detail everywhere in the region.

Additionally, the step xk+ 1
2

is motivated by the convergence proof in Section 3.4.

An alternative algorithm would be to introduce an intermediate position xk+ 1
2

only when approaching a horizon through a bitangent, as depicted in Figure 3.1.

Note that if the step xk+ 1
2

is omitted, then the entire portion of the obstacle’s

boundary revealed in Figure 3.1 (b) would remain occluded. We use this modified

version of Algorithm 3.1 to obtain all the results in current chapter.

xk

eθ

bitangent

(a)

xk

eθ
xk+ /1 2

(b)

xk

xk+1

eθ
xk+ /1 2

(c)

Figure 3.1: Approaching a horizon through a bitangent: (a) horizon θe visible

from xk, (b) intermediate step xk+ 1
2

to reveal a previously occluded portion of

the obstacle’s boundary, (c) complete the move at xk+1.

The next position xk+1 of the observer, is obtained in step 23 of the navigation

algorithm by proceeding beyond the horizon point in the chosen direction Θ. We

71

choose the overshoot step size to be inversely proportional to the curvature κe of

the obstacle’s boundary near the horizon. On a simple example of a disk-shaped

obstacle, the size of the overshoot step is the half the length of an equilateral

triangle circumscribing the disk. This particular choice would allow the observer

to explore the entire disk’s boundary in just three steps. The overshoot step size

will be further examined in Section 3.4. High order ENO interpolation allows to

compute the curvature at the obstacle’s boundary with desired accuracy.

Finally, note that the chosen direction Θ in steps 15 and 17 is not exactly the

direction of the horizon θe. A small buffer of size δ > 0 is added to provide extra

space between the observer and the obstacle’s boundary. The buffer size may

depend on the observer’s size and mobility. If application allows, δ may change

in the process of exploration. For example, a smaller δ would allow the observer

to explore narrow regions of high curvature. When the curvature of the occluding

surface is large, a larger buffer would be more suitable.

As a result of the navigation algorithm, we obtain a complete map of the

environment, i.e. polynomial interpolated boundaries of the obstacles along with

the visibility indicator function Ξ which marks the interior and exterior of the

obstacles. In addition, one may easily construct the level set representation of

the reconstructed environment map via (2.11). The use of the level set maps in

postprocessing algorithms will be presented in Section 3.3. Further applications

of the level set representation of visibility are described in [TCO04] and [CT05].

In Figures 3.2, 3.3, and 3.4 we demonstrate the paths generated using Al-

gorithm 3.1 in different environments. The left sub-figures (a) depict observer’s

paths in various environments along with the visibility map at the final step of

the exploration. The right sub-figures (b) represent the signed distance to the

obstacles’ boundaries.

72

(a) (b)

Figure 3.2: Three non-overlapping shapes and a sine wave. (a) Exploration path

and visibility map at the final step: dark circle – initial position, star – final

position, white line with circles – observer’s path steps. (b) Signed distance to

occluding boundaries.

In Figure 3.2 (a), the test environment consists of three disjoint obstacles,

one of which is not convex, and a sine wave. The observer is able to explore

the environment in seven discrete steps without having to backtrack and clear

previously unexplored edges. The starting position is (0.4, 0.2) and the final

position is (0.9, 1). The intermediate steps are marked by circles.

In contrast, in Figures 3.3 and 3.4, the observer must backtrack to one of its

previous locations to clear previously unexplored edges. In the case of two spirals

in Figure 3.3 (a), the observer starting at (0.8,−0.8), first explores the interior of

one spiral, then returns to proceed inside the second spiral. The path terminates

at (−0.46,−1).

The environment in Figure 3.4 (a) is generated by taking a level set of a portion

of the Grand Canyon elevation data1. The path runs begins at (0.8,−0.95) and

1The terrain data were obtained from
ftp://ftp.research.microsoft.com/users/hhoppe/data/gcanyon/

73

(a) (b)

Figure 3.3: Two spirals. (a) Exploration path and visibility map at the final

step: dark circle – initial position, star – final position, white line with circles –

observer’s path steps. (b) Signed distance to occluding boundaries.

terminates at (−0.55, 0.2). The non-uniform change of curvature of the visible

boundary makes it difficult to explore the fractal-like portions of the boundary. A

constant parameter δ (introduced in step 14 of Algorithm 3.1), which controls how

close an observer may approach an obstacle, does not allow for a more detailed

exploration of the narrow regions. As this parameter may depend on the physical

size of the observer, the result is an illustration of a realistic exploration outcome.

If the size and mobility of the observer allows for it, an algorithm with δ varying

as a function of curvature may be implemented. Another approach would be to

utilize optimization techniques to construct a new path based on the results of

the initial “rough” exploration as in Section 3.3.

Furthermore, the sparsity of the data in the initial point cloud does not allow

us to choose the scanning fan size δθ small enough to satisfy the Assumption 2.1

in Subsection 2.2.6. As a result, some of the horizons are not distinguished by

the edge-detection function (2.4).

74

(a) (b)

Figure 3.4: Grand Canyon terrain. (a) Exploration path and visibility map at

the final step: dark circle – initial position, star – final position, white line with

circles – observer’s path steps. (b) Signed distance to occluding boundaries.

The above examples illustrate the performance of the exploration Algorithm 3.1

in simulated environments of increasing complexity. Application of the algorithm

in the “real world” environment will be described in Section 3.2.

We would like to remark that Algorithm 3.1 can also be applied towards

environment exploration in case of curved lines of sight, with the following modi-

fications. Since the curvature of the occluding surfaces cannot be recovered from

the visibility function ρ constructed in Subsection 2.2.4, the overshoot step-size

must be defined by the user in steps 19 and 23. To proceed further from the

edge, we follow the line of sight passing through this edge by solving

ẋ = ∇ϕ(x),

x|t=0 = xe.
(3.1)

where xe is the position of the edge and ϕ(x) is the distance to the observer

resulting from solution of the eikonal equation (2.6). Consider Figure 3.5 for a

sample step-by-step path. The index of refraction r is set in Subsection 2.2.4.

75

x

y

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Stage 1

x

y

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Stage 2

x

y

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Stage 3

Figure 3.5: Stages of exploration under a bending ray field.

A similar approach would be effective in three dimensions. At each vantage

point, after the reconstruction of the visible surface, we carve out the region,

which can be considered as a reliable reconstruction. One way to classify the

reliable regions is to analyze the triangulation, used in the initial step of the

reconstruction process, see Section 2.3. The irregular elongated triangles corre-

spond to the regions near the horizon locations. Linear interpolation is used to

reconstruct the surface near the horizons and, therefore, may not be as reliable

as the high order reconstruction away from horizons. In Figure 2.14, the rect-

76

angular grid nodes corresponding to the interior set (red circles) represent the

reliable regions.

When the preliminary rectangular mesh is refined, we obtain a tube of points

in the neighborhood of horizons. The points inside this tube would then be stored

in a three-dimensional edge map. Once the direction of the of the next vantage

point is chosen, the observer would fly pass this direction, while preserving some

buffer space around the obstacle. The exploration is considered to be complete

when the edge map is empty.

The choice of the next direction may depend on the proximity of an edge

point to the observer, as in our two-dimensional algorithm. Alternatively, the

observer may choose to fly pass the direction with the largest normal curvature.

Finally, we would like to remark that surface curvatures may not be accu-

rately computed near the horizons, and thus may not be used to estimate the

overshoot step size as was done in two dimensions. A parameter must be chosen

to determine the overshoot step size in three-dimensional exploration algorithm.

In Subsection 3.4.2, we provide an estimate by L.-T. Cheng on the number of

steps required to explore a single convex shape in three dimensions.

3.1.2 Statistics

Below, we compare the histograms of paths lengths and the number of steps

required to explore a sample environment using two different exploration algo-

rithms: Algorithm 3.1 and the random walk exploration. In the random strategy,

the next position of the observer is randomly chosen in the currently visible re-

gion. New horizons are being detected and stored similarly to Algorithm 3.1.

The exploration terminates when there are no more unexplored horizons left.

77

Figure 3.7 depicts the statistics of environment exploration simulations using

Algorithm 3.1 and that using a random walk strategy, which serve as control

experiments. The statistics is collected from 1000 independent runs. A sample

environment is generated by an arbitrary placement of twelve disjoint non-convex

obstacles in the 2 × 2 bounded region. One such environment configuration is

depicted in Figure 3.6. The initial position of the observer is chosen randomly,

however, is constrained to be outside of the obstacles.

Sample environment

x

y

−2 −1 0 1 2
−2

−1

0

1

2

Figure 3.6: Sample environment for statistics experiment.

Histograms of the total number of steps required to explore the environment

are presented in Figures 3.7 (a) and (b). One can see that Algorithm 3.1 requires

no more than 26 steps to explore the environment. Furthermore, the exploration

most frequently terminates in 19 or 20 steps. The minimum number of steps

required to explore this type of environment is 11.

In the simulations using the random walk strategy mentioned above, a limit

of 400 steps is imposed, regardless of whether the environment has been entirely

explored or not. The red portions of the histograms in Figures 3.7 (c) and (e)

correspond to the experiments terminated at 400 steps. One can see that about

a quarter of experiments terminate before the entire region has been explored.

78

10 15 20 25
0

100

200

300

Number of steps histogram:
approach nearest edge

(a)

0 100 200 300 400
0

100

200

300

Number of steps histogram:
random walk

(b)

0 200 400 600
0

50

100

Path length histogram:
approach nearest edge

(c)

0 200 400 600 800
0

50

100

Path length histogram:
random walk

(d)

Figure 3.7: Statistics experiment: (a) number of steps histogram for Algo-

rithm 3.1; (b) number of steps histogram for the random walk; (c) path length

histogram for Algorithm 3.1; (d) path length histogram for the random walk.

The simulation of random walk is stopped if the step count is greater than 400.

Path lengths histograms are depicted in Figures 3.7 (c) and (d). The path

lengths corresponding to Algorithm 3.1 range between 23 and 600, with most path

lengths between 100 and 200. The path lengths corresponding to the random walk

approach range between 42 and 800, peaking near 600. This peak corresponds

to the experiments which terminated after 400 steps before the environment has

been entirely explored.

Note that if the curvature changes its sign 2m times along the boundary of

79

a single star-shaped obstacle, the sufficient number of steps required to explore

the entire boundary is 3 +m. Here, 3 steps are needed to see the convex hull of

the object and a maximum of m steps would be enough to explore each concave

part. The complexity estimates for our algorithm are discussed in detail in Sub-

section 3.4.1. For now, we would like to remark that if each object in the region is

treated independently, the sufficient number of steps required to explore a region

with n disjoint star-shaped obstacles is n(3 +m). For our particular experiment

setup, this amounts to a maximum of 48 steps. Note that the Algorithm 3.1

allows to explore the entire environment in half as many steps.

Clearly, Algorithm 3.1 provides a superior strategy for environment explo-

ration comparing to the random walk approach. The statistics also provides an

estimate on path length and the number of steps required to explore the region

with twelve non-convex obstacles. In Subsection 3.4.1 we prove that our proposed

algorithm would always terminate in finite number of steps in any bounded region

containing an arbitrary finite number of disjoint convex obstacles.

3.1.3 Multiple Observers

The extension of the navigation algorithm for multiple observers is straightfor-

ward. Let {xj}nj=1 be a set of observing locations. Similarly to (2.3), define the

visibility indicator Ξj(y) := ρxj

(
ν(y)

)− |y− xj |, such that {Ξj ≥ 0} is the set of

visible regions and {Ξj < 0} is the set of invisible regions with respect to xj . In

addition, let Θj = {θj,1, . . . , θj,k} be the set of edges visible from the vantage point

xj . The Algorithm 3.2 below describes the strategy for environment exploration

with multiple observers.

Note that in step 6 of Algorithm 3.2 we exclude those edges corresponding to

xj , which are visible by another observer xi and thus do not need to be further ex-

80

Algorithm 3.2 Navigation in planar environment by multiple observers (based

on Algorithm 3.1)

1: N : number of observers

2: xj : vantage points outside the occluding objects, j = 1, ..., N

3: ρxj
: visibility function corresponding to xj

4: compute Ξ = maxj{Ξj}
5: find all the edges/horizons Θj corresponding to each observer xj

6: exclude those θj,k for which Ξ ≥ 0

7: if found an edge then

8: proceed as in Algorithm 3.1 for each individual observer

9: else {no edges found}
10: move observer at xj in the direction orthogonal to the direction of the

nearest xi to see new edges;

11: end if

12: proceed as in Algorithm 3.1 until no more new edges

81

plored. This step is illustrated in Figure 3.8. At the current stage of exploration,

x1

x2

θ1,1 θ1,2

θ1,3

θ1,4
θ1,5

θ1,6

θ2,1

θ2,2

θ2,3

θ2,4θ2,5

θ2,6

θ2,7

Figure 3.8: Joint visibility of two observers. Visible horizons, θ1,2, θ1,3, θ1,5, θ2,2,

θ2,5, and θ2,6, are removed from the list of unexplored horizons.

there are six horizons corresponding to the observer at x1 and seven horizons

corresponding to the observer at x2. However, not all of them need to be further

explored. For example, the edges θ1,2, θ1,3, and θ1,5, detected by x1 are visible

from x2 and hence, are removed from the list of unexplored edges. Similarly, we

remove the edges θ2,2, θ2,5, and θ2,6, corresponding to x2, since they are visible

from x1.

Before we proceed to discuss the examples, we would would like to remark on

different modes of execution of Algorithm 3.2. In concurrent mode all observers

process sensor data simultaneously. This way, the next vantage point of each ob-

server depends only on their previous positions. In sequential mode the observers

are ordered as a sequence, and only one may move at a time. In this situation, the

position of the next observer depends on new positions of the previous observers.

The ordering may change according to the decision to optimize joint visibility. In

82

some applications the concurrent mode would be more desirable, since this mode

allows for more autonomous maneuver for each observer. Of course, in prac-

tice, the usage of one mode or switching from one to the other depends on the

data communication model as well as the routing algorithm. In the experiments

in [LGH07] as well as the numerical simulations below, the concurrent mode has

been implemented.

The orthogonal move in step 10 is chosen to maximize the chance of “see-

ing” more new area. For example, the two observers in Figure 3.9 are initially

positioned so that the first observer at (−0.4,−0.4), which is closer to the ob-

stacle, does not see any new horizons that are invisible to the other observer at

(−0.8,−0.8), which is farther away. In this situation, the first observer makes a

move in the direction orthogonal to the second observer, according to step 4 of

Algorithm 3.2. This step is illustrated in Stage 2 of Figure 3.9. It takes three

steps by each of the two observers to explore the region with a single obstacle.

Such a result could still be achieved by a single observer. Thus, in a simple en-

vironment depicted in Figure 3.9, there is no advantage in the use of multiple

observers as opposed to a single observer. However, multiple observers prove to

be much more efficient in more complex environments, as can be seen from the

following examples.

In Figure 3.10 we have two observers in a more complex environment consist-

ing of three shapes with non-convex boundaries. Two observers explore such an

environment in four steps. Finally, in Figure 3.11, we have three observers in the

environment with four circles. This time it takes only three steps to complete

the exploration.

83

Stage 1 Stage 2

Stage 3

Figure 3.9: Stages of environment exploration with two observers, obstacle: a

circle. Dark circles – initial position’s, stars – final positions, white lines with

circles – observers’ path steps.

3.2 Experimental Results: Robotic Path Planning with

Limited Sensor Data

In this section we present an implementation of the path planning Algorithm 3.2,

which allows a group of autonomous vehicles equipped with range-sensors (ob-

servers) to explore an unknown bounded region and construct the map of the

explored environment. The results of this experiment were initially introduced

in [LGH07]. To test the robustness of our algorithm, we consider the problem

84

Stage 1 Stage 2

Stage 3 Stage 4

Figure 3.10: Stages of environment exploration with two observers, obstacles:

three shapes. Dark circles – initial position’s, stars – final positions, white lines

with circles – observers’ path steps.

of mapping an unknown environment using multiple mobile inexpensive sensors

where noise is an issue.

In [TLM03b], the Gap Navigation Tree based algorithm [TML07] was tested

on a Pioneer 2-DX platform equipped with two SICK laser range sensors, which

provide an omnidirectional view. The gap sensor implementation combined the

data of these two sensors. Simple test environments were chosen to be within the

sensor range. Wall-following capabilities were implemented to avoid collisions.

Another wall-following control algorithm is discussed in [ZOL04]. In this

85

Stage 1 Stage 2

Stage 3

Figure 3.11: Stages of environment exploration with three observers, obstacles:

four circles. Dark circles – initial position’s, stars – final positions, white lines

with circles – observers’ path steps.

work, curvature-based control algorithms from [ZJK03] are tested using real range

sensors. Curvature is computed from the range data obtained by SICK LMS-200

laser range sensors. Unlike range sensors used in our experiment, the range-finder

in [ZOL04] has a range of 10 m and relative error less then 0.8%.

Even with such a high precision, curvature estimates have significant inaccu-

racies in the absence of filtering. The noise in curvature computations is related

to the computation of derivatives of the range data which are prone to noise. To

deal with this problem, ENO interpolation is used in Algorithm 3.2, to obtain

86

a high order representation of the range data, so that derivatives can be easily

estimated away from discontinuities.

In another work [GCB06], a multiple vehicle cooperative control algorithm

is described. The model problem is extended from the classical Art Gallery

Problem [Urr00]. Here, each robot must find a location in a non-convex polygonal

environment, so that each point of the environment is visible to at least one

robot. In [GCB06], the visibility-based deployment problem is solved under the

assumption that all the vehicles are initially collocated.

3.2.1 Test-bed and Range Sensors

The results in this experiment were obtained using the second generation [LHH07]

of an economical micro car test-bed developed in [HCH06]. The purpose of the

test-bed is to design a cost effective platform to study cooperative control strate-

gies. The dimensions of the test-bed floor are 200× 160 cm. The second genera-

tion vehicles communicate at 30 Hz and possess onboard processing and onboard

range sensing. Tank-based vehicles with caterpillar-style drive are used to allow

for a zero turning radius. The tank has dimensions 7× 3.8× 4.6 cm and weighs

65 g with batteries. Such a tank is depicted in Figure 3.12 (a).

The position of the vehicles is tracked by overhead cameras. An off-board

computer is used for communication with the overhead cameras and for processing

sensor data from the vehicles. All the basic motion maneuver, sensor acquisition,

and communication routine is processed onboard by a 16 MHz Atmel (Atmega

8) microprocessor. The tank drives two belts independently, resulting in turns

of arbitrary radius, while moving forward and backward. One can obtain more

details about the test-bed and the vehicles in [LHH07].

Now we shall describe the range sensors used in our experiments. We work

87

with sensors manufactured by Sharp (model 2YOAO2 F58) of range 20–150 cm.

The sensors are equipped with a PSD onto which the light is focused. IR EM ra-

diation is emitted via LED at the front of the sensor. The wavelength range in use

is 850± 70 nm. The half-intensity angle of the device is 1.5◦. See Figure 3.12 (b)

for schematic sensor layout.

(a) (b)

Figure 3.12: (a) Tank with the attached sensor. (b) Schematic sensor layout and

ray patterns.

The sensor must be mounted so that the line between LED output and re-

ceiver is parallel to the ground (see Figure 3.12 (a)) to minimize the effect of

sensor sensitivities to the boundaries, i.e. sharp differences in texture or color

of the object. For simplicity, we have idealized our environment by covering the

occluding objects with white paper for uniformity in color, texture, and reflected

ambient light.

Here we describe the process of sensor data calibration. The sensor takes

readings at a rate 25 Hz. Sensor readings are produced by Analog Digital Con-

verter (ADC), which outputs values proportional to voltage output (V× 204.8).

In Figure 3.13 we plot values at given distances from the object measured along

88

the normal to the surface of an object.

In Figure 3.14 we show several range curves constructed from different angles

to the surface of the object. As one can see from Figure 3.14, the range calibra-

tion curves are shifted with respect to one another for different viewing angles

(upward, when the object is viewed from the right, downward, when object is

viewed from the left). This results in the same sensor output value for two differ-

ent sensor positions. For example, sensor output at a distance of 90 cm from the

object at an angle −85◦ to the normal to the surface is the same as the sensor

output at a distance of 45 cm at an angle +75◦ and yet the same as the output

at a distance of 60 cm along the normal to the surface.

20 40 60 80 100 120 140 160

100

200

300

400

500

Distance to reflective object (cm)

A
D

C
 o

ut
pu

t (
V

×2
04

.8
)

Figure 3.13: Sensor ADC output corresponding to distance to reflective object

measured along the normal to the surface; green vertical lines mark working

sensor range

If we take as a reference the range curve measured along the normal to the

surface of reflective object, we obtain inaccuracies when looking at an object

from a different angle. For example, one can see from Figure 3.15 the tilt in the

measured surface position with respect to the actual one.

The results may be improved by taking several measurements along a given

direction. This way we can find a matching range curve from which we can deduce

89

0 20 40 60 80 100 120 140 160 180
0

100

200

300

400

500

600

Distance to reflective object (cm)

A
D

C
 o

ut
pu

t (
V

×2
04

.8
)

85

+75
0

Figure 3.14: Sensor ADC output corresponding to distance to reflective object

measured along different angles to the normal to the surface; red marks corre-

spond to points on the range curves with similar sensor output.

the distance to the object and the incident angle. However, this solution is too

expensive and thus we did not implement it.

In addition, we note that the shift is only significant when looking at an object

from the right. Thus, a path-planning algorithm is modified with a bias towards

moving in a counter-clockwise manner. See Figure 3.15 for an example.

3.2.2 Results

We use two boxes as our sample obstacles for easy representation. The posi-

tions, shapes, and quantities of obstacles are unknowns. Two tank-based vehicles

equipped with the range sensors are initially positioned on the test-bed floor out-

side the obstacles. Each tank makes a 360◦ sweep to gather range data from its

surrounding environment. About 80 samples are taken in one sweep. Each sweep

takes less then a minute to complete. Then, a visibility map and next position of

each vehicle is computed off-board based on sensor output. The next observers

90

position is transmitted to the robots and they proceed to collect data from new

vantage point. This process is repeated until the whole region has been explored

as in Algorithm 3.2 above. In the example, exploration took two steps by each

observer.

The obtained range data is fit to the range calibration curve in Figure 3.13 via

cubic interpolation. Then the data is processed in the following way. Whenever

we get a hit which is outside of the range of the sensor or its x, y position is

outside the test-bed floor, we assign the value of “infinity”, which is set to be at

120 cm.

Joint visibility maps after each step are depicted in Figure 3.15. Actual obsta-

cle boundaries are represented by yellow lines on each figure. Red stars represent

positions of the robots after each step. The red lines mark the path of each

vehicle up until its current location. Dark regions are invisible at current step

and lighter regions are visible. Magenta circles represent shadow boundary ob-

tained via ENO high order interpolation of the obtained range data. Black circles

represent horizon points which will be approached in the next step.

The complete visibility map is depicted in Figure 3.16. It is constructed by

taking the union of visibility maps of all observers at all steps. From this map,

one can estimate the quantity, size, and locations of the obstacles. However, the

boundaries are not accurately represented due to low sensor accuracy and small

number of samples.

As was mentioned above, the results may be improved by correcting for the

angle of incidence of the IR beam. Overall, the quality of the results is satisfactory

taking into account hardware limitations.

91

20 40 60 80 100 120 140 160 180 200
x (cm)

0
0

20

40

60

80

100

120

140

160

y
(c

m
)

Initial sweep

20 40 60 80 100 120 140 160 180 200
x (cm)

0
0

20

40

60

80

100

120

140

160

y
(c

m
)

Second sweep

20 40 60 80 100 120 140 160 180 200
x (cm)

0
0

20

40

60

80

100

120

140

160
y

(c
m

)
Last sweep

Figure 3.15: Exploration of environment with two observers. Stars are the ob-

servers’ positions; small circles are the sensor output converted to range data; big

dark circles are the next edges to be approached; boxes are the actual obstacles’

outlines; dark regions are currently invisible; light regions are currently visible.

3.3 Postprocessing of the Path: Exposure Optimization

Once we have constructed a route to explore an unknown environment via Al-

gorithm 3.1, we can apply optimization techniques to post-process the obtained

path in order to obtain a more uniform illumination/exposure of the explored re-

gion. In what follows, let Ω be the region of exploration and D be the obstacles.

Then the region discovered along the path is Ω\D.

Let γ = {z0, z2, ..., zN} be the positions returned by the exploration algorithm.

92

y
(c

m
)

x (cm)
0 20 40 60 80 100 120 140 160 180 200

0

20

40

60

80

100

120

140

160

Figure 3.16: Map resulting from the environment exploration. Dark regions are

invisible and light regions are visible. Boxes are the actual outlines of obstacles.

Let φ(·; zk) be the visibility level set function corresponding to observer at zk:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φ(x; zk) > 0, if x is visible from zk,

φ(x; zk) < 0, if x is invisible from zk,

φ(x; zk) = 0, if x is on the shadow boundary with respect to zk.

(3.2)

Define the total illumination of a point x ∈ Ω\D due to γ by

I(x; γ) :=
N∑

k=0

H(φ(x; zk)), (3.3)

where H is the one-dimensional Heaviside function. Note that I records the

number of observers that can view x, and so 0 ≤ I(x; γ) ≤ N .

From a given set of observing locations {zk}, we seek a set of nearby {z∗k}, so

that in average points outside obstacles are viewed in a more uniform manner –

the deviation of illumination from a prescribed illumination level is small.

In certain applications, a higher priority may be placed on viewing a specific

region in space, while lower priority is placed on other regions. In our formulation

93

we simulate this effect through the use of weights. Let w : Ω → R+ be a

positive real-valued function defined over Ω. We relate the magnitude of w to

the importance of a given point x ∈ Ω to be visible, with larger magnitude

associated with greater importance. By including w in the measure used in

spatial integration, we attach importance weights to the visibility of space.

More precisely, we formulate the variational problem as follows:

Problem 3.1. Given a positive constant C and a weight function w(x). Find

γ ∈ R2N that minimizes

E(γ;C) =
1

2

N−1∑
k=0

|zk+1 − zk|2

+
λ

2

∫
Ω\D

(I (x; γ)− C)2w(x)dx

+ μ

N−1∑
k=0

(|zk+1 − zk| − ρzk
(θ)) . (3.4)

The first term in the above functional seeks to stabilize the problem, by

penalizing against fractal or space filling paths. In the meantime, the last term

in (3.4) prevents the continuous path connecting the discrete locations in γ from

accidentally crossing obstacles’ boundary. If θ is the direction of zk+1 when

looking out of zk, boundary non-crossing condition is equivalent to keeping |zk+1−
zk| < ρ(θ) for all k. Coefficients λ and μ serve as parameters for the penalty terms.

Using summation by parts and fixing z0 and zN , we arrive at the following

Euler-Lagrange equation:

żk = (zk+1 − 2zk + zk−1)

− λ

∫
Ω\D

(
N∑

j=0

H (φ(x; zj))− C
)
δ (φ(x; zk))∇zk

φ(x; zk)w(x)dx

− μ

[(
zk+1 − zk

|zk+1 − zk| −
zk − zk−1

|zk − zk−1|
)
−∇zk

ρ(θ)

]
, 1 ≤ k ≤ N − 1. (3.5)

94

Using the path γ0 constructed via Algorithm 3.1 as an initial guess, the equation

(3.5) can be solved by simple integration techniques.

Unless stated otherwise, in the following discussion, we take w ≡ 1. In Fig-

ure 3.17 (a) we have two circular objects. The dashed green line segments joint

the four vantage points forming initial exploration path γ0 obtained via Algo-

rithm 3.1. This path is then deformed using the flow (3.5), resulting in a new

path γ represented in solid red. To maximize the total illumination of the re-

gion we set constant C = 15, so that the desired exposure is always greater then

maximum possible C = 4. The flow eventually reaches a steady state. In Fig-

ure 3.17 (b) we plot the ratio
∫

Ω\D I(x; γ; t)dx/
∫

Ω\D I(x; γ; 0)dx of total exposure

at time t to the initial total exposure. One can see that the total increase in the

exposure for this simple geometry is only roughly 1%.

x

y

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(a)

0 0.05 0.1 0.15
1

1.005

1.01

1.015

t

∫I(
⋅,t

)/
∫I(

⋅,0
)

(b)

Figure 3.17: Path postprocessing corresponding to Problem 3.1, obstacles

– two circles: (a) initial path (dashed) and optimized path (solid); (b)∫
Ω\D I(x; γ; t)dx/

∫
Ω\D I(x; γ; 0)dx. Here C = 15, λ = 0.1, μ = 1.

In contrast to the previous example, the gain in exposure in our second exper-

95

iment is around 23%, see Figure 3.18 (b). Here, the region is constructed from a

slice of Grand Canyon elevation data, which has a much more complex geomet-

rical structure comparing to the example with two circles. We further increased

the complexity of the Grand Canyon terrain by adding disk-shaped holes to the

interior of the explored region. The initial and optimized paths are depicted in

Figure 3.18 (a). The original exploration path (dashed green) branches out to

explore the regions occluded by the circles. Note that the optimized path (solid

red) is shorter than the original and has fewer kinks. Here, we again choose the

desired exposure constant C = 20.

x

y

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(a)

0 0.05 0.1 0.15
1

1.05

1.1

1.15

1.2

1.25

t

∫I(
⋅,t

)/
∫I(

⋅,0
)

(b)

Figure 3.18: Path postprocessing corresponding to Problem 3.1, obstacles –

Grand Canyon terrain: (a) initial path (dashed) and optimized path (solid);

(b)
∫

Ω\D I(x; γ; t)dx/
∫

Ω\D I(x; γ; 0)dx. Here C = 20, λ = 0.1, μ = 1.

Figure 3.19 shows the evolution of the path along the Grand Canyon terrain

and the resulting exposure of the region where Gaussian importance weights are

centered at (0.9, 0) and (−0.5, 0.25). We see an increase of about 30% in total

illumination of the region in Figure 3.19 (b). The resulting optimized path (solid

96

red) in Figure 3.19 (a) is shorter than the original path (dashed green), with

the observers’ positions concentrated near the regions of increased importance

(magenta diamonds).

x

y

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(a)

0 0.02 0.04 0.06 0.08
1

1.1

1.2

1.3

1.4

t

∫I(
⋅,t

)/
∫I(

⋅,0
)

(b)

Figure 3.19: Path postprocessing corresponding to Problem 3.1, obsta-

cles – Grand Canyon terrain, the weights are centered at (0.9, 0) and

(−0.5, 0.25) (diamonds); (a) initial path (dashed) and optimized path (solid);

(b)
∫

Ω\D I(x; γ; t)dx/
∫

Ω\D I(x; γ; 0)dx. Here C = 20, λ = 0.1, μ = 1.

It may be desirable in some applications to increase the number of observing

locations along the path. Our goal is to arrange the new observers in an optimal

way with respect to the total illumination of the region. Starting with an initial

path γ, obtained by our algorithm, we can insert points along the line segments

connecting zk and zk+1 for each k to obtain a new set γ̃ = {Z1, Z2, ..., ZM},
such that γ ⊂ γ̃. Given a parameter ds > 0, we optimize the positions of thus

obtained vantage points with an additional constraint |Zk+1 − Zk| = ds. Precise

variational formulation of the problem is provided below:

Problem 3.2. Given {zk}Nk=1, a constant C > 0, and a parameter ds > 0, find

97

γ̃ ∈ R2M that minimizes

E(γ̃;C) =
1

2

M−1∑
k=1

(|Zk+1 − Zk| − ds)2

+
λ

2

∫
Ω\D

(I (x; γ̃)− C)2 dx

+ μ
M−1∑
k=1

(|Zk+1 − Zk| − ρZk
(θ)) . (3.6)

Similar to Problem 3.1, the first term in the above functional acts as a regu-

larizer of the path. By setting ds to be the actual arc length along the path, we

additionally enforce the uniform distribution of the observing locations along the

path. The Euler-Lagrange equation corresponding to Problem 3.2 is

Żk =

(
Zk+1 − 2Zk + Zk−1 + ds

[
Zk − Zk−1

|Zk − Zk−1| −
Zk+1 − Zk

|Zk+1 − Zk|
])

− λ

∫
Ω\D

(
M∑

j=1

H (φ (x;Zj))− C
)
δ (φ (x;Zk))∇Zk

φ (x;Zk) dx

− μ

[(
Zk+1 − Zk

|Zk+1 − Zk| −
Zk − Zk−1

|Zk − Zk−1|
)
−∇Zk

ρ(θ)

]
, 2 ≤ k ≤M − 1.(3.7)

In Figures 3.20 and 3.21 we present the results of exploration according to

Problem 3.2. In the case of two circles, the path expands away from the obstacles’

boundaries, which provides better illumination of the region. The total gain in

illumination as a result of the flow (3.7) is about 7%. The path, in the case of

Grand Canyon, clearly smoothes out and contracts as a result of postprocessing,

as can be seen from Figure 3.21 (a). Note that in order to have a continuous

path, the observer has to backtrack in places where the path branches out. The

exposure of the region keeps increasing with the total gain slightly under 15%.

Remark that more complex environments e.g. Grand Canyon, allow for greater

improvement in illumination through postprocessing of the path as opposed to

simpler environments like the one with two circles.

98

Other types of visibility optimization problems are discussed in [CT05].

x

y

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(a)

0 0.5 1 1.5 2 2.5
1

1.02

1.04

1.06

1.08

t

∫I(
⋅,t

)/
∫I(

⋅,0
)

(b)

Figure 3.20: Path postprocessing corresponding to Problem 3.2, obstacles –

two circles: (a) initial path (dashed), four original observers’ locations (trian-

gles), and optimized path (solid); (b)
∫

Ω\D I(x; γ; t)dx/
∫
Ω\D I(x; γ; 0)dx. Here

C = 100, λ = 0.001, μ = 1, ds = 0.01, total number of steps along the path is 26.

3.4 Complexity Estimates

Below, we provide the convergence analysis of the exploration Algorithm 3.1

in some canonical types of environments. We begin the Subsection 3.4.1 with

the discussion of the complexity of the algorithm in simple environments with a

single strictly convex or star-shaped obstacle. We proceed to demonstrate the

convergence of the Algorithm 3.1 in an bounded region containing a finite number

of non-overlapping convex obstacles. Subsection 3.4.2 contains the result by L.-T.

Cheng, showing that four steps would be enough to fully explore the surface of a

single convex object in three dimensions.

99

x

y

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(a)

0 0.5 1 1.5 2 2.5
1

1.05

1.1

1.15

t

∫I(
⋅,t

)/
∫I(

⋅,0
)

(b)

Figure 3.21: Path postprocessing corresponding to Problem 3.2, obstacles –

Grand Canyon terrain: (a) initial path (dashed), original observers’ locations

(triangles), and optimized path (solid); (b)
∫

Ω\D I(x; γ; t)dx/
∫

Ω\D I(x; γ; 0)dx.

Here C = 150, λ = 0.001, μ = 1, ds = 0.01, total number of steps along the path

is 71.

3.4.1 Two-dimensional Case

Let us begin by considering a single obstacle Ω bounded by a simple C2 regular

convex curve Γ.

Proposition 3.3. The Gauss map S : Γ �→ S1 is monotone.

Proof. Note that a single closed C2 regular curve is convex if and only if its

signed curvature κ does not change sign, in particular, if it is never zero. But

the curvature κ equals the magnitude of the derivative of the tangent vector

parameterized by the arc length of a given curve. Since the normal vector to a

curve is just a tangent vector rotated by π/2, we require the angle of the normal

vector to be monotone along the curve, otherwise κ would change its sign. Thus,

100

the Gauss map S is monotone.

Next, we are going to use the monotonicity of the Gauss Map to construct a

path for the observer to explore the boundary Γ of the obstacle Ω.

Claim 3.4. At least three steps are required to explore a simply connected region

containing a single convex obstacle.

Proof. Let O be the center of mass of Ω. Since the Gauss map S : Γ �→ S1 is

monotone, “seeing” Γ is equivalent to seeing the boundary of a disk C centered

at O that encloses Ω. Let z0, z1, and z2 be the vertices of a triangle that encloses

C and is tangent to C at e0, e1, and e2 (Figure 3.22). The observer placed at z0 is

able to see the portion of the boundary of C between e0 and e1. Similarly, from z1

the observer is able to see an arc between e1 and e2, and from z2, the remaining

portion of the boundary of C, and, correspondingly, Γ. Since the observer’s path

must be finite, we exclude the case of exploring the entire boundary in just two

steps.

O

C

Ω

z1

z0

z2

e0

e1

e2

Figure 3.22: Constructing a three-step path around a single convex obstacle.

101

If we further assume that the observer may not approach the obstacle nearer

than λ > 0, and may not depart from the obstacle further than η, the number of

steps required to explore Γ is ⌊
π

cos−1 r+λ
r+η

⌋
.

Here, r is the radius of the smallest disk enclosing Ω, centered at the center of

mass of Ω as in Figure 3.23.

z0

z1

z2

z3
r

z4

λ

η

O

Figure 3.23: Constructing a path around a convex obstacle under restrictions.

Using the above results, we can also estimate the number of steps required to

explore the boundary of a single star-shaped obstacle.

Claim 3.5. Let Ω be a star-shaped obstacle bounded by a simple curve Γ. Assume

the curvature κ of Γ changes its sign 2m times. Then 3 + m steps would be

sufficient to fully explore the environment containing a single obstacle Ω.

Proof. Let the obstacle Ω be bounded by Γ = Γ0 ∪ Γ1 ∪ Γ2 ∪ Γ3, as depicted in

Figure 3.24. To begin with, assume the signed curvature κ of Γ changes its sign

twice at points Q1 and Q2.

102

1Γ

Γ3

Γ2 Ω

Γ0

R1

R2

Q1

Q2D
P

z0

z2z1

Figure 3.24: Constructing a path around a star-shaped obstacle.

Let H be the convex hull of Γ with ∂H = Γ0 ∪ R1R2. Then, according

to Claim 3.4, three points z0, z1, and z2 are enough to see the entire boundary

∂H . Next, construct a convex region D by extending the rays from Q1 and Q2

tangent to Γ2, until hit the boundary of the region (see Figure 3.24). With this

construction D̄ ∩ Ω̄ = Γ2. Furthermore, the concave portion of Γ is visible from

any point P in D. Thus at most four points z0, z1, z2 and P are sufficient to

explore the entire Γ. Note that if one of the points {zi}, i = 0, 1, 2 is in D, then

only three points would be sufficient.

If the curvature changes its sign 2m times along Γ, three steps are still required

to explore the convex hull of Γ, and at most m additional steps are required to

explore each concave portion of Γ. Thus the total number of steps required to

explore the boundary of Ω is 3 +m.

Next, consider the scenario where the environment contains a finite number

of disjoint, closed, strictly convex sets as in Figure 3.25. Denote the convex

components by {Ωj}Mj=1. Let Cj be the smallest disk enclosing Ωj . Note that

according to Claim 3.4, seeing the boundary of Ωj is equivalent to seeing the

103

boundary of Cj.

Furthermore, let C ′
j be the smallest disk encircling an equilateral triangle that

contains Cj and is tangent to Cj at three points. If rj is the radius of Cj and r′j

is the radius of C ′
j, then the length of a side of the triangle is Lj = 2

√
3rj =

√
r′j .

Assume that C ′
j ∩ C ′

k = ∅ for all j and k.

Finally, let R = maxj,k dist{C ′
j, C

′
k} be the largest distance between any two

disks in {Cj}Mj=1. Since the number of obstacles is finite, all the disks must be

contained in some bounded domain BR.

Ω

Ω

Ω

C’ C’
j

k

Cj

Ck

C’i

Ci

Lj

Lk

Li

j

k

i

Figure 3.25: Sample environment with closed, convex, disjoint obstacles.

The following result is essential in proving convergence of the exploration

Algorithm 3.1 in a sample environment described above.

Proposition 3.6. Start at z0 on some C ′
1 ⊃ C1 and overshoot the horizon e1

by L/2 to arrive at z1. Then will explore the entire C1, i.e. the remaining arc

between the horizons e0 and e2 on Figure 3.26 in finite number of steps.

Proof. From its current position z1 the observer may

104

z0 z1

e0 e2

C

C’

1

1

e1

Figure 3.26: Setup for Proposition 3.6. A bold arc is the unexplored portion of

C1.

1. Proceed to see e2, so that z2 ∈ C ′
1 and all of C1 has been explored in just

three steps: z0, z1, and z2.

2. Proceed to some e3 ∈ C2, such that ‖z1 − e3‖ ≤ ‖z1 − e2‖. In this case z2

is on some C ′
2 �= C ′

1.

In case 2 the following is true:

Claim 3.7. If there exists k ≥ 1, such that zk+1 ∈ C ′
1 then C1 is entirely seen

from z0, z1, zk+1/2, and zk+1.

Proof. If zk+1 ∈ C ′
1, then there is a horizon ek ∈ (e0, e2) on C1, which is the

nearest to zk ∈ C ′
j for some j. Let zk+1/2 ∈ C ′

1 be the point of intersection of

the ray (zk, zk+1) and C ′
1. Thus, the arc eke2 is completely visible from zk+1.

Hence, the entire arc of C1 between e0 and e2 has been explored. The proof of

the Claim 3.7 is now complete.

Suppose towards a contradiction that the observer does not return to C1 at

all. Since the collection {Ck} is finite, the observer must be then trapped in a

loop, i.e. there exist Cj and Ck such that Cj gets approached from Ck infinitely

many times. But this is impossible according to the following claim.

105

Claim 3.8. A disk Cj may be approached from another disk Ck at most twice.

Proof. Note that given any two disks, there exist four bitangents: �1, �2 and

symmetric �′1 and �′2 as in Figure 3.27. We will only consider �1 and �2 below

l1

l2

l ’2

l ‘1

Figure 3.27: Four bitangents to two disks.

unless we indicate otherwise. The two disks Cj and Ck are neighbors, if there

is no other obstacle in the region bounded by arcs of C ′
j and C ′

k between the

outermost bitangents to C ′
j and C ′

k (�1 and �′1 in Figure 3.27).

If there exists C ′
k �= C ′

j such that Cj and Ck are neighbors, then there is a ray

from the center of C ′
k tangent to Cj and orthogonal to some θ, as in Figure 3.28.

Then C ′
k tangents the rays orthogonal to θ ± δθ. By construction, it is obvious

that all possible return angles on Cj from zm ∈ C ′
k are within θ ± δθ, i.e. the

observer may only approach horizons on Cj that lie on an arc of size 2δθ. Refer

to Figure 3.28 for an illustration.

Now, let zm+1/2 be the point of intersection of the ray zmzm+1 and the disk

C ′
j. Then let θ1 be the angle visible from zm+1/2 ∈ C ′

j and θ2 be the angle visible

106

2

C j

C k

C k‘

1
2

C j‘

z
m

z
m+1

e
m

z
m+1

2

θ
θ

θ

δθ

Figure 3.28: Portions of Cj visible from zm+ 1
2
∈ C ′

j and zm+1 ∈ C ′
j.

from zm+1 ∈ C ′
j depicted in Figure 3.28. Note that θ1 = θ2 = 2π/3. Hence, the

arc corresponding to the angle of 2δθ is entirely visible from zm+1/2 and zm+1.

Thus an observer is able to see the entire arc of Cj , containing all possible

horizons that could be detected from C ′
k, in a single approach. The symmetri-

cal case with another pair of bitangents provides the possibility for the second

approach from C ′
k. Hence, an observer may only approach Cj from C ′

k at most

twice. This completes the proof of Claim 3.8.

We have shown that it is not possible for an observer to approach a single disk

infinitely many times. Therefore, the observer must return to the initial disk C1 in

finite number of steps. Finally, Claim 3.7 implies the result of Proposition 3.6.

In the final step of the convergence proof, we need to show that the observer

107

has indeed explored the entire environment at the termination of the path.

Proposition 3.9. The entire environment BR has been explored at the termi-

nation of the exploration algorithm. In other words, the observer has seen the

boundary of every obstacle at the termination.

Proof. The proof follows from the two claims below.

Claim 3.10. During the exploration of Cj, the observer must detect at least one

horizon/edge on every neighbor of Cj.

Proof. By the definition of neighbors, there are no other objects obstructing the

neighbors from each other. Assume, without loss of generality, that the observer

visits vantage points z0 and z1 on C ′
j during the exploration of Cj. Consider

the rays �1, �2, and �3, which are tangent to Cj at the horizon points e0, e1, and

e2, as in Figure 3.29. Then every neighbor of Cj must lie in one of the half-

z0 z1

e0 e2

C

C’

j

j

e1

l1

l2

l3

H1

H2

H3

Figure 3.29: Detecting horizons on the neighbors of Cj .

108

planes H1, H2, H3, or their intersections. The observer at z0 is able to see all of

H1 ∪ H2, whereas H2 ∪ H3 is visible from z1. Therefore, the observer is able to

see at least one horizon/edge on each neighbor from just z0 and z1. This proves

Claim 3.10.

Once a horizon has been detected on a disk Cj, the entire Cj will be explored

entirely later on, according to Proposition 3.6. Now we shell prove that every

disk in the domain would have a horizon detected on it during the exploration.

Claim 3.11. Every disk in the given configuration will have at least one horizon

labeled on it at some stage of the exploration.

Proof. The following proof is by induction. Suppose we start at some disk C1.

Then all the neighbors {C1j
}Mj=1 of C1 will have at least one edge marked on them

according to Claim 3.10. Suppose at some stage of the exploration, all the disks

have at least one edge labeled on them but Ck. In the given configuration, Ck

has at least one neighbor Ck1 . By the induction assumption, Ck1 also has some

horizons labeled on it. Then, at some stage of the algorithm, the observer must

come to explore Ck1 . At that time it will label an edge on Ck, since Ck and Ck1

are neighbors. Thus we have proven Claim 3.11.

It follows from the Claims 3.10 and 3.11 that the entire environment will

be explored at the termination of the algorithm. This completes the proof of

Proposition 3.9.

Propositions 3.6 and 3.9 imply that the Algorithm 3.1 will terminate in finitely

many steps. At the termination of the path, the entire environment, consisting

of a finite number non-overlapping, closed, strictly convex sets, will be mapped.

109

Although the exact number of steps may not be estimated for a given config-

uration, a crude upper bound may be obtained by considering each obstacle in

the environment individually and applying the results of Claim 3.4, for a single

convex obstacle and Claim 3.5 for a single star-shaped obstacle. As has been sta-

tistically demonstrated in Subsection 3.1.2, the actual number of steps required

to explore an environment with closed disjoint obstacles is much smaller than

thus obtained upper bound.

3.4.2 Three-dimensional Case

Consider a closed, compact, convex, smooth hypersurface M with interior Ω.

Below we are going to state the proof by L.-T. Cheng that four steps are enough

to explore the region in three dimensions that contains an obstacle bounded by

M .

Notation 3.12. We say that x ∈ R3 is visible to x0 ∈ R3 if tx + (1− t)x0 �∈ Ω

for any t ∈ [0, 1].

Let x1, x2, x3, x4 ∈ R3 such that M is contained in the convex hull H of

{x1, x2, x3, x4}.

Proposition 3.13. Given x ∈M , x is visible to xi for some i ∈ {1, 2, 3, 4}.

The proof of Proposition 3.13 is postponed until the end of current subsection.

Claim 3.14. Let Ω0 ⊆ R3 be a convex set and P0 a hyperplane. Then there exists

A0, B0 ⊂ Ω0, disjoint and convex, such that Ω0\P0 = A0 ∪ B0.

Proof of Claim 3.14. There exists n ∈ R3, such that P0 = {x ∈ R3|n · x = 0}.
Let A0 = {x ∈ Ω0|n · x > 0} and B0 = {x ∈ Ω0|n · x < 0}. Trivially, A0 ∩B0 = ∅
and Ω0\P0 = A0 ∪B0.

110

If A0 = ∅, then A0 is convex. Otherwise, let x, y ∈ A0 and f : [0, 1] �→ R with

f(t) = n · (ty + (1− t)x). Then

f(t) = n · (ty + (1− t)x)
= (n · y − n · x) t+ n · x,

so f is monotone. Thus f(0) > 0 and f(1) > 0 implies f(t) > 0, or n ·
(ty + (1− t)x) > 0 for t ∈ [0, 1]. Since x, y ∈ A0 ⊆ Ω0 and Ω0 is convex, we

also know ty + (1 − t)x ∈ Ω0 for all t ∈ [0, 1]. Thus ty + (1 − t)x ∈ A0 for all

t ∈ [0, 1], which implies A0 is convex.

Similarly, we show B0 is convex. Therefore, Ω0\P0 = A0 ∪ B0 where A0, B0

are disjoint and convex. This concludes the proof of Claim 3.14.

Henceforth, we write P = {x ∈ R3|n · x = 0} and let A = {x ∈ R3|n · x > 0}
and B = {x ∈ R3|n · x < 0}. So we know A,B ⊆ Ω disjoint and convex, such

that Ω\P = A ∪ B. Furthermore, let C = H ∩ A and D = H ∩ B. So we know

that C,D ⊆ H are disjoint and convex, such that H\P = C ∪D.

Claim 3.15. Ω ⊆ A or Ω ⊆ B.

Proof of Claim 3.15. This follows from the convexity of Ω.

Claim 3.16. The sets A ∪ P , B ∪ P , C ∪ (P ∩H), and D ∪ (P ∩H) are all

convex.

Proof of Claim 3.16. Given x, y ∈ R3, consider f : [0, 1] �→ R with f(t) = n ·
(ty + (1− t)x). Note that f is monotone.

If x, y ∈ A ∪ P , then f(0), f(1) ≥ 0, so f(t) ≥ 0 for all t ∈ [0, 1]. Thus

ty + (1− t)x ∈ A ∪ P for all t ∈ [0, 1].

111

If x, y ∈ B ∪ P , then f(0), f(1) ≤ 0, so f(t) ≤ 0 for all t ∈ [0, 1]. Thus

ty + (1− t)x ∈ B ∪ P for all t ∈ [0, 1].

If x, y ∈ C ∪ (P ∩H), then f(0), f(1) ≥ 0, so f(t) ≥ 0 for all t ∈ [0, 1]. By

convexity of H , ty+(1−t)x ∈ H for all t ∈ [0, 1]. Thus ty+(1−t)x ∈ C∪(P ∩H)

for all t ∈ [0, 1].

Finally, if x, y ∈ D∪(P ∩H), then f(0), f(1) ≤ 0, so f(t) ≤ 0 for all t ∈ [0, 1].

By convexity of H , ty + (1 − t)x ∈ H for all t ∈ [0, 1]. Thus ty + (1 − t)x ∈
D ∪ (P ∩H) for all t ∈ [0, 1].

Therefore, A ∪ P , B ∪ P , C ∪ (P ∩H), and D ∪ (P ∩H) are all convex, and

the proof of Claim 3.16 is complete.

Claim 3.17. If Ω ⊆ A, implying x0 �∈ A and if Ω ⊆ B, implying x0 �∈ B, then x

is visible to x0.

Proof of Claim 3.17. If Ω ⊆ A, then by the hypothesis, x0 �∈ A. This implies

x0 ∈ B ∪ P . The convexity of B ∪ P implies tx + (1 − t)x0 ∈ B ∪ P for all

t ∈ [0, 1], so tx+ (1− t)x0 �∈ Ω for all t ∈ [0, 1]. Therefore, x is visible to x0.

Similarly, if Ω ⊆ B, then by the hypothesis, x0 �∈ B and x is visible to x0.

Thus, when the hypothesis is satisfied, x is visible to x0. The proof of Claim 3.17

is complete.

Claim 3.18. If there exist j, k ∈ {1, 2, 3, 4}, such that xj �∈ A and xk �∈ B then

x is visible to xj or xk.

Proof of Claim 3.18. Suppose there exist j, k ∈ {1, 2, 3, 4}, such that xj �∈ A and

xk �∈ B. Then Ω ⊆ A implies x is visible to xk. Similarly, Ω ⊆ B implies x is

visible to xj. Thus, in all cases, x is visible to either xj or xk.

Claim 3.19. There exist j, k ∈ {1, 2, 3, 4}, such that xj �∈ C and xk �∈ D.

112

Proof of Claim 3.19. Suppose xj ∈ C for all j ∈ {1, 2, 3, 4}. Since C ⊆ H , then

C = H , since H is the convex hull of {x1, x2, x3, x4}. But this contradicts the

fact that P ∩ H �= ∅. Similar argument works for set D. Thus, there exist

j, k ∈ {1, 2, 3, 4}, such that xj �∈ C and xk �∈ D.

Finally, we use the above claims to prove the Proposition 3.13.

Proof of Proposition 3.13. There exist j, k ∈ {1, 2, 3, 4}, such that xj �∈ C and

xk �∈ D. This implies xj �∈ A and xk �∈ B. Thus, given x ∈ M , x is visible to

either xj or xk.

We have demonstrated that four points are sufficient to explore the entire

surface of a convex obstacle Ω in a three-dimensional space.

113

CHAPTER 4

Summary and Future Work

In Chapter 1 we introduce the problem of visibility and its applications. We

present an extensive survey of existing techniques for visibility representation

based on various fields of application ranging from computer graphics and vision

to robotics and computational geometry. In particular, the combinatorial and

computational geometry approach has been emphasized for its great value and

influence on most modern visibility-based research. Another technique that has

recently gained popularity is the implicit level set representation of [TCO04],

which, among other benefits, offers a framework for solution of problems related

to optimal navigation planning [CT05].

Chapter 2 of the thesis deals with visibility of point clouds and visible surface

reconstruction – a problem that has gained increasing popularity during the past

decade. We propose a novel algorithm for reconstructing visibility from point

clouds, which is based on the causality condition of visibility: if a point is oc-

cluded, then all other points farther away from the vantage point along the same

line of sight are also occluded. The main steps of the proposed algorithm are

projection of the point cloud onto a unit sphere centered at the vantage point,

filtering out the visible data points, and interpolation of the visible data. We uti-

lize essentially non-oscillatory (ENO) interpolation [HEO87] to obtain a piecewise

high-order reconstruction of the occluding surfaces. Such a representation allows

computation of derivatives and other useful geometric quantities on the occlud-

114

ing surfaces. Image-processing techniques may be incorporated to process noisy

point clouds. Moreover, the formulation can be easily extended to the case of

bending ray-fields. Combining reconstructions from several vantage points into a

single piecewise-smooth surface is made possible via a straightforward conversion

to the implicit level set visibility representation. Additionally, we provide the

error analysis of the resulting interpolant. Finally, the differential equations for

the dynamics of the visibility region is derived.

While the proposed algorithm is straight forward in two spacial dimensions,

its extension to three-dimensional environments is complicated. The problem

arises on the last step of the algorithm. The projected data points need to be

interpolated to obtain a visible surface reconstruction. Since the data does not lie

on any grid, a standard dimension-by-dimension rectangular grid interpolation

technique may not be applied right away. One possible strategy would be to

work on triangular grid. Instead, we propose an ENO-based preprocessing step.

It allows us to map the filtered data onto a coarse rectangular grid on S2. Then,

a dimension-by-dimension high-order ENO interpolation can be applied to obtain

a piecewise smooth representation of the occluding surface in three dimensions.

Again, conversion to a level set formulation allows a simple representation of the

union of surfaces visible from multiple viewpoints.

Chapter 3 addresses the application of the visibility of point clouds to map-

ping of unknown environments. We propose a navigation algorithm that allows

autonomous observer(s), equipped with a range-finding device, to explore an un-

known bounded region with obstacles. To ensure that the algorithm could be

utilized in real-life applications we require the observer’s path to be continuous

and consist of a finite number of discrete steps. The work of S. LaValle, B. To-

var, et al. [TML07] served as an inspiration for our algorithm. Similarly to

115

[TML07, TGL05], the key idea behind our approach is to navigate towards one

of the unexplored horizons, i.e. terminating points on the occluding surfaces that

signal a connected region of the environment that is occluded from the observer

at its current position. Unlike the strategy of [TML07], our algorithm utilizes

the visibility map of previously uncovered environment in the decision-making

process. The performance of our algorithm has been evaluated in [LGH07] on an

economical cooperative control tank-based platform, using multiple mobile inex-

pensive sensors where noise is an issue. Once a path through the environment has

been constructed, we apply post-processing optimization techniques to obtain a

more uniform exposure of the explored region along the path. More examples of

visibility optimization are provided in [CT05].

We use statistical analysis to estimate the number of steps required to explore

a bounded region with a finite number of disjoint obstacles. A convergence proof

of our algorithm in sample bounded regions with a finite number of disjoint convex

obstacles is provided. In particular, we show that the algorithm would always

terminate in finite time, and all the obstacles’ boundaries would be seen at its

termination. Additionally, we prove simple estimates on the number of steps

required to explore a region with a single convex or star-shaped obstacle. These

bounds may be used to obtain an upper bound on the number of steps required

to explore more complex environments with multiple non-overlapping obstacles.

The exploration algorithm could be extended to three dimensions as well.

However, no satisfactory computational results have been obtained at the mo-

ment. Current thesis contains a proof by L.-T. Cheng, demonstrating that a

single convex obstacle in a three-dimensional space can be explored in at least

four steps. However, an thorough theoretical analysis of the algorithm in three

dimensions presents a challenging problem for further study.

116

Another difficult task, not addressed by the dissertation, is that of finding

a hyperbolic or diffusive point source in an unknown environment. Consider

a bounded domain D ⊂ R2 and an obstacle Ω � D. Let s0 and x0 denote

respectively the coordinates of the point-source signal and the observer. Assume

the signal is emitted in all directions, and the observer is capable to survey all

directions from its present location. Let φx0 denote the visibility function from

the observing location x0, such that {φx0 > 0} is the set of points visible from

x0.

For the wave source, let w(x) = w(x; s0,Ω) denote the wave field of the signal

that is emitted from s0. Assume it satisfies the Helmholtz equation

−c2(x)Δw = k2w,w(s0) = w0 and x ∈ D\Ω, (4.1)

with the wave speed c(x) = s0χD\Ω (meaning the signal cannot penetrate Ω) and

0 < k � 1.

For the diffusive source:

−Δw = δx0 , w|∂Ω = 0 and x ∈ D\Ω. (4.2)

We further assume that the observer is capable of sensing both the strength of

the signal w and the directional derivatives ∇w · θ, for all θ ∈ S1. We would like

to solve the general type of problems, which may resemble the standard imaging

problems:

Problem 4.1. Find the shortest path x0(t) ∈ D\Ω from x0(0) to see s0 for the

following cases with Helmholtz source for k � 1 or the diffusive source:

1. Ω is known and the location of s0 is known. (This problem is solved in

[CT05], where Ω is given by a level set function.)

117

2. Ω is sampled by a point cloud from the observing location and s0 is known.

3. Ω is known, s0 is unknown, but w(x0) and w(x0) · θ are available.

4. Ω is sampled by a point cloud from the observing location, s0 is unknown,

but w(x0) and w(x0) · θ are available.

Remark that in the first two subproblems we do not need to use the informa-

tion we get from w, since the location of the source s0 is known.

118

References

[ABC03] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T.
Silva. “Computing and rendering point set surfaces.” IEEE Trans.
Vis.& Graph., 9(1):3–15, 2003.

[AK02] G. Aubert and P. Kornprobst. Mathematical problems in image pro-
cessing. Partial differential equations and the calculus of variations.
Springer, 2002.

[AS96] P. K. Agarwal and M. Sharir. “Ray shooting amidst convex polyhe-
dra and polyhedral terrains in three dimensions.” SIAM J. Comp.,
25(1):100–116, 1996.

[AS07] J. Andrews and J. A. Sethian. “Fast marching methods for the contin-
uous traveling salesman problem.” In Proc. of the National Academy
of Sciences of the United States of America (PNAS), volume 104, pp.
1118–1123, 2007.

[BD90] K. W. Bowyer and C. R. Dyer. “Aspect graphs: An introduction and
survey of recent results.” Int. J. of Imaging Systems and Technology,
2(4):315–328, 1990.

[BEF96] J. Borenstein, B. Everett, and L. Feng. Navigating mobile robots:
Systems and techniques. A. K. Peters Ltd., Wellesley, MA, 1996.

[Bet01] M. D. Betterton. “Theory of structure formation in snowfields mo-
tivated by penitentes, suncups, and dirt cones.” Phys. Rev. E,
63(5):056129, 2001.

[BR94] O. P. Bruno and F. Reitich. “A new approach to the solution of
problems of scattering by bounded obstacles.” In SPIE, pp. 2192–
2028, 1994.

[Can88] J. F. Canny. The complexity of robot motion planning. MIT Press,
1988.

[CBM03] J. C. Carr, R. K. Beatson, B. C. McCallum, W. R. Fright, T. J.
McLennan, and T. J. Mitchell. “Smooth surface reconstruction from
noisy range data.” In GRAPHITE ’03: Proc. of the 1st intl. conf. on
comp. graph. and interactive techniques in Australasia and South East
Asia, pp. 119–ff, 2003.

119

[Chv75] V. Chvátal. “A combinatorial theorem in plane geometry.” J. Comb.
Theory Ser. B, 18:39–41, 1975.

[CM04] T. Cecil and D. Marthaler. “A variational approach to search and
path planning using level set methods.” UCLA CAM report, 04-61,
2004.

[CM06] T. Cecil and D. Marthaler. “A variational approach to path plan-
ning in three dimensions using level set methods.” J. Comp. Phys.,
211(1):179–197, 2006.

[CN91] W.-P. Chin and S. Ntafos. “Shortest watchman routes in simple poly-
gons.” Desc. Comp. Geom., 6:9–31, 1991.

[CN01] H. Choset and K. Nagatani. “Topological simultaneous localization
and mapping (SLAM): Toward exact localization without explicit lo-
calization.” IEEE Trans. Robotics and Automation, 17(2):125–137,
2001.

[CT97] S. Coorg and S. Teller. “Real-time occlusion culling for models with
large occluders.” In SI3D ’97: Proceedings of the 1997 symposium on
interactive 3D graphics, 1997.

[CT00] J. A. Castellanos and J. D. Tardós. Mobile robot localization and map
building: A multisensor fusion approach. Springer, 2000.

[CT05] L.-T. Cheng and Y.-H. R. Tsai. “Visibility optimization using varia-
tional approaches.” Comm. Math. Sci., 3:425–451, 2005.

[CT07] L.-T. Cheng and Y.-H. Tsai. “Redistancing by flow of time dependent
eikonal equation.” UCLA CAM report, 07-16, 2007.

[DDP02] F. Durand, G. Drettakis, and C. Puech. “The 3D visibility complex.”
ACM Trans. Graph., 21(2):176–206, 2002.

[Del34] B. Delaunay. “Sur la sphère vide.” Izvestia Akademii Nauk SSSR,
Otdelenie Matematicheskikh i Estestvennykh Nauk, 7:793–800, 1934.

[DM97] D. Dragomatz and S. Mann. “A classified bibliography of literature
on NC milling path generation.” Comp.-Aided Design, 29(3):239247,
1997.

[Don95] B. R. Donald. “On information invariants in robotics.” Artif. Intell.,
72:217–304, 1995.

120

[Dur99] F. Durand. 3d visibility: analysis study and applications. PhD thesis,
Univeristy J. Fourier, Grenoble, France, 1999.

[FDF90] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer
graphics: Principles and practice. Addison-Wesley Publishing Co.,
Reading, MA, second edition, 1990.

[GCB06] A. Ganguli, J. Cortes, and F. Bullo. “Distributed deployment of asyn-
chronous guards in art galleries.” In Proc. of the 2006 American Con-
trol Conference, ACC’06, pp. 14–16, 2006.

[Gho02] M. Ghomi. “Shadows and convexity of surfaces.” Annals of Mathe-
matics, 155:281–293, 2002.

[GLL99] L. J. Guibas, J. C. Latombe, S. M. LaValle, D. Lin, and R. Motwani.
“A visibility-based pursuit-evasion problem.” Intl. J. Comp. Geom.
Appl., 9:471–494, 1999.

[GMR97] L. J. Guibas, R. Motwani, and P. Raghavan. “The robot localization
problem.” SIAM J. Comput., 26(4):1120–1138, 1997.

[GO04] J. E. Goodman and J. O’Rourke, editors. Handbook of discrete and
computational geometry. CRC Press LLC, Boca Raton, FL, second
edition, 2004.

[HCH06] C. H. Hsieh, Y.-L. Chuang, Y. Huang, K. K. Leung, A. L. Bertozzi,
and E. Frazzoli. “An economical micro-car testbed for validation of
cooperative control strategies.” In Proc. of the 2006 American Control
Conference, ACC’06, 2006.

[HEO87] A. Harten, B. Engquist, S. Osher, and S. R. Chakravarthy. “Uni-
formly high order accurate essentially nonoscillatory schemes, III.” J.
Comput. Phys., 71:231–303, 1987.

[HKL99] D. Halperin, L. E. Kavraki, and J. C. Latombe. “Robot algorithms.”
In M. Atallah, editor, Handbook of Algorithms and Theory of Compu-
tation. CRC Press, Boca Raton, FL, 1999.

[HKL04] D. Halperin, L. E. Kavraki, and J. C. Latombe. “Robotics.” In
J. E. Goodman and J. O’Rourke, editors, Handbook of Discrete and
Computational Geometry. CRC Press, Boca Raton, FL, 2004.

[HS99] C. Hu and C.-W. Shu. “Weighted essentially non-oscillatory schemes
on triangular meshes.” J. Comp. Phys., 150(1):97–127, 1999.

121

[JYT03] H. Jin, A. J. Yezzi, Y.-H. Tsai, L.-T. Cheng, and S. Soatto. “Esti-
mation of 3D surface shape and smooth radiance from 2D images: A
level set approach.” J. Sci. Comp., 19(1-3):267–292, 2003.

[KB04] L. Kobbelt and M. Botsch. “A survey of point-based techniques in
computer graphics.” Computers & Graphics, 28(6):801–814, 2004.

[KKL98] L. Kavraki, M. Kolountzakis, and J. Latombe. “Analysis of proba-
bilistic roadmaps for path planning.” IEEE Trans. Robot. Automat.,
14(1):166–171, 1998.

[Kle94] J. M. Kleinberg. “The localization problem for mobile robots.” In
IEEE Symp. on Found. of Comp. Sci., pp. 521–531, 1994.

[KS01] R. Kimmel and J. A. Sethian. “Optimal algorithm for shape from
shading and path planning.” J. Math. Imag. and Vis., 14(3):237–
244, 2001.

[KSL96] L. Kavraki, P. Svestka, J. Latombe, and M. Overmars. “Probabilistic
roadmaps for path planning in high dimensional configuration spaces.”
IEEE Trans. Robot. Automat., 12(4):566–580, 1996.

[KTB07] S. Katz, A. Tal, and R. Basri. “Direct visibility of point sets.” In
SIGGRAPH ’07: ACM SIGGRAPH 2007 papers, 2007.

[Lat91] J.-C. Latombe. Robot motion planning. Kluwer Academic Publishers,
1991.

[Lau98] J.-P. Laumond, editor. Robot motion planning and control, volume
229 of Lecture Notes in Control and Information Sciences. Springer-
Verlag London Ltd., London, 1998.

[LaV06] S. M. LaValle. Planning Algorithms. Cambridge University Press,
2006.

[LeV92] R. J. LeVeque. Numerical methods for conservation laws. Birkhaüser,
Verlag, second edition, 1992.

[LGH07] Y. Landa, D. Galkowski, Y. R. Huang, A. Joshi, C. Lee, K. K. Leung,
G. Malla, J. Treanor, V. Voroninski, A. L. Bertozzi, and Y.-H. R. Tsai.
“Robotic path planning and visibility with limited sensor data.” In
Proc. American Control Conference, ACC 2007, pp. 5425–5430, 2007.

122

[LHH07] K. K. Leung, C. H. Hsieh, Y. R. Huang, A. Joshi, V. Voroninski, and
A. L. Bertozzi. “A second generation micro-vehicle testbed for coop-
erative control and sensing strategies.” In Proc. of the 2007 American
Control Conference, ACC’07, pp. 1900–1907, 2007.

[LO96] F. Lafon and S. Osher. “High order two dimensional non-oscillatory
methods for solving Hamilton-Jacobi scalar equations.” J. Comp.
Phys., 2:235–253, 1996.

[LOT06] H. Liu, S. Osher, and R. Tsai. “Multi-valued solution and level set
methods in computational high frequency wave propagation.” Com-
mun. Comput. Phys., 1(5):765–804, 2006.

[LPC00] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira,
M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk.
“The digital Michelangelo project: 3D scanning of large statues.” In
SIGGRAPH ’00: Proc. of the 27th annual conf. on comp. grap. and
interactive techniques, pp. 131–144, 2000.

[LS87] V. J. Lumelsky and A. A. Stepanov. “Path-planning strategies for
a point mobile automaton moving amidst unknown obstacles of arbi-
trary shape.” Algorithmica, 2:403–430, 1987.

[LSS02] S. M. LaValle, B. Simov, and G. Slutzki. “An algorithm for searching
a polygonal region with a flashlight.” Int. J. Comp. Geom. Appl.,
12(1-2):87–113, 2002.

[LTC06] Y. Landa, R. Tsai, and L.-T. Cheng. “Visibility of point clouds and
mapping of unknown environments.” In Advanced Concepts for Intel-
ligent Vision Systems, 2006. ACIVS’06, pp. 1014–1025, 2006.

[MAW90] D. Miller, D. Atkinson, B. Wilcox, and A. Mishkin. “Autonomous
navigation and control of a Mars rover.” Automatic Control in
Aerospace, pp. 111–114, 1990.

[MWB02] A. Makarenko, S. Williams, F. Bourgault, and H. Durrant-Whyte.
“An experiment in integrated exploration.” In Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems, volume 1, pp. 534–539,
2002.

[NBL03] P. Newman, M. Bosse, and J. Leonard. “Autonomous feature-based
exploration.” In Proc. Robotics and Automation, volume 1, pp. 1234–
1240, 2003.

123

[OCK02] S. Osher, L.-T. Cheng, M. Kang, H. Shim, and Y.-H. Tsai. “Geomet-
ric optics in a phase space based level set and eulerian framework.”
J. Comp. Phys., 179(2):622–648, 2002.

[OL07] J. M. O’Kane and S. M. LaValle. “Localization with limited sensing.”
IEEE Transactions on Robotics, 23(4):704–716, 2007.

[OR87] J. O’Rourke. Art gallery theorems and algorithms. Oxford University
Press, New York, NY, 1987.

[OS88] S. Osher and J. A. Sethian. “Fronts propagating with curvature-
dependent speed: algorithms based on HamiltonJacobi formulations.”
J. Comp. Phys., 79(1):12–49, 1988.

[PKK03] M. Pauly, R. Keiser, L. P. Kobbelt, and M. Gross. “Shape model-
ing with point-sampled geometry.” In SIGGRAPH ’03: ACM SIG-
GRAPH 2003, pp. 641–650, 2003.

[PV96] M. Pocchiola and G. Vegter. “The visibility complex.” Int. J. Comp.
Geom. & Appl., 6(3):279–308, 1996.

[Rim97] E. Rimon. “Construction of C-Space roadmaps from local sensory
data. What should the sensors look for?” Algorithmica, 17(4):357–
379, 1997.

[RL00] S. Rusinkiewicz and M. Levoy. “QSplat: a multiresolution point ren-
dering system for large meshes.” In SIGGRAPH ’00: Proc. of the 27th
annual conference on Computer graphics and interactive techniques,
pp. 343–352, 2000.

[RL01] S. Rajko and S. M. LaValle. “A pursuit-evasion bug algorithm.” In
Proc. IEEE Int. Conf. on Robotics and Automation, volume 2, p.
19541960, 2001.

[ROF92] L. I. Rudin, S. J. Osher, and E. Fatemi. “Nonlinear total variation
based noise removal algorithms.” Physica D, 60:259–268, 1992.

[Rog97] D. F. Rogers. Procedural elements for computer graphics. Mc Graw-
Hill, second edition, 1997.

[SA97] J. A. Sethian and D. Adalsteinsson. “An overview of level set methods
for etching, deposition, and lithography development.” IEEE Trans.
Semiconductor Manufacturing, 10(1):167–184, 1997.

124

[Set99] J. A. Sethian. Level Set Methods and Fast Marching Methods. Cam-
bridge Univ. Press, Cambridge, UK, second edition, 1999.

[She92] T. C. Shermer. “Recent results in art galleries.” Proc. IEEE,
80(9):1384–1399, 1992.

[SN89] C. Shen and G. Nagy. “Autonomous navigation to provide long-
distance surface traverses for Mars rover sample return mission.” In
Proc. IEEE International Symposium on Intelligent Control, pp. 362–
367, 1989.

[SO88] C.-W. Shu and S. Osher. “Efficient implementation of essentially non-
oscillatory shock capturing schemes.” J. Comput. Phys., 77(2):439–
471, 1988.

[SO89] C.-W. Shu and S. Osher. “Efficient implementation of essentially non-
oscillatory shock capturing schemes, II.” J. Comput. Phys., 83:32–78,
1989.

[TBF05] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press,
Cambridge, MA, 2005.

[TCO03] Y.-H. R. Tsai, L.-T. Cheng, S. Osher, and H.-K. Zhao. “Fast sweeping
methods for a class of Hamilton-Jacobi equations.” SIAM J. Numer.
Anal., 41(2):673–694, 2003.

[TCO04] Y.-H. R. Tsai, L.-T. Cheng, S. J. Osher, P. Burchard, and G. Sapiro.
“Visibility and its dynamics in a PDE based implicit framework.” J.
Comp. Phys., 199:260–290, 2004.

[TGL05] B. Tovar, L. Guilamo, and S. M. LaValle. “Gap navigation trees:
A minimal representation for visibility-based tasks.” In M. Erdmann,
D. Hsu, M. Overmars, and A. F. van der Stappen, editors, Algorithmic
Foundations of Robotics, VI. Springer-Verlag, Berlin, 2005.

[TL94] G. Turk and M. Levoy. “Zippered polygon meshes from range images.”
In Proc. SIGGRAPH ’94, pp. 377–318, 1994.

[TLM03a] B. Tovar, S. M. LaValle, and R. Murrieta. “Locally-optimal naviga-
tion in multiply-connected environments without geometric maps.” In
Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems,
pp. 3491–3497, 2003.

125

[TLM03b] B. Tovar, S. M. LaValle, and R. Murrieta. “Optimal navigation and
object finding without geometric maps or localization.” In Proc.
Robotics and Automation, pp. 14–19, 2003.

[TML07] B. Tovar, R. Murrieta-Cid, and S. M. LaValle. “Distance-optimal
navigation in an unknown environment without sensing distances.”
IEEE Trans. Robotics, 23(3):506–518, 2007.

[Tsi94] J. Tsitsiklis. “Efficient algorithms for globally optimal trajectories.”
In Proc. of the 33rd Conf. on Decision and Control, pp. 1368–1373,
1994.

[Tsi95] J. Tsitsiklis. “Efficient algorithms for globally optimal trajectories.”
Trans. on Automatic Control, 40:1528–1538, 1995.

[Urr00] J. Urrutia. “Art gallery and illumination problems.” In J. R. Sack and
J. Urrutia, editors, Handbook of Computational Geometry. Elsevier
Science Publishers, 2000.

[VR04] A. Victorino and P. Rives. “An hybrid representation well-adapted to
the exploration of large scale indoors environment.” In Proc. Robotics
and Automation, pp. 2930–2935, 2004.

[Wan90] C. M. Wang. “Location estimation and uncertainty analysis for mobile
robots.” In I. J. Cox and G. T. Wilfong, editors, Autonomous robot
vehicles. Springer-Verlag, Berlin, 1990.

[WHS05] F. Wolf, A. Howard, and G. S. Sukhatme. “Towards geometric 3D
mapping of outdoor environments using mobile robots.” In Proc.
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), pp. 1507–1512, 2005.

[WS03] D. F. Wolf and G. S. Sukhatme. “Towards mapping dynamic envi-
ronments.” In Proc. Int. Conf. Adv. Rob. (ICAR), pp. 594–600, 2003.

[Yam97] B. Yamauchi. “A frontier-based approach for autonomous explo-
ration.” In Proc. of the 1997 IEEE Int. Symp. on Computational
Intelligence in Robotics and Automation, CIRA ’97, p. 146, 1997.

[YD92] Y. Yacoob and L. Davis. “Computational ground and airborne local-
ization over rough terrain.” In Proc. CVPR ’92, pp. 781–783, 1992.

[ZJK03] F. Zhang, E. Justh, and P. S. Krishnaprasad. “Steering control, cur-
vature and Lyapunov navigation.” preprint, 2003.

126

[ZOF01] H.-K. Zhao, S. J. Osher, and R. Fedkiw. “Fast surface reconstruction
using the level set method.” IEEE Workshop on Variational and Level
Set Methods (VLSM’01), pp. 194–ff, 2001.

[ZOL04] F. Zhang, A. O’Connor, D. Luebke, and P. S. Krishnaprasad. “Experi-
mental study of curvature-based control laws for obstacle avoidance.”
In Proc. Robotics and Automation, 2004, ICRA ’04, volume 4, pp.
3849–3854, 2004.

[ZOM00] H.-K. Zhao, S. Osher, B. Merriman, and M. Kang. “Implicit and non-
parametric shape reconstruction from unorganized data using varia-
tional level set method.” Computer Vision and Image Understanding,
80(3):295–314, 2000.

[ZPK02] M. Zwicker, M. Pauly, O. Knoll, and M. Gross. “Pointshop 3D: An
interactive system for point-based surface editing.” In SIGGRAPH
’02: Proc. of the 29th annual conference on Computer graphics and
interactive techniques, pp. 322–329, 2002.

[ZS03] Y.-T. Zhang and C.-W. Shu. “High order WENO schemes for
Hamilton-Jacobi equations on triangular meshes.” SIAM J. Sci. Com-
put., 24:1005–1030, 2003.

127

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

