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Abstract. The class of l1-regularized optimization problems has received much attention re-
cently because of the introduction of “compressed sensing,” which allows images and signals to be
reconstructed from small amounts of data. Despite this recent attention, many l1-regularized prob-
lems still remain difficult to solve, or require techniques that are very problem-specific. In this paper,
we show that Bregman iteration can be used to solve a wide variety of constrained optimization prob-
lems. Using this technique, we propose a “Split Bregman” method, which can solve a very broad
class of l1-regularized problems. We apply this technique to the ROF functional for image denoising,
and to a compressed sensing problem that arises in Magnetic Resonance Imaging.
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1. Introduction. The category of l1-regularized problems includes many im-
portant problems in engineering, computer, and imaging science. The general form
for such problems is

min
u
|Φ(u)|+H(u)(1.1)

where | · | denotes the l1-norm, and both |Φ(u)| and H(u) are convex functions. Many
important problems in imaging science (and other computational areas) can be posed
as l1-regularized optimization problems. Some common examples of this include the
following:

“TV/ROF Denoising: ” min
u
‖u‖BV +

µ

2
‖u− f‖22(1.2)

“Basis Pursuit/Compressed Sensing: ” min
u
J(u) +

µ

2
‖Au− f‖22(1.3)

where J(u) is some regularizing functional, usually in the form of a BV or Besov
norm.

The Rudin-Osher-Fatemi (ROF) functional (1.2), despite its simple form, has
proved to be very difficult to minimize by conventional methods. Total variation based
image restoration was first introduced in [22]. In that paper, the authors propose to
minimize this energy using a gradient projection method. While this approach is
simple, the non-linearity and poor conditioning of the problem make this approach
very slow. Several authors have proposed improved time-stepping schemes that result
in better performance, such as those presented in [26, 15]. A more efficient class of
solvers are those based on Newton’s method. One such algorithm was presented in [9],
in which the preconditioned conjugate gradient method is used to invert the Hessian
at each step. A somewhat more efficient implementation of a second-order method
was proposed by Vogel et. al. in [25], where an algebraic multigrid preconditioner is
used to accelerate the method.

Still, the most efficient solver for the ROF problem was proposed by Darbon
and Sigelle in [10]. In this work, the ROF functional was approximated using an
anisotropic BV norm. It was shown that, using this formulation, the resulting problem
could be solved very quickly using graph cuts [3].
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Problems of the form (1.3) have received a lot of attention recently because of the
introduction of compressed sensing techniques, which allow high resolution images and
signals to be reconstructed from a small amount of data [7, 6, 11]. This formulation
has been shown to be useful in many areas, including medical imaging [16, 17], radar
[1], and other signal processing applications. Compressed sensing is based on the
idea that a signal can be reconstructed from a very small number of measurements,
provided that these measurements are obtained in the correct basis. The particular
application of compressed sensing which we will focus on is MR image reconstruction,
or “Sparse MRI” [16, 14]. The goal of sparse MRI is to solve

min
u
J(u) such that ‖Fu− f‖2 = 0.

Here, f represents the so-called “compressed sensing data,” which consists of samples
of the Fourier transform of the unknown image. F comprises a subset of the rows of
a Fourier matrix, u represents the unknown image that we wish to reconstruct, and
J(·) is a properly chosen l1-regularization term. The unconstrained formulation for
this problem was introduced in [14], where a Bregman iterative approach [4] was used
to obtain solutions to “denoising” problems of the form

min
u
J(u) such that ‖Fu− f‖2 < σ.(1.4)

Because of the presence of an l1-regularization term, optimization problems of the
form (1.4) are still very difficult to solve. Several authors have applied classical opti-
mization schemes, such as interior point methods, to problems of these forms. In [23],
CS problems were reformulated as quadratic programming problems which were then
solved using the code “l1 ls,” which is claimed to be one of the most efficient solvers
for general compressed sensing problems. Another notable interior-point approach is
the code “l1-magic,” which formulates a CS problem as a second order cone program,
and enforces inequality constraints using a logarithmic barrier potential [7].

In the special case where the CS problem can be written in the form

min
u
|u| such that ‖Au− f‖2 < σ(1.5)

a relatively new class of methods can be used that reduce the CS problem to set
of simpler problems using linearization. The first of these methods is the “Fixed
Point Continuation” method (FPC) introduced in [13] by Hale, Yin, and Zhang. This
method solves the unconstrained problem

min
u
|u|+ µ

2
‖Au− f‖22(1.6)

by iteratively performing gradient descent steps.
By applying the Bregman iteration scheme in [21, 14], it is also possible to solve

the constrained problem (1.5) using FPC/Bregman. This is done by iteratively solving
the unconstrained problem (1.6), and then modifying the value of f used in the next
iteration.

Rather than solving the unconstrained problem and then performing a Bregman
update separately, these two steps were elegantly combined in the Linearized Bregman
Algorithm [30]. Linearized Bregman solves the problem (1.5) by iteratively solving

vk+1 = vk +AT (f −Auk)
uk+1 = δ ∗ shrink(vk+1, 1/µ)
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for k = 1, 2, · · ·n. The algorithm is terminated when the denoising constraint in (1.5)
is met. It was shown in [5, 20] that un will be a suitable approximation to the solution
of (1.5) provided that appropriate values are chosen for the parameters µ and δ.

While the FPC and Linearized Bregman algorithms are extremely efficient, they
can only solve problems which can be put into the form (1.6). Because the gradient
operator is not invertible, these algorithms cannot be used to solve problems involving
the BV norm. Also, these schemes cannot solve optimization problems involving
multiple l1-regularization terms. For these reasons, it is difficult to apply the FPC
and linearized Bregman methods to image processing problems. For example, it has
been noted by many authors [16, 24] that optimal MRI reconstruction is obtained
using a combination of both the BV norm and Besov norm, B1,1. In this case, this
problem can be written

min
u
‖u‖BV + ‖u‖H +

µ

2
‖Fu− f‖22

where ‖ · ‖BV = ‖∇u‖1 is the “bounded variation” norm, and ‖u‖H = ‖Hu‖1 denotes
the “Besov” norm with respect to the Haar wavelet transform. We will later address
this particular form of the compressed sensing problem.

In this paper, we will present a general technique that can be used to solve most
common l1-regularized problems efficiently. Furthermore, the optimization scheme
we employ can be generalized to solve a very broad range of equality-constrained
optimization problems, some of which may be difficult to solve by existing techniques.

The contents of this paper are organized as follows: We begin with a brief dis-
cussion of constrained optimization problems and classical penalty function methods.
We then review the concept of Bregman iteration, and use it to derive a general prin-
ciple for solving constrained optimization problems. We will then define the “Split
Bregman” method, and show how it can be used to solve the general l1-regularized
optimization problem (1.1). Finally, we will apply the Split Bregman technique to TV
denoising and compressed sensing problems to demonstrate its efficiency. The latter
may involve BV, Besov, or multiple regularizers.

1.1. Constrained Optimization Problems. Consider a convex energy func-
tional, E, and some linear function, A : Rn → Rm. We wish to solve the generalized
constrained optimization problem

min
u
E(u) s.t. Au = b.(1.7)

This problem can be very difficult to solve directly if E is non-differentiable.
In order to make (1.7) simpler to solve, we wish to convert it into an unconstrained

optimization problem. One common method for doing this it to use a penalty func-
tion/continuation method, which approximates (1.7) by a problem of the form

min
u
E(u) +

λk
2
‖Au− b‖22.(1.8)

where λ1 < λ2 < · · · < λN is an increasing sequence of penalty function weights
[2, 19]. In order to enforce that H(u) ≈ 0, we must choose λN to be extremely large.

Unfortunately, for many problems, choosing a large value for λ makes (1.8) ex-
tremely difficult to solve numerically. We often wish to solve (1.8) by a Newton-type
method, which requires us to invert the Hessian of the objective function. However,
as λk → ∞, the condition number of the Hessian approaches infinity, making it im-
practical to use fast iterative methods (such as Conjugate Gradient or Gauss-Seidel

3



methods)[2, 19]. Also, for many applications, λk must be increased in very small
steps, making the method less efficient.

In the next section, we will show that Bregman iteration can be used to reduce
(1.7) to a short sequence of unconstrained problems. In this sense, Bregman iteration
is an alternative to conventional penalty function methods.

2. Bregman Iteration. Bregman iteration is a concept that originated in func-
tional analysis for finding extrema of convex functionals [4]. Bregman iteration was
first used in image processing by Osher at. al. in [21], where it was applied to the
ROF model for TV denoising. Bregman iteration has also been applied to solve the
basis pursuit problem in [30, 5, 20], and was subsequently applied to medical imaging
problems in [14]. Rather than focus on specific applications, we will present here a
general formulation of this technique.

We begin with the concept of “Bregman Distance.” The Bregman Distance asso-
ciated with a convex function E at the point v is

Dp
E(u, v) = E(u)− E(v)− 〈p, u− v〉

where p is in the subgradient of E at v. Clearly, this is not a distance in the usual
sense because it is not in general symmetric. However, it does measure closeness in
the sense that Dp

E(u, v) ≥ 0, and Dp
E(u, v) ≥ Dp

E(w, v) for w on the line segment
between u and v.

Again, consider two convex energy functionals, E and H, defined over Rn with
minu∈Rn H(u) = 0. The associated unconstrained minimization problem is

min
u
E(u) + λH(u).(2.1)

We can modify this problem by iteratively solving

uk+1 = min
u
Dp
E(u, uk) + λH(u)(2.2)

= min
u
E(u)− 〈pk, u− uk〉+ λH(u)(2.3)

as was suggested by Bregman in [4].
For simplicity, we will assume that H is differentiable. In this case, we have

that 0 ∈ ∂(Dp
E(u, uk) +λH(u)) where this sub-differential is evaluated at uk+1. Since

pk+1 ∈ ∂E(uk+1) at this location, we have that

pk+1 = pk −∇H(uk+1).

In [21], the authors analyze the convergence of Bregman iterative schemes. In
particular, it is shown that, under fairly weak assumptions on E and H, that H(uk)→
0 as k →∞.

Two particular convergence results from [21] are especially relevant here, and so
we restate them.

Theorem 2.1. Assume that E and H are convex functionals, and that H is dif-
ferentiable. We also assume that solutions to the sub-problems in (2.2) exist. We
then have

1) Monotonic decrease in H: H(uk+1) ≤ H(uk)
2) Convergence to a minimizer of H : H(uk) ≤ H(u∗) + J(u∗)/k

In addition to these convergence results, Bregman iteration has several nice de-
noising properties which are discussed and proved in [21] and [14].
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2.1. Constrained Optimization via Bregman Iteration. In this section,
we present a method for solving a wide variety of constrained optimization problems
without using continuation. We first show that Bregman iteration can be used to
solve the constrained problem (1.7). We will then discuss a simplified form of Bregman
iteration, which is equivalent to “adding the noise back” as is done with ROF denoising
[21]. Finally, we will discuss the convergence properties of this method.

We wish to solve

min
u
E(u) such that Au = b(2.4)

for some linear operator A and vector b. To apply formula (2.1), we make this into
an unconstrained problem using a quadratic penalty function:

min
u
E(u) +

λ

2
‖Au− b‖22(2.5)

For small λ, the penalty function does not accurately enforce the constraint. The
conventional solution to this problem is to let λ→∞. Rather, we apply the Bregman
iteration (2.2), and iteratively minimize:

uk+1 = min
u
Dp
E(u, uk) +

λ

2
‖Au− b‖22(2.6)

= min
u
E(u)− 〈pk, u− uk〉+

λ

2
‖Au− b‖22(2.7)

pk+1 = pk − λAT (Auk+1 − b)(2.8)

Bregman iterations of this form were considered in [30] and [21]. Here, it is
shown that, when A is linear, this seemingly complicated iteration is equivalent to
the simplified method:

uk+1 = min
u
E(u) +

λ

2
‖Au− bk‖22(2.9)

bk+1 = bk + b−Auk(2.10)

In other words, we simply add the error in the constraint back to the right hand side.
This is the analog of “adding back the noise” in the ROF model for TV denoising
[21].

Because of the equivalence of (2.6-2.8) and (2.9-2.10), and the convergence results
of theorem 2.1, we have that

lim
k→∞

Auk = b(2.11)

where convergence is in the 2-norm sense. In other words, for large k, the iterates uk

satisfy the constraint condition to an arbitrarily high degree of accuracy.
We now need to show that a solution, u∗, of Au = b obtained through (2.9-2.10)

is indeed a solution to the original constrained problem (2.4). Note that Bregman
iteration was used to solve a constrained optimization problem in [30]. In this paper,
the authors assume a specific form for the operator A. Here, we broaden this result
and present a very simple proof.
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Theorem 2.2. Let H : Rn → R be convex. Let A : Rn → Rm be linear. Consider
the algorithm (2.9-2.10). Suppose that some iterate, u∗, satisfies Au∗ = b. Then u∗

is a solution to the original constrained problem (2.4).
Proof: Let u∗ and b∗ be such that Au∗ = b, and

u∗ = min
u
E(u) +

λ

2
‖Au− b∗‖22(2.12)

Let û be a true solution to (2.4). Then Au∗ = b = Aû, which implies that

‖Au∗ − b∗‖22 = ‖Aû− b∗‖22(2.13)

Because u∗ satisfies (2.12), we have

E(u∗) +
λ

2
‖Au∗ − b∗‖22 ≤ E(û) +

λ

2
‖Aû− b∗‖22.(2.14)

Finally, note that (2.13) and (2.14) together imply

E(u∗) ≤ E(û).

Because û satisfies the original optimization problem, this inequality can be sharpened
to an equality, showing that u∗ solves (2.4).

This shows that, provided (2.9-2.10) converges in the sense of (2.11), the iterates
uk will get arbitrarily close to a solution of the original constrained problem (1.7).
Note the generality of the above theorem. The proof does not explicitly use the
linearity of A, and in fact this condition is not required for the theorem to hold. The
application of this method to problems in which A is not linear will be a subject of
further research.

2.2. Advantages of Bregman Iteration. This Bregman iteration technique
has several advantages over tradition penalty function/continuation methods. First,
Bregman iteration converges very quickly when applied to certain types of objective
functions, especially for problems where E contains an l1-regularization term. For an
explanation of why this is true, see the attached appendix. When Bregman iteration
converges quickly, we only need to solve a small number of unconstrained problems.

The second (and perhaps most significant) advantage of Bregman iteration over
continuation methods is that the value of λ in (2.1) remains constant. We can there-
fore choose a value for λ that minimizes the condition number of the sub-problems,
resulting in fast convergence for iterative optimization methods, such as Newton or
Gauss-Seidel.

Bregman iteration also avoids the problem of numerical instabilities that occur
as λ→∞ that arise when using continuation methods.

3. Split Bregman - A Better formulation for l1 Regularized Problems.
We will now apply the Bregman framework to solve the general l1-regularized op-
timization problem (1.1). In the discussion that follows, we shall assume H(·) and
|Φ(·)| to be convex functionals. We shall also assume Φ(·) to be differentiable.
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The key to our method is that we will “de-couple” the l1 and l2 portions of the
energy in (1.1). This split formulation follows that proposed in [27], where a similar
technique is applied to l1-regularized deconvolutions. Rather than considering (1.1),
we will consider the problem

min
u,d
|d|+H(u) such that d = Φ(u)(3.1)

This problem is clearly equivalent to (1.1). To solve this problem, first convert it into
an unconstrained problem:

min
u,d
|d|+H(u) +

λ

2
‖d− Φ(u)‖22(3.2)

This is where our method departs from [27]. If we let E(u, d) = |d|+H(u), and
define A(u, d) = d−Φ(u), then we can see that (3.2) is simply an application of (2.5).
To enforce the constraint condition we now plug this problem into the above Bregman
formulation (2.6-2.8).

(uk+1, dk+1) = min
u,d

Dp
E(u, uk, d, dk) +

λ

2
‖d− Φ(u)‖22(3.3)

= min
u,d

E(u, d)− 〈pku, u− uk〉 − 〈pkd, d− dk〉+
λ

2
‖d− Φ(u)‖22(3.4)

pk+1
u = pku − λ(∇Φ)T (Φuk+1 − dk+1)(3.5)
pk+1
d = pkd − λ(dk+1 − Φuk+1)(3.6)

When we apply the simplification presented in (2.9-2.10), we get the elegant two-
phase algorithm

The Split Bregman Iteration

(uk+1, dk+1) = min
u,d
|d|+H(u) +

λ

2
‖d− Φ(u)− bk‖22(3.7)

bk+1 = bk + (Φ(uk+1)− dk+1)(3.8)

We have reduced the l1-regularized problem (1.1) to a sequence of unconstrained
optimization problems and Bregman updates. It may not be immediately clear why
this algorithm is so effective. We will see in the next section that this formulation of
the problem is much easier to compute than the conventional formulation for an l1
regularized problem.

3.1. Iterative Minimization. In order to implement the algorithm (3.7), we
must be able to solve the problem

(uk+1, dk+1) = min
u,d
|d|+H(u) +

λ

2
‖d− Φ(u)− bk‖22(3.9)

Because of the way that we have “split” the l1 and l2 components of this func-
tional, we can perform this minimization efficiently by iteratively minimizing with
respect to u and d separately,. The two steps we must perform are

Step 1 : uk+1 = min
u
H(u) +

λ

2
‖dk − Φ(u)− bk‖22

Step 2 : dk+1 = min
d
|d|+ λ

2
‖d− Φ(uk+1)− bk‖22
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The speed of the Bregman splitting method is largely dependent on how fast we
can solve each of these two subproblems.

To solve Step 1, note that because we have “de-coupled” u from the l1 portion of
the problem, the optimization problem that we must solve for uk is now differentiable.
We can thus use a wide variety of optimization techniques to solve this problem.
The particular method used to solve this optimization problem depends on the exact
nature of H , but for many common problems either Gauss-Seidel or Fourier transform
methods can be used. For rare problems in which Φ has little structure, a few steps
of a conjugate gradient method can be used to approximately solve this problem.

In Step 2 of the above algorithm, there is no coupling between elements of d. We
can explicitly compute the optimal value of d using shrinkage operators. We simply
compute

dk+1
j = shrink(Φ(u)j + bkj , 1/λ)

where

shrink(x, γ) =
x

|x|
∗max(|x| − γ, 0).

this shrinkage is extremely fast, and requires only a few operations per element of
dk+1.

3.2. Implementation of the Proposed Algorithm. When we place the it-
erative minimization scheme into the process described in (3.7), we get the following:

Generalized Split Bregman Algorithm
While ‖uk − uk−1‖2 > tol

for n = 1 to N
uk+1 = minuH(u) + λ

2 ‖d
k − Φ(u)− bk‖22

dk+1 = mind |d|+ λ
2 ‖d− Φ(uk+1)− bk‖22

end
bk+1 = bk + (Φ(uk+1)− dk+1)

end

We have found that is is not desirable to solve the first subproblem in (3.7) to
full convergence. Intuitively, the reason for this is that if the error in our solution
for this subproblem is small compared to ‖bk − b∗‖2, then this extra precision will be
“wasted” when the Bregman parameter is updated. In fact, we have found empirically
that for many applications optimal efficiency is obtained when only one iteration of
the inner loop is performed (i.e. N=1 in the above algorithm). Even when we only
solve for uk+1 approximately (e.g. by using a few steps of an iterative method), the
above algorithm still converges.

To understand why the Split Bregman algorithm is so robust to numerical impre-
cision, we must examine the results of theorem 2.2. Using this theorem, it is easy to
show that any fixed point of the split Bregman algorithm is indeed a minimizer of the
original constrained problem (3.1), even if we use inexact iterative methods for each
subproblem. Let (u∗, b∗) be a fixed point of (3.7-3.8) that also satisfies (3.7). The
fixed point satisfies b∗ = b∗ + Φu∗ − d∗, which implies that d∗ = Φu∗. This results,
together with (3.7), satisfies the conditions of theorem 2.2, which shows that (u∗, b∗)
is a solution of the constrained problem (3.1).
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4. Applications. We will now illustrate how to use the Split Bregman frame-
work by discussing several applications.

4.1. TV Denoising. TV denoising is considered to be one of the best denoising
models, but also one of the hardest to compute. In this section, we will show how
the Split Bregman technique can be used to solve this problem in a way that is
not only simple, but also extremely efficient. Furthermore, this model can solve the
isotropic TV minimization problem (a superior TV model which cannot be solved
using the popular graph cuts method). We will treat this as a 2 dimensional problem
to demonstrate that the Split Bregman method applies to problems with more than
one l1 regularization term.

We begin by addressing the anisotropic problem

min
u
|∇xu|+ |∇yu|+

µ

2
‖u− f‖22(4.1)

To apply Bregman splitting, we first replace ∇xu by dx and ∇yu by dy. This yields
the constrained problem

min
u
|dx|+ |dy|+

µ

2
‖u− f‖22 , such that dx = ∇xu and dy = ∇yu

To weakly enforce the constraints in this formulation, we add penalty function terms
as was done in (3.2). This yields

min
dx,dy,u

|dx|+ |dy|+
µ

2
‖u− f‖22 +

λ

2
‖dx −∇xu‖22 +

λ

2
‖dy −∇yu‖22.

Finally, we strictly enforce the constraints by applying the Bregman iteration (3.7) to
get

min
dx,dy,u

|dx|+ |dy|+
µ

2
‖u− f‖22 +

λ

2
‖dx −∇xu− bkx‖22 +

λ

2
‖dy −∇yu− bky‖22.

where the proper values of bkx and bky are chosen through Bregman iteration.
To solve this minimization problem, we will apply the iterative minimization

approach (3.10), which requires us to solve the subproblem

uk+1 = min
u

µ

2
‖u− f‖22 +

λ

2
‖dkx −∇xu− bkx‖22 + +

λ

2
‖dky −∇yu− bky‖22

which has the optimality condition.

(µI − λ∆)uk+1 = µf + λ∇Tx (dkx − bkx) + λ∇Ty (dky − bky)(4.2)

In order to achieve optimal efficiency, we wish to use a fast iterative algorithm to
get approximate solutions to this system. Because the system is strictly diagonally
dominant, the most natural choice is the Gauss-Seidel method. The Gauss-Seidel
solution to this problem can be written component-wise as uk+1

i,j = Gki,j where

Gki,j =
λ

µ+ 4λ
(uki+1,j + uki−1,j + uki,j+1 + uki,j−1

+dkx,i−1,j − dkx,i,j + dky,i,j−1 − dky,i,j − bkx,i−1,j + bkx,i,j − bky,i,j−1 + bky,i,j) +
µ

µ+ 4λ
fi,j .
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Using this solver, the Split Bregman algorithm is written

Split Bregman Anisotropic TV Denoising
Initialize: u0 = f, and d0

x = d0
y = b0x = b0y = 0

While ‖uk − uk−1‖2 > tol
uk+1 = Gk

dk+1
x = shrink(∇xuk+1 + bkx, 1/λ)
dk+1
y = shrink(∇yuk+1 + bky , 1/λ
bk+1
x = bkx + (∇xuk+1 − dk+1

x )
bk+1
y = bky + (∇yuk+1 − dk+1

y )
end

note that the “for” loop in the Generalized Split Bregman algorithm is absent here.
We have found that this algorithm attains optimal efficiency when this loop is ex-
ecuted only once per iteration, and have therefore removed the loop for clarity. It
may be necessary to include this loop in applications where high precision results are
needed.

The isotropic TV model can also be minimized using the split Bregman technique.
In this case, we wish to solve

min
u

∑
i

√
(∇xu)2i + (∇yu)2i +

µ

2
‖u− f‖22

Just as we did for the anisotropic problem, we will split the l1 and l2 components of
the problem by setting dx ≈ ∇xu and dy ≈ ∇yu. The split Bregman formulation of
the problem then becomes:

min
u,dx,dy

‖(dx, dy)‖2 +
µ

2
‖u− f‖22 +

λ

2
‖dx −∇xu− bx‖22 +

λ

2
‖dy −∇yu− by‖22

where

‖(dx, dy)‖2 =
∑
i,j

√
d2
x,i,j + d2

y,i,j(4.3)

Note that the dx and dy variables do not decouple as they did in the anisotropic case.
This changes the way in which we must treat these variables. In order to apply the
iterative minimization procedure to this problem, we must solve the subproblem

(dk+1
x , dk+1

y ) = min
dx,dy

‖(dx, dy)‖2 +
λ

2
‖dx −∇xu− bx‖22 +

λ

2
‖dy −∇yu− by‖22

Despite the fact that the variables dx and dy do not decouple as they did in the
anisotropic case, we can still explicitly solve the minimization problem for (dk+1

x , dk+1
y )

using a generalized shrinkage formula [27]:

dk+1
x = max(sk − 1/λ, 0)

∇xuk + bkx
sk

dk+1
y = max(sk − 1/λ, 0)

∇yuk + bky
sk

where

sk =
√
|∇xuk + bkx|2 + |∇yuk + bky |2(4.4)
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If we apply Bregman iteration to this problem, we get the minimization algorithm
for the isotropic TV functional:

Split Bregman Isotropic TV Denoising
Initialize: u0 = f, and d0

x = d0
y = b0x = b0y = 0

While ‖uk − uk−1‖2 > tol
uk+1 = Gki,j

dk+1
x = max(sk − 1/λ, 0)∇xu

k+bk
x

sk

dk+1
y = max(sk − 1/λ, 0)∇yu

k+bk
y

sk

bk+1
x = bkx + (∇xuk+1 − dk+1

x )
bk+1
y = bky + (∇yuk+1 − dk+1

y )
end

where sk is defined above by (4.4).

4.2. Fast Compressed Sensing for Image Reconstruction. Compressed
sensing (CS) is an emerging area of Medical Imaging, and many people predict that it
will some day be a commonplace tool for radiologists. Consequently, fast algorithms
for this problem are extremely desirable.

The exact formulation of the CS optimization problem depends somewhat on
the application being considered. For demonstration purposes, we shall focus on the
application of CS for Sparse Magnetic Resonance Imaging (MRI). We choose this
application not only because of the great success of CS in this field, but also because
the difficulties of this problem allow us to demonstrate the versatility of the Split
Bregman method.

The general form for the Sparse MRI reconstruction problem is presented and
discussed in [16], [14] and [23]. We choose to write this problem in the form

min
u
J(u) such that ‖RFu− f‖22 < σ2(4.5)

where F represents the Fourier transform matrix, f represents the observed “k -space”
data, and σ represents the variance of the signal noise. The matrix R represents a
“row selector” matrix, which comprises a subset of the rows of an identity matrix.
Also, J(u) represents some l1 regularization term.

In [30] it was shown that, using a Bregman iteration technique, the problem (4.5)
could be reduced to a sequence of unconstrained problems of the form

uk+1 = min
u
J(u) +

µ

2
‖RFu− fk‖22(4.6)

fk+1 = fk + f −RFuk+1(4.7)

It is this unconstrained problem that we wish to solve using the split Bregman tech-
nique.

To be concrete about the regularization term that we are using, we will now
choose a specific form for J(·). Several authors have observed that superior image
reconstructions occur when a hybrid of Total-Variation and Besov regularizers are
used. Following these authors, we choose J(u) = ‖u‖BV + ‖u‖B1,1 = |∇u| + |Wu|,
where W represents the discrete Haar orthogonal wavelet transform. While it may
seem that the BV and Haar regularizers are very similar, we have found that the
inclusion of multiple regularizers helps to ensure accurate reconstruction of smooth
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images. Since the inclusion of such “overcomplete” transforms has little effect on
the convergence rate of the Split Bregman algorithm, and both transforms can be
evaluated quickly, there is little additional cost to including such regularizers.

Note that u can now take on complex values, and so we must be precise about
our notation. In the following, we have |v| = ‖v‖1 =

∑
i

√
vHi vi where vHi denotes

the Hermitian transpose of the vector vi. Using this definition of the l1 norm, we may
define ‖v‖BV = |∇v| =

∑
i

√
|∇xv|2 + |∇yv|2.

To apply the Split Bregman method to this problem, we first make the replace-
ments w ← Wu, dx ← ∇xu, and dy ← ∇yu. The split formulation of the problem
then becomes

min
u,dx,dy,w

‖(dx, dy)‖2 + +|w|+ µ

2
‖RFu− f‖22 +

λ

2
‖dx −∇xu− bx‖22

+
λ

2
‖dy −∇yu− by‖22 +

γ

2
‖w −Wu− bw‖22

Where we have used the short hand notation

‖(dx, dy)‖2 =
∑
i,j

√
|dx,i,j |2 + |dy,i,j |2

which is the complex analog of (4.3). Note that dx, dy, bx, and by are now complex
valued, and are obtained by applying the difference operator to the real and complex
parts of u separately.

We then decompose this minimization into subproblems using the iterative min-
imization procedure (3.10). We may use the generalized shrinkage formula (4.4) to
solve for the optimal values of dx and dy, and the standard shrinkage formula to
solve for the optimal value of w. To find the optimal value of u, we must solve the
optimization sub-problem

uk+1 = min
u

µ

2
‖Fu−f‖22+

λ

2
‖dkx−∇xu−bkx‖22+

λ

2
‖dky−∇yu−bky‖22+

γ

2
‖wk−Wu−bky‖22

Because this subproblem is differentiable, optimality conditions for uk+1 are easily
derived. By differentiating with respect to u and setting the result equal to zero, we
get the update rule

(µFTRTRF + λ∇Tx∇x + λ∇Ty∇y + γWTW )uk+1 = rhsk

where

rhsk = µFTRf + λ∇Tx (dkx − bx) + λ∇Ty (dky − by) + γWT (w − bw)

represents the right hand side in the above equation.
We now take advantage of the identities ∇T∇ = −∆, WTW = I, and FT = F−1

to get

(µFTRTRF − λ∆ + γI)uk+1 = rhsk

Therefore, the system that must be inverted to solve for uk+1 is circulant. We can
thus write the system as F−1KF , where K is the diagonal operator

K = (µRTR− λF∆F−1 + γI)
12



Because of the circulant structure of this system, we can solve for the optimal value
of uk+1 using only two Fourier transforms.

When we put all of these elements together, we get the following algorithm:

Unconstrained CS Optimization Algorithm
Initialize: u0 = F−1f, and d0

x = d0
y = w0 = b0x = b0y = b0w = 0

While ‖uk − uk−1‖2 > tol
uk+1 = F−1K−1Frhsk
dk+1
x = max(sk − 1/λ, 0)∇xu

k+bk
x

sk

dk+1
y = max(sk − 1/λ, 0)∇yu

k+bk
y

sk

wk+1 = shrink(Wuk+1 + bkw, 1/γ)
bk+1
x = bkx + (∇xuk+1 − dk+1

x )
bk+1
y = bky + (∇yuk+1 − dk+1

y )
bk+1
w = bkw + (Wuk+1 − wk+1)

end

where sk is defined in (4.4).
Note that this algorithm only solves the unconstrained CS problem (4.6). To

solve the constrained problem (4.5), we must replace f by fk in the above algorithm.
After approximately solving each unconstrained problem, we must apply the Bregman
update rule fk+1 = fk + f −RFuk+1. When we embed the unconstrained algorithm
inside of this outer Bregman update, we get

Constrained CS Optimization Algorithm
Initialize: u0 = F−1f, and d0

x = d0
y = w0 = b0x = b0y = b0w = 0

While ‖RFuk − f‖22 > σ2

For i= 1 to N
uk+1 = F−1K−1Frhsk
dk+1
x = max(sk − 1/λ, 0)∇xu

k+bk
x

sk

dk+1
y = max(sk − 1/λ, 0)∇yu

k+bk
y

sk

wk+1 = shrink(Wuk+1 + bkw, 1/γ)
bk+1
x = bkx + (∇xuk+1 − dk+1

x )
bk+1
y = bky + (∇yuk+1 − dk+1

y )
bk+1
w = bkw + (Wuk+1 − wk+1)

end
fk+1 = fk + f −RFuk+1

end

The speed of this algorithm will largely depend on how many times the outer
“while” loop needs to be executed. When parameter values are properly chosen, it
has been found that the outer loop of this algorithm only needs to be executed a
small number of times. Also, for imaging applications it is not necessary to solve each
unconstrained sub-problem entirely to numerical precision. As a result, this algorithm
is very fast when properly chosen parameter values are used.

5. Numerical Results.
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5.1. TV Denoising Results. We will now examine the efficiency of the split
Bregman approach using time trials. The split Bregman algorithm was implemented
in C++, and compiled on a UNIX platform using the g++ compiler. Time trials were
generated on an Intel Core 2 Duo desktop PC (E6850, 3.00 GHz).

We tested our method on two images: The first was a 256× 256 synthetic image
of two overlapping squares. The second was a 512× 512 representation of the famous
test image “Lena.” Both images were contaminated with noise (σ = 15). Denoising
parameters were µ = .05, λ = 0.1 for both images. In general, we have found that
choosing λ = 2µ usually results in good convergence. Iterations were terminated
when the condition ‖uk − uk−1‖/‖uk‖ < 5 ∗ 10−3 was met. Results of time trials
for the isotropic ROF algorithm are shown in table 5.1. For comparison, we also
report the computation time of a graph-cuts based solver [29, 12], which minimizes
an anisotropic TV functional using either a 4-neighbor stencil, or a less anisotropic
16-point stencil. Note that in addition to outperforming the graph cuts algorithm in
terms of speed, the Split Bregman method can minimize the isotropic functional, and
is thus less likely to introduce artifacts into the image.

Table 5.1
ROF Computation Times (sec)

Image Split Bregman Graph Cuts(4 point) Graph Cuts(16 point)
256× 256 Blocks 0.0732 0.214 0.468
512× 512 Lena 0.2412 0.709 1.51

The convergence speed of the Split Bregman method can also be observed in figure
5.1, where we have plotted the error vs. iteration number for the test image “Lena” as
described above. To compare our method to another unregularized iterative method,
we have also plotted the convergence curve for the gradient descent algorithm [8],
which is based on the dual formulation of the ROF functional. We have found that
both methods converge quickly for the first several iterations, but then slow down as
the exact solution is reached. This stalling effect, however, is considerably less severe
for the Split Bregman method.

Fig. 5.1. Error vs. iteration number for the Split Bregman ROF minimization algorithm, and
for an iterative method based on the dual problem [8]. The error at iteration k is defined as ‖uk−u∗‖
where uk is the approximation at iteration k, and u∗ is the exact solution. Convergence results are
for the test image “Lena” with Gaussian noise (σ = 15). (top left) Results for µ = 0.1. (top right)
Results for µ = 0.01.

In addition to being fast, the split Bregman method has the advantage that, before
14



convergence is reached, the intermediate images are smooth. Most of the image noise
is eliminated during the first 10 iterations of the algorithm, and subsequent iterations
serve to flatten “staircases.” For both the geometric image and “Lena,” almost 50
iterations of the Split Bregman algorithm were needed to reach convergence within
0.5 intensity units per pixel. However, because intermediate results of the algorithm
are smooth, it is extremely difficult to discern between the results after 10 iterations,
and the results after full convergence. This is illustrated using the image of Lena in
Figure 5.2. This property is also illustrated in Figure 5.3, where we show the test
image, as well as its cross sections, at various level of convergence.

Note that the speed of this algorithm depends strongly on the fact that we have
used Bregman iteration, rather than continuation, to enforce a constraint. Had we
followed a more conventional path, and let λ → ∞, the problem (4.2) would have
become ill-conditioned, and the Gauss-Seidel method would have stalled.

Fig. 5.2. Split Bregman ROF denoising of Lena. (top left) Original image. (top right) Noise
contaminated with σ = 25. (bottom left) Denoised with 10 iterations of Split Bregman. (bottom
right) Denoised with 50 iterations of Split Bregman.

5.2. Compressed Sensing Results. We now discuss the efficiency of the Split
Bregman compressed sensing algorithm using BV and/or B1,1 as regularizers. We
tested the Split Bregman algorithm on two sample images, one synthetic and one
real. Two different formulations of the CS problem were tested. First, the com-
pressed sensing reconstruction was performed using only a Besov regularizer. Next,
we reconstructed images using the hybrid Besov+BV algorithm discussed above. In
the case where only the Besov regularizer is used, the optimization problem can be put
into a particularly simple form, which allows it to be solvable by the Linearized Breg-
man method. In this case, we compare the Split Bregman algorithm to the Linearized
Bregman algorithm with “kicking” [20] for efficiency.
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Fig. 5.3. Split Bregman ROF denoising of the geometric test image. A cross section of each
image is displayed on the right. (top) Noisy image with σ = 15. (middle) Denoised with 10 iterations
of Split Bregman. (bottom) Denoised with 50 iterations of Split Bregman.

In table 5.2, we present the number of iterations of each algorithm required to
reach the convergence criteria for each task described below. Note that with both
the Split Bregman and Linearized Bregman algorithm, two Fourier transforms are re-
quired per iteration. Because the Fourier transform is by far the most time consuming
step in each algorithm, we found that both algorithms require a similar amount of
time to execute one iteration.

Example 1: We generated a sample synthetic image with dimensions 128 × 128,
and pixel intensities ranging from 0 to 255. The image consists of two overlapping
geometric shapes, and has an extremely sparse gradient and Haar wavelet transform.
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The synthetic image has signal in both its real and imaginary components, however
for display purposes we show the absolute value of the image. For our first test, no
noise was added to the CS data. The objective of this test was to recover the exact
image using only 50% of the k -space data (sampled at random). The algorithm was
run until ‖Fu−fk‖2/1282 < 10−3. For the second test, the CS data was contaminated
with noise (σ = 25), and each algorithm was run until the stopping criteria ‖Fu −
fk‖2/1282 < σ was met.

Example 2: To demonstrate the effectiveness of the split Bregman method in
medical imaging, we tested the algorithm on real MRI data. For this purpose, we
used a cross-sectional image of a saline phantom. In the original image acquisition,
the entire k -space was sampled. To generate the CS data, we randomly and uniformly
selected 30% of the k -space samples. Note that, while ideal for compressed sensing,
this type of sampling is not practical for most MRI applications. This is because
most pulse sequences acquire k -space data in some sort of geometric pattern, such as
a spiral [18, 24, 16]. Because the focus of this paper is on numerics, and not on the
details of image acquisition, we choose uniform random sampling for simplicity.

Table 5.2
Iteration Counts for CS Algorithms

Algorithm Geometric Geometric, σ = 25 MRI Phantom
Linearized, Besov 367 35 51

Split, Besov 10 5 40
Split, Besov+BV 17 10 35

Several results from table 5.2 are particularly noteworthy. First, we found that
the linearized Bregman algorithm was fairly efficient for large σ, but converged very
slowly for σ = 10−3. The reason for this is that the linearized Bregman algorithm
slowed down considerably as the method approached convergence. Also, to attain
this high level of accuracy, fairly extreme values for the method parameters had to
be chosen, which resulted in slow performance. For all tasks involving noisy data, the
split Bregman method was comparable to, or even faster than, linearized Bregman.
One reason for this is that the Split Bregman method is very tolerant of large values
of µ in equation (4.6). Because we were able to choose large values for this parameter,
the number of outer “while” loops of the Split Bregman CS algorithm was very small
(8 or less for problems involving the phantom test image). Also, the inner “for” loop
had to be executed only 5 times between each outer loop iteration. These convergence
results are demonstrated using the MR phantom in Figure 5.4.

Note that the most significant advantage of the split Bregman method over other
compressed sensing methods its versatility. The split Bregman method can mini-
mize energies involving the BV norm, which most CS algorithms (such as linearized
Bregman and FPC) cannot. Also, the split Bregman method can solve optimization
problems involving multiple regularization terms.

6. Conclusion. In this paper, we introduce the “Split Bregman” framework
for solving l1-regularized optimization problems. By applying the method to image
denoising and compressed sensing problems, we showed that this method is a very
efficient solver for many problems that are difficult to solve by other means. Besides
its speed, our algorithm has several advantages: Becuase the Split Bregman algorithm
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Fig. 5.4. Split Bregman compressed sensing reconstruction of an MR image using 30% of
the k-space data. (top left) Original image reconstructed using the full k-space. (top right) Image
reconstructed using 30% of k-space data. Reconstruction was done using the conventional method,
which fills in missing samples with zeros. (middle left) Results of Split Bregman algorithm after
10 inner iterations (2 outer iterations). (middle right) Results of Split Bregman algorithm after 20
inner iterations (4 outer iterations). (bottom left) Results after 30 inner iterations. (bottom left)
Optimal results obtained after 40 inner iterations.

makes extensive use of Gauss-Seidel and Fourier transform methods, it is easily par-
allelizable. Also, it has a relatively small memory footprint compared to second order
methods that require explicit representations of the Hessian matrix. Both of these
characteristics make Split Bregman a practical algorithm for large scale problems.
Finally, the method is easy to code.

Appendix: Fast Convergence of Bregman Iteration. Here we give an in-
formal, but intuitive, explanation of why Bregman iteration converges so quickly for
l1 based problems. This is a generalization of what was done in [28], where Bregman
iteration was applied to soft thresholding for Wavelet denoising.

Consider the optimization problem

min
u
|u|ε such that Au = f
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Fig. 5.5. Synthetic image recovered from 50% of k-space data. The k-space data was contam-
inated with noise (σ = 15) prior to recovery. (top left) Original image reconstructed using the full
k-space. (top right) Image reconstructed using 50% of k-space data. Reconstruction was done using
the conventional method, which fills in missing samples with zeros. (bottom left) CS reconstruction
using only the Besov regularizer. (bottom right) CS results using the hybrid TV+Besov regularizer.
Note the superiority of the results when the hybrid regularizer is used.

where

|u|ε =
∑
i

√
u2
j + ε

is a “smoothed out” variant of the l1 norm. We will need this smoothness to perform
the analysis below. The Bregman update rule for this problem is

pk+1 − pk +AT (Auk+1 − f) = 0(6.1)

Now, because J(·) = | · |ε is convex, and pk and pk+1 are gradients of this functional
at uk and uk+1, the mean value theorem tells us that

pk+1 − pk = Dk+ 1
2 (uk+1 − uk)

where Dk+ 1
2 is a diagonal matrix such that

D
k+ 1

2
i,i = ε

(
(uk+

1
2

i )2 + ε
)−3/2

for some uk+
1
2 between uk and uk+1.

Applying this formula to (6.1) yields

Dk+ 1
2 (uk+1 − uk) +AT (Auk+1 − f) = 0
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We now let Qk+
1
2 = (Dk+ 1

2 )−1, multiply by AQk+
1
2 , and rearrange to get

Auk+1 − f =
(
I +AQk+

1
2AT

)−1 (
Auk − f

)
(6.2)

This equation gives us some insight into why Bregman iteration behaves as it
does. When u

k+ 1
2

i is large compared to ε, which occurs at “spikes” (or edges in the

BV case), Qk+
1
2

i,i is large, and uki converges rapidly. Small values of uk take more
iterations to settle down. An important result of this is that for problems with shocks
or edges, Bregman iteration puts these features in the right place almost immediately,
unlike the continuation based method [27]. Resolving discontinuities is usually the
most difficult part of any imaging task, and Bregman iteration is extremely well suited
for this task.
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