
1

Modifications of k q-flats for supervised learning
Arthur Szlam

Abstract—
In [KL93], and then in [Man98], [Tse99] the k-means al-

gorithm is generalized to find the k best fit q-dimensional
affine spaces to a set of points in Rd; the prototype for a set
of points becomes the best fit plane, rather than the cen-
troid. Here we discuss connections with sparse approxima-
tion and manifold learning, and suggest some modifications
for supervised learning problems. We give experimental ev-
idence showing that on some standard benchmark data sets
for supervised learning, the original method gives nearly
state of the art classification results in a small fraction of
the time as its competitors. We then show how the method
can be better adapted to learning problems by using Maha-
lanobis metrics as prototypes, generalizing affine sets. This
modification allows for a very strong classifier, but at the
cost of a longer run time than the original method.

Index Terms—q-flats, metric learning, Mahalanobis dis-
tance, sparse representation

I. Introduction

THE k q-flats algorithm [KL93], [Man98], [Tse99] is a
generalization of the k-means algorithm where we take

q-dimensional affine spaces (“flats”) instead of points as
prototypes. Thus given a set of n points X ∈ Rd, we wish
to find k q-dimensional flats {F1, . . . ,Fk} and a partition
of X into {K1, . . . ,Kk} minimizing the energy

k∑

j=1

∑

x∈Kj

||x− Fj ||2, (1)

where ||x−Fj || is just the Euclidean distance of the point
x to its projection on Fj .

The k q-flats algorithm can be used as a supervised clas-
sifier by training a dictionary of flats on each class sepa-
rately, and assigning each new point to the class to which
its nearest flat belongs. One of the purposes of this article
is to remind the reader of the strength of this simple old
method; on many data sets it gives excellent classification
rates, especially relative to its speed; and the entire code
can be written in just a few lines in matlab. However, there
is much room for improvement. The k q-flats algorithm is
representational; it does not explicitly see the differences
between the classes. We will try to rectify this by changing
the energy functional (1) to punish configurations of the
flats passing through one class that get too close to points
in another class.

In fact we will go farther than this, and generalize the
k q-flats method to the k metric method, which replaces
affine spaces, which can be thought of as very simple pos-
itive semi-definite matrices, by Mahalanobis metrics. We
will run a generalized Lloyd algorithm: iterating between
updating the metrics to be most discriminatory, and parti-
tioning each class by associating points to the metric that
they are smallest in. In other words, groups of labeled
points will choose a warping of space under which they
have small norm, and points from other classes have large
norm; and then new groups will be chosen so that each

point is paired with the warping under which it has the
smallest norm.

We test this idea on some standard benchmarks, and
we find that changing the energy functional and especially
generalizing flats to metrics improves classification perfor-
mance. We will see that our method outperforms many
recent metric learning methods. However, the classifica-
tion performance will come at a cost in run time, and the
generalized algorithm, while extremely accurate on small
UCI benchmarks, fails to be fast enough for large scale
applications.

To balance this out, we also introduce a much faster but
slightly less accurate version of k q-flats based on binary
partitions. With this method we will be able to get close to
the accuracy of neural networks and SVM’s on the MNIST
data set, but with a training time of roughly a minute on
a desktop computer, with all code written in matlab.

II. k-q-flats, sparse representation, and
manifold learning

Just as in k-means, we have the Lloyd algorithm:
• Initialize flats Fj , randomly or otherwise.
• Partition X into sets Kj by assigning each x to

argminj ||x− Fj ||.

• Update the Fj by finding the L2 best fit affine q-flat
through the points in Kj .

• Repeat until convergence.
Just as for k-means, the Lloyd algorithm is guaranteed to
converge to a local minimum.

A standard variant of the algorithm where all the Fj are
constrained to pass through the origin often goes by the
name of projective clustering. While the two versions of
the algorithm are certainly not equivalent, any q dimen-
sional affine set is contained in a q + 1 dimensional linear
subspace, and so one often does not loose too much intu-
ition by thinking of the Fj as actual subspaces, especially
when the ambient dimension is larger.

A. k-q-flats and sparse representation

It is a by now classical idea that problems of denoising,
compression, and learning are closely related. The first two
problems have often been approached by transform coding,
which leverages the sparsity of the signals of interest, per-
haps images or audio, in special bases, such as wavelets.
In recent years, attention has been focused on adaptively
choosing a basis so that a given class of signals is sparse
in the constructed basis. If such a basis can be found,
the classical signal processing techniques can be applied
even though the signals under study are not well repre-
sented by the classical basis functions. A standard version
of the sparse representation problem goes as follows: given

2

n vectors X ∈ Rd, which we will write as columns (i.e. X
is n× d), find a basis B and coefficients C minimizing the
error

||BC −X||FRO (2)

given that
||Ci||0 ≤ q, (3)

where || · ||FRO is the Frobenious norm on matrices, i.e. L2

on the matrix considered as a vector, and || · ||0 is the L0

norm, i.e. the number of nonzero entries. Several authors
have noticed that the sparse representation problem is very
closely related to the clustering problem, for example see
[Tro04]. In fact, if one restricts the entries of C to be
either zeros or ones, and sets q = 1, the problem as written
above is exactly k-means [AEB06]. If we consider only
q flats passing through the origin, the k-q-flats algorithm
is an attempt at a minimizing (2) subject to (3) and an
additional constraint forcing C to have a block structure.
Each block corresponds to a Pj , as the elements in Pj are
only allowed coefficients using basis elements in Fj .

B. Manifold learning

A recent trend in machine learning has been to use the
fact that data from applications often has an intrinsic di-
mensionality which is far smaller than the dimension of the
ambient space in which it is presented. One often speaks
of the data lying on a low dimensional manifold. A salient
feature of a set with manifold structure is that it should
be locally well approximated by affine spaces, namely the
tangent spaces. If we know that there is some good ap-
proximation of the set by affine spaces, it makes sense to
try to find the best one given some information theoretic
constraints. This is exactly the purpose of k q-flats; the k
and the q serve as bounds on the capacity.

Thus the k q-flats construction can be thought of as a
method of building adapted dictionaries, which gives a no-
tion of the distance from a point to set of points in such
a way that meaningful information is abstracted; and of
finding a best piecewise approximation to a data manifold,
and so parameterizing a given data set. It thus sits in
the intersection of the notions of sparse representation and
manifold learning (for a nice look at the interplay between
these sets of ideas, see [Wak06]), two of the most successful
signal processing paradigms. In this article we will demon-
strate its utility for supervised learning and show how it
can be modified to better serve this task.

III. Sparse representation for classification

If an adaptive dictionary learning algorithm is doing its
job, and we have a supervised learning problem where the
classes can be expected to have fundamentally different
representations, we can attempt to solve the problem by
training a dictionary for each class separately, and then
associating each test sample to the dictionary in which it
is best represented. We record this algorithm as supervised
k q-flats:

1. For each class Ci, train a dictionary {F i
1, ..., F

i
k} of

q-dimensional affine sets on the points of class Ci.

2. For each unlabeled point, compute

dCi(x) = min
j
||x− F i

j ||.

3. Classify x by
arg min

i
dCi

(x).

There are many instances where different classes can be
expected to have different representations. For example,
different textures in images, and different musical instru-
ments. In general, one might expect “manifold” type data
to be well approximated by the k-q-flats algorithm, as it
would be searching for an optimal set of k “secant” planes,
given a bound on the “capacity” of the planes. The key
here for classification is of course that the different classes
are compressible in different dictionaries, not necessarily
that the data as a whole is compressible. In fact the sim-
plest example of manifold like data, say a line in Rd, and
two class problem, say everything on one side of the line
is class one, and on the other is class two, would be a seri-
ous challenge for the supervised k q-flats. However, while
in low dimensions we imagine planes to as intersecting, in
high dimensions the vast amount of space makes this un-
likely, and thus situations as the one described should be
unusual; it is simply a result of the data being linearly em-
beddable in a very low dimensional space. The digit1 data
set from [CSZ06], which consists of various images of the
numeral one at different angles, jittered, and noised, has
classes parameterized by the angular variable (positive an-
gle is class one, and negative angle is class two), is a much
more realistic example of what data parameterized by a
single variable looks like. As a function of angle, it traces
out a “Hilbert spiral”, that is, each tangent line points in
a new direction, and the best fit q-flats passing through
different pieces of the set do not intersect.

A situation which is deadly to supervised k q-flats is if
the classes are truly of the ambient dimension. For example
consider two Gaussian clouds as the two classes of the data
set. In this case, the algorithm is almost guaranteed to
fail; only an exponentially small percentage of the possible
orientations of any affine subspace passing through part
of the cloud can see the difference between the Gaussians.
The problem here is that for nice partitions of the data,
there is no preferred orientation to the partition elements.
The algorithm can only handle clusters if they are somehow
oriented in different directions, or at least nice pieces of
them are.

On the other hand, we will see experimentally that there
are natural data sets with classes that so that the local
orientation is an important descriptor of the class labels.

IV. Beyond representation

As mentioned above, supervised k q-flats classifies solely
by best representation; it is a sophisticated form of pattern
matching. We place k q-flats through the points in each
class Ci so that the distance from a point x ∈ Ci to the
nearest flat to x associated to Ci is as small as possible.
Supervised learning algorithms are generally expected to

SHORT NAMES: K-Q-FLATS 3

do more than this, and explicitly understand the differ-
ences between the classes. What we should be doing for
classification is finding k q-flats for each Ci so that the
distance from each point x ∈ Ci to the nearest flat associ-
ated to Ci is smaller than the distance to the nearest flat
associated to any other Ck, k 6= i. In this section we will
explore some of the challenges (opportunities!) associated
to this, and make some first useful steps.

To accomplish our goal, we of course should modify the
energy in supervised k q-flats so that it penalizes enemy
points from Ck getting close to flats associated to Ci. We
will do this; however we also generalize the prototype we
associate to a set of points from a flat to a positive semidef-
inite matrix Ai

j , or a Mahalanobis metric. If x,y ∈ Rd, a
Mahalanobis metric modifies

||x− y||2 = (x− y)T (x− y)

to
||x− y||2A = (x− y)T A(x− y),

where A is a positive semi-definite. The distance associ-
ated to A linearly crushes some directions more than oth-
ers. Several recent papers have studied methods for finding
Mahalanobis metrics to improve classification by k-nn; see
[WBS06], [DKJ+07], [XNJR03], and the references therein.

Projecting onto a flat F passing through the origin is a
very simple choice of A, namely A = I −PF , where PF is
matrix for the projection onto the flat. We can thus greatly
generalize supervised k q-flats is by choosing k metrics Ai

j ,
centered at the points mi

j for each class; we can think of
the Aj

i as fuzzy secant planes passing through the data
manifold. The aim in the classification problem would be
to choose the Ai

j so that

(x−mi
j)

T A(x−mi
j) < small, x ∈ Ci,

and in particular,

(x−mi
j)

T A(x−mi
j) < very small, x ∈ Ki

j ;

and
(x−mk

l)T A(x−mk
l) > big, x /∈ Ck.

We emphasize to the reader the difference between this
approach and the metric learning approach mentioned ear-
lier: we are not searching for Ai

j so that points in different
classes are far from each other and points in the same class
are close, but rather we want Ai

j so that the norm of points
in Ci belonging to Ki

j is small with respect to Ai
j , and the

norm with respect to Ai
j of points in Ck, k 6= i is large. As

before, we take an abstraction of a number of points and
collect them into a larger object that test points can be
measured against; before it was an affine set, now it is a
Mahalanobis metric.

We introduce the schematic algorithm which we could
run on each class:
• Initialize centers of mass mi

j , and metrics Ai
j .

• Partition Ci into sets Ki
j by associating x ∈ Ci to the

Ai
j such that (x−mi

j)
T Ai

j(x−mi
j) is smallest.

• Solve optimization problem Ãi
j =O,

• Set Ai
j = Ãi

j .
• Repeat until satisfied.
A reasonable choice for O in the third step is given by

O1:
arg min

A

∑

x∈Ki
j

(x−mi
j)

T Ai
j(x−mi

j),

given
(y −mi

j)
tAi

j(y −mi
j) > 1,

and A positive semidefinite, where y is a subsset of X\Ci,
say a small number of the y closest to the old metric cor-
responding to i and j (note the number 1 is irrelevant, as
scaling the number will just scale the output). This is a
semidefinite program in the variable A; that is, the objec-
tive and constraints are linear in A, with the exception of
the constraint that A be positive semidefinite. It is a sim-
plification of the optimization considered in [XNJR03], as
we do not need to consider pairwise distances; only norms
of points. We will refer to the schematic algorithm with
this choice of optimization as k-metric.

While there exist reasonably efficient methods for solv-
ing such programs, we need to solve them many times,
unlike in the metric learning papers, where they only need
to be solved once for given data and labels; and while the
size of each problem is smaller than in the standard metric
learning setting, we have found that overall the method is
quite slow. On the other hand, there are many different
optimization objectives for the learning of the metric, for
example [WBS06], [DKJ+07] which advertise faster perfor-
mance than [XNJR03]; it will be interesting to see how the
well the relevant simplifications of their methods perform
in our context.

It is also unfortunate that for many choices of optimiza-
tion objective in the schematic algorithm the LLoyd itera-
tions are not guaranteed to converge to a local minimum.
In the standard Lloyd algorithm, associating each point to
its nearest center decreases the total energy, and the choice
of centers also decreases the total energy. In the k metric
algorithm we will use in the experiments, while associating
each point to its nearest metric decreases the energy, when
we update Ai

j , because we only use the nearest few y /∈ Ci

as constraints, the constraints are different from one itera-
tion to the next. Thus the energy can actually increase in
the optimization step.

In any case, we can test Algorithm 2 with the objective
above on some of the small data sets in the UCI repository,
where it shows itself to be an extremely strong classifier.
Allowing different regions of space to be under the influ-
ence of different Mahalanobis metrics allows a very flexible
trainable geometry, but by classifiying a point based on its
distance to a given metric, which embodies the opinions of
many points, we keep from overtraining.

For large scale data sets it is not practical to use op-
timization O1. Since we know that on many data sets,
supervised k q-flats works well, it might be possible to do
something useful without searching the full generality of all
positive semidefinite A, and simply try to nudge the q-flats

4

given by supervised k q-flats in a discriminatory direction.
We can use the optimization O2:

argmin
F

∑

x∈P i
j

(x−mi
j)

t(I −PF)i(x−mi
j)

−α
∑

y/∈P i
j

(y−mi
j)

t(I −PF)i(y−mi
j),

where α is a parameter. Without the semidefinite con-
straint, the problem is easily solved with an SVD. Because
for each Ki

j we are more worried about y not in Cj which
are close to it, as above, we only take the y closest to the
previous flat.

This algorithm is non-negligibly slower than supervised
k q-flats (if we take as many y as x, each SVD requires
twice as many operations; and it does not converge as fast),
but often gives non-negligible improvement in classification
accuracy. We will call this method modified k q-flats.

V. Running even faster

We have discussed how to improve the classification ac-
curacy of supervised k q-flats at the cost of run time; so
it is natural for us to also discuss the reverse. A stan-
dard method for initializing k-means is to use binary sub-
division. First subdivide X into two pieces with 2-means,
than repeat on each piece, etc. Under certain conditions,
one can give guarantees on the quality of the partition ele-
ments after several iterations; then it is not even necessary
to use the partition obtained by subdivision as an initial-
ization for the full algorithm

We can use the same technique here: simply run 2 q-
flats on the whole data set, and then 2 q-flats on each of
the pieces, etc. We will call this binary subdivision q-flats.
One of the main costs of supervised k q-flats is computing
the distances of all the points to all of the flats (however,
see [BHZM07] to see progress towards a direct solution
to this particular problem); and so only having two flats
at each step is a major savings. On the other hand, we
see that when we use while classification error using this
dictionary training does increase, it is still comparable to
the standard k q-flats.

It is well known that the first principal component vec-
tor of a set of points is the real-relaxed solution to the
2-means objective [DFK+], [ZDG+01]. Using this, we can
quickly approximate the 2-means clustering by taking a
single SVD. We wonder if there is some equivalent result
here?

VI. Experiments

We will do two sets of experiments. The first are su-
pervised learning benchmarks on larger data sets where
we will not include k metrics; and the second are super-
vised learning experiments on small data sets from the UCI
repository, and will not include binary subdivision q flats.

A. Larger data sets

We work on two large data sets. First, the MNIST,
which is available at http : / / yann . lecun . com / exdb /

sup. k q-flats
5 10 20

10 3.2 2.3 2.2
50 2.2 1.7 1.8
100 2.0 1.6 1.9

mod. k q-flats
5 10 20

10 3.1 2.2 1.7
50 2.2 1.6 1.7
100 2.0 1.5 1.6

bin. sub. q-flats
5 10 20

8 3.7 2.5 2.4
64 2.3 1.7 1.8
128 2.1 1.7 2.0

Fig. 1. Classification errors on MNIST in percent, averaged over 10
runs, using the standard 60000/10000 train/test split. The rows are
the number of q-flats, and the columns are the values of q. Nearest
neighbor baseline is 2.4%, a good SVM 1.2%.

mnist/ with an extensive list of the results on the data
set with various classifiers. The data consists of 70, 000
28× 28 images of the digits 0 through 9. The first 60,000
are usually considered the training set, and the other
10,000 are the test set. We also work on the Isolet data
set, available at http : / / archive . ics . uci . edu / ml /
machine-learning-databases / isolet/. This data set
consists of 617 sonic features extracted from 50 speakers
saying each letter of the alphabet twice. The first forty
speakers are the training set, and the last ten are the test
set; the task is to identify which letter is being spoken.

On each of the large data sets, we test the performance
of the algorithms mentioned in the supervised. For each
data set, we use the standard splits for the supervised prob-
lem. We reduce the MNIST to 50 dimensions using prin-
cipal components, and the isolet data set to 300 dimen-
sions, and both are projected onto their respective unit
spheres. For the supervised tests: we run supervised k q-
flats with q = 5,10,20 and k = 10,50,100 on MNIST, and
with q = 5,10,20 and k = 2,5,10 on isolet. We initialize
supervised k q-flats by picking k points in each class, and
choosing the initial flats as the best fit affine space to the
q+2 nearest neighbors of the chosen points. Note that very
few neighbor calculations are actually done, and no special
nearest neighbor searcher is used. Modified k q-flats and
binary subdivision k q-flats are initialized in the same way.
The parameter α in the modified k q-means is set to .2,
and we use twice the number of y /∈ Cj as x ∈ Ki

j in the
computation of the energy; in addition, the covariance ma-
trix of the x and the y are normalized to unit norm. There
is no image processing of the data set prior to running the
benchmarks, and the algorithms we have described have
no idea that they are being fed images. We stop the Lloyd
algorithm after 40 iterations if a local minimum has not
yet been found.

Some comments on the results: first, the algorithms tend
to do better with more principal components, even up to
not reducing the dimension at all; and usually below a
certain dimension, the classification performance becomes
quite bad. However, there is a steep cost in runtime if the
dimension is not first reduced with PCA. In both data sets
we used the least number of principal components before

SHORT NAMES: K-Q-FLATS 5

sup. k q-flats
5 10 20

10 56 60 65
50 158 146 131
100 234 187 163

mod. k q-flats
5 10 20

10 139 154 195
50 413 475 862
100 653 709 1460

bin. sub. q-flats
5 10 20

8 38 40 43
64 65 62 68
128 69 70 71

Fig. 2. Computation time in seconds for training the q-flats for
all the classes on MNIST, averaged over 10 runs. The rows are the
number of q-flats, and the columns are the values of q.

sup. k q-flats
5 10 20

2 5.7 5.1 4.8
5 5.9 5.3 5.9
10 5.8 5.8 5.8

mod. k q-flats
5 10 20

2 5.9 4.6 4.3
5 5.7 4.9 5.1
10 5.8 5.3 5.1

bin. sub. q-flats
5 10 20

2 6.0 5.1 5.0
4 5.7 5.5 5.5
8 6.1 5.6 5.6

Fig. 3. Classification errors on isolet in percent, averaged over 10
runs, using the standard 6328/1559 train/test split. The rows are
the number of q-flats, and the columns are the values of q. Nearest
neighbor baseline error is 8.6%, and SVM is 3.3%

the performance started to drop off. If faced with an un-
known data set, our experience suggests to use as many
dimensions as you have time for.

B. Smaller data sets

We also test the performance of Algorithm 3 on some
small data sets from the UCI database [AN07]. We use
the Iris, Wine, Balance-Scale, and Ionosphere data sets, all
available at http : //archive.ics.uci.edu/ml/. Each
data set is less than 600 points, and the first three have 3
classes, and the Ionosphere has 2. The Iris data set lives
in R3, Wine in R13, Balance-Scale in R4, and Ionosphere
in R33.

For each of the small data sets, we run supervised k q-

sup. k q-flats
5 10 20

2 8 6 4
5 6 5 5
10 8 8 10

mod. k q-flats
5 10 20

2 58 38 28
5 55 41 36
10 45 42 50

bin. sub. q-flats
5 10 20

2 8 6 4
4 11 8 7
8 13 10 9

Fig. 4. Computation time in seconds for training the q-flats for all
the classes on isolet. The rows are the number of q-flats, and the
columns are the values of q.

k q-flats mod. k q-flats k-met
Wine 14.2 12.4 2.9

Balance 16.5 15.7 5.6
Ionosphere 10.0 9.6 8.5

Iris 5.6 3.7 3.5

Fig. 5. Average classification errors (in percent) of various algo-
rithms on data sets from the UCI repository over 20 random 50/50
(test/train) runs.

k q-flats mod. k q-flats k met.
Wine .02 .02 4.9

Balance .02 .04 12.6
Ionosphere .02 .04 20.2

Iris .01 .02 2.3

Fig. 6. Average slowest (over k,q ∈ {1,2}) runtime in seconds of var-
ious algorithms on data sets from the UCI repository over 20 random
70/30 (test/train) runs.

flats, modified k q-flats, and k metrics. The test results
were averaged over 20 random 50/50 splits (train/test).
The choice of q and k and whether or not to project onto
the unit sphere are chosen by leave-10%-out cross valida-
tion, with q and k chosen from {1,2}; we stop the Lloyd
algorithm at 40 iterations, as before. In the computation
of the metric Ai

j , we use twice the number of y /∈ Cj as
x ∈ Ki

j , and the algorithm is initialized using the results
from supervised k q-flats. We display the results, in figure
5. The results of k metrics are among the best or better
than the best of the equivalent experiments in [WBS06]
and [DKJ+07]. We also display the run times, per train-
ing, in figure 6 (note that the train size is larger for the
timing experiments to compare with [WBS06]). As above,
supervised k q-flats is coded in matlab; and the SDP in
Algorithm 3 is run using sedumi. While we are not faster
than [WBS06] and [DKJ+07], we are competitive, and each
of those papers use specialized methods for the solution of
their optimization problems which we can almost certainly
appropriate.

VII. Conclusions and future work

We have argued that an old clustering algorithm, viewed
as a supervised classifier, can in many ways hold its own
against the current state of the art. The method is interest-
ing not only because of the results it gives on benchmarks,
but also because it sits at the intersection of sparse rep-
resentation and manifold learning. We have demonstrated
that the method can be sped up a great deal without loos-
ing too much accuracy as a classifier. Finally, we have
further shown experimentally that modifiying the method
by generalizing projection onto planes to an inner prod-
uct against a semi-definite matrix allows a classifier which
often outperforms metric learning based algorithms which
use a single metric.

There of course remains much to explore here. It seems
clear that we can speed up the k metrics algorithm, per-
haps by a better choice for the optimization objective,
even perhaps some of the objectives discussed in[WBS06],

6

[DKJ+07]. We have not talked about kernelization at all,
although that could be a powerful extension.

References

[AEB06] M. Aharon, M. Elad, and A. Bruckstein. K-svd: An algo-
rithm for designing overcomplete dictionaries for sparse
representation. IEEE Transactions on Signal Processing,
54(11):4311–4322, 2006.

[AN07] A. Asuncion and D.J. Newman. UCI machine learning
repository, 2007.

[BHZM07] Ronen Basri, Tal Hassner, and Lihi Zelnik-Manor. Ap-
proximate nearest subspace search with applications to
pattern recognition. Computer Vision and Pattern
Recognition, 2007. CVPR ’07. IEEE Conference on,
pages 1–8, 2007.

[CSZ06] O. Chapelle, B. Schölkopf, and A. Zien, editors. Semi-
Supervised Learning. MIT Press, Cambridge, MA, 2006.

[DFK+] P. Drineas, A. Frieze, R. Kannan, S. Vempala, and
V. Vinay. Clustering large graphs via the singular value
decomposition. Mach. Learn., 56(1-3):9–33.

[DKJ+07] Jason V. Davis, Brian Kulis, Prateek Jain, Suvrit Sra,
and Inderjit S. Dhillon. Information-theoretic metric
learning. In ICML, pages 209–216, 2007.

[KL93] Nanda Kambhatla and Todd K. Leen. Fast non-linear
dimension reduction. In NIPS, pages 152–159, 1993.

[Man98] P. S. Bradley & O. L. Mangasarian. k-plane clustering.
Technical Report MP-TR-1998-08, 1998.

[Tro04] J. Tropp. Topics in sparse approximation. PhD thesis,
Computational and Applied Mathematics, The Univer-
sity of Texas at Austin, May 2004.

[Tse99] P. Tseng. Nearest q-flat to m points. Technical report,
Seattle, WA, 1999.

[Wak06] M. Wakin. The Geometry of Low-dimesnional Signal
Models. PhD thesis, Rice university, August 2006.

[WBS06] Kilian Weinberger, John Blitzer, and Lawrence Saul. Dis-
tance metric learning for large margin nearest neighbor
classification. In Y. Weiss, B. Schölkopf, and J. Platt,
editors, Advances in Neural Information Processing Sys-
tems 18, pages 1473–1480. MIT Press, Cambridge, MA,
2006.

[XNJR03] E. Xing, A. Ng, M. Jordan, and S. Russell. Distance
metric learning, with application to clustering with side-
information, 2003.

[ZDG+01] H. Zha, C. Ding, M. Gu, X. He, and H. Simon. Spectral
relaxation for k-means clustering, 2001.

