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Abstract. We propose a new nonlinear image registration model which
is based on nonlinear elastic regularization and unbiased registration.
The nonlinear elastic and the unbiased regularization terms are simpli-
fied using the change of variables by introducing an unknown that ap-
proximates the Jacobian matrix of the displacement field. This reduces
the minimization to involve linear differential equations. In contrast to
recently proposed unbiased fluid registration method, the new model is
written in a unified variational form and is minimized using gradient
descent. As a result, the new unbiased nonlinear elasticity model is com-
putationally more efficient and easier to implement than the unbiased
fluid registration. The unbiased large-deformation nonlinear elasticity
method was tested using volumetric serial magnetic resonance images
and shown to have some advantages for medical imaging applications.

1 Introduction

Given two images, the source and target, the goal of image registration is to
find an optimal diffeomorphic spatial transformation such that the deformed
source image is aligned with the target image. In the case of non-parametric
registration methods (the class of methods we are interested in), the prob-
lem can be phrased as a functional minimization problem whose unknown is
the displacement vector field u. Usually, the devised functional consists of a
distance measure (intensity-based, correlation-based, mutual-information based
[12] or metric-structure-comparison based [11]) and a regularizer that guarantees
smoothness of the displacement vector field. Several regularizers have been inves-
tigated (see Part IT of [12] for a review). Generally, physical arguments motivate
the selection of the regularizer. Among those currently used is the linear elasticity
smoother first introduced by Broit [2]. The objects to be registered are consid-
ered to be observations of the same elastic body at two different times, before
and after being subjected to a deformation as mentioned in [12]. The smoother,



in this case, is the linearized elastic potential of the displacement vector field.
However, this model is unsuitable for problems involving large-magnitude defor-
mations.

In [4], Christensen et al. proposed a viscous fluid model to overcome this
issue. The deforming image is considered to be embedded in viscous fluid whose
motion is governed by Navier-Stokes equations for conservation of momentum:

uAv(x,t) + (v + p)V(V - v(x, t)) = f(x,u(x,t)), (1)
v(x,t) = w(x,t) + Vu(x,t) - v(x, t). (2)

Here, equation (2), defining material derivative of u, nonlinearly relates the
velocity and displacement vector fields.

One drawback of this method is the computational cost. Numerically, the
image-derived force field f(x,u(x,t)) is first computed at time ¢. Fixing the force
field f, linear equation (1) is solved for v(x,t) numerically using the successive
over-relaxation (SOR) scheme. Then, an explicit Euler scheme is used to ad-
vance u in time. Recent works [3, 15, 14] applied Riemannian nonlinear elasticity
priors to deformation velocity fields. These alternating frameworks, however, are
time-consuming, which motivates the search for faster implementations (see for
instance [1] or [6] in which the instantaneous velocity v is obtained by convolving
f with a Gaussian kernel).

In this paper, we propose an alternative approach to fluid registration. The
proposed model is derived from a variational problem which is not in the form of
a two-step algorithm and which can produce large-magnitude deformations. For
that purpose, a nonlinear elasticity smoother is introduced. As will be seen later,
the computation of the Euler-Lagrange equations in this case is cumbersome. We
circumvent this issue by introducing a second unknown, a matrix variable V,
which approximates the Jacobian matrix of u. The nonlinear elastic regularizer
is now applied to V. The Euler-Lagrange equations are straightforwardly derived
and a gradient descent method is used. This is inspired from related work [9] for
segmentation, and [10] for 2D slice registration.

Also, allowing large deformations to occur may yield non-diffeomorphic de-
formation mappings (at least at the discrete level). In [4], Christensen et al.
proposed a regridding technique that resamples the deforming image and re-
initializes the process once the value of the deformation Jacobian drops below
a certain threshold. In [7], Haber and Modersitzki introduced an elastic reg-
istration model subject to volume-preserving constraints. To ensure that the
transformation g(x) = x — u(x) is volume-preserving (that is, for any do-
main 2, [,dx = fg( 2) dx), they proposed the following pointwise constraint:
det(Z — Du(x)) — 1 = 0. Pursuing the same direction in [8], the authors intro-
duced a minimization problem under inequality constraints on the Jacobian.

Here we use an information-theoretic approach previously introduced in [16].
In [16], the authors considered a smooth deformation g that maps domain {2 bi-
jectively onto itself. Consequently, g and g~ are bijective and globally volume-
preserving. Probability density functions can thus be associated with the defor-
mation g and its inverse g~!. The authors then proposed to quantify the mag-



nitude of the deformation by means of the symmetric Kullback-Leibler distance
between the probability density functions associated with the deformation and
the identity mapping. This distance, when rewritten using skew-symmetry prop-
erties, is viewed as a cost function and is combined with the viscous fluid model
for registration, which leads to an unbiased fluid registration model. Unlike the
unbiased fluid registration model, the unbiased nonlinear elasticity method, in-
troduced here, allows the functional to be written “in closed form”. The new
model also does not require expensive Navier-Stokes solver (or its approxima-
tion) at each step as previously mentioned.

2 Method

Let £2 be an open and bounded domain in R3. Without loss of generality, we
assume that the volume of 2 is 1, i.e. |2] = 1. Let I;, I : 2 — R be the two
volumetric images to be registered. We seek the transformation g : 2 — {2 that
maps the source image I into correspondence with the target image I;. In this
paper, we will restrict this mapping to be differentiable, one-to-one, and onto.
We denote the Jacobian matrix of a deformation g to be Dg, with Jacobian
denoted by |Dg(x)| = det(Dg(x)) (thus we will use the notation |V| := det(V)
for any 3 x 3 matrix V). The displacement field u(x) from the position x in the
deformed image I> o g(x) back to Iz(x) is defined in terms of the deformation
g(x) by the expression g(x) = x —u(x) at every point x € (2. Thus, we consider
the problems of finding g and u as equivalent.

In general, nonlinear image registration models may be formulated in a varia-
tional framework. The minimization problems often define the energy functional
FE as a linear combination of an image matching term F' and a regularizing term
R: infy{E(u) = F(u) + A\gR(u)}. Here, A\g > 0 is a weighting parameter.

2.1 Registration metrics

In this paper, the matching functional F takes the form of the L? norm (the
sum of squared intensity differences), F' = Fy2, and the mutual information,
F = Fyr.

L2-norm: The L?-norm matching functional is suitable when the images have
been acquired through similar sensors (with additive Gaussian noise) and thus
are expected to present the same intensity range and distribution. The L? dis-
tance between the deformed image Is o g(x) = Iz(x — u(x)) and target image
I;(x) is defined as

Fr2(u) = %/Q (I2(x —u(x)) — Il(x))2dx. (3)

Mutual Information: Mutual information can be used to align images of dif-
ferent modalities, without requiring knowledge of the relationship of the two
registered images. Here, the intensity distributions estimated from I(x) and

Ir(x — u(x)) are denoted by p* and p!2, respectively, and an estimate of their



joint intensity distribution by pli-f2. We let i; = I1(x), ia = I3(x —u(x)) denote
intensity values at point x € (2. Given the displacement field u, the mutual

information computed from Iy and I, is provided by
MIg™ = / P2 (i, i2) loglpg " (i1, d2) /(P (i1)piZ (i2))) dia dia.
R2

We seek to maximize the mutual information between Iz(x — u(x)) and I (x),
or equivalently, minimize the negative of M I11-!2:

Fuyr(Iy, Ip,u) = —M T2 (4)

2.2 Nonlinear Elastic Regularization

The theory of elasticity is based on the notion of strain. Strain is defined as
the amount of deformation an object experiences compared to its original size
and shape. In three spatial dimensions, the strain tensor, & = [g;;] € R3%3
1 < 4,j < 3,is a symmetric tensor used to quantify the strain of an object
undergoing a deformation. The nonlinear strain is defined as

3
(Gjui =+ &-uj + Z 8iuk6juk)7

k=1

gij(u) =

N |

with the nonlinear strain tensor matrix given by

E(u) = %(Dut + Du+ Du'Du). (5)

Stored energy (Saint Venant-Kirchhoff material) is defined as
W) = %(’Gra(?e(f))2 + ptrace(£?),

where v and p are Lamé elastic material constants. The regularization for non-
linear elasticity becomes

Ri(u) = /Q W(E (w))dx.

The regularization term Rg(u) can be minimized with respect to u. However,
since the regularization term is written in terms of partial derivatives of compo-
nents of u, the Euler-Lagrange equations become complicated and are computa-
tionally expensive to minimize. Instead, following earlier theoretical work [13],
we minimize an approximate functional by introducing the matrix variable

V &~ Du (6)

and thus consider a new form of nonlinear elasticity regularization functional
Rg(u,V) = / W(YA/) dx—i—g/ ||V — Dul||% dx, (7)
2 2

o1
here V = =
where 2

Frobenius norm. In the limit, as 8 — 400, we obtain V' ~ Du in the L? topology.

(VE+V + ViV), B is a positive constant, and || - || denotes the



2.3 Unbiased Registration Constraint

In [16], the authors proposed an unbiased fluid image registration approach. In
this context, unbiased means that the Jacobian determinants of the deforma-
tions recovered between a pair of images follow a log-normal distribution, with
zero mean after log-transformation. The authors argued that this distribution is
beneficial when recovering changes in regions of homogeneous intensity, and in
ensuring symmetrical results when the order of two images being registered is
switched. As derived in [16] using information theory, the unbiased regularization
term is given as

Ryp(u) = /Q (|D(x —ux))| - 1) log | D(x — u(x))|dx. (8)

It is important to note that Ry p generates inverse-consistent deformation maps.
The inverse-consistent property of the unbiased technique was shown in a val-
idation study of the unbiased fluid registration methods [17]. Also, to see why
minimizing equation (8) leads to unbiased deformation in the logarithmic space,
we observe that the integrand is always non-negative, and only evaluates to zero
when the deformation g is volume-preserving everywhere (|Dg| = 1 everywhere).
Thus, by treating it as a cost, we recover zero-change by minimizing this cost
when we compare images differing only in noise.

Given equation (6), we have Dg =7 — Du ~ Z — V, where 7 is the 3 x 3
identity matrix. Therefore, as in subsection 2.2, to simplify the discretization,
we introduce

Rup(V) = /Q (I~ V|- 1)log|T - V] dx. (9)

Recall that here |Z — V| = det(Z — V).

2.4 Unbiased Nonlinear Elasticity Registration

The total energy functional employed in this work, is given as a linear combina-
tion of the similarity measure F' (which is either F» from (3) or Fysy from (4)),
nonlinear elastic regularization Rg in (7), and unbiased regularization Ryp in

(9):

E(w,V)=F(u)+ Rg(u,V)+ ARyg(V). (10)
The explicit weighting parameter is omitted in front of Rg(u, V'), since this term
is weighted by Lamé constants v and u. We solve the Euler-Lagrange equations in

u and V using the gradient descent method, parameterizing the descent direction
by an artificial time ¢,

2—1; = —0E,(0,V) = —04F(u) — 04Rg(u,V), (11)
ov = —6.Ev(ll7 V) == —avRE(ll, V) — /\avRUB(V), (12)

ot



which gives systems of three and nine equations, respectively. Explicit expres-
sions for the gradients and their discretizations are given in Section 3.

Remark 1. The regularization on the deformation g proposed in this work can
be expressed in a general form

R(g) = /Q R, (Dg)dx + /Q Ry (|Dg))dx

with |Dg| := det(Dg). For the minimization, an auxiliary variable can also be
introduced to simplify the numerical calculations, removing the nonlinearity in
the derivatives.

3 Implementation

3.1 The Energy Gradients
Computing the first variation of functional Fr 2 in (3) gives the following gradient
OuFr2(u) = —[La(x —u(x)) — I (x)] VI (x — u(x)).

The gradient of (4) is given by

DaFrrr(0) = (1/12)[Qu + 0Gs /0E:) (I (%), Fa(x — w)) VI (x — u),
where Qu(i1,i2) = 1+ log[pl2(iy,ia) /p" (i1)p22 (i2)], and G, (&1,&2) is a two-
dimensional Gaussian kernel with variance o2, which is used to estimate the
joint intensity distribution from I(x — u) and I (x).

Computing the first variation of functional Rg(u, V'), in equation (7), with
respect to u gives the following components of the gradient 0, Rg(u,V):

Ou, Re(w,V) = B(d1vk1 + Oavpz + Ogups — Dug),  k=1,2,3.

The first variation of Rg(u, V') with respect to V', with V' = [v;5], gives Oy Rg(u, V):

Doy, Rp(w,V) = B(v11 — 01uy) + ver (1 +v11) + p(ca(1 +v11) + csv12 + covis),
v Re(u, V) = B(v12 — daug) + veyvig + p(czviz + c5(1 + v11) + crv13),
Ovys Re(0, V) = B(viz — Ozu1) + veyvis + M(C4013 +c6(1 +v11) + 071112)
Dopy RE(1, V) = B(v21 — D1u2) + vervar + p(cavar + c5(1 + va2) + cgvas),
Dupy RE(W, V) = B(v22 — Oaua) + ver (1 + va2) + pu(cs(1 + va2) + csva1 + crvas),
Dups RE(W, V) = B(v23 — O3uz) + vc1v23 + pu(cavas + covar + cr(1 4 v22)),
vy Re(u, V) = B(vz1 — drug) + veyvsy + p(covsr + csvsz + co(1 + vs3)),
Oug RE(1, V) = B(vs2 — aug) + veyvse + p(c3vsz + csvs1 + cr(1 + vsz)),
(u, V) = 5( )

81}33 RE

= B(vss — O3us) + ver (1 + vss) + p(ca(l + vss) + cguar + crvs2),



where

1
2 2 2 2 2 2 2 2 2
c1 = v11 + V22 + V33 + 5(”11 + 03 + V3 + Vig + vy + U3y + Vi3 + V33 + v33),

2 2 2

2 = 2v11 + 01 + vy + 3,
2 2 2

C3 = 2U22 + V192 + Voo + V39,

2 2 9
Cq = 2v33 + Vi3 + Va3 + V33,

C5 = V21 + V12 + V11V12 + V21V22 + U31V32,
Ce = V31 + V13 + V11V13 + V21V23 + U31V33,
C7 = Usg + V23 + V12013 + V22V23 + V32033

We can compute the first variation of (9), obtaining dy Ryp (V). We first

simplify the notation, letting J = |Z — V|. Also, denote L(J) =

(J—1)logJ.

Hence, L'(J) = dL(J)/dJ =1+ 1logJ — 1/J. Thus,

Op,, Rup(V) =
Ov, Rup(V) =
Ops Rup(V) =
Ovyy Ru(V) =
O Ru (V') =

Ovas Ru B (

Ovsy Rup(V
Ovss Rup(V
Ovss Rup(V

v

)=
) =
)=
)=

_(<1 — v92)(1 — v33) — v3gv23) L' (J

)L(
(1123?)31 +v21(1 — 033)) "(J),
—(v21vs2 + (1 — vaz)vs1) L'(J),
—(vs2v13 + v12(1 — vs3)) L' (J),
—( )

(1 —v11)(1 — v33) — vizvsr) L' (J

V12031 + v32(1 — v11)) L' (J),
V12023 + v13(1 — v22)) L' (J),
V2113 + v23(1 — v11)) L' (J),

(1 = v11)(1 — vog) — v1gve1 ) L' (J

=
—(
=
~(

3.2 Numerical Discretization

Let Axq, Aza, Az be the spacial steps, At be the time step, and (x1;, x2;, T3k) =
(iAxy, jAze, kAx3) be the grid points, for 1 <i< M, 1 <j< N, 1<k <P.
For a function ¢ : 2 — R, let 7, ; = p(nAt,ilz1, jAz2, kAzs). We define the

difference operators based on

Xy n _—
D Pijk —

T2

D*¢i .k
xr3, N

D Pij.k
xr1T1 n

D™ oi

oo n
D™ ;

r3xr3, n _
D™ ;)

uniformly-spaced grid as

n n
Pit1,5.k — Pi-1,5k
2AJ)1
n n
_ Pigt1k T Pig-1k
2A$2
n n
_ Pigk+1 — Pigk—1
2AZL'3 ’
n
Pk — 200 TP, )
Ax?
n
_ Spi,j—&-l,k 2502,] k + (pz gJ—1 k
Ax3
n
soi,j7k+l 2('01,j k + 9017] k— 1

Ax3



Below, we will use the following notations when it is obvious that the grid point
at (iAxy, jAzq, kAxsz) is under consideration

<)077, — @Zj,ka Dml@n = DIZ()O'?,j,/w szzl@n — Dmlzl(ijJw l — 172’3.

To discretize equations (11) and (12), we use finite difference schemes. In
order to restrict the maximum displacement change per time step from being
large, equation (11) is discretized using explicit scheme with adaptive time-
stepping at every point (2, j, k)

u?+1 _u? _ n x1,.n T3, N T3, mn

N = =[Oy, F(u™)] = B(D" 01y + D20y + D™ 0i3)
+ B(D™ Uy + DTy} 4 DR,

ul Tt —

Qth = —[0u, F(u™)] = B(D™vg; + D205, + D™ vg)
+ B(D* g 4+ D2l + D™ uy),

ul ™t —

1 = [0, )]~ B(D" el + Dl + Do)

+ ﬂ(Dzlzlug —l—DzQzng +Dm3x3u§)7

where [0, F(u™)], 1 = 1,2, 3, is a discretization of a similarity-based gradient. In
our numerical experiments, Ax; = Axzs = Axz = 1, and At is chosen so that
the maximum displacement per iteration equals 0.1.

Equation (12) is discretized using semi-implicit scheme

U?IHA_ B(D* uy U11 ) —ver(1+ofy) — N(C2(1 +Ty) +esviy + CGU{Ls)
( (1 — o) (1 — vg3) — ng”gg)L/(J)a

UEHA_ B(D*uy — ”?2“) ve1vyy — N(CSUE +c5(1+o7y) + C7”?3)
+ A(vg3v5y + vy (1 —v33)) L'(J),

1%172013 = B(D™suf — o) — vervly — p(caviy + c(1+vfy) + croly)

+ (o3 vEy + (1

- Ug?)vgl)L/(J)a



Ugl—i_l B ,Ugl T +1 n n n n
AL BD™ uy —vyy™) —vewwgy — p(cavgy + cs(1+vh,) + covds)
+ A(v5puis + viy (1 — vls)) L' (J),
USQ-H[ B U5L2 _ n+1 n n n n
N B(D™uy —v35") —vei (1 +vgy) — pu(cs(l + v3y) + csvgy + crvgs)
( (1 —vf)(1 = vg3) _U?Svgl)L/(J)a
Ug?jrl — /USS _ Dafg n n n 1 n
N B(D*ul — vis ') — veyvgs — p(cavgs + cuyy + 7 (1 +vy))
+ A(vipvs; 4 vy (1 — i) L' (J),
vg;rl B Ugl _ Dxl n n n 1 n
A B( U31 ) — VU3 — N(02U31 + csvgy +c6(1 + Us:s))
( V13 + v13(1 — ”32))L/(J)a
,U;L;rl — Uszg _ To n+1 n n n n
N B(D™2uf — vy ™) — veyvly — p(csvly + csvly 4 cr(1 + 033))
+ A3 075 + v (1 —ofy)) L' (J),
vg?j_l B vg% T n+1 n n n n
AL B(D™uf — vis™) — ver (14 viy) — pca(l + vhy) 4 cevy) + crviy)

+ A((1 = vfy) (1 — vhy) — viyvs ) L' (J),

where L'(J) is defined as in Section 3.1.

3.3 Algorithm

We are now ready to give the algorithm for the unbiased registration via non-
linear elastic regularization.

Algorithm 1 Unbiased Registration via Nonlinear Elastic Regularization

1: Initialize ¢ = 0, u(x,0) = 0, and V(x,0) = 0.

2: Calculate V(x,t) using equation (12), where the equation is discretized using the
semi-implicit method described in Section 3.2.

Steps 3-5 describe the procedure for solving equation (11) advancing u(x,t) in time
using the explicit scheme. Numerical discretization is described in Section 3.2.

3: Calculate the perturbation of the displacement field R(x) = —0FEu(u, V).

4: Time step At is calculated adaptively so that At - max(||R||2) = Au, where Au
is the maximal displacement allowed in one iteration. Results in this work are
obtained with Au = 0.1.

5: Advance equation (11), i.e. du(x,t)/0t = R(x), in time, with time step from step
4, solving for u(x,t).

6: If the cost functional in (10) decreases by sufficiently small amount compared to
the previous iteration, then stop.

7: Let t := t+ At and go to step 2.
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Fig. 1. Serial MRI images from the ADNI follow-up dataset (images acquired one year
apart) are shown. Volumes I; (row 1) and I> (row 2) are depicted as a brain volume
(column 1) and from sagittal (column 2), axial (column 3), and coronal (column 4)
views. Nonrigid registration aligns volume I> into correspondence with volume I;.

4 Results and Discussion

We tested the proposed unbiased nonlinear elastic registration model and com-
pared the results to those obtained with the unbiased fluid registration method
[16], where the unbiased regularization constraint (8) was coupled with the L?
matching functional (3) and fluid regularization (1), (2). Here, both methods
were coupled with the L? and mutual information (MI) based similarity mea-
sures. In our experiments, we used a pair of serial MRI images (220 x 220 x 220)
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Since the im-
ages were acquired one year apart, from a subject with Alzheimer’s disease, real
anatomical changes are present, which allows methods to be compared in the
presence of true biological changes.

Figure 1 shows the images being registered and Figures 2 and 3 show the
resulting Jacobian maps. Results generated using the fluid and nonlinear elas-
ticity based unbiased models are similar, both suggesting a mild volume reduc-
tion in gray and white matter and ventricular enlargement that is observed in
Alzheimer’s disease patients. The advantages of the unbiased nonlinear elasticity
model is its more locally plausible reproduction of atrophic changes in the brain
and its robustness to original misalignment of brain volumes, which is especially
noticeable on the brain surface. The unbiased nonlinear elasticity model coupled
with L? matching generated very similar results to those obtained with the MI
similarity measure, partly because difference images typically contain only noise
after registration. Unbiased fluid registration method, however, is more effective
in modeling the regional neuroanatomical changes, showing more clearly which
parts of the volume have undergone largest tissue changes, such as ventricular
enlargement as shown in Figures 2 and 3.
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Unbiased Nonlinear Elastic Registration coupled with L? Matching

Fig. 2. Nonrigid registration was performed on the Serial MRI images from the ADNI
Follow-up dataset using unbiased fluid registration and unbiased nonlinear elasticity
registration, both coupled with L? matching. Jacobian maps are superimposed on the
target volume.

Figure 4 shows deformed grids generated with unbiased fluid and unbiased
nonlinear elastic registration models. Figure 5 shows the energy decrease per
iteration for both models.

In Figure 6, we examined the inverse consistency of the mappings [5] gen-
erated using unbiased nonlinear elastic registration. Here, the deformation was
computed in both directions (time 2 to time 1, and time 1 to time 2) using
mutual information matching. The forward and backward Jacobian maps were
concatenated (in an ideal situation, this operation should yield the identity),
with the products of Jacobians having values close to 1.

The unbiased nonlinear elasticity model does not require expensive Navier-
Stokes solver (or its approximation), which is employed at each iteration for fluid
flow models. Hence, in our experiments, unbiased nonlinear elasticity iteration
took 15-20% less time than the unbiased fluid step. Convergence was obtained
after roughly the same number of iterations for both methods, resulting in bet-
ter performance for the unbiased nonlinear elasticity model. Future studies will
examine the registration accuracy of the different models where ground truth is
known, and will compare each model’s power for detecting inter-group differences
or statistical effects on rates of atrophy.
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Unbiased Nonlinear Elastic Registration coupled with MI Matching

Fig. 3. Nonrigid registration was performed on the Serial MRI images from the ADNI
Follow-up dataset using unbiased fluid registration and unbiased nonlinear elasticity
registration, both coupled with MI matching. Jacobian maps are superimposed on the
target volume.
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Fig. 4. Results obtained using unbiased fluid registration and unbiased nonlinear elas-
ticity registration, both coupled with L? and MI matching. The generated grids are
superimposed on top of 2D cross-sections of the 3D volumes (row 1) and are shown
separately (row 2).
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Fig. 5. Energy per iteration for the unbiased fluid registration and unbiased nonlinear
elasticity registration, both coupled with L? and MI matching.
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Fig. 6. This figure examines the inverse consistency of the unbiased nonlinear elastic
registration. Here, the model is coupled with mutual information matching. Jacobian
maps of deformations from time 2 to time 1 (column 1) and time 1 to time 2 (column
2) are superimposed on the target volumes. The products of Jacobian maps, shown in
column 3, have values close to 1, suggesting inverse consistency.



