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ABSTRACT. We present an algorithm for interpolating the visible portions of a point cloud that are
sampled from opaque objects in the environment. Our algorithm projects point clouds onto a sphere
centered at the observing location and performs essentially non-oscillatory (ENO) interpolation of
the projected data. Curvatures of the occluding objects can be approximated and used in many
ways. We demonstrate how our visibility formulation can be incorporated into novel algorithms for
mapping unknown environments with a single or multiple observers, and target finding problems.
A convergence proof is provided indicating suitability of our algorithm for some canonical types
of environments. Various postprocessing optimization techniques are considered to obtain a more
uniform exposure of the region along the path.

1. INTRODUCTION

The problem of visibility involves the determination of regions in space visible to a given ob-
server when obstacles to that sight are present. When the observer is replaced by a light source
in the simplified geometrical optics setting with a perfectly absorbing boundary condition at the
obstacles, the problem translates to that of finding illuminated regions. In this regard, the visibil-
ity problem is highly related to the high frequency wave propagation problems and is needed in
many computational high frequency wave approaches. We will interchange the term visibility with
illumination, and occlusion with shadow freely in this paper.

In visualization, visibility information can be used to make complicated rendering processing
more efficient by skipping over occlusion. In robotics mission planning, achieving certain visibility
objectives may be part of the mission. Video camera surveillance design is one such example.

Visibility problems have also been studied by geometers. For example, [6] studies the connect-
edness of the on surface shadow and the convexity of the occluding surface.

In general, one may consider the following classes of visibility problems:

(1) Given occluders, construct shadow volume and its boundary;
(2) Given a projection of visible regions, construct the occluders;
(3) Find vantage location(s) that maximize visibility using certain predefined metric.

In many visualization applications, (1) is solved by projecting triangles. The question studied in
[6] can be viewed as in category (2). The surveillance problems are related to (3). We will present
an algorithm for a problem related to both (1), (2), and (3).

In the following, we summarize the main problems under consideration of this paper.

Problem 1.1. Given a vantage point and a set of points (a point cloud) that are evenly distributed
over solids. The surface of the solids are piecewise smooth.
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Construct a high order accurate representation of the portions of the solid surfaces that are
visible to the vantage point and also the corresponding occlusion volume.

Problem 1.2. Given a bounded domain with unknown solid obstacles and a vantage point. Assume
an evenly distributed set of points can be sampled from the portions of the unknown solids that are
visible to a given vantage location.
Construct a piecewise linear path so that (a) any point on the solid surfaces is seen by at least
one vertex of the path; and (b) an accurate representation of the solids is constructed from the
point clouds that are collected at the vertices of the path.

In practice this data could be obtained from sensors such as LIDAR or even from triangulated
surfaces (here P would be the set of vertices).

The outline of the paper is as follows. In Section 2 we define the visibility of point clouds along
with ENO interpolation for smoother visibility approximation. Error analysis of the resulting inter-
polant is performed in Appendix A, whereas in Appendix B we derive the dynamics of the visibility
function with respect to observer’s motion. Section 3 is devoted to application of our visibility for-
mulation to motion planning in an unknown environment. We propose a navigation algorithm for
a single and multiple observers. We furthermore present an application of the exploration algo-
rithm to a target-finding problem in an unknown environment, given a target location. Simulation
results and statistics demonstrate robustness of our algorithm in different types of environments.
A rigorous convergence proof of our single observer algorithm in an environment with an arbitrary
number of disjoint convex obstacles is provided Appendix C. Finally, in Section 4 we consider
postprocessing of the exploration path via optimization with respect to uniform illumination of the
region of interest.

1.1. Representations of Visibility. Today computational geometry and combinatorics are the pri-
mary tools to solve visibility problems [7],[23],[5]. The combinatorial approach is mainly con-
cerned with defining visibility on polygons and more general planar environments with special
structure. All the results are based on an underlying assumption of straight lines of sight. The sim-
plified representation of the environment is a major limitation of this methodology. Furthermore,
the extension of these algorithms to three dimensional problems may be extremely complicated.

We define a representation of visibility in a regime, where visible lights are modeled accurately
by rays, and with it, we solve the problems including but not limited to those considered in com-
putational geometry [7], on general environments in two or three dimensions. We require this
representation of visibility to utilize minimum information about the environment, be efficient to
compute, and to allow for accurate computations of geometrical quantities such as curvature of the
occluding surface.

One approach is to introduce a level set representation of the occluding objects and the visibil-
ity function, defined in [21]. This formulation can be applied to general types of environments
and easily extended to three dimensions and curved lines of sight. However, it requires a priori
knowledge of the occluding objects to construct the level set representation of the environment.
This information may not be available in some important real life applications, e.g. navigation in
an unknown environment, or if the occluding objects are represented by open surfaces.

Another method for visibility representation is developed by LaValle et al. in [12], [16], [17],
[18], [19], and [20]. This is a rather minimal framework based on detecting discontinuities in
depth information (called gaps) and their topological changes in time (referred to as gap critical
events). The “visible” environment is represented by a circle centered at the vantage point, with
gaps marked on the circumference in the order of their appearance to the observer. Note that no
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distance or angular information is provided. As with most combinatorial approaches, LaValle’s
method works only on regions having special geometries.

Our new model can handle complicated geometries and be extended to three dimensions [10],
and curved lines of sight [11], similarly to the level set representation. Furthermore, unlike [21],
it does not require any a priori information about the environment. In contrast to LaValle’s repre-
sentation, we utilize distance and angular information, which, in practice, can be easily provided
by the sensor.

1.2. Robotic Path Planning with Visibility Considerations. Consider a bounded region which
may contain an unknown number of arbitrary positioned obstacles of unknown general shapes.
Our goal is to obtain an algorithm that would utilize visibility information to allow an autonomous
observer(s) equipped with a range sensor to fully explore the region and map the obstacles’ bound-
aries. The latter refers to the construction of an accurate mathematical representation of the obsta-
cles.

In [24], an algorithm extracting planar information from point clouds is introduced and used in
mapping outdoor environment. In [13], depth to the occluding objects is estimated by a trinocular
stereo vision system and is then combined with a predetermined “potential” function so that a robot
can move to the desired location without crashing into obstacles.

A wall-following curvature-based control algorithm is introduced in [25] and evaluated with
real-life robots equipped with range sensors in [26]. Even with high sensor precision, curvature
estimates have significant inaccuracies in the absence of filtering. The noise in curvature computa-
tions is related to the computation of derivatives of the range data which are prone to noise. To deal
with this problem, we employ essentially non-oscillatory interpolation (ENO) from [8] to obtain
high order interpolation of the range data, so that derivatives can be easily estimated away from
discontinuities.

The motivation for our navigation algorithm comes from work of Tovar et al. [16],[17], [18],
[19], and [20]. In [20], a single robot (observer) must be able to navigate through an unknown
simply or multiply connected piecewise-analytic planar environment. The robot is equipped with a
sensor that maps onto a circle relative locations of discontinuities in depth information, gaps, in the
order of their appearance with respect to the robot’s heading. Each gap corresponds to a connected
portion of space that is not visible to the robot.

To navigate the environment the observer approaches one of the gaps. The visibility map is then
updated and the process is repeated until the whole region has been explored. Critical events such
as appearance and disappearance of gaps are tracked by the dynamic data structure. As a result
of exploration, the region is characterized by the number of gaps and their relative positions. No
distance or angular information is accumulated.

In contrast, our algorithm maps the obstacles in cartesian coordinates as the observer proceeds
through the environment, and utilizes the recovered information for further path planning. At the
termination of the path all the obstacles’ boundaries are reconstructed. Thus we obtain a complete
representation of the environment. The algorithm is easily scalable to allow for multiple observers.
We rigorously prove that for a general class of environments our algorithm maps the entire region
in finite number of steps. Furthermore, we presents the statistics of the number of discrete steps
used by our algorithm for the exploration of the entire given region.

In [9], our algorithm has been validated on a group of autonomous vehicles equipped with range-
sensors to explore an unknown bounded region and construct the map of the explored environment.
Satisfactory results have been obtained in mapping an unknown environment using multiple mobile
inexpensive sensors where noise is an issue.
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2. VISIBILITY OF POINT CLOUDS AND SURFACE RECONSTRUCTION

Our approach is based on the observation that visibility along each ray emanating from the
vantage point satisfies a causality condition: if a point is occluded, then all other points farther
away from the vantage point along the same ray are also occluded.

The first step of our algorithm, in some sense, can be viewed as the reverse action of ray tracing,
where discrete rays are sent out from the origin to sample given surfaces. However, instead of
assuming a complete explicit or implicit representation of the surfaces, we assume that a set of
points is “uniformly” sampled from the occluding surfaces. In practice this data could be obtained
from range sensors such as LIDAR or from triangulated surfaces (here, the set of vertices can be
regarded as the points sampled from the surfaces).

Given a vantage point, our algorithm retain a subset of visible data points and construct a piece-
wise polynomial interpolation of the visible portions of the surfaces. Unlike the level set repre-
sentation [21], our algorithm can handle open surfaces and does not require a priori knowledge of
occluding surfaces to construct visibility. Our scheme can be regarded as a surface reconstruction
scheme for the portions of surfaces that are visible to the given vantage point.

The algorithm consists of the following steps:

(1) Begin with the point cloud P sampled from the occluding surfaces.
(2) Project P onto a unit sphere centered at the vantage point x0.
(3) Filter out portions of P visible to the observer at x0. 1

(4) Interpolate visible data to obtain a piecewise smooth reconstruction.

Details are presented in the following subsections.

2.1. Projection and Filtering of Data Points. Let S d−1 be the unit sphere in R
d , centered at the

origin. We set up a spherical coordinate system centered at x0 by y = x0 + rν, where ν ∈ S d−1 and
r = |y− x0|.

Define the projection operator πx0 : R
d �→ Sd−1, mapping a point onto the unit sphere centered

at x0, by πx0(x0 + rν) = ν. Let Ω be a subset of R
d . Define ρx0 : S d−1 �→ [0,M) by

(1) ρx0(ν) := min
x0+rν∈Ω̄

�
∂B(x0,M)

r.

where B(y,M) = {y′ ∈ R
d : |y− y′| < M} is the unit disc with radius M centered at y.

The points ỹ = ỹ(r̃,ν) = x0 + r̃ν ∈ Ω are classified as occluded for all r̃ > ρx0(v). A point
y(r,ν) = x0 + rν ∈ ∂Ω is called a horizon point if and only if ν · n(y) = 0, where n(y) is the outer
normal of ∂Ω at y.

Given the set of data points {y j} and a partition of the unit sphere S d−1 = ∪N
i=0K̄i, where Ki

are open regions with diameter ε. Similar to the step of performing cell averaging in the Godunov
method for conservation laws, we define a piecewise constant approximation of ρx0 by

(2) ρ̃x0(y) = min
y j

|x0 − y j|, for every y, πx0y ∈ Ki, i = 0, · · · ,N.

Consequently, we classify y as occluded if ρ̃x0

(
πx0(y)

)
< |y− x0|. Thus we may define the visi-

bility indicator

(3) Ξ(y) := ρx0

(
πx0(y)

)−|y− x0|,
such that {Ξ ≥ 0} is the set of visible regions and {Ξ < 0} is the set of regions invisible from x0.

1Note that this step is optional if P has only been sampled from x 0.
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In case the surface normals are available for each data point, we can use ellipse instead of a ball
in the above construction. A similar approach is also used by QSplat in rendering of the digitized
data of Michelangelo’s statues [15].

In the case where light rays are curved, the term |x0− y j| in (1)-(3) is replaced by the arc length
of the ray connecting x0 and y j. This can easily be computed by solving an eikonal equation. See
[11] for more detail.

2.2. Smoother Reconstruction by ENO Interpolation. Note that analytically the visibility func-
tion ρx0 is piecewise continuous with jumps corresponding to the locations of horizons. Smooth-
ness of ρx0 in each of its continuous pieces relates to the smoothness of the corresponding visible
part of ∂Ω. In the previous section we obtained a piecewise constant approximation ρ̃x0 to ρx0

using formula (2). Along the way, we also extract a subset of visible data points P̃ ⊆ P serving as
“originators” of each constant value of ρ̃x0 .

The edges, or discontinuities in the visibility function ρ typically occur near the locations of
horizons. A standard in image processing choice for the edge-detection function g : R �→ (0,1], is
g(s) = 1/

(
1+ s′2

)
[1]. If the value of g(s) is below some threshold value, we get an edge. The

threshold value depends on the sampling of s.
We implement a modified version of the edge-detection function. Using the piecewise con-

stant values of the visibility function ρ̃x0, we substitute a finite difference approximation for the
derivative of ρ. The resulting edge-detection function g : S 1 �→ [0,1) maps θ onto

(4) g(ρ̃x0(θ)) = 1/

(
1+
(

ρ̃x0(θi+1)− ρ̃x0(θi)
θi+1 −θi

)2
)

,θi ≤ θ < θi+1.

Periodic boundary conditions are used in this formulation. A natural choice of the threshold value
is the polar grid size δθ.

We can then use ρ̃x0 to construct a piecewise polynomial approximation ρint
x0

to the visibility
function, which preserves the jumps. Essentially non-oscillatory (ENO) interpolation is used to
compute such ρint

x0
away from discontinuities. ENO interpolation is a nonlinear polynomial in-

terpolation that has been widely and successfully used in shock problems of computational fluid
dynamics. We refer the readers to the seminal paper [8] for more detail.

Below we describe the interpolation procedure on S1 for two dimensional problems. Possible
extension of the strategies to the three dimensional problems will be described in a forthcoming
publication.

2.2.1. The Two-dimensional Case. Denote the extracted visible data points by pi ∈ P̃. Since S1

can be parameterized by angles θ ∈ [−π,π), we can sort the points in P̃ in the increasing order of
the angle they form with respect to our chosen spherical coordinate system; that is, points in P̃ are
sorted in the increasing order of ρ̃−1

x0
(pi) = arg(pi− x0).

We can then construct ρ(1)
x0 by linearly interpolating between each successive pair of pi and pi+1

if ρ̃x0(θ) 
= M for θ ∈ [ρ̃−1
x0

(pi), ρ̃−1
x0

(pi+1)
)
.

Instead of linear interpolation, we use ENO interpolation to construct ρ(p)
x0 , a piecewise p-th or-

der approximation of ρx0. We use the piecewise p-th order approximation ρ(p)
x0 to compute deriva-

tives on the occluding surfaces (away from the edges) and to extract various geometric quantities.
In Fig. 1 (a) we illustrate visibility from the vantage point at (−0.2,0.6). A corresponding visi-
bility function ρ, its derivatives, and curvature κ are displayed in Fig. 1 (b). As one can see, we
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obtain a high order approximation of the derivatives and, subsequently, curvature along the visible
occluding boundaries away from the discontinuities corresponding to horizons in Fig. 1.

(a)
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FIGURE 1. (a) Visibility map generated from artificial data: dark regions - invisi-
ble, light regions – visible, red star – vantage point (−0.2,0.6), magenta circles –
visible boundary, yellow outline – actual boundary, cyan circles – horizon points.
(b) Forth order interpolation of the visibility function ρ corresponding to (a). Com-

putation of dρ
dθ , d2ρ

dθ2 and the curvature κ = ρ2+2ρ2
θ−ρρθθ

(ρ2+ρ2
θ)

3
2

away from discontinuities

(vertical dashed lines).

The error of this procedure is analyzed in Appendix A.
We refer the reader to [11] for the details and examples of constructing visibility in curved

lines of sight, i.e. when the index of refraction varies across the domain. These examples further
demonstrate flexibility of our formulation.

2.2.2. Conversion to Cartesian Level Set Formulation. The piecewise polynomial reconstruction
of the visibility function ρ may be used to obtain a smooth level set visibility function φ defined
on a Cartesian coordinate system. The following construction yields a level set visibility function
that is smooth across the discontinuities. Begin by defining

(5) G := {(θ,r) : r < ρ(θ)}
containing the visible points on polar coordinates. We proceed to construct a smooth signed dis-
tance function φ to the shadow boundary ∂G using redistancing [3]:

(6)

⎧⎨
⎩

φ(θ,r) > 0, if (θ,z) ∈ G,
φ(θ,r) < 0, if (θ,r) ∈ GC,
φ(θ,r) = 0, if (θ,r) ∈ ∂G.
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The resulting signed distance function may then be easily converted from polar to cartesian
coordinates

φ(x,y) = φ(x(θ,r),y(θ,r)).

On the grid level, this is done by interpolation. Thus obtained level set visibility representation
is consistent with the one obtained in [21]. In Fig. 2 we present the smooth level set visibility
function corresponding to the vantage point marked by the red star.

Level set formulation on a fixed Cartesian coordinate system allows for easy boolean operations
on visibility of different vantage locations. For example, the joint visibility from two vantage
points x1 and x2 may be defined on cartesian grid as

(7) φx1,x2 = max{φx1,φx2}.
This property can be used to construct a level set map of the visible region from multiple view
points as in Fig. 4.

x

y

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(a) (b)

FIGURE 2. (a) Environment with obstacles (green contour), observer (red star), and
shadow boundary (blue contour). (b) Visibility level set function φ.

2.3. Processing and Denoising. In real-life applications we frequently deal with noisy data. There
are different sources of noise. For example, noise may be introduced by the measuring device as in
[9] and [26]. As one can see from [26], even a high accuracy sensor produces significant error in
curvature computations. Filtering is used in [26] to clean up the sensor data. In addition to sensor
error, noise in the data can be introduced from an uneven terrain and/or presence of foliage, cars,
and people in the scene, as in [24].

We propose the use of a simple edge-preserving total variation based noise removal algorithm
[14], which can be applied to the interpolated data to reduce the effect of noise in the scene.
In Fig. 3 (a), we plot visibility based on the denoised visibility function ρ depicted with black
diamonds in Fig. 3 (b). Here, an artificial noise of variance σ = 0.05 is added to the projected
point cloud. The obtained data is then filtered and interpolated. Afterwards we apply the denoising
algorithm from [14].
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FIGURE 3. (a) Visibility map generated from noisy data. Magenta circles – noisy
visible boundary, black circles – denoised visible boundary, yellow outline – actual
boundary, cyan circles – horizon points, dark regions – invisible with respect to
the denoised visibility function, light regions – visible. (b) Visibility function ρ
corresponding to (a). Green circles – edges (horizon points).

3. EXPLORATORY PATH FOR MAPPING UNKNOWN ENVIRONMENTS

Here we consider application of visibility to the problem of exploration of an unknown bounded
two-dimensional region which may contain many disconnected obstacles. Our objective is to con-
struct a path for an observer, so that at the termination of the path the observer will have seen
the entire domain. In addition, a map (or an accurate description) of the domain representing the
boundaries of the obstacles would be constructed. Our algorithm is designed with the considera-
tion of handling general geometries. For practicality reason, we set following constraints on the
observer’s path:

(1) The path is continuous and consists of discrete steps;
(2) The number of steps is finite;
(3) The total distance traveled is finite.

The intuition behind our algorithm is the following. Assume some portions of the obstacles’
boundaries are visible to the observer from a given vantage point. Each continuous portion of the
visible boundary terminates with the horizon points, or edges on the visibility map, as in Fig. 1.
These horizon points are similar to an edge of the door that is ajar. One must proceed beyond the
edge of the door to see more. Similarly, an observer must proceed beyond the horizon point to
gain new information about the environment. At this point, we need to decide how far the observer
should march beyond the chosen horizon point. Our strategy relies on the geometry of the obstacle
near the horizons. Briefly, if the obstacle is a simple circle, then naturally the march distance
should depend on the radius of the circle; this corresponds directly to the curvature at horizon
points. These simple insights allow us to construct a path consisting of discrete steps.

A related approach is described in [16]. At each step of the navigation algorithm, the observer
randomly chooses to approach one of the gaps, i.e. depth discontinuities projected onto S1. How-
ever, in contrast to our discrete approach, a practical implementation of the algorithm from [16]
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requires constant gap tracking. Furthermore, a practical implementation of this algorithm requires
a wall-following procedure. Additional modifications of the algorithm are required when deal-
ing with multiply connected environments, i.e. markings of once visited gaps. Meanwhile, our
algorithm does not require any special treatment of certain types of environments.

In the following subsections we are going to describe our horizon-chacing algorithm for a sin-
gle observer and its extension to the case of multiple observers. We also provide the results of
navigation simulations in sample environments. In Section 3.3.2, we provide the statistics of our
algorithm for some general types of environments. Appendix C contains the convergence proof of
the algorithm in multiply connected regions. A practical implementation of this algorithm on an
economical cooperative control tank-based platform is described in [9].

3.1. Chasing the Horizons. In this section we provide the navigation algorithm for a single ob-
server operating in two dimensions. The key idea behind our algorithm is to proceed in the envi-
ronment Ω by approaching one of the currently visible horizons. Once a new horizon appears, it is
stored in a list. Once the horizon has been explored, it is removed from the list. The observer must
explore every horizon in the list before the algorithm terminates. The observer is allowed to return
and inspect previously skipped horizons if no more new horizons are available. The exploration is
complete once there are no more horizons left to approach. The details are provided in Algorithm 1
below. The following discussion in this subsection applies to Algorithm 1.

As a result of the navigation algorithm, we obtain a complete map of the environment, i.e.
polynomial interpolated boundaries of the obstacles along with the visibility indicator function Ξ
which marks the interior and exterior of the obstacles. In addition, we may easily construct the
level set representation of the reconstructed environment map via (7). The use of the level set
maps in postprocessing algorithms will be presented in the next section. Further applications of
the level set representation of visibility are described in [21] and [4].

Note that in steps 21 and 25, the observer must proceed beyond the horizon in order to see more
new environment. We choose the overshoot step size to be inversely proportional to the curvature
κ of the obstacle’s boundary near the horizon. High order ENO interpolation allows us to compute
curvature at the obstacle’s boundary with desired accuracy. Our choice of the overshoot step size
is further explained in Appendix C.

A parameter λ introduced in step 20 provides extra buffer space between the observer and the
obstacle’s boundary. It may depend on the observer’s size and mobility. If application allows, λ
may change in the process of exploration. For example, a smaller λ would allow the observer to
explore narrow regions of high curvature. When the curvature of the occluding surface is large, a
bigger λ would be more suitable.

In step 21, we define an intermediate position xk+ 1
2
. Motivation for this additional step is to have

a homogeneous coverage of the obstacles’ boundaries. By keeping the observer a uniform distance
away from the boundary, we are able to obtain the same level of detail everywhere in the region.
Additionally, the step xk+ 1

2
is motivated by the convergence proof included in the Appendix C. An

alternative algorithm is to introduce an intermediate position xk+ 1
2

only when approaching a cast
horizon. We use this modified version of Algorithm 1 to obtain all the results in this paper.

Now let us discuss the choice of horizon in step 9. In our experiments the observer approaches
the nearest previously unexplored horizon. Intuitively, this choice would minimize the length of
the path. The convergence proof in Appendix C is based on the nearest edge approach. However,
other choices may be more applicable under different circumstances. For example, one may choose
to approach a random horizon as was done in [16] or a horizon with the largest curvature κ (so that
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Algorithm 1 Single observer

1: k = 0
2: L: list of unexplored edges, initially empty
3: repeat
4: xk: vantage point outside the occluding objects
5: ρxk: visibility function corresponding to xk
6: update the map Ξ of the explored region {Ξ was defined in (3)}
7: find all the edges (horizons) on the

(
θ,ρxk(θ)

)
map

8: if an edge is found then
9: choose the edge to approach, say, in the direction θe {choice depends

on particular aspects of the problem and will be discussed below}
10: store the rest of the edges in a list L
11: remove those edges from L that are currently visible
12: else {no edges found}
13: pick an edge θe from the list of unexplored edges L
14: backtrack xk to one of the previous positions corresponding to the

chosen edge
15: end if
16: if ρxk(θe) < ρxk(θe +δ) then
17: choose the direction Θ = θe +δ
18: else
19: choose the direction Θ = θe −δ
20: end if{here δ is chosen so that there is always a buffer of size λ

between the observer and any obstacle boundaries. For example, λ may
depend on the robot’s size to avoid collisions.}

21: xk+ 1
2
is obtained by moving xk in the chosen direction Θ by amount

r1 = min{ρxk(Θ),ρxk(θe)− tan
(π

3

) 1
κ
}

{κ is the curvature near the edge (if κ = 0 shift xk by small amount to
see the next edge)}

22: ρx
k+ 1

2
: visibility function corresponding to xk+ 1

2

23: update the map Ξ of the explored region
24: remove those edges from L that are currently visible
25: xk+1 is obtained by overshooting from xk+ 1

2
by

r2 = min{ρxk(Θ)− r1,2tan
(π

3

) 1
κe

}
26: until L 
= { /0}
27: have explored the entire environment

the overshoot step size is the smallest). In [9], the choice of the next horizon is dictated by the
specifics of sensor design: to minimize the errors produced by the sensors in the experiments, it
is always preferable to navigate around the objects in the counterclockwise fashion. Thus, the
observer always prefers to approach the right-most edge of the obstacle.
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3.2. Multiple Observers. The extension of the navigation algorithm for multiple observers is
straightforward. Let {x j}n

j=1 be a set of observing locations. Similarly to (3), define the visibility

indicator Ξ j(y) := ρx j

(
ν(y)

)−|y−x j|, such that {Ξ j ≥ 0} is the set of visible regions and {Ξ j < 0}
is the set of invisible regions from x j. In addition, let Θ j = {θ j,1, . . . ,θ j,k} be the set of edges visible
from the vantage point x j. The algorithm for multiple observers is as follows.

Algorithm 2 Multiple observers (based on Algorithm 1)

1: N: number of observers
2: x j: vantage points outside the occluding objects, j = 1, ...,N
3: ρx j: visibility function corresponding to x j

4: compute Ξ = max j{Ξ j}
5: find all the edges (horizons) Θ j corresponding to each observer x j
6: exclude those θ j,k for which Ξ ≥ 0
7: if found an edge then
8: proceed as in Algorithm 1 for each individual observer
9: else {no edges found}
10: move observer at x j in the direction orthogonal to the direction of the

nearest xi to see new edges;
11: end if
12: proceed as in Algorithm 1 until no more new edges
13: have explored the entire environment

Note that in step 6 of Algorithm 2 we exclude those edges corresponding to x j, which are visible
by another observer xi and thus do not need to be further explored. The orthogonal move in step
10 is chosen to maximize the chance of “seeing” more new area.

We would like to remark on different modes of execution of Algorithm 2. In concurrent mode
all observers process sensor data simultaneously. This way, the next vantage point of each ob-
server depends only on their previous positions. In sequential mode the observers are ordered as
a sequence, and only one may move at a time. In this situation, the position of the next observer
depends on new positions of the previous observers. The ordering may change according to the
decision to optimize joint visibility. In some applications the concurrent mode would be more
desirable since this mode allows for more autonomous maneuver for each observer. Of course, in
practice, the usage of one mode or switching from one to the other depends on the data communi-
cation model as well as the routing algorithm. In the experiments in [9] the concurrent mode has
been implemented.

3.3. Results. In this section we present some simulation results for environment exploration in
case of single and multiple observers. We also present the statistics of some extensive simulations
which demonstrate the stability of our algorithm in terms of step sizes and path lengths.

3.3.1. Single Observer. In Fig. 4 we demonstrate the paths generated using Algorithm 1 in dif-
ferent environments. In Fig. 4 (a), the test environment consists of non-convex obstacles. The
observer is able to explore the entire environment in seven discrete steps without having to back-
track and clear previously unexplored edges. In contrast, in Figs. 4 (b) and (c), the observer must
return to one of its previous locations to clear the unexplored edges. In the case of two spirals in
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Fig. 4 (b), the observer first explores the interior of one spiral, then returns to proceed inside the
second spiral.

The environment in Fig. 4 (c) is generated by taking a level set of a portion of the Grand Canyon
elevation data.2 The non-uniform change of curvature of the visible boundary makes it difficult
to explore fractal-like portions of the boundary. A constant parameter λ, which controls how
close an observer may approach an obstacle, does not allow for a more detailed exploration of the
narrow regions. As this parameter may depend on the physical size of the observer, the result is an
illustration of a realistic exploration outcome. If the size and mobility of the observer allows for
it, an algorithm with λ varying as a function of curvature may be implemented. Another approach
would be to utilize optimization techniques to construct a new path based on the results of the
initial “rough” exploration as in Section 4.

The second row in Fig. 4 depicts the level set representations based on the reconstructed envi-
ronments from the first row. The zero level set corresponding to the boundaries of the obstacles is
marked on each figure.

(a) (b) (c)

(d) (e) (f)

FIGURE 4. Top row: results of exploration algorithm with a single observer (dark
circle – initial observer position, star – final observer position, white line with cir-
cles – observer’s path); bottom row: implicit level set reconstruction of the explored
regions, zero level set corresponds to the objects’ boundaries.

2The terrain data were obtained from ftp://ftp.research.microsoft.com/users/hhoppe/data/gcanyon/.
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3.3.2. Statistics. Figure 5 depicts a statistics of environment exploration simulations using Al-
gorithm 1 and that using a random walk strategy, which serve as control experiments. In the
random walk strategy, the next position of the observer is randomly chosen from the currently
visible region. We compare the distributions of the number of steps required to explore a sam-
ple environment containing twelve nonconvex disjoint objects. The statistics is collected from
1000 independent runs with random initial positions of the observer and non-overlapping random
placement of the obstacles. Sample obstacle configuration is illustrated in Fig. 5 (a). The initial
positions of the observer are constrained to be outside of the obstacles.

Histograms of the total number of steps required to explore the environment are presented in
Figs. 5 (b) and (c). Figure 5 (b) contains the closeup version of the histogram corresponding to the
nearest edge approach (Fig. 5 (b)). From it, one can see that Algorithm 1 requires no more than 26
steps to explore the environment. Furthermore, the exploration most frequently terminates in 19
or 20 steps. The minimum number of steps required to explore this type of environment is 11. We
would like to remark that the corresponding path lengths can be inferred taking into account the
size of the exploration domain.

In the simulations using the random walk strategy described above, a limit of 400 steps is im-
posed, regardless of whether the environment has been entirely explored or not. One can see that
about a quarter of experiments terminate before the entire region has been explored.

Note that if the curvature changes its sign 2m times along the boundary of a single star-shaped
obstacle, the number of steps required to explore the entire boundary is 3 + m. Here, 3 steps are
needed to see the convex hull of the object and m steps are required to explore each concave part.
The complexity estimates for our algorithm are discussed in detail in Appendix C. For now, we
would like to remark that if each object is treated independently, the number of steps required to
explore a region with n disjoint star-shaped obstacles is n(3 + m). For our particular experiment
setup, this amounts to 48 steps. Note that algorithm 1 allows to explore the entire environment in
half as many steps.

Clearly, Algorithm 1 provides a superior strategy for environment exploration comparing to the
random walk strategy. The statistics also provides an estimate on path length and the number of
steps required to explore the region with twelve non-convex obstacles. In Appendix C we prove
that our proposed algorithm would always terminate in finite number of steps in any bounded
region containing an arbitrary finite number of disjoint convex obstacles.

3.3.3. Multiple Observers. In Figs. 6, 7, and 8 we illustrate environment exploration with mul-
tiple observers in concurrent mode according to Algorithm 2. The experiment with two robots
navigating in the environment in sequential mode is described in [9]. The two observers in Fig. 6
are initially positioned so that Observer 1 which is closer to the obstacle does not see any new
horizons that are invisible to Observer 2 which is farther away. In this situation, Observer 1 makes
a move in the direction orthogonal to Observer 2, according to step 4 of Algorithm 2. Thus it takes
three steps by each of the two observers to explore the region with a single obstacle.

In Fig. 7 we have two observers in a more complex environment consisting of three nonconvex
shapes. Two observers explore such an environment in four steps. Finally, in Fig. 8, we have three
observers in the environment with four circles. This time it takes only three steps to complete the
exploration.

3.3.4. Target Finding. To demonstrate the versatility of the proposed Algorithm 1, we show how it
can be applied towards the problem of searching for a target in an unknown environment. Assume
the target coordinates are given. The observer equipped with a range sensor must find a path
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FIGURE 5. Statistics experiment using Algorithm 1: (a) Sample environment. (b)
number of steps histogram for the nearest edge approach; (c) number of steps his-
togram for the random walk; (d) closeup of the number of steps histogram for the
nearest edge approach. The simulation of random walk is terminated if the step
count is greater than 400.

through the unknown environment, so that at the termination of the path, the target is visible. If
desired, the observer can then march along the line of sight connecting it to the target to reach it.



VISIBILITY OF POINT CLOUDS AND EXPLORATORY PATH PLANNING IN UNKNOWN ENVIRONMENTS 15

FIGURE 6. Stages of environment exploration with two observers. Red stars –
current observers’ position.

FIGURE 7. Stages of environment exploration with two observers. Red stars –
current observers’ position.

FIGURE 8. Stages of environment exploration with three observers. Red stars –
current observers’ position.

The proposed discrete strategy is to approach the nearest edge to the target at every step. Figure 9
illustrates sample paths to the target (marked by yellow diamond) in an environment containing
multiple disk-shaped obstacles. The initial position of the observer is marked by the red square
and the final position by the star. The green regions are visible from the final position of the
observer. Figures 9 (a) and (c) illustrate the paths resulting from the proposed algorithm, while
Figs. 9 (b) and (d) depict the optimal paths to see the target, computed using the algorithm for
known environments introduced in [4].

The length of the path in Fig. 9 (a) is 2.6215, while the optimal path length in current configura-
tion is 2.2033. The second row depicts a slightly different observer-target configuration, with the
resulting path length 6.0557 and the corresponding optimal path length 2.0349.

A forthcoming publication will address application of visibility to other types of target finding
problems, such as looking for a diffusive or a wave source in known and unknown environments.
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FIGURE 9. (a) and (c) Target finding in an unknown environment. Yellow diamond
– target, red square – initial observer’s position, red circles – discrete observer’s
positions along the path, red star – final position. The green region is currently
visible to the observer. (b) and (d) Optimal paths to see the target, computed using
[4]. Path lengths: (a) 2.6215, (b) 2.2033, (c) 6.0557, (d) 2.0349.

4. POSTPROCESSING OF THE PATH: ILLUMINATION OPTIMIZATION

Once we have constructed a route to explore an unknown environment, we can apply opti-
mization techniques to post-process the obtained path in order to obtain a more uniform illumina-
tion/exposure of the explored region. In what follows, let Ω be the region of exploration and D be
the obstacles. Then the region discovered along the path is Ω\D.

Let γ = {z0,z2, ...,zN} be the positions returned by the exploration algorithm. Let φ(·;zk) be the
visibility level set function corresponding to observer at zk:

(8)

⎧⎨
⎩

φ(x;zk) > 0, if x is visible from zk,
φ(x;zk) < 0, if x is invisible from zk,
φ(x;zk) = 0, if x is on the shadow boundary with respect to zk.
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Define the total illumination of a point x ∈ Ω\D due to γ by

(9) I(x;γ) :=
N

∑
k=0

H(φ(x;zk)),

where H is the one-dimensional Heaviside function. Note that I records the number of observers
that can view x, and so 0 ≤ I(x;γ) ≤ M.

From a given set of observing locations {zk}, we seek a set of nearby {z∗k}, so that in average
points outside obstacles are viewed in a more uniform manner – the deviation of illumination from
a prescribed illumination level is small.

In certain applications, a higher priority may be placed on viewing a specific region in space,
while lower priority is placed on other regions. In our formulation we simulate this effect through
the use of weights. Let w : Ω → R

+ be a positive real-valued function defined over Ω. We relate
the magnitude of w to the importance of a given point x ∈ Ω to be visible, with larger magnitude
associated with greater importance. By including w in the measure used in spatial integration, we
attach importance weights to the visibility of space.

More precisely, we formulate the variational problem as follows:

Problem 4.1. Given a positive constant C and a weight function w(x). Find γ ∈R
2N that minimizes

(10) E(γ;C) =
1
2

N−1

∑
k=0

|zk+1− zk|2 +
λ
2

�
Ω\D

(
I(x;γ)−C

)2
w(x)dx+µ

N−1

∑
k=0

(|zk+1− zk|−ρzk(θ)
)
.

The first term in the above functional seeks to stabilize the problem, by penalizing against frac-
tal or space filling paths. In the meantime, the last term in (10) prevents the continuous path
connecting the discrete locations in γ from accidentally crossing obstacles’ boundary. If θ is the
direction of zk+1 when looking out of zk, boundary non-crossing condition is equivalent to keeping
|zk+1− zk| < ρ(θ) for all k. Coefficients λ and µ serve as parameters for the penalty terms.

Using summation by parts and fixing z0 and zN , we arrive at the following Euler-Lagrange
equation:

żk = (zk+1−2zk + zk−1)

− λ
�

Ω\D

( N

∑
j=0

H
(
φ(x;z j)

)−C
)

δ
(
φ(x;zk)

)
∇zkφ(x;zk)w(x)dx

− µ
[( zk+1− zk

|zk+1− zk| −
zk − zk−1

|zk − zk−1|
)
−∇zkρ(θ)

]
, 1 ≤ k ≤ N −1.(11)

Using the path γ0 constructed via Algorithm 1 as an initial guess, equation (11) can be solved by
simple integration techniques.

Unless stated otherwise, in the following discussion, we take w ≡ 1. In Fig. 10 (a) we have two
circular objects. The dashed green line segments joint the four vantage points forming initial explo-
ration path γ0 obtained via Algorithm 1. This path is then deformed using the flow (11), resulting in
a new path γ represented in solid red. To maximize the total illumination of the region we set con-
stant C = 15, so that the desired exposure is always greater then maximum possibleC = 4. The flow
eventually reaches a steady state. In Fig. 10 (b) we plot the ratio

�
Ω\D I(x;γ; t)dx/

�
Ω\D I(x;γ;0)dx

of total exposure at time t to the initial total exposure. One can see that the total increase in the
exposure for this simple geometry is only roughly 1%.

In contrast to the previous example, the gain in exposure in our second experiment is around
23%, see Fig. 11 (b). Here the region is constructed from a slice of Grand Canyon elevation data,
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FIGURE 10. Path postprocessing corresponding to Problem 4.1, obstacles – two
circles (blue curves): (a) initial path (dashed green) and optimized path (solid red);
(b)

�
Ω\D I(x;γ; t)dx/

�
Ω\D I(x;γ;0)dx. Here C = 15,λ = 0.1,µ = 1.

which has a much more complex geometrical structure comparing to the example with two circles.
We further increased the complexity of the Grand Canyon terrain by adding holes shaped as circles
to the interior of the explored region. The initial and optimized paths are depicted in Fig. 11 (a).
The original exploration path (dashed green) branches out to explore the regions occluded by the
circles. Note that the optimized path (solid red) is shorter than the original and has fewer kinks.
Here, we again choose the desired exposure constant C = 20.
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FIGURE 11. Path postprocessing corresponding to Problem 4.1, obstacles – Grand
Canyon terrain (blue curves): (a) initial path (dashed green) and optimized path
(solid red); (b)

�
Ω\D I(x;γ; t)dx/

�
Ω\D I(x;γ;0)dx. Here C = 20,λ = 0.1,µ = 1.

Figure 14 shows the evolution of the path along the Grand Canyon terrain and the resulting ex-
posure of the region where Gaussian importance weights are centered at (0.9,0) and (−0.5,0.25).
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We see an increase of about 30% in total illumination of the region in Fig. 12 (b). The resulting
optimized path (solid red) in Fig. 12 (a) is shorter than the original path (dashed green), with the
observers’ positions concentrated near the regions of increased importance (magenta diamonds).
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FIGURE 12. Path postprocessing corresponding to Problem 4.1, obstacles – Grand
Canyon terrain (blue curves), the weights are centered at (0.9,0) and (−0.5,0.25)
(magenta diamonds); (a) initial path (dashed green) and optimized path (solid red);
(b)

�
Ω\D I(x;γ; t)dx/

�
Ω\D I(x;γ;0)dx. Here C = 20,λ = 0.1,µ = 1.

It may be desirable in some applications to increase the number of observing locations along the
path. Our goal is to arrange the new observers in an optimal way with respect to total illumination
of the region. Starting with an initial path γ obtained by our algorithm, we can insert points along
the line segments connecting zk and zk+1 for each k to obtain a new set γ̃ = {Z1,Z2, ...,ZM}, such
that γ⊂ γ̃. Given a parameter ds > 0, we optimize the positions of thus obtained vantage points with
additional constraint |Zk+1 −Zk| = ds. Precise variational formulation of the problem is provided
below:

Problem 4.2. Given {zk}N
k=1, a constant C > 0, and a parameter ds > 0, find γ̃ ∈ R

2M that mini-
mizes

E(γ̃;C) =
1
2

M−1

∑
k=1

(|Zk+1 −Zk|−ds)2

+
λ
2

�
Ω\D

(
I(x; γ̃)−C

)2
dx

+ µ
M−1

∑
k=1

(|Zk+1 −Zk|−ρZk(θ)
)
.(12)

Similar to Problem 4.1, the first term in the above functional acts as a regularizer of the path. By
setting ds to be the actual arc length along the path, we additionally enforce the uniform distribution
of the observing locations along the path. The Euler-Lagrange equation corresponding to Problem
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4.2 is

Żk =
(

Zk+1 −2Zk +Zk−1 +ds
[ Zk −Zk−1

|Zk −Zk−1| −
Zk+1 −Zk

|Zk+1−Zk|
])

− λ
�

Ω\D

( M

∑
j=1

H
(
φ(x;Zj)

)−C
)

δ
(
φ(x;Zk)

)
∇Zkφ(x;Zk)dx

− µ
[( Zk+1 −Zk

|Zk+1 −Zk| −
Zk −Zk−1

|Zk −Zk−1|
)
−∇Zkρ(θ)

]
, 2 ≤ k ≤ M−1.(13)

In Figures 13 and 14 we present the results of exploration according to Problem 4.2. In case of
two circles, the path expands away from the obstacles’ boundaries which provides better illumi-
nation of the region. The total gain in illumination as a result of the flow (13) is about 7%. The
path, in case of Grand Canyon, clearly smoothes out and contracts as a result of postprocessing
as can be seen from Fig. 14 (a). Note that in order to have a continuous path, the observer has to
backtrack in places where the path branches out. The exposure of the region keeps increasing with
the total gain slightly under 15%. Remark that more complex environments e.g. Grand Canyon,
allow for greater improvement in illumination through postprocessing of the path as opposed to
simpler environments like the one with two circles.
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FIGURE 13. Path postprocessing corresponding to Problem 4.2, obstacles –
two circles (blue curves): (a) initial path (dashed green), four original ob-
servers’ locations (magenta triangles), and optimized path (solid red); (b)�

Ω\D I(x;γ; t)dx/
�

Ω\D I(x;γ;0)dx. Here C = 100,λ = 0.001,µ = 1,ds = 0.01, to-
tal number of steps along the path is 26.

Other types of visibility optimization problems are considered in [4].

APPENDIX A. ERROR ANALYSIS

In this section we discuss the accuracy of the visibility function resulting from the projection
method that uses ENO interpolation. For simplicity, we consider sample environments containing
a finite number of disjoint strictly convex objects. The observer is positioned outside the obstacles.
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FIGURE 14. Path postprocessing corresponding to Problem 4.2, obstacles –
Grand Canyon terrain (blue curves): (a) initial path (dashed green), original
observers’ locations (magenta triangles), and optimized path (solid red); (b)�

Ω\D I(x;γ; t)dx/
�

Ω\D I(x;γ;0)dx. Here C = 150,λ = 0.001,µ = 1,ds = 0.01, to-
tal number of steps along the path is 71.

We demonstrate how the error relates to the distance from the observer, the view direction, and the
size of the fan δθ. In particular, we demonstrate how the quality of interpolant deteriorates as the
view direction becomes orthogonal to the outer surface normal near the horizon locations.

Without loss of generality, we may assume that there is no partially occluded object. The
analysis for the case of partially occluded objects is a straightforward generalization. Due to
the convexity assumption, there are exactly two horizons corresponding to each object in the
scene, as illustrated in Fig. 15. Let the horizon locations correspond to θL and θR. Suppose
Θ := {θi ∈ [θL,θR], i = 0, · · · ,ν} ⊂ [−π,π) are distinct angles sorted in the increasing order. The
angles in Θ correspond to view directions from x0 to points pi ∈ P̃ on a visible region of occluding
surface that is bounded by two horizons. These angles and points are obtained using the projection
described in Section 2.1.

Assume the occluding surface between θL and θR is smooth enough, such that the visibility
function ρ(θ) ∈Cn+1(θL,θR). Then for each θ ∈ [θL,θR], we have the standard error estimate

(14) ρ(θ) = ρENO n(θ)+
ρ(n+1)(ξ(θ))

(n+1)!
Πn

i=0(θ−θi), for some mean value ξ(θ) ∈ (θL,θR),

where ρENO n(θ) is the n-th order ENO polynomial approximation and

(15) En :=
ρ(n+1)(ξ(θ))

(n+1)!
Πn

i=0(θ−θi)

is the error term. Since ρ is smooth in [θL,θR], depending on the order of approximation, the error
term En is bounded according to the regularity of ρ. For example, with the third order ENO, for
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any θ ∈ [θ3,θν−4], we have

∣∣E3
∣∣≤ max

ξ∈(θ3,θν−4)

∣∣∣ρ(4)(ξ)
∣∣∣

4!
(2δθ)4 .

Note that in order for the above bound to hold, we have to assume that ENO interpolation would
not choose a stencil that goes across the discontinuities of ρ. Otherwise, if ENO stencil includes
the jump location, the remainder term (15) can be very big. In order to avoid this problem we
introduce the following assumption on the size of the fan used in filtering:

Assumption A.1. δθ is small enough, so that g(ρ(θ)) < δθ implies there is a discontinuity in the
visibility function ρ at θ.

In the above, g is the edge-detector function defined in (4). Such δθ can always be found in the
asymptotic limit. However, it may not always exist in practical applications, as can be seen from
Fig. 4 (c), where small concave regions of the Grand Canyon terrain are not fully resolved because
the above assumption on δθ is not satisfied.

Furthermore, we require that δθ is small enough, so that the arc connecting pi and pi+1 may be
approximated by a straight line segment. This translates into the following assumption:

Assumption A.2. δθ2|κ| < ε if κ 
= 0. Here 0 < ε � 1 is a small constant.

The above assumption can be easily derived using the Taylor’s expansion: for any θ ∈ [θi,θi+1]
we can write ρ(θ) = ρ(θi) + (θ− θi)ρ′(θi) + 1

2(θ− θi)2ρ′′(ξ) for some ξ between θ and θi. A
linear approximation of ρ is obtained by setting the second order term in Taylor’s approximation
to 0. Precisely, we have δθ2κ = 0, where κ is the curvature of the occluding surface. Then,
Assumption A.2 follows.

Thus we have derived the two conditions on the size of the fan δθ which guarantee a bounded
error term in the estimate (14).

Note that the accuracy of ENO polynomial approximation of ρ is not uniform along the occlud-
ing surface. It depends on the view direction and the proximity to the observer. We would like to
find an upper bound on the derivatives of ρ, and thus obtain an expression for the remainder term
En, which relies on the properties of the projection and filtering method.

Without loss of generality, assume |pi+1−x0| ≥ |pi−x0|. Denote the outer normal to the surface
at pi+1 by�n and let the angle between�n and the view direction θi+1 be π−φ. Let M = maxpi∈P̃ |x0−
pi|. Using simple trigonometry, we obtain the following bounds

(16) |pi − pi+1| = sin(θi+1 −θi) |x0− pi|
cosφ

≤ M sin(2δθ)
cosφ

,

(17) |ρ(θi+1)−ρ(θi)| =
sin
(

φ− θi+1−θi
2

)
|pi+1 − pi|

cos
(

θi+1−θi
2

) ≤ 2M tanφ
cosδθ

:= K.

From the above estimates we see that the shortest distance between the two neighboring sample
points pi and pi+1 as well as the smallest difference in their corresponding visibility values is
obtained when φ = 0, i.e. when the view direction is parallel to the outer normal�n. As φ approaches
π/2, which happens near the horizon locations, both |pi+1 − pi| and |ρ(θi+1)− ρ(θi)| tend to
infinity, see Fig. 15. Also, as δθ decreases to 0, the difference |ρ(θi+1)− ρ(θi)| decreases to
2M tanφ.
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Denote the minimum distance to a point in P̃ by m. From the relation (16),

|pi− pi+1| ≥ msin(2δθ)
cosφ

for any points pi and pi+1 in P̃. Then

θi+1 −θi ≥ ψ := 2sin−1
(

msin(2δθ)
M cosφ

)
for any angles θi,θi+1 ∈ Θ. Using the estimate on divided differences

(18) ρ[θ0,θ1, ...,θn] =
ρ(n)(ξ)

n!
.

and the relation (17), we obtain the following bounds on derivatives of the visibility function∣∣ρ′(ξ)
∣∣ =

|ρ(θi+1)−ρ(θi)|
θi+1 −θi

≤ 1
ψ

K,

|ρ′′(ξ)|
2!

= min{|ρ [θi,θi+1,θi+2]| , |ρ [θi−1,θi,θi+1]|} ≤ 2
2!ψ2 K,∣∣∣ρ(3)(ξ)

∣∣∣
3!

≤ 22

3!ψ3 K,

...∣∣∣ρ(n)(ξ)
∣∣∣

n!
≤ 2n−1

n!ψn K.(19)

Then the error term (15) can be bounded by

|En| =

∣∣∣∣∣ρ
(n+1) (ξ(θ))
(n+1)!

Πn
i=0 (θ−θi)

∣∣∣∣∣
≤ 2nKΠn

i=0 |θ−θi|
(n+1)!ψn+1

≤ 2nK (θR −θL)
n+1

(n+1)!ψn+1 .(20)

Furthermore, in a bounded domain Ω = BR(x0), we can estimate the error in the shadow bound-
ary location near the horizon (as θ approaches π/2), i.e. the area of the grey regions in Fig. 15. The
maximum angle of the resulting fan is δθ. Then the error in the shadow boundary corresponding
to a given horizon is only linear

(21) Ahorizon ≤ δθ
2

(R2−m2).

APPENDIX B. DYNAMICS

Below we derive the dynamics equations of the visibility function and horizon points with re-
spect to the moving vantage point. In two dimensions let us consider a coordinate system centered
at x0 with the visible portions of the occluding surfaces parameterized by polar coordinates. A point
z on the occluder is visible from x0. Assume the observer moves with the velocity v = (v1,v2). The
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x0

θL
θR

FIGURE 15. Filtered out visible data pi ∈ P̃ along with surface normals. Error in
the approximation of horizon locations.

value of the visibility function is ρx0(θ) = |z− x0|. Suppose during the period of time Δt the ob-
server has moved to a new location x0 + vΔt. The corresponding value of the visibility function is
ρ̃x0+vΔt(θ̃)= |z−(x0+vΔt)|. The angle between the velocity vector v and the x-axis is ϕ = tan−1 v2

v1
.

The angle between z− x0 and the velocity vector v is ψ. Then, the angle between z− x0 and the
x-axis is θ = ϕ+ψ, see Fig. 16 (a). Then we can compute

d
dt

(ρ2) = lim
Δt→0

ρ̃2−ρ2

Δt

= lim
Δt→0

|z− (x0 + vΔt)|2−|z− x0|2
Δt

= −2v · (z− x0)

= −2ρv ·
(

cosθ
sinθ

)
.(22)

On the other hand,

d
dt

(ρ2) = 2ρ
dρ
dt

= 2ρ(ρ̇+ρθθ̇).(23)

Therefore,

ρ̇+ρθθ̇ = −v ·
(

cosθ
sinθ

)
.(24)
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To find an expression for θ̇, note from Fig. 16 (a) that

ρsinψ = ρ̃sin ψ̃ = L.

Since L is the distance from z to x0 + vt, it is independent of the motion of x0 once the direction v
is fixed. Therefore,

dL
dt

=
dρ
dt

sinψ+ ψ̇ρcosψ = 0.(25)

Then

θ̇ = ψ̇ = −
dρ
dt sinψ
ρcosψ

=
v
ρ
·
(

sinθ
−cosθ

)
.(26)

Combining (26) with (24) we finally obtain

(27) ρ̇ = −ρθ
ρ

v ·
(

sinθ+ cosθ
sinθ− cosθ

)
.

The above equation (27) describes the change of the visible portion of the occluding surface, i.e.
between the horizons. In order to have a complete description of the visibility we must derive the
motion of horizons e1 and e2 on Fig. 16 (b) with respect to the observer.

Note that (ei − x0) · nei = 0, where nei is the outer unit normal to the occluding surface at the
point ei for i = 1,2. That is, the vector ei − x0 is tangent to the occluding surface at the horizon
point. Without loss of generality, in all the computations below we will consider just e1.

In the coordinate system defined as above, θ = ϕ + ψ is the angle between e1 − x0 and the x-
axis. The value of the visibility function is ρx0(θ) = |e1 − x0|. Now suppose the observer moves
to a new position x0 + vΔt, moving with the velocity v = (v1,v2). For this new location, the
position of the edge has changed to ẽ1 and the corresponding value of the visibility function is
ρ̃x0+vΔt(θ̃) = |ẽ1− (x0 + vΔt)|. Here θ̃ = ϕ+ ψ̃ is the angle between ẽ1− (x0 + vΔt) and the x-axis
in the coordinate system centered at x0 + vΔt. Our goal is to find the change in the position of
horizon, i.e. ė1.

First, note that the curvature of the occluding surface at the point
(
ρ(θ),θ

)
is given by

(28) κ =
ρ2 +2ρ2

θ−ρρθθ

(ρ2 +ρ2
θ)

3
2

.

Also, since e1− x0 is tangent to the occluder at e1, we obtain

n⊥(e1) =
e1− x0

|e1− x0|
n(e1) =

(
n⊥(e1)

)⊥
=
( e1 − x0

|e1 − x0|
)⊥

.(29)

Now we can plug in the above into the formula for horizon dynamics from [21] to get

(30) ė1 =
v ·n(e1)

κρ
n⊥(e1),

Therefore, from (27) and (30) we obtain full description of the change in the visible portion of
the occluder with respect to the observer’s motion.

The corresponding expressions can also be derived in three dimensions, see [21].
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θ = ϕ + ψ

θ = ϕ + ψ
∼ ∼

ρ ρ∼

ψ

ψ∼

ϕ

ϕ
Δx  + v t0

x  0

L

v

z

(a)

θ

θ 
∼

ρ∼

ρ

e1
e1
∼

e2
∼

e2

Δx  + v t0

x  0

v

(b)

FIGURE 16. Derivation of the dynamics equations for the visibility function (a)
and the horizons (edges) (b).

APPENDIX C. COMPLEXITY ESTIMATES FOR 2D CASES

Let us begin by considering a single obstacle Ω bounded by a simple C2 regular convex curve Γ.

Proposition C.1. The Gauss map S : Γ �→ S1 is monotone.

Proof. Note that a simple closed C2 regular curve is convex if and only if its signed curvature κ
does not change its sign. In particular, if it is never zero. But the curvature κ is the derivative of
the tangent vector parameterized by the arc length of a given curve. Since the normal vector is just
a tangent vector rotated by π

2 we conclude that the angle of the normal vector should be monotone
along the curve, otherwise κ would change its sign. Thus the Gauss map of Γ is monotone. �

Next we are going to use monotonicity of the Gauss Map to construct a path for the observer to
see whole region, i.e. the boundary of the obstacle Ω.

Claim C.2. At least three steps are required to explore a simply connected region containing a
single convex obstacle.

Proof. Let x0 be the center of mass of Ω. Since the Gauss map S : Γ �→ S1 is monotone, “seeing” Γ
is equivalent to seeing the boundary of a disk C centered at x0 that encloses Ω. Let z0,z1, and z2 be
the vertices of triangle that encloses C and is tangent to C at e0,e1, and e2. The observer placed at
z0 is able to see the portion of the boundary of C between e0 and e1. Similarly, from z1 the observer
is able to see an arc between e1 and e2, and from z2 the remaining portion of the boundary of C
and, correspondingly, Γ. Since the observer’s path must be finite, we exclude the case of exploring
the entire boundary in just two steps. �

We may assume that the observer may not approach the obstacle nearer than λ > 0 and may not
depart from the obstacle further than η. Then the minimum number of steps required to explore
Γ is � π

cos−1 r+λ
r+η

�. Here, r is the radius of the smallest circle enclosing Ω, centered at the center of

mass of Ω, see Fig. 17.
Now we consider the scenario where the obstacles consist of finite number of disjoint, closed,

strictly convex sets as in Fig. 18. Denote each convex component by Ω and denote by C the
smallest disk centered at Ω’s center of mass x0 that encloses Ω. Let r be the radius of C. Let C′
be the smallest disk that contains an equilateral triangle enclosing C. Let r ′ be the radius of C′.
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z0

z1

z2

z3

x0

r

z4

λ

η

FIGURE 17. Constructing a path around a convex obstacle under restrictions.

The length of a side of the equilateral triangle inscribed in C ′ is L = 2
√

3r =
√

3r′. Let C0 be the
smallest circle of radius r0 and corresponding triangle side length L0. Let R = max j,k dist{C′

j,C
′
k}

be the largest distance between any two disks in {Ck}. Then all the disks must be contained in
some bounded domain BR.

Ω

Ω

Ω

C’ C’
j

k

Cj

Ck

C’0

C0

Lj

Lk

L0

FIGURE 18. Sample environment with closed, convex, disjoint sets. C0 is the
smallest disk possible.

Proposition C.3. Start at z0 on some C′
1 ⊃ C1 and overshoot the horizon e1 by L

2 to arrive at z1.
Then will “see” the entire C1, i.e. the remaining arc between the horizons e0 and e2 on Fig. 19, in
finite number of steps.

Proof. From z1 an observer may
(1) Proceed to see e2, so that z2 ∈C′

1 and all of C1 has been explored in just three steps: z0,z1,
and z2.
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z0 z1

e0 e2

C

C’

1

1

e1

FIGURE 19. Setup for Proposition C.1. The unexplored portion of C1 is marked red.

(2) Proceed to some e3 ∈C2 such that ‖z1−e3‖ ≤ ‖z1−e2‖. In this case z2 is on some C′
2 
=C′

1.

In case (2) the following is true:

Claim C.4. If there exists k ≥ 1, such that zk+1 ∈C′
1 then C1 is entirely seen from z0,z1,zk+ 1

2
and

zk+1.

Proof. If zk+1 ∈ C′
1 then there is a horizon ek ∈ (e0,e2) on C1 which is the nearest to zk ∈ C′

j for
some j. Let zk+ 1

2
∈ C′

1 be the point of intersection of the ray (zk,zk+1) and C′
1. Thus, [ek,e2] is

entirely visible from zk+ 1
2

and [e0,ek] is entirely visible from zk+1. Hence, the entire arc of C1

between e0 and e2 has been explored. �

Suppose towards a contradiction that the observer does not return to C1 at all. Since the collec-
tion {Ck} is finite, the observer must be then stuck in a loop, i.e. there exist C j and Ck such that
Cj is approached from Ck infinitely many times. But this is impossible according to the following
claim.

Claim C.5. Cj may be approached from Ck at most twice.

Proof. Note that given two disks, there exist four bitangents: �1, �2 and symmetric �′1 and �′2 as in
Fig. 20. We will only consider �1 and �2 below unless we indicate otherwise. If there exists C′

k 
=C′
j

such that C′
k and Cj are bitangent, then there is a ray from the center of C′

k that is perpendicular
to some θ as in Fig. 21. Then C′

k tangents the ray perpendicular to θ± δθ. By construction it is
obvious that all possible return angles on C j from zm ∈C′

k are in θ±δθ, i.e. the observer may only
approach horizons on Cj that lie on an arc of size 2δθ. Refer to Fig. 21 for an illustration.

Let zm+ 1
2
= (zm,zm+1)∩C′

j. Then let θ1 be the angle visible from zm+ 1
2
∈C′

j and θ2 be the angle

visible from zm+1 ∈C′
j depicted in Fig. 21. Note that θ1 = θ2 = 2π

3 . Hence, 2δθ is entirely visible
from zm+ 1

2
and zm+1.

Thus an observer is able to see the entire arc where possible horizons visible from C ′
k are located

in a single approach. The symmetrical case with another pair of bitangents provides the possibility
for the second approach from C′

k. Hence, an observer may approach Cj from C′
k at most twice. �

We have shown that it is not possible for an observer to approach a single disk infinitely many
times. Therefore an observer must return to C1 in finite number of steps. This completes the proof
of Proposition C.3 �
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l1

l2

l ’2

l ‘1

FIGURE 20. Four bitangents to two disks.

2

C j

C k

C k‘

1
2

C j‘

z
m

z
m+1

e
m

z
m+1

2

θ
θ

θ

δθ

FIGURE 21. Portions of Cj visible from zm+ 1
2
∈C′

j and zm+1 ∈C′
j.

Proposition C.6. The entire environment BR has been explored at the termination of the explo-
ration algorithm. In other words, the observer has seen the boundary of every obstacle at the
termination.

Proof. We begin the proof with the definition:

Definition Two disks Cj and Ck are neighbors if there is no other obstacle in the region bounded
by arcs of C′

j and C′
k between the outermost bitangents to C ′

j and C′
k (�1 and �′1 in Fig. 20).

Then we make the following observations:

Claim C.7. In the process of exploring C j the observer must detect at least one horizon/edge on
every neighbor of Cj.
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Proof. By the definition of neighbors there are no other objects obstructing the neighbors from
each other. Assume, without loss of generality, that the observer visits vantage points z0 and z1
on C′

j during the exploration of Cj. Consider the lines �1, �2, and �3 which are tangent to Cj at the
horizon points e0,e1, and e2, as in Fig. 22. Then every neighbor of Cj must be in one of the half-

z0 z1

e0 e2

C

C’

j

j

e1

l1

l2

l3

Ω1

Ω2

Ω3

FIGURE 22. Labeling horizons on the neighbors of C j.

planes Ω1,Ω2,Ω3, or their intersection. The observer at z0 is able to see all of Ω1 ∪Ω2, whereas
Ω2∪Ω3 is visible from z1. Therefore, the observer is able to see at least one horizon/edge on each
neighbor from just z0 and z1. �

Once a horizon has been labeled on Ck, the entire Ck will be seen completely later on, according
to Proposition C.3.

Claim C.8. Every disk in the given configuration will have at least one horizon/edge labeled on it
at some stage of the algorithm.

Proof. The following proof is by induction. Suppose we start the exploration at some disk C1.
Then all the neighbors {C1 j}M

j=1 of C1 will have at least one edge marked on them according to
Claim C.7. Suppose at some stage of the exploration, all the disks have at least one edge labeled on
them but Ck. In the given configuration Ck has at least one neighbor Ck1. By induction assumption,
Ck1 also has some edges labeled on it. Then, at some point of the algorithm the observer must
come to explore Ck1 . At that time it will label an edge on Ck, since Ck and Ck1 are neighbors. �

Hence, the entire environment will be explored at the termination of the algorithm. This com-
pletes the proof of Proposition C.6. �

Propositions C.3 and C.6 imply that the Algorithm 1 will terminate in finitely many steps. At the
termination of the algorithm the entire environment consisting of closed, disjoint, strictly convex
sets will be explored.
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