
FAST CONDITION ESTIMATION FOR A CLASS OF STRUCTURED
EIGENVALUE PROBLEMS

A. J. LAUB∗ AND J. XIA†

Abstract. We present a fast condition estimation algorithm for the eigenvalues of a class of
structured matrices. These matrices are low rank modifications to Hermitian, skew-Hermitian, and
unitary matrices. Fast structured operations for these matrices are presented, including Schur de-
composition, eigenvalue block swapping, matrix equation solving, compact structure reconstruction,
etc. Compact semiseparable representations of matrices are used in these operations. We use these
operations in a new improved version of the statistical condition estimation method for eigenvalue
problems. The estimation algorithm costs O(n2) flops for all eigenvalues, instead of O(n3) as in
traditional algorithms, where n is the order of the matrix. The algorithm provides reliable condition
estimates for both eigenvalues and eigenvalue clusters. The proposed structured matrix operations
are also useful for additional eigenvalue problems and other applications. Numerical examples are
used to illustrate the reliability and efficiency of the algorithm.
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1. Introduction. The condition number of an eigenvalue or eigenvalue cluster
measures the sensitivity of the eigenvalue or eigenvalue cluster to small changes in the
input matrix, and may be used to bound the error in the computed approximation.
For a general order-n matrix, it usually costs O(n3) flops or more to estimate the sen-
sitivity of all its eigenvalues, for example, by considering separations of eigenvalues,
angles between left eigenvectors and right eigenvectors, and other methods [1], [2],
[19], [21], [28]. For structured eigenvalue problems, on the one hand, it is important
to capture the structures [13]. On the other hand, we can also take advantage of the
structures to obtain fast condition estimation. In this paper, we consider condition
estimation for the eigenvalues of a class of structured matrices, and present a reliable
estimation scheme which costs only O(n2) flops. The development of new fast struc-
tured algorithms for these matrices in recent years makes it possible to obtain fast
condition estimation. This class of matrices has the following structures:

1. Low rank modifications to Hermitian and skew-Hermitian matrices. Exam-
ples include Frobenius matrices, diagonal plus rank one matrices, and arrow-
head matrices which arise in applications such as bidiagonal SVD, divide-
and-conquer algorithms for some eigenvalue problems [18], etc.

2. Low rank modifications to unitary matrices such as companion matrices which
are closely related to the problems of finding polynomial roots and solving
certain differential equations.

Any such matrix C ∈ Cn×n is a low rank perturbation to a rank symmetric
matrix [4] (a matrix Ĉ is said to be rank symmetric if for any 2 × 2 block partition

of Ĉ =
�

Ĉ11 Ĉ12

Ĉ21 Ĉ22

�
with Ĉ11 and Ĉ22 square, the ranks of Ĉ12 and Ĉ21 are equal).
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That is,

C = Ĉ + xyT , (1.1)

where x, y ∈ Rn×k with k ¿ n, and Ĉ is rank symmetric. Fast methods for finding
the eigenvalues of these matrices have been proposed in recent years (see, e.g., [4], [5],
[6], [11], [16]). These methods exploit certain rank structure of the QR iterates when
using QR iterations to find the eigenvalues. We show that the rank structure can also
be used to accelerate the condition estimation of the eigenvalues.

As an example, the following companion matrix

C =

26664 an−1 an−2 · · · a0

1 0 · · · 0
. . . . . .

...
0 1 0

37775 , (1.2)

can be written as

C =

26664 0 · · · 0 ±1
1 0 · · · 0

. . . . . .
...

0 1 0

37775+

26664 1
0
...
0

37775� an−1 an−2 · · · a0 ∓ 1
�
.

To quickly find the eigenvalues of (1.2), the fast structured QR iteration algorithm in
[11] computes structured QR iterates which are unitarily similar to C. The iterations
are done via the Q and R factors of the QR iterates. It can be shown that the QR
iterates have small off-diagonal ranks [4], [6], [11]. Thus the Q and R factors can
be efficiently represented by rank structures called sequentially semiseparable (SSS)
matrix forms, proposed in [7], [8], [9]. An SSS matrix looks like2664 D1 U1VT

2 U1W2VT
3 U1W2W3VT

4

P2QT
1 D2 U2VT

3 U2W3VT
4

P3R2QT
1 P3QT

2 D3 U3VT
4

P4R3R2QT
1 P4R3QT

2 P4QT
3 D4

3775 , (1.3)

where the matrices {Di}, {Ui}, {Wi}, {Vi}, {Pi}, {Ri}, {Qi} are called (SSS) gener-
ators. SSS structures are useful for problems where the off-diagonal blocks have small
ranks (see, e.g., [10], [11]). When the off-diagonal ranks of an SSS matrix are small
and the sizes of {Wi} and {Ri} are close to the off-diagonal ranks, the matrix is said
to be in compact SSS form. In such a situation, the matrix can be represented by
only a linear amount of data, and operations on the compact SSS matrices are very
efficient. For example, it costs only linear time to solve compact SSS linear systems,
and to multiply two compact SSS matrices with the same partition. More details can
be found in [7], [8], [9], [10], [11]. The use of compact SSS matrices in the algorithm
in [11] provides an O(n2) cost eigensolver for companion matrices (and polynomial
root problems).

1.1. Main results. This paper shows that we can also exploit the rank structure
of the above class of eigenvalue problems (1.1) to provide efficient condition estimation
for the eigenvalues. We use the statistical condition estimation (SCE) method by
Kenney and Laub [23]. In [19], a perturbation analysis for the average eigenvalues
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of a general matrix based on SCE has been given, and an SCE condition estimator
is provided. The cost is O(n3) flops for all eigenvalues. Here, we first improve the
estimator in [19] from various points of view. Then we take into account the rank
structure of the above class of matrices in SCE and extend the estimator in [19] to
all the eigenvalues or eigenvalue clusters of these matrices. Given the facts that the
related matrix computations become structured, and that SCE is good at respecting
matrix structures, we can reduce the total condition estimation cost for all eigenvalues
to O(n2) (and the cost for each single individual eigenvalue to O(n)).

We present the main idea based on the companion matrix (1.2). For convenience,
we consider only real matrices, and maintain real arithmetic in this paper. Similar
techniques can be easily extended to other matrices in the above class. This is dis-
cussed in Section 4. In this paper, the following new structured matrix algorithms
are derived:

1. Compute a Schur decomposition of C such that the Schur form is in compact
SSS representation.

2. For all the eigenvalues or eigenvalue clusters, swap the diagonal blocks of the
Schur form in structured form so as to bring any desired block to any other
position. Quickly update the initial Schur form to reconstruct a new compact
Schur form.

3. Solve the structured Sylvester equation (2.4).
4. Use structured perturbation in SCE, and evaluate the condition estimates by

taking advantage of matrix structures.
Our estimator works for both simple or multiple eigenvalues or eigenvalue clusters.

The paper [26] presents some similar work. However, [26] requires that the eigenvalues
of C are all distinct. The new operations here are more general, more efficient, and
even simpler to implement than those in [26]. For example, after the diagonal block
swapping, [26] uses SSS matrix multiplications to get the SSS form for the new Schur
form. But when the matrix has multiple eigenvalues, many SSS multiplications may
be needed and the SSS Schur form may not be compact any more. Instead, here we
use a recovery strategy which always guarantees that the SSS Schur form is compact.
As another example, here we simplify the reconstruction of the invariant subspace
corresponding to an eigenvalue or eigencluster after the diagonal block swapping.

Similar techniques can also speed up the condition estimation for the eigenvec-
tors of (1.1). We emphasize that the structured matrix operations in this paper are
also useful in many other problems, in addition to condition estimation. Condition
estimation for the eigenvalues of a companion matrix C can be used to assess the
accuracy of polynomial roots including multiple or clustered roots.

1.2. Overview and notation. The rest of this paper is organized as follows.
Section 2 reviews SCE for general eigenvalue problems and gives some new improve-
ments. The fast structured condition estimation scheme is presented in Section 3 in
detail. Related matrix algorithms are derived. We also briefly discuss the extension
of the techniques to general matrices (1.1) in the above class. Section 4 provides the
algorithm, detailed flop counts, and shows some numerical examples. We draw some
concluding remarks in Section 6.

The following notation is used in this paper:
– The i-th row (or block row) and the j-th column (or block column) of A ≡

(Aij)n×n are denoted by Ai,: and A:,j , respectively. Similarly, A1:i,1:j denotes
the submatrix of A at (block) rows 1 through i and (block) columns 1 through
j.
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– vec(A) denotes the column vector formed by stacking the columns of A from
left to right.

– If A is an SSS matrix, Di(A), Ui(A), etc. represent its SSS generators as in
(1.3).

– δA means the product of a small scalar δ with A.
– If a vector u is selected uniformly and randomly from the unit n-sphere Sn−1,

we write u ∈ U(Sn−1).

2. Condition estimation for general eigenvalue problems.

2.1. General SCE scheme for average (mean) eigenvalues. For a general
n× n real matrix C, Gudmundsson et al. derived an SCE condition estimator for its
average or mean eigenvalues in the following way [19]. Assume we have a block Schur
decomposition of C

C = UTUT , U = [U1, Uc], T =
�

T1 H
0 Tc

�
, (2.1)

where U is orthogonal and T1 and Tc have orders n1 and n − n1, respectively. The
average eigenvalue of T1 is defined to be [1], [19]

µ(T1) =
trace(T1)

n1
.

If the spectra of T1 and Tc are well separated [22], [31], then the sensitivity of µ(T1)
is well defined. A condition number κ for µ(T1) is given in [19].

In SCE, a condition estimate for µ(T1) can be obtained by perturbing C to C +
δE with a relative perturbation matrix δE, where δ is a small number, and E =
(CijZij)n×n with Z = (Zij)n×n satisfying that vec(Z) ∈ U(Sn2−1). Accordingly,
Λ(T1) is perturbed to [19]

Λ(T̃1) ≈ Λ(T1 + δB) = Λ(T1) + δΛ(B), (2.2)

where

B = UT
1 EU1 + Y UT

c EU1, (2.3)

and Y is an n1 × (n− n1) matrix satisfying a Sylvester equation

T1Y − Y Tc = H. (2.4)

Based on (2.2), SCE leads to a relative condition estimate to µ(T1) in the following
form:

ν =
1

ωp|µ(T1)| |µ(B)|, (2.5)

where p is the number of parameters that define C (for a general n × n matrix,
p = n2; for the companion matrix (1.2), p = n), and ωp is the Wallis factor which can
be approximated by [23]

ωp ≈
Ê

2
π(p− 1

2 )
.
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The expected value of the estimate E(ν) is equal to the exact condition number κ
[19].

Multiple samples of Z can be used to increase the accuracy of the estimation.
For example, assume we use m samples of Z, denoted Z(i), i = 1, 2, . . . , m, which are
properly orthonormalized [23], and accordingly, T1 is perturbed to T1 + δB(i), i =
1, 2, . . . ,m. Then the m-sample condition estimator is defined as

ν(m) =
1

ωp|µ(T1)|
È

[µ(B(1))]2 + · · ·+ [µ(B(m))]2.

The accuracy of this estimator is given by [19]

Pr
�

κ

γ
≤ ν(m) ≤ γκ

�
≥ 1− 1

m!

�
2m

γπ

�m

+ O
�

1
γm+1

�
, γ > 1.

For example, with m = 2, the probability of ν(m) being within a factor of γ = 10 of
the exact condition number κ is greater than 0.9919. Even with only one sample, this
probability is greater than 0.9363.

2.2. Improvements. We make several improvements over Gudmundsson et al.’s
general SCE estimator for average eigenvalues. First, for simple real eigenvalues and
complex eigenpairs, more specific forms based on (2.3) and (2.5) can be derived.
When T1 is a 1× 1 block (eigenvalue), B in (2.3) is reduced to a scalar which can be
calculated by using Y (a vector) and the first row and the first column of U . When
T1 is a 2 × 2 block, T1 has a conjugate pair of complex eigenvalues. The condition
number of this eigenpair is generally different from the condition number of their
average. Thus, (2.5) may not precisely reflect the sensitivity of this eigenpair. In fact,
by assuming

T1 ≡
�

t11 t12
t21 t22

�
, B ≡

�
b11 b12

b21 b22

�
,

we can derive a more accurate estimator for the actual condition of the eigenpair [26]

ν =
1

ωp

È
det(T1)

Ê
α2 det(T1)− αβtrace(T1) + β2

[trace(T1)]2 − 4 det(T1)
,

where α = b11 + b22, β = t11b22 + t22b11 − t12b21 − t21b12.
The second improvement is that, for average eigenvalues corresponding to a diag-

onal block Ti other than T1, we can employ diagonal block swapping techniques as in
[1], [12], [27] to obtain a new Schur decomposition such that Ti (in its similar form)
appears in the leading (upper left) position of the new Schur form

T̃ = GTGT , (2.6)

where G is an orthogonal transformation matrix.
Another improvement is to rewrite (2.3) as

B =
�

In1 Y
�
UT EU1

=
�

In1 Y
�
(UT EU)

�
In1

0

�
, (2.7)
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where E is isolated from Y . The new representation (2.7) indicates that the operations
involving E can be independent of different eigenvalues. In order to compute B for
different eigenvalues, we can precompute the matrix UT EU just once. Then for
different eigenvalues we only need to solve for Y and then to compute the trace of the
left n1 × n1 submatrix of

B̂ =
�

In1 Y
�
(UT EU), (2.8)

where appropriate transformations may be applied to UT EU (see Section 4). On the
other hand, if multiple samples of E are used, then we can reuse the matrices Y and
U . This will be further discussed in Section 4.

Finally, for structured matrices C, the perturbation matrix E may also be struc-
tured, and it is also possible to compute Y and B quickly by taking advantage of
the structure of C. The total cost of the condition estimation can then be less than
O(n3). This is the actual situation for the class of matrices (1.1) where only O(n2)
flops are needed. We elaborate on this in the rest of this paper.

Remark 1. The algorithm in this paper can be used to estimate the condition of
polynomial roots. For the companion matrix (1.2), it can be shown that the exact
condition number κ for µ(T1) is actually the condition number defined in [15] for the
roots of the polynomial

Pn
i=0 aix

i (with an ≡ 1), when all roots are distinct [26].

3. Fast structured condition estimation. For a structured matrix C in (1.1),
the perturbation matrix E generally corresponds to the low rank modifications (see,
e.g., [18] for an error analysis based on perturbing the low rank part of a diagonal
plus rank one matrix). In such a situation, the relative perturbation matrix E has
the form

E = xET
2 + E1y

T =
�

x E1

� � ET
2

yT

�
≡ x̂ŷT , (3.1)

where E1 = (xijZ
x
ij)n×k, E2 = (yijZ

y
ij)n×k with Zx and Zy random matrices satis-

fying vec([Zx, Zy]) ∈ U(S2nk−1). For the example of the companion matrix (1.2), E
can be further simplified to

E =
�

eT

0

�
1

n− 1 , (3.2)

where eT = [an−1zn−1, an−2zn−2, . . . , (a0∓1)z0] and [zn−1, . . . , z0]T ∈ U(Sn−1). This
is because, usually, an−1, an−2, . . . , z0 are the parameters of interest.

The special structure of E saves the cost for computing B. Moreover, based on
the rank structure of C and its similarity transformations, all the major steps in the
SCE scheme can be quickly done by structured matrix computations. They include:

1. Structured Schur decomposition in (2.1).
2. Structured diagonal block swapping in (2.6).
3. Structured Sylvester equation solver for (2.4).
4. Evaluation of µ(B) in (2.5) using the low rank structure.

We discuss the details in the following subsections.

3.1. Structured Schur decomposition. We can find a structured Schur de-
composition of C by using the fast structured eigensolver in [11]. The traditional
Hessenberg QR iterations for the eigenvalues of C are

C(0) = C,

C(k) = Q(k)R(k), C(k+1) = R(k)Q(k), k = 0, 1, 2, · · ·
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Clearly, any C(k) is a rank-one update to an orthogonal matrix since C is. The QR
algorithm in [11] is based on the result that each C(k) actually has small off-diagonal
ranks.

Theorem 3.1. [4], [5], [11] The ranks of all off-diagonal blocks C
(k)
1:j,j+1:n, j =

1, . . . , n− 1 of C(k) are no larger than 3.
This result can be shown with the following lemma.
Lemma 3.2. [4] Assume Ĉ ∈ Rn×n is rank symmetric, and L ∈ Rn×n has rank

k. Partition Ĉ as Ĉ =
�

Ĉ11 Ĉ12

Ĉ21 Ĉ22

�
, where Ĉ11 and Ĉ22 are square. Also partition

L conformally. Then

|rank(Ĉ12 + L12)− rank(Ĉ21 + L21)| ≤ 2k.

The algorithm in [11] uses a sequence of Givens matrices for Q(k) and an SSS
form for R(k). When the algorithm converges, it yields a quasitriangular Schur form T
(block upper triangular matrix with 1×1 and/or 2×2 diagonal blocks). Appropriate
Givens matrices form an orthogonal matrix U such that C = UTUT which is a
structured form of (2.1). That is, U is a product of O(n2) Givens matrices in general,
and T is an SSS matrix. The matrix T also has small off-diagonal ranks.

Theorem 3.3. For any quasitriangular matrix orthogonally similar to C, its
maximum off-diagonal rank is no larger than 2.

Proof. Any matrix C̃ orthogonally similar to C is also a rank-one update to an
orthogonal matrix

C̃ = P + L̂.

In addition, it is quasitriangular. The direct application of Lemma 3.2 to C̃ can only
show that the maximum off-diagonal rank of C̃ is no larger than 3. Thus, we further
consider the QR factorization C̃ = QR. Clearly, Q is a block diagonal matrix with
1 × 1 or 2 × 2 diagonal blocks. The matrix R is upper triangular and is also a rank
one update to an orthogonal matrix

R = QT P + QT L̂.

Thus, by Lemma 3.2, the maximum off-diagonal rank of R is no larger than 2. The
multiplication of R by Q does not change the maximum off-diagonal rank.

Theorem 3.3 indicates that the SSS form of T can be compact. The algorithm in
[11] provides such a compact form.

3.2. Structured Sylvester equation solver. Notice that in the Sylvester
equation (2.4), T1 and Tc are also SSS matrices. We use the Bartels-Stewart al-
gorithm [3] to solve (2.4), and make use of the matrix structures in the meantime.
Since T1 is block upper triangular, we employ a permutation matrix P such that

L ≡ PT1P
T

is block lower triangular. P is simply the anti-identity matrix

P =

264 0 1

. ..

1 0

375 .
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Then (2.4) can be written as

L(PY )− (PY )Tc = PH. (3.3)

It is clear that the SSS generators of L can be obtained directly from those of T1

Di(L) = Di(T1)T , Pi(L) = Vi(T1), Qi(L) = Ui(T1), Ri(L) = Wi(T1)T .

For notational convenience, we write (3.3) as the following SSS Sylvester equation

LX −XR = K, (3.4)

where L is a block lower triangular compact SSS matrix with generators {Di(L) ≡
Lii}l1

1 , {Pi}l1
2 , {Qi}l1−1

1 , {Ri}l1−1
2 , and R is a block upper triangular compact SSS

matrix with generators {Di(R) ≡ Rii}l2
1 , {Ui}l2−1

1 , {Vi}l2
2 , {Wi}l2−1

2 . Here, l1 + l2 = l
is the total number of diagonal blocks (eigenvalue clusters) in T . Since H is an
off-diagonal block of T , we assume K = PH has the following form

K =
�
K:,1 K:,2 · · · K:,l2

�
=

26664u1w2 · · ·wl1v
T
l1+1 u1w2 · · ·wl1+1v

T
l1+2 · · · u1w2 · · ·wl−1v

T
l

...
...

...
ul1−1wl1v

T
l1+1 ul1−1wl1wl1+1v

T
l1+2 · · · ul1−1wl1 · · ·wl−1v

T
l

ul1v
T
l1+1 ul1wl1+1v

T
l1+2 · · · ul1wl1+1 · · ·wl−1v

T
l

37775 . (3.5)

We also assume that all the matrices in (3.4) have conformal partitions. When we get
the solution X of (3.4), the solution of (2.4) can be simply obtained by Y = PT X.

The Bartels-Stewart algorithm solves (3.4) by successively solving

LiiXij −XijRjj = Kij −
i−1X
k=1

LikXkj +
j−1X
k=1

XikRkj ,

i = 1, 2, . . . , l1, j = 1, 2, . . . , l2,

where Lii and Rjj are 1 × 1 or 2 × 2 blocks, and Xij denotes the (i, j) block of X
which is partitioned conformally according to the blocks of L and R. These equations
can be rewritten as

LX:,j −X:,jRjj = K̂j , (3.6)
j = 1, 2, . . . , l2,

where K̂j = K:,j + X:,1:j−1R1:j−1,j . Assume that L has dimension n1. Since L is
an SSS matrix and Rjj is 1 × 1 or 2 × 2, we can solve (3.6) for each j in O(n1)
flops, provided that the right-hand side K̂j can be evaluated in O(n1) flops. In fact,
the evaluation of both K:,j and X:,1:j−1R1:j−1,j for all j = 1, . . . , l2 can be done
successively as follows (when j = 1, let X:,1:j−1R1:j−1,j ≡ 0).

For K:,j , j = 1, . . . , l2 in (3.5), introduce auxiliary matrices Ωk defined by

Ωl1 = I, Ωk = wk+1Ωk+1, k = l1 − 1, l1 − 2, . . . , 2, 1. (3.7)

Then compute each block Kkj by

Kkj = ukΩkvT
j , k = 1, 2, . . . , l1. (3.8)
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After the calculation of each K:,j , replace all Ωk by

Ω̂k = Ωkwl1+j . (3.9)

For X:,1:j−1R1:j−1,j , j = 1, . . . , l2, notice that the block column R1:j−1,j has the
following form: 26664 U1W2 · · ·Wj−1VT

j
...

Uj−2Wj−1VT
j

Uj−1VT
j

37775 .

Introduce auxiliary matrices Φj defined by

Φ0 = 0, Φj = Φj−1Wj + X:,jUj , j = 1, 2, . . . , l2 − 1. (3.10)

Then clearly,

X:,1:j−1R1:j−1,j = Φj−1VT
j , j = 1, 2, . . . , l2. (3.11)

It can be shown that the cost of evaluating K̂j in (3.6) for each j by (3.7)–(3.11) is
O(n1).

Next, we consider the solution of (3.6). For each j, when Rjj is a scalar, (3.6) is
an order-n1 lower triangular SSS system

(L−Rjj)X:,j = K̂T
j .

The coefficient matrix L − Rjj has the same generators as L except that the Di

generators are replaced by Lii − Rjj or Lii − RjjI2, depending on the size of Lii.
This system can be solved in linear time by the fast SSS system solver in [9], and the
details are shown in [26].

When Rjj is 2 × 2, (3.6) is a simple Sylvester equation, which can be converted
into an order-2n lower triangular SSS system. Note that for this situation, the Bartels-
Stewart algorithm does not apply to (3.6) any more since we want to maintain real
arithmetic and Rjj does not have a real Schur form. However, we can rewrite (3.6)
as a Sylvester equation in terms of XT

:,j

−RT
jjX

T
:,j + XT

:,jL
T = K̂T

j .

This equation can be converted into a lower triangular SSS system

(L⊗ I2 − In1−2 ⊗RT
jj)vec(XT

:,j) = vec(K̂T
j ).

The SSS generators of the coefficient matrix are given by those of L⊗ I2, except the
diagonal generators are Di(L ⊗ I2) − RT

jj or Di(L ⊗ I2) − I2 ⊗ RT
jj , depending on

whether the order of Di(L) is 1 or 2. The generators of L⊗ I2 are listed in Table 3.1.

3.3. Swapping the diagonal blocks of the Schur form T . In order to use
(2.5) to evaluate the condition of any eigenvalue cluster corresponding to diagonal
blocks other than T1, we can use a swapping procedure to bring those blocks to
the leading upper left position of T . Assume that the eigenvalue cluster of interest
corresponds to the diagonal blocks {Ti1 , Ti2 , . . . , Tik

} of T . The matrix T will be
transformed into T̃ in (2.6) for which we will derive a new compact SSS form.
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Order of Di(L) Di(L⊗ I2) Pi(L⊗ I2) Qi(L⊗ I2) Ri(L⊗ I2)
1 Di(L)⊗ I2 I2 ⊗ Pi(L) I2 ⊗Qi(L) I2 ⊗Ri(L)

2 Di(L)⊗ I2

�
I2 ⊗ Pi,1(L)
I2 ⊗ Pi,2(L)

� �
I2 ⊗Qi,1(L)
I2 ⊗Qi,2(L)

�
I2 ⊗Ri(L)

Table 3.1

SSS generators of L ⊗ I2 in terms of the generators of L, where Pi(L) ≡
h Pi,1(L)
Pi,2(L)

i
and Qi(L) ≡

h Qi,1(L)
Qi,2(L)

i
.

3.3.1. Swapping procedure. Consider a matrix�
Ti Hi

0 Tj

�
,

where Ti and Tj have orders ni and nj , respectively, and Ti and Tj have no eigenvalue
in common. As discussed in [1], [12], [27] we find an orthogonal matrix Gi which is
the product of some Givens matrices such that

Gi

� −X
Inj

�
=
�

Mj

0

�
, (3.12)

where X is the unique solution to

TiX −XTj = Hi. (3.13)

Then

Gi

�
Ti Hi

0 Tj

�
GT

i =
�

MjTjM
−1
j H̄i

0 MiTiM
−1
i

�
,

where Mi is the bottom nj × (ni + nj) submatrix of Gi

�
Ini

0

�
. Thus Ti and Tj have

been swapped.
To bring the blocks {Ti1 , Ti2 , . . . , Tik

} to the leading position, we partition T as

T =

264 T̂1 Ĥ1 · · ·
0 T̂2 · · ·
0 0

. . .

375 ,

where T̂2 has diagonal blocks Ti1 , Ti2 , . . . , Tik
. We can apply the above swapping

procedure to
�

T̂1 Ĥ1

0 T̂2

�
to bring T̂2 to the leading position. However, the quasitri-

angular form of T will be destroyed. Thus, instead, we apply the above procedure
to contiguous 1 × 1 or 2 × 2 diagonal blocks of T and bring each Ti to the leading
position in one round of swapping. After each round of swapping, T is transformed
into a new quasitriangular matrix T̃ = GTGT as in (2.6), where G is a product of
Givens matrices. The number of Givens matrices depends the size of Ti. If Ti is 1× 1
then ki − 1 Givens matrices are needed, where ki is the row or column index of Ti in
T . The matrix G has the form

G =
ki−1Y
j=1

diag
�
Ij−1,

�
cj sj

−sj cj

�
, In−j−1

�
, (3.14)
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which is upper Hessenberg. If Ti is 2× 2 then 2(ki − 1) Givens matrices are needed,
where ki is the row or column index of the leading entry of Ti in T . Some of these
Givens matrices commute, and after reordering the matrices, we have G = G1G2,
where each of G1 and G2 has the form (3.14). See [26] for the details of the generation
of G. Clearly, G in (3.14) is an SSS matrix with its generators given by Table 3.2 [11],
[26].

Dj(G) Uj(G) Vj(G) Wj(G) Pj(G) Qj(G) Rj(G)
cj−1cj cj−1sj cj sj 1 −sj 0

Table 3.2
SSS generators of G in (3.14).

The matrix T̃ is still quasitriangular. We can get its SSS form by multiplying
three SSS matrices in (2.6) using the formulas for SSS matrix multiplications in [8].
This is the way used in [26] for the situation of simple eigenvalues. Notice that the
off-diagonal generator sizes increase accumulatively with the multiplications in (2.6).
If the Wi(T ) generators have sizes 2, then the Wi(T̃ ) generators have sizes up to 6,
since the Wi generators of G and GT have sizes 1 or 2.

3.3.2. Recovery of compact SSS representation of T̃ . Since here we are
considering general eigenclusters instead of simple eigenvalues, the matrix multiplica-
tion technique in [26] is inefficient. For example, if the swapping process is applied
to an eigencluster which has k multiple eigenvalues or eigenpairs, then T̃ needs to be
multiplied by up to O(kn) Givens matrices, and the off-diagonal generator sizes of T̃
increase significantly. Therefore, T̃ is generally not compact any more. On the other
hand, the actual off-diagonal ranks of T̃ do not increase, according to Theorem 3.3.
Thus, we develop a recovery strategy to reconstruct a compact SSS form for T̃ .

The matrix T is orthogonally similar to C and is obvious orthogonal plus rank
one which we assume to be T ≡ P +uvT . Also assume that T̃ has a QR factorization
T̃ = Q̃R̃. The matrix Q̃ is a block diagonal matrix with 1× 1 and/or 2× 2 diagonal
blocks, since T̃ is quasitriangular. We have

R̃ = Q̃T T̃ = Q̃T G(P + uvT )GT

= Q̃T GPGT + (Q̃T Gu)(Gv)T ≡ P̃ + ũṽT .

There exists an orthogonal upper Hessenberg matrix P1 which is a product of Givens
matrices such that

P1ũ = ||ũ||2e1, (3.15)

where e1 is the first unit vector. Thus,

P1R̃ = P1P̃ + ||ũ||2e1ṽ
T .

This means that P1P̃ = P1R̃ − ||ũ||2e1ṽ
T is orthogonal and also upper Hessenberg.

Therefore, there exists another orthogonal upper Hessenberg matrix P2 such that
PT

2 (P1R̃) is diagonal, and is thus the identity matrix. This means

P2 = P1P̃ = P1R̃− ||ũ||2e1ṽ
T , (3.16)

R̃ = PT
1 P2 + ||ũ||2PT

1 e1ṽ
T = PT

1 P2 + ũṽT , (3.17)

T̃ = Q̃R̃ = Q̃(PT
1 P2 + ũṽT ). (3.18)
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Both P1 and P2 are orthogonal upper Hessenberg and have maximum off-diagonal
rank 1, and ||ũ||2PT

1 e1ṽ
T is a rank one matrix. Therefore, R̃ has maximum off-

diagonal rank no larger than 3. The left multiplication of R̃ by Q̃ does not increase
the off-diagonal block ranks because Q̃ is a block diagonal matrix with 1× 1 and/or
2 × 2 diagonal blocks. Therefore, T̃ has maximum off-diagonal rank no larger than
3. This construction process provides an alternative way of proving a weeker result
for Theorem 3.3 (there is no substantial difference between 2 and 3 as the maximum
generator size in real computations).

Therefore, we can use (3.16)–(3.18) to recover a compact SSS form for T̃ . (A
similar recovery technique is also used in [11].) After each round of swapping to
bring a single eigenvalue or eigenpair to a desired position, we apply the recovery
procedure to T̃ . First, we form the redundant SSS form of T̃ in (2.6) by SSS matrix
multiplications, and compute the QR factorization Q̃R̃ for T̃ . The matrix Q̃ can be
obtained by computing the Givens QR factorization

T̃i = Q̃iR̃i, (3.19)

for any 2× 2 diagonal block T̃i of T . The block diagonal matrix Q̃ has each diagonal
block being either 1 or Q̃i. The matrix R̃ is still an SSS matrix with the same
generators as T̃ except that for any i corresponding to a 2× 2 diagonal block,

Di(R̃) = R̃i, Ui(R̃) = Q̃T
i Ui(T̃ ). (3.20)

Next, we form P1 and P2. The matrix P1 is an SSS matrix derived based on
(3.15) and has a form similar to (3.14). Another SSS matrix multiplication yields the
SSS form of P1R̃ in (3.16). The matrix P1R̃ is upper Hessenberg which we assume to
be

P1R̃ =

2666666666664
· · · · · · · · · u1w2 · · ·wi−2v

T
i−1 u1w2 · · ·wi−1v

T
i · · ·

. . . . . .
...

...
...

. . . di−2 hi−1 ui−1wiv
T
i

...

pi−1q
T
i−2 di−1 hi

piq
T
i−1 di

...

0
. . . . . .

3777777777775 ,

where hi = uiv
T
i+1 and each di is 1 × 1. In order to get an SSS form for P2, we

introduce another sequence of Givens matrices Ĝi (applied on the right) to diagonalize
P1R̃−||ũ||2e1ṽ

T . These Ĝi matrices form P2. The matrices Ĝi are obtained as follows.
Let Ĝi be such that �

piq
T
i−1 di

�
Ĝi =

�
0 d̂i

�
.

Note that d̂i ≡ 1 since P1R̃−||ũ||2e1ṽ
T is an orthogonal matrix. Apply Ĝi to columns
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i and i + 1 of P1R̃2666664u1w2 · · ·wi−2v
T
i−1 u1w2 · · ·wi−1v

T
i

...
...

hi−1 ui−1wi−1v
T
i

di−1 hi

piq
T
i−1 di

3777775 Ĝi =

266666664
26664u1w2 · · ·wi−2

...
uk−2wi−2

ui−2

37775�vT
i−1 wi−1v

T
i

�
Ĝi�

di−1 hi

piq
T
i−1 di

�
Ĝi

377777775
=

266666664
26664u1w2 · · ·wi−2

...
uk−2wi−2

ui−2

37775�v̂T
i−1 wi−1v̂

T
i

��
d̂i−1 ĥi

0 d̂i

�
377777775 =

2666664u1w2 · · ·wi−2v̂
T
i−1 u1w2 · · ·wi−1v̂

T
i

...
...

ĥi−1 ui−1wi−1v̂
T
i

d̂i−1 ĥi

0 d̂i

3777775 ,

where
�

v̂i−1

v̂i

�
= ĜT

i

�
vi−1

viw
T
i−1

�
, ĥi−1 = ui−2v̂

T
i−1, and d̂i−1 is the first entry of�

di−1 hi

�
Ĝi. Then

�
pi−1q

T
i−2 d̂i−1

�
will be used to provide Ĝi−1, and the

process repeats. All these Ĝi matrices form P2 which has a form similar to (3.14). A
similar technique has been used in [26] to produce G in (2.6). Note that we are not
concerned about the matrix ||ũ||2e1ṽ

T in this process, since it only has its first row
being nonzero and the generation of Ĝi does not depend on it.

With P1 and P2 available in orthogonal upper Hessenberg SSS forms, we can get
a compact SSS form of R̃ in (3.17) with an SSS product and an SSS sum. The SSS
form of ũṽT is defined by the generators in Table 3.3. Then a new compact SSS form
of T̃ is straightforward according to (3.19) and (3.20).

Di(ũṽT ) Ui(ũṽT ) Vi(ũṽT ) Wi(ũṽT ) Pi(ũṽT ) Qi(ũṽT ) Ri(ũṽT )
ũiṽ

T
i ũi ṽi 1 ũi ṽi 1

Table 3.3
SSS generators of ũṽT .

3.4. Computing the condition estimate (2.5). The major work in evaluat-
ing ν in (2.5) is to compute µ(B), where B is given by (2.3). For companion matrices
we can compute (2.5) using the way which will be presented in Section 4, in general.
But since E has a special form (3.2) with only one nonzero row, an alternative way
is to use (2.3) directly.

We first find U1,:. Note that the fast eigensolver in [11] provides U in the form of
a sequence of O(n2) Givens rotation matrices. Thus, the application of these matrices
on the right to eT

1 , the first unit vector of length n, yields the initial U1,:. This costs
O(n2) operations. Later, for each cluster of diagonal blocks with size ni, the row U1,:

needs to be updated when T is updated by the swapping process. According to the
previous subsection, U is updated to UGT , where G is also represented by Givens
rotation matrices. Thus, the updated vector is

Ũ1,: = U1,:G
T . (3.21)

The computation of EU1 in (2.3) can be done by considering EU . If the diagonal
blocks of T are swapped, then we compute EŨ ≡ EUG. Since U is represented by
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O(n2) Givens matrices, the cost for computing EU is O(n2). The matrix EU1 has

only one nonzero row which we assume to be uT
1 . Also, let U1,: =

�
U1:n1,:

Un1+1:n,:

�
. Then

we have

B = U1:n1,:u
T
1 + (Y Un1+1:n,:)uT

1 ,

which is the sum of two rank one matrices. We first evaluate Y Un1+1:n,: and then
compute the diagonal entries of B.

4. The case of general C in (1.1). For a general C in (1.1) which is a low
rank modification to a symmetric, skew-symmetric, or orthogonal matrix, the main
operations in previous sections are similar. For example, we can quickly get an SSS
form Schur decomposition. A major difference is that the computation of the condition
estimate (2.5) can be done in a more general way.

For C in (1.1), the perturbation matrix E has the form (3.1). We can precompute

UT EU = (UT x̂)(UT ŷ)T ≡ x̃ỹT .

The computations of x̃ and ỹ cost O(n2) flops, since U is a product of O(n2) Givens
rotation matrices and both x̃ and ỹ have a finite number of columns.

The direct computation of the trace of B̂ in (2.8) is thus straightforward. Since
B̂ =

��
In1 Y

�
x̃
�

ỹT , we first form
�

In1 Y
�
x̃, and then compute the trace of

the left n1 × n1 submatrix of B̂. For different eigenvalues, permutations are applied
to U , and B̂ now has the form

B̂ =
�

In1 Y
�
(Gx̃)(Gỹ)T . (4.1)

where G is a product of Givens rotation matrices. (Here, Y should also be different,
but the same notation is used for convenience.) We form Gx̃ and Gỹ first and the
rest of the computations are similar.

5. Algorithm, flop counts, and numerical experiments. We outline the
major steps in the following algorithm in terms of a companion matrix C.

Algorithm 1. (Condition estimation for the eigenvalues/eigenclusters of C)
1. Compute an initial structured Schur decomposition C = UTUT .
2. Choose a perturbation matrix E as in (3.2) or (3.1). Precompute UT EU as

in Section 4.
3. Repeat for each eigenvalue cluster i corresponding to {Ti1 , Ti2 , . . .}.

(a) If i > 1, use the swapping technique in Section 3.3 to bring cluster i to
the leading position, one block Tij per round.

(b) Solve the Sylvester equation (2.4) as in Section 3.2.
(c) Compute the condition estimate (2.5) via the diagonal entries of B̂ in

(4.1).
4. If additional samples of E are used, repeat steps 2 and 3c for different samples.

5.1. Flop counts. To obtain detailed flop counts for a companion matrix C, we
make the following assumptions:

– The number of iterations required for the Hessenberg QR iteration to converge
is cn2 where c is a constant (c is usually small).

– Each compact SSS matrix A has maximum off-diagonal rank p which is 2
for T and is 1 for an orthogonal upper Hessenberg matrix. All Wi and Ri

generators of A have dimension p.
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– A simplified problem is considered where all diagonal blocks Ti of T are 1×1.
– The matrix T has m eigenvalue clusters and the i-th cluster has ni eigenvalues
{Ti1 , Ti2 , . . .}.

Step 1 costs about the same as the structured eigensolver in [11], and we do not
look into the details here. Step 2 costs about 6cn2 flops. The cost for computing the
condition estimate of each cluster i in step 3 is as follows.

1. In step 3a, the operations and the required flops are given by:
(a) Swapping the diagonals of T to bring Tij to the leading position and

computing a redundant SSS form for T̃ cost

(80p3 + 122p2 + 130p + 81)(ij − j),

where we have used the result that it costs about 40p3(ij − j) flops to
multiply two order-(ij − j) SSS matrices whose maximum off-diagonal
ranks are p [7].

(b) Recovery of a compact SSS form for T̃ costs

(40p3 + 242p2 + 498p + 415)(ij − j).

The total cost for the entire cluster i is thus

(120p3 + 364p2 + 628p + 496)
niX

j=1

(ij − j).

2. The cost for step 3b using the Bartels-Stewart algorithm is

(2p3 + 8p2 + 11p + 2)ni(n− ni).

3. Step 3c costs

2ni(n− ni) + 2ni + 12
niX

j=1

(ij − j).

Therefore, the cost for all the eigenvalue clusters is

(120p3 + 364p2 + 628p + 508)
mX

i=2

niX
j=1

(ij − j)

+ (2p3 + 8p2 + 11p + 4)
mX

i=1

ni(n− ni) + 2
mX

i=1

ni.

Since
Pm

i=1 ni = n, we have

mX
i=2

niX
j=1

(ij − j) =
mX

i=2

ni(i1 − 1) ≤ n
mX

i=2

ni ≤ n2,

mX
i=1

ni(n− ni) ≤ n
mX

i=1

ni = n2.

The total cost is thus approximately bounded by

(122p3 + 372p2 + 639p + 512)n2. (5.1)
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This bound can highly overestimate the cost. For example, when there are only two
eigenvalue clusters with equal sizes n/2, the cost is only about�

31p3 + 95p2 +
325
2

p + 129
�

n2.

If multiple samples are used, we only need to repeat steps 2 and 3c and the results
from other steps can be reused. Since the total cost for steps 2 and 3c is bounded
by 26n2 which is much smaller than (5.1), the amount of work required for each
additional sample of SCE is insignificant.

5.2. Numerical examples. We apply Algorithm 1 to some companion matrices
and demonstrate the efficiency and accuracy. Note that [26] also includes some results
with a different algorithm which requires all the eigenvalues to be distinct.

Example 1. Consider a companion matrix C whose eigenvalues are λi = i, i =
1, 2, . . . , n. These eigenvalues are the roots of the Wilkinson polynomial. According
to [26], the SCE estimator 2.5 is an estimate of the following exact condition number
for λi

κi = ||(ki,1, ki,2, . . . , ki,n)T ||2, κi,j =

������� ajλ
j−1
iQ

k 6=i

(λi − λk)

������� , (5.2)

where aj is the coefficient of the λj term of the polynomial (see (1.2)).
For n = 15, we calculate the exact condition numbers κi, their 1-sample SCE

estimates, and the estimates by the Matlab routine condeig which computes the
reciprocals of the cosines of the angles between the left and right eigenvectors of C.
According to Figure 5.1, SCE provides favorable estimates, while condeig gives large
estimates for nearly all eigenvalues except the first one.
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Fig. 5.1. Condition numbers and their estimates for Example 1.

Example 2. We consider a companion matrix C with multiple eigenvalues {2−i, 2−i},
i = 1, 2, . . . , n.

For n = 5, SCE gives five estimates for the five eigenvalue clusters {2−i, 2−i}:
2.5E2, 9.9E2, 6.4E1, 3.4E2, 4.7E1. We see that the eigenvalue clusters are still
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well conditioned. This somehow is consistent with the result that multiple roots of
polynomials may be well conditioned if the multiplicities are preserved on a proper
pejorative manifold [22], [32].

Example 3. We show the quadratic complexity of the estimator with an example
where C in (1.2) has a0 = −1 and ai = 0, i = 1, . . . , n − 1. This companion matrix
has eigenvalues to be roots of unity. The eigenvalues are all well conditioned with
κi in (5.2) given by 1/n [15]. Our SCE estimator also reflects this fact. We run our
algorithm for n ranging from 32 to 1024 and count the flops, denoted flopsn. Then
we compute the flop ratios flopsn

flopsn/2
. The numerical results show that the ratios are

close to 4 which is consistent with the O(n2) complexity.

n 32 64 128 256 512 1024
κexact 0.0313 0.0156 0.0078 0.0039 0.0020 0.0010
κSCE 0.0653 0.0205 0.0044 0.0070 0.0035 0.0005
flopsn

flopsn−1
4.9 4.4 4.2 4.1 4.0 4.0

Table 5.1
SCE for Example 3 with different n.

6. Conclusion. We present a condition estimation scheme for the eigenvalues
of a class of matrices which are low-rank perturbations to rank symmetric matrices.
Rank structures of these matrices are exploited and fast structured matrix operations
are developed, such as Schur decomposition, matrix equation solve, Schur form up-
date, compact semiseparable form reconstruction, etc. These operations may be used
in the condition estimation of other structured matrices and more general problems
such as invariant subspace computations.

Similar techniques can also be used to estimate the condition of the eigenvectors.
The information in the condition estimation for the eigenvalues can be reused. It is
also possible to derive a condition estimate for the average eigenvalue of the block Tc

in (2.1). In this way, we can save about 3/4 of the diagonal swapping work, on average,
for all the eigenvalues. We also notice that the cost for the structured Sylvester solver
can be possibly reduced further, since K in (3.4) is a low-rank matrix.
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