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Image registration is the process of estimating an optimal transformation between the

two images. In particular, nonlinear image registration has been developing rapidly

in the last decade. Different regularization techniques have been proposed, some-

times generating deformations very different from one another. In this dissertation,

we present a novel unbiased nonlinear image registration technique. The unbiased

framework generates theoretically and intuitively correct deformation maps, and is

compatible with large-deformation models. We apply information theory to quantify

the magnitude of deformations and examine the statistical distributions of Jacobian

maps in the logarithmic space.

To demonstrate the power of the proposed framework, we generalize the well

known large-deformation viscous fluid registration model to computation of unbiased

deformations. We show that unbiased fluid registration method generates more accu-

rate maps compared to those generated using the viscous fluid registration model.

We also propose a large-deformation image registration model based on nonlinear

elastic regularization and unbiased registration. The new model is written in a uni-

fied variational form and is minimized using gradient descent on the corresponding

Euler-Lagrange equations. The unbiased nonlinear elastic registration model is com-
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putationally efficient and easy to implement.

Furthermore, we examine the reproducibility and the power to detect real changes

of different computational techniques. It is the first work to systematically inves-

tigate the reproducibility and variability of different registration methods in tensor-

based morphometry. Specifically, we compare different matching functionals, as well

as large deformation registration schemes using serial magnetic resonance imaging

scans. Our results show that the unbiased methods have higher reproducibility than

the conventional registration models. The unbiased methods are less likely to produce

changes in the absence of any real physiological change. Moreover, they are also bet-

ter in detecting biological deformations by penalizing any bias in the corresponding

statistical maps.

Finally, we extend the idea of the unbiased registration to simultaneously register-

ing and tracking deforming objects in a sequence of two or more images. A level set

based Chan-Vese multiphase segmentation model is generalized to consider Jacobian

fields while segmenting regions of growth and shrinkage in deformations. Deforming

objects are thus classified based on magnitude of homogeneous deformation.

Numerical results are presented in each chapter.
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CHAPTER 1

Introduction

Image registration, also known as image matching, morphing, and alignment, is the

process of determining a spatial transformation, or mapping, that relates positions in

one image to corresponding positions in one or more images. It can also be seen as the

process of overlaying two or more images of the same scene taken at different times,

from different perspectives, and by different sensors. Registration is necessary when

comparing or integrating the data obtained from different measurements.

Image registration is generally classified as being rigid, affine, or nonrigid. In rigid

registration, objects in images are assumed to be rotated and translated with respect to

one another. Rigid body transformations preserve the distance between all points in the

image and are equivalent to a change from one coordinate system to another one which

differs by shift and rotation. Affine transformations, which allow for a global change

of scale and shear, map parallel lines to parallel lines. Rigid and affine transformations

are often referred to as linear transformations and can be conveniently represented in

matrix form.

In many applications, correspondence between structures in two images cannot be

achieved without some localized stretching of the images. Nonrigid transformations,

which map straight lines to curves, allow local warping of image features, thus pro-

viding support for local deformations. Nonrigid registration methods can be generally

subdivided into physical models and function representation based techniques. Phys-

ical models are derived from the laws of continuum mechanics and include methods
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based on theories of elasticity and viscous fluid flow. Function representation based

models, which originate from interpolation and approximation theory, use basis func-

tion expansions to model the deformation. Examples of basis functions include radial

basis functions, B-splines, and wavelets [26, 50].

There are a number of reviews of rigid registration methods [48, 68, 92]. Reviews

on nonrigid registration methods [26, 42, 41, 50, 63, 73, 88, 117] focus on elastic and

fluid models, function expansions and splines, B-splines and wavelets, radial basis

functions, landmark based methods, level sets registration, as well as numerical solu-

tions to registration problems. In the next section, we list some applications of image

registration.

1.1 Applications of Image Registration

Image registration is an important step in all image analysis tasks in which the final

information is acquired from the combination of various data sources. Virtually all

intelligent vision processing and understanding systems require image matching or

closely related operations. Many applications of image registration are found in ar-

eas of computer vision, medical imaging, surveillance, remote sensing, environmental

monitoring, and mapping.

Image registration is an important element in remote sensing. Some of the appli-

cations in this area include multispectral classification, change detection, validation

and precision correction of satellite navigation data, validation of sensors, image mo-

saicing, weather forecasting, creating super-resolution images, integrating information

into geographic information systems, environmental monitoring, as well as land use

analysis and planning [33, 117].

Registering series of images acquired by an airborne sensor into a mosaic has been
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developing recently. Geo-registration is becoming increasingly used in unmanned

aerial vehicles (UAV) to navigate, or to geo-locate targets [65]. The fusion of mul-

timodal video sequences has also become important for surveillance purposes, naviga-

tion and object tracking applications, as well as multichannel restoration [100].

Image matching has also been widely used in computer vision. Some of such vi-

sion applications are target localization, automatic quality control, automated image

registration, object recognition, 3D scene reconstruction, vision-based autonomous

navigation, image database retrieval, and signature recognition [100, 117].

In recent years, medical image registration has evolved as interdisciplinary field

with many applications in functional and anatomic brain mapping, image-guided surgery,

and multimodality image fusion [1, 44, 99]. Intrasubject registration is performed to

align scans of the same subject at different times. When applied to serial scans of hu-

man brain, image registration offers tremendous power in detecting the earliest signs

of illness, understanding normal brain development or aging, and monitoring disease

progression. On the other hand, intersubject registration aligns scans of different sub-

jects. In multi-subject studies, image matching reduces subject-specific anatomic dif-

ferences by deforming individual images onto a population average brain template.

Applications of image registration also include combining images of the same sub-

ject from different modalities, providing guidance during surgical procedures, among

many others.

1.2 Registration Problem

Let Ω be an open and bounded domain in Rn, for arbitrary n. Let I1 : Ω → R and

I2 : Ω → R be the two images to be registered. The goal of image registration is to

find the transformation g : Ω → Ω that maps the source image I2 into correspondence
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with the target image I1. The displacement field u(x) from the position x in the de-

formed image I2 ◦ g(x) back to I2(x) is defined in terms of the deformation g(x) by

the expression g(x) = x − u(x) at every point x ∈ Ω. The term displacement is used

because it can be viewed as how a point in the deformed template is moved away from

its original location. Thus, the problems of finding deformation g and displacement u

are equivalent.

In general, nonlinear image registration models can be formulated in a variational

framework. An appropriate similarity measure indicates how accurately the deformed

image is aligned with the target image. To construct a deformation that is one-to-one

and differentiable [21, 51, 70], a regularizing constraint must be imposed. Thus, the

problem of image registration is often cast as a minimization problem with a combined

cost functional E consisting of an image matching functional F and a regularizing

constraint R:

inf
u

{
E(u) = F (u) + λR(u)

}
. (1.1)

Here, λ > 0 is a weighting parameter. In general, we expect minimizers of the energy

functional E(u) to exist. A necessary condition for a minimizer u is that the Gâteaux

derivative dE(u, η) of E vanishes for all suitable perturbations η. This derivative is

also known as the first variation of E in the direction of η:

dE(u,η) = lim
ε→0

E(u + εη)− E(u)

ε
=

∂E(u + εη)

∂ε

∣∣∣∣
ε=0

. (1.2)

It can be shown that if E has a local extremum u, its first variation at u must vanish:

dE(u, η) = 0. (1.3)

Denote by
〈·, ·〉 the scalar product in L2(Ω). If dE(u,η) =

〈
∂uE, η

〉
, then ∂uE defines
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the gradient of the functional E. Therefore, the necessary condition for a minimizer u

becomes

∂uE(u) = 0. (1.4)

Equation (1.4) is known as the Euler-Lagrange equation. Note that

∂uE(u) =
(
∂u1E(u), . . . , ∂unE(u)

)T . Also, from equation (1.1), the gradient of E

can be written as

∂uE(u) = ∂uF (u) + λ∂uR(u). (1.5)

Energy functional (1.1) can be minimized using the gradient descent of the corre-

sponding Euler-Lagrange equation to obtain

∂u(x, t)

∂t
= −∂uE(u), (1.6)

where t is an artificial time.

Common choices of image matching functional F include landmark matching, sum

of squared intensity differences, cross correlation [24], and mutual information or other

divergence-based or information-theoretic measures [28, 46, 86], while choices of reg-

ularization R usually involve differential operators inspired by thin-plate spline theory,

elasticity theory, fluid dynamics and the Euler-Poincaré equations [70, 98]. This chap-

ter reviews some of the similarity measures and regularization constraints.

1.3 Registration Metrics

1.3.1 Landmark-Based Registration

A registration metric takes two images as input and returns a real value that indicates

how well the images are aligned. One of the simplest ones is based on the distance

5



between corresponding pairs of landmarks that are extracted from images. Landmarks

are often used for rigid-body registration [9, 68, 92]. For nonrigid registration, land-

marks are often used with thin-plate splines [50].

The landmark distance measure is defined using the Euclidean norm || · || as

FLM(u) =
m∑

k=1

∣∣∣∣xI1,k − g(xI2,k)
∣∣∣∣2 =

m∑

k=1

∣∣∣∣xI1,k − (
xI2,k − u(xI2,k)

)∣∣∣∣2,

where xI1,k and xI2,k, 1 ≤ k ≤ m, are landmark locations in the target and source

images, respectively.

An advantage of landmarks is that they enable the transformation to be determined

in closed form. However, a large number of landmarks are needed to densely sample

the deformation field. Also, the localization process introduces error.

1.3.2 L2 distance

For intramodality registration, the most common way to define the distance between

the deformed source and the target images is to use the L2 norm, or the sum of squared

differences (SSD). The L2-norm matching functional is suitable when the images have

been acquired through similar sensors and thus are expected to present the same inten-

sity range and distribution. The L2 distance between the deformed image I2(x − u)

and target image I1(x) is defined as

FL2(I1, I2, u) =
1

2

∣∣∣∣I2(x− u)− I1(x)
∣∣∣∣

L2(Ω)

=
1

2

∫

Ω

(
I2(x− u)− I1(x)

)2
dx.

(1.7)

Computing the first variation of the L2 similarity functional gives

f(x, u(x)) = −∂uFL2(I1, I2, u) = [I2(x− u(x))− I1(x)]∇I2|x−u, (1.8)
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where f is the force field, or the body force, which drives the source into registration

with the target. The first term in the definition of f, namely I2(x − u) − I1(x), is the

difference in intensity between the deformed image and the target image. This term

causes the field force to tend to zero in areas where the deformed source image is

locally aligned with the target image. The second term ∇I2|x−u is the gradient of the

deformed source image and has largest values at the edges of the source image. This

term determines the directions of the local deformation forces applied to the source.

To use this similarity function, the images I1 and I2 must correspond to the same

imaging modality and they may require preprocessing to equalize the intensities of the

image.

1.3.3 Mutual Information

A concept borrowed from the information theory, mutual information measure has

been successfully adopted for single-modal and multimodal image registration. The

use of mutual information for image registration was first introduced in [23, 103]. One

of the main advantages of using mutual information is that it can be used to align

images of different modalities, without requiring knowledge of the relationship (joint

intensity distribution) of the two registered images. We refer the readers to [28, 47,

105] for relevant discussions on mutual information.

To define the mutual information between the deformed image I2(x − u) and the

target image I1(x), we follow the notations in [47], where pI1 and pI2
u are used to

denote the intensity distributions estimated from I1(x) and I2(x− u), respectively. An

estimate of their joint intensity distribution is denoted as pI1,I2
u . In this probabilistic

framework, the link between two modalities is fully characterized by a joint density.

Let i1 = I1(x), i2 = I2(x−u(x)) denote intensity values at point x ∈ Ω. Given the

7



displacement field u, the mutual information computed from I1 and I2 is provided by

MII1,I2
u =

∫

R2

pI1,I2
u (i1, i2) log

pI1,I2
u (i1, i2)

pI1(i1)p
I2
u (i2)

di1di2. (1.9)

To maximize the mutual information between I2(x−u) and I1(x), the following func-

tional is minimized:

FMI(I1, I2, u) = −MII1,I2
u . (1.10)

The gradient of (1.10) is derived to be

∂uFMI(u) =
1

|Ω|
[
Qu ∗ ∂ψ

∂ξ2

]
(I1(x), I2(x− u))∇I2(x− u), (1.11)

where |Ω| is the volume of Ω, Qu is defined as

Qu(i1, i2) = 1 + log
pI1,I2

u (i1, i2)

pI1(i1)p
I2
u (i2)

, (1.12)

and ψ(ξ1, ξ2) is a two-dimensional Parzen windowing kernel [31, 83], which is used to

estimate the joint intensity distribution from I2(x− u) and I1(x). The Gaussian kernel

with variance σ2 is often used as a kernel

ψ(ξ1, ξ2) = Gσ(ξ1, ξ2) =
1

2πσ2
e
−(ξ21+ξ22)

2σ2 . (1.13)

In the case of the mutual information similarity measure, the force field, which drives

the source image into registration with the target image, is given by

f(x, u(x)) = −∂uFMI(u). (1.14)
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1.4 Regularizations

In this section, we will review different approaches to regularizing the displacement

field u, which include diffusion, biharmonic, linear elastic, and viscous fluid regular-

izations.

1.4.1 Diffusion Registration

Diffusion registration in Rn [34, 73] is based on the regularizer

RDIF (u) =
1

2

n∑

k=1

∫

Ω

||∇uk||2dx. (1.15)

Taking the first variation of RDIF , gives the following gradient

∂uRDIF (u) = −4u. (1.16)

Minimizing the functional (1.1), which consists of the diffusion regularizer (1.15) and

the appropriate fidelity term, gives the Euler-Lagrange equation

λ4u + f = 0, (1.17)

where the expression of the force field f depends on the similarity measure.

Image registration based on diffusion regularization is easy to implement numeri-

cally. One of the main advantages of this model is its dependance on only one param-

eter. However, the transformation obtained with diffusion registration is restricted to

small deformations.
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1.4.2 Biharmonic Registration

Biharmonic registration, which is also known as curvature registration [35, 36, 73], is

based on the regularizer

RBH(u) =
1

2

n∑

k=1

∫

Ω

(4uk)
2dx. (1.18)

The gradient of RBH is

∂uRBH(u) = 42u. (1.19)

Thus, the minimization of the biharmonic regularizer (1.18), coupled with the fidelity

term, gives the following Euler-Lagrange equation

λ42u− f = 0. (1.20)

Similar to diffusion-based registration, image matching involving biharmonic reg-

ularizer, which also depends only on one parameter, allows only small deformations.

1.4.3 Physical Continuum Models

An important observation, which stimulated the development of intensity-based non-

linear image registration algorithms, was the connection of the image data with a phys-

ically deforming system in three dimensions. Physical continuum models consider the

deforming image to be embedded in a three-dimensional deformable medium, which

can be either an elastic material or a viscous fluid. The medium is subjected to cer-

tain distributed internal forces, which reconfigure the medium and eventually drive the

source into registration with the target. Sections 1.4.4 and 1.4.5 briefly describe two

of the most well known such models.
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1.4.4 Linear Elastic Registration

The theory of linear elasticity is based on the notions of stress and strain. Stress is a

measure of the internal force intensity developed within a body in response to external

forces. It can be analyzed mathematically using the Cauchy stress tensor, which is

a second rank tensor denoted by Σ = [σij] ∈ Rn×n, 1 ≤ i, j ≤ n, where i and j

represent the three Cartesian directions. Stress components are either normal to the

plane σii or within it σij , i 6= j.

Strain is defined as the amount of deformation an object experiences compared to

its original size and shape. The strain tensor, E = [εij] ∈ Rn×n is a symmetric tensor

used to quantify the strain of an object undergoing a small deformation. The diagonal

coefficients εii are normal components, whereas εij , i 6= j, are shear strains. The linear

strain is defined as

εij(u) =
1

2
(∂jui + ∂iuj), (1.21)

with the strain tensor matrix given by

E(u) =
1

2
(∇ut +∇u). (1.22)

Consider the static equilibrium of a linear elastic solid subjected to the body force

vector field f = (f1, f2, f3) in three spatial dimensions. Applying Newton’s first law

of motion results in the following set of differential equations which govern the stress
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distribution within the solid

∂σ11

∂x1

+
∂σ12

∂x2

+
∂σ13

∂x3

+ f1 = 0,

∂σ21

∂x1

+
∂σ22

∂x2

+
∂σ23

∂x3

+ f2 = 0,

∂σ31

∂x1

+
∂σ32

∂x2

+
∂σ33

∂x3

+ f3 = 0.

(1.23)

For a linear elastic solid, the Cauchy stress tensor Σ is related to the strain tensor E by

Hooke’s law

Σ = ν(trace E)I + 2µE , (1.24)

where ν and µ are Lamé elastic material constants and I is the identity tensor. Equiv-

alently, the components of the stress and strain tensors are related by

σij = ν(∇ · u)δij + 2µεij, (1.25)

where

δij =





1 if i = j,

0 if i 6= j.

(1.26)

Substituting (1.21) into (1.25) and using equilibrium equations (1.23) gives the Navier-

Cauchy linear elastic partial differential equation

µ4u + (µ + ν)∇(∇ · u) + f(x) = 0. (1.27)

The regularization for linear elasticity could also be written in a variational frame-

work with

RLE(u) =
1

2

∫

Ω

(
ν(∇ · u)2 + 2µ

n∑
i,j=1

(εij(u))2

)
dx.
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Here, RLE is the linearized elastic potential. Calculating the first variation of this

functional gives the following gradient

∂uRLE(u) = −µ4u− (µ + ν)∇(∇ · u).

A nonlinear elastic model for nonrigid image registration was first proposed by

Broit in [8]. The model was successfully used in [2, 8, 29]. However, since the

Navier-Cauchy PDE (1.27) is derived assuming small angles of rotation and small

linear deformations, it is only accurate for small deformations. The elastic registration

model severely penalizes large displacements and is not useful in applications when

large nonlinear deformations are natural.

1.4.5 Viscous Fluid Registration

A major shortcoming of the linear elastic approach using Navier-Cauchy equations

(1.27) is that it is based on the assumption of an infinitesimally small deformation.

Large deformations can not be accommodated with these linear partial differential

equations. The limitations of the linear elasticity model can be overcome by a viscous

fluid which allows the restoring forces to relax over time.

In the viscous fluid model, first proposed by Christensen et al. in [21], an Eule-

rian reference frame is used in describing large deformations. The Eulerian frame of

reference specifies the time evolution of particle positions and velocities as observed

at fixed points. Consequently, a particle located at x at time t originated at position

g(x, t) = x− u(x, t) at time t0 (t > t0), where u is the displacement. We let v denote

the velocity field. The material derivative, defined by D/Dt = ∂/∂t + v · ∇, de-

scribes the time rate of change experienced by an element of material instantaneously

at point x at time t. Hence, the Eulerian velocity field v is nonlinearly related to u and
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is determined by

v =
Du
Dt

=
∂u
∂t

+ v · ∇u. (1.28)

The term v · ∇u accounts for the kinematic nonlinearities of the displacement field

u. Note that the material derivative with respect to time t and partial derivative with

respect to time t are approximately equal for small deformations.

The laws of continuum mechanics provide the theoretical foundation for fluid flow.

The rate of deformation tensor D = [dij], 1 ≤ i, j ≤ n, is defined as

dij =
1

2
(∂jvi + ∂ivj),

or, in vector notation,

D =
1

2
(∇vt +∇v). (1.29)

A Navier-Poisson Newtonian fluid model is used, for which the Cauchy stress tensor

Σ is related to the rate of deformation tensor D by

Σ = −pI + νf (traceD)I + 2µfD, (1.30)

where νf and µf are the viscosity coefficients of the fluid, and p is the pressure. Equiv-

alently,

σij = −pδij + νf (∇ · v)δij + 2µfdij, (1.31)

In continuum mechanics applications, it is generally assumed that the mass is con-

served within a control volume. However, for image deformations it is often desirable

to allow local increase or reduction of mass. Assuming a mass is changed at a rate of

η per unit volume, the differential form of the mass conservation law is given as

∂ρ

∂t
+∇ · (ρv) = η,
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where ρ denotes the density. The differential form of conservation of linear momentum

with a mass source is given as

∇ · Σ = −f + ρ
dv
dt

+ ηv, (1.32)

where f is the force field, or the body force, and ∇ · Σ is a n × 1 column vector with

components [∇ · Σ]i =
∑n

j=1(∂σij/∂xj). Substituting (1.30) into (1.32) and using

(1.29) allows us to derive the equation

ρ
dv
dt

= f−∇p + (ν + µ)∇(∇ · v) + µ4v− ηv. (1.33)

For very low Reynold’s number flow, it is possible to neglect the inertial terms ρdv/dt

and ηv. Assuming there is only a small spatial variation of pressure, ∇p can also

be neglected, and (1.33) simplifies to the Navier-Stokes equation for a compressible

viscous fluid

µ4v + (µ + ν)∇(∇ · v) + f(x, u) = 0. (1.34)

Equation (1.34) describes the balance of forces acting in a given region of the fluid.

The4v term is the viscosity, which constraints the velocity field to vary smoothly. The

term ∇(∇ · v) allows structures in the source image to change in mass. The Navier-

Stokes equation of fluid flow (1.34) is identical to the Navier-Cauchy equation of linear

elasticity (1.27) except that the Navier-Stokes PDE operates on velocity v rather than

displacement u.

Since equation (1.34) is computationally expensive to solve in practice, the authors

in [28] proposed to obtain the instantaneous velocity from the convolution of f with

Gaussian kernel Gσ of variance σ2:

v = Gσ ∗ f(x, u).
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Even though the viscous fluid registration model allows large deformations, nu-

merical implementation of this model may not produce diffeomorphic and topology

preserving maps unless regridding is used.

1.5 Optical Flow Methods

Optical flow methods are used to find small deformations in temporal sequences of

images [52, 96]. The basic hypothesis of optical flow is to assume that the intensity of

a moving object is constant with time. That is, objects in the image at time t = t0 will

generally still be in the image at time t > t0, but will be displaced. This is represented

by

I(x, t) = I(x + δx, t + δt). (1.35)

Expanding (1.35) in Taylor’s series and retaining the first order terms, we obtain the

optical flow equation

I2(x)− I1(x) = v · ∇I1(x). (1.36)

Here, v is the velocity. Numerically more stable expression for v as in [96], which also

holds for small displacements, is given by

v(x) =

(
I2(x)− I1(x)

)∇I1(x)

(∇I1(x))2 +
(
I2(x)− I1(x)

)2 . (1.37)

The deformation field, given by equation (1.37), is regularized.

In optical flow, v is considered to be a velocity because the images are two succes-

sive time frames. That is, v is the displacement during the time interval between the

two image frames. When comparing two different images, however, there is no such

temporal consideration. Hence, v can be thought of representing a displacement.
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1.6 Deformation Constraints

In addition to regularization techniques described in Section 1.4, there are methods

that constrain the transformation according to some desirable mathematical property

[19, 50].

1.6.1 Inverse Consistency

The problem with many image registration techniques is that they fail to generate in-

verse consistent deformations. Inverse consistency can be explained by considering

the transformations obtained by registering image I2 to I1 as g and the inverse one

from I1 to I2 as h. If the transformations g and h are consistent their composition is

the identity. For almost all registration algorithms g 6= h−1.

Christensen and Johnson proposed a novel inverse consistent image registration

approach in [20, 54]. The authors proposed to jointly estimate the transformations

g : I2 → I1 and h : I1 → I2 by defining a cost function to measure the differ-

ences between the deformed image I2 ◦ g and image I1 and the differences between

the deformed image I1 ◦ h and image I2. In [20, 54], the L2 distance is used as a

similarity measure CSIM . The transformations g and h are estimated by minimizing a

symmetrized similarity function

CSIM(I1, I2 ◦ g) + CSIM(I1 ◦ h, I2) =

∫

Ω

∣∣I2(g(x))− I1(x)
∣∣2dx

+

∫

Ω

∣∣I2(x)− I1(h(x))
∣∣2dx.

In order to guarantee that g = h−1, an inverse consistency constraint CICC , written
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in a symmetric form, is imposed:

CICC(u, w) + CICC(w, u) =

∫

Ω

∣∣∣∣g(x)− h−1(x)
∣∣∣∣2dx +

∫

Ω

∣∣∣∣h(x)− g−1(x)
∣∣∣∣2dx,

where g(x) = x − u(x) and h(x) = x− w(x). Here, u and w are displacement fields,

which define the transformation in terms of a displacement from a location x.

To ensure the transformations g and h are smooth, continuum mechanical models

such as linear elasticity and viscous fluid can be used to regularize transformations. In

[20], the authors used a linear elastic constraint of the form

CREG(u) + CREG(w) =

∫

Ω

∣∣∣∣Lu(x)
∣∣∣∣2dx +

∫

Ω

∣∣∣∣Lw(x)
∣∣∣∣2dx,

where the linear elasticity operator L, as defined by the Navier-Cauchy PDE (1.27), is

Lu = −α4u− β∇(∇ · u).

The total cost function C is hence a linear combination of symmetric quantities

attributed to image similarity CSIM , the consistency of the forward and backward

transformations CICC , and a regularization term that is related to the energy of the

deformation CREG:

C(u, w) = CSIM(I1, I2 ◦ g) + CSIM(I1 ◦ h, I2)

+ ρ
(
CICC(u, w) + CICC(w, u)

)

+ λ
(
CREG(u) + CREG(w)

)

=

∫

Ω

∣∣I2(g(x))− I1(x)
∣∣2dx +

∫

Ω

∣∣I2(x)− I1(h(x))
∣∣2dx

+ ρ

( ∫

Ω

∣∣∣∣g(x)− h−1(x)
∣∣∣∣2dx +

∫

Ω

∣∣∣∣h(x)− g−1(x)
∣∣∣∣2dx

)

+ λ

( ∫

Ω

∣∣∣∣Lu(x)
∣∣∣∣2dx +

∫

Ω

∣∣∣∣Lw(x)
∣∣∣∣2dx

)
,

(1.38)

18



where ρ and λ are positive constants.

To solve (1.38) numerically, the authors solved for g and h separately, minimizing

Cg =

∫

Ω

∣∣I2(g(x))− I1(x)
∣∣2dx + ρ

∫

Ω

∣∣∣∣g(x)− h−1(x)
∣∣∣∣2dx

+λ

∫

Ω

∣∣∣∣Lu(x)
∣∣∣∣2dx,

Ch =

∫

Ω

∣∣I2(x)− I1(h(x))
∣∣2dx + ρ

∫

Ω

∣∣∣∣h(x)− g−1(x)
∣∣∣∣2dx

+λ

∫

Ω

∣∣∣∣Lw(x)
∣∣∣∣2dx.

(1.39)

Equation (1.39) is essentially a two-step strategy, where the maps g and h are not

estimated simultaneously. Either g or h has to be alternatively fixed, which creates a

lag in numerical computation.

1.6.2 Topology Preservation

The topology can be preserved by ensuring that the transformation g satisfies two

conditions [50]. First, the determinant of the Jacobian of the transformation |Dg|
is always positive. Second, the transformation is one-to-one and onto, or bijective.

Continuity is implied by the existence of |Dg|.

1.6.3 Diffeomorphism

It is often important to compute deformations which are not only invertible, but also

preserve properties such as smoothness. Hence, diffeomorphic transformations are of

considerable interest. The transformation g is diffeomorphic if both g and g−1 are

differentiable.

The problem with the viscous fluid method [21] is that singularities can develop

when the numerical computation is performed. This can be avoided by regularizing
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the velocity field. As originally proposed in [21], the transformations are modeled

as arising from an evolution in time, where the motion is governed by the laws of

continuum mechanics, resulting in a flow g(t), t ∈ [0, 1] [3, 32, 71, 72, 101]. The

forward and inverse maps are uniquely defined as

g−1(g(x, t) = x, t ∈ [0, 1].

This implies that the flow can be characterized by

∂g(x, t)

∂t
= v(g(x, t), t), (1.40)

∂g−1(y, t)

∂t
= Dg−1(y, t)v(y, t), (1.41)

g(0) = g−1(0) = id, (1.42)

where id is the identity map and Dg is the Jacobian matrix of the transformation g.

The transformation is generated at the endpoint g(1) of the flow of a velocity vector

field v(t), t ∈ [0, 1], which is described by the ordinary differential equation (1.40).

This gives a path g(t), t ∈ [0, 1] in the space of transformations starting with g(0) = id

at t = 0, and terminating at the endpoint t = 1 of the flow, where

g(1) = g(0) +

∫ 1

0

v(g(t), t) dt. (1.43)

The generated map g(1), simply denoted as g where there is no confusion, provides a

matching between the two images.

In [3], the optimal transformation was estimated using the variational formulation

in the space of smooth velocity vector fields V :

min
v

∫ 1

0

||v||2V dt + λ||I2 ◦ g− I1||2L2 . (1.44)
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The smoothness on the velocity field is enforced by defining the norm on the space

V through a differential operator L, where L = (−α4 + γ)pI , with p > 1.5, such

that ||v||V = ||Lv||L2 . The minimization problem (1.44) is referred to as the large

deformation diffeomorphic metric mapping (LDDMM) approach.

In [3], the authors derived the Euler-Lagrange equations for the solution of the

variational problem in (1.44) and presented a numerical method for obraining a dif-

feomorphism. This approach allows for arbitrarily large deformations as well as au-

tomatic inverse consistency. However, it is computationally expensive, as it requires

integration of the velocity field in time. Moreover, this approach does not address

the statistical analysis of resulting deformation maps at a voxel level, which becomes

relevant in many applications.

1.6.4 Unbiased Deformation

The concept of unbiased deformation is introduced and discussed in this dissertation.

Unbiased deformation refers to the condition when the Jacobian determinants |Dg| of

the deformation g recovered between a pair of images follow a log-normal distribution,

with zero mean after log-transformation:

1

|Ω|
∫

Ω

log |Dg(x)|dx = 0. (1.45)

In this dissertation we argue that this distribution is beneficial when recovering change

in regions of homogeneous intensity, and in ensuring symmetrical results when the

order of two images being registered is switched.
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CHAPTER 2

Unbiased Large-Deformation Nonlinear Image

Registration

In this chapter, we present a novel framework for constructing large deformation un-

biased image registration models that generate theoretically and intuitively correct de-

formation maps. Such registration models do not rely on regridding and are inherently

topology preserving. We apply information theory to quantify the magnitude of defor-

mations and examine the statistical distributions of Jacobian maps in the logarithmic

space. To demonstrate the power of the proposed framework, we generalize the well

known viscous fluid registration model to computation of log-unbiased deformations.

2.1 Theory

One could not study nonlinear image registration without closely examining Jacobian

maps. The Jacobian map is the determinant of the Jacobian matrix of a deformation

field, and encodes the local volume difference between the source and target images.

The Jacobian determinant of a diffeomorphic map is bounded below by zero but un-

bounded above. Thus, the statistical distribution of Jacobian values would be a better

fit to a symmetric distribution if we apply the logarithmic transform.

The logarithmic transform is also advantageous since it symmetrizes the Jacobian

distribution by considering halving or doubling of volume to be equally likely a priori,

22



i.e., assigning equal probabilities to expansions and shrinkages that are reciprocals of

each other. This is a reasonable requirement as the correspondence field should be the

same regardless of the order of the two images that are matched; if mappings in both

directions are considered, compressions or expansions are equally likely.

Thus, the logarithmic transform is crucial in analyzing Jacobian determinant val-

ues, and in this chapter we argue that all pertinent statistical analyses should be con-

ducted in this space. In this section, we provide rigorous mathematical analyses of the

Jacobian maps and use them to construct unbiased nonlinear image registration.

2.1.1 Global Preservation of Density Maps

Let Ω be an open and bounded domain inRn. Let us assume, without loss of generality,

that the volume of this domain is 1, i.e., |Ω| = 1. We study smooth deformations g that

map Ω bijectively onto itself. The inverse map of g is denoted as g−1 and the Jacobian

matrix of g as Dg. The Jacobian map can thus be defined as the determinant of the

Jacobian matrix

|Dg| := det(Dg) =

∣∣∣∣∣∣∣∣∣

∂1g1 · · · ∂ng1

... . . . ...

∂1gn · · · ∂ngn

∣∣∣∣∣∣∣∣∣
,

where g = (g1, . . . , gn).

In volumetric studies, the determinant of the Jacobian matrix (density) applied

to any given deformation g is an important quantity, encoding the voxelwise volume

change. As g (and g−1) is bijective and thus globally volume-preserving, we have the

following preservation of global density:

∫

Ω

|Dg(ξ)|dξ =

∫

Ω

dy = 1,
∫

Ω

|Dg−1(ξ)|dξ =

∫

Ω

dx = 1.
(2.1)
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Given global preservation of density maps, we can associate three probability density

functions to g, g−1, and the identity map (id):

pg(·) = |Dg(·)|,
pg−1(·) = |Dg−1(·)|,

pid(·) = 1.

(2.2)

Differentiating the identity g−1(g(x)) = x on both sides and setting y = g(x), we

obtain

Dg−1(y) ·Dg(x) = id, (2.3)

and hence,

|Dg−1(y)| · |Dg(x)| = 1. (2.4)

By associating deformations with their corresponding global density maps, we can

now apply information theory to quantify the magnitude of deformations. In our ap-

proach, we choose the symmetric Kullback-Leibler (SKL) distance:

SKL(pg, pid) = KL(pid, pg) + KL(pg, pid) (2.5)

to measure the magnitude of any deformation g. Here KL, the Kullback-Leibler diver-

gence between two probability density functions p1(x) and p2(x), is defined as

KL(p1(x), p2(x)) =

∫

Ω

p1(x) log
p1(x)

p2(x)
dx ≥ 0. (2.6)

To motivate this approach, notice that the first part of SKL measure is simply integrat-
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ing the log-density over the entire computational image domain:

∫

Ω

log |Dg(x)|dx = −
∫

Ω

log
1

|Dg(x)|dx = −
∫

Ω

pid log
pid

pg
dx

= −KL(pid, pg) ≤ 0.

(2.7)

To attach geometric meaning to the second term, we notice that the KL divergence has

skew-symmetry with respect to g and its inverse

KL(pid, pg−1) = −
∫

Ω

log |Dg−1(y)|dy =

∫

Ω

(
log |Dg(x)|)|Dg(x)|dx

=

∫

Ω

pg log
pg

pid
dx = KL(pg, pid),

(2.8)

where the second equality was obtained using a change of variables, y = g(x). Simi-

larly, we have

KL(pid, pg) = −
∫

Ω

log |Dg(x)|dx =

∫

Ω

(
log |Dg−1(y)|)|Dg−1(y)| dy

=

∫

Ω

pg−1 log
pg−1

pid
dy = KL(pg−1 , pid).

(2.9)

To further show the close relationship between the KL divergence and Jacobian maps,

we can also attach geometric meaning to the integral in equations (2.7), (2.8), (2.9).

For example,

KL(pid, pg−1) = −
∫

Ω

log |Dg−1(y)|dy =

∫

Ω

(
log |Dg(ξ)|)

ξ=g−1(y)dy. (2.10)

Here, the right hand side simply computes the integral of the pulled-back (by the in-

verse of g) Jacobian map of g.

To summarize, we conclude that symmetrizing KL divergence is equivalent to con-

sidering both the forward and backward mapping in image registration. As a result,

the skew-symmetry in (2.8) and (2.9) is closely related to the asymmetric nature of KL
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divergence. In [78], the authors proposed integrating with respect to the square root of

the Jacobian determinant, in order to remove this skew-symmetry. Interestingly, this

approach has an equivalent in information theory, namely, the Bhattacharyya distance

B, another well-known measure [6]

B(pid, pg) =

∫

Ω

|Dg(x)| 12 dx =

∫

Ω

|Dg−1(x)| 12 dx = B(pg−1 , pid). (2.11)

Here, the Bhattacharyya distance, though not defined in the logarithmic space, is sym-

metrical with respect to its two arguments, as well as inverse-consistent. To further

connect the KL divergence and Bhattacharyya distance, one can also consider the

geodesic linking of the two probability density functions: pdf(·, t) parameterized by t

pdf(x, t) =
pid(x)tpg(x)1−t

N
,

N =

∫
pid(x)tpg(x)1−tdx.

(2.12)

The Bhattacharyya distance corresponds to the arbitrary choice of t = 1
2
, while a

generalization of the above leads to the Chernoff distance in information theory [17,

25].

2.1.2 Realizing Unbiased Deformation in the Logarithmic Space

Before developing formulations to construct unbiased deformations in the logarithmic

space, we generalize equation (2.7) to the case of mapping regions of interest (ROI).

Assuming we have a priori knowledge that one ROI is mapped to another, we would

like to recover a mapping that is unbiased in the logarithmic space. Intuitively, without

further knowledge other than overall ROI matching, the resulting Jacobian map should

take a constant value inside the ROI.

This can be achieved using the proposed formulations. Indeed, given any defor-
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mation h mapping domain A in the source (with volume a) to domain B in the target

(with volume b), we have the following

1

a

∫

A

log |Dh(x)|dx ≤ log
b

a
, (2.13)

with equality obtained if and only if the Jacobian map of h takes a constant value (i.e.,

b/a). This generalization can be shown by observing that the logarithmic mapping is

a convex mapping:

n∑
i=1

log(xi) ≤ n log(x̄); x̄ =
1

n

n∑
i=1

xi. (2.14)

With the above generalization, one can see that, assuming the only constraint is an

ROI deformation from A to B, the unbiased mapping under the logarithmic operation

has an evenly distributed Jacobian field, which is also intuitively correct (as there is no

reason to assume non-uniformity of the Jacobian field inside the ROI).

2.1.3 Unbiased Nonlinear Image Registration in the Logarithmic Space via Sym-

metric KL Distance

Given equation (2.7) and its generalization, we propose to quantify the distance be-

tween any given deformation and the identity map by computing the symmetric KL

distance through their density functions. Due to the above mentioned skew-symmetry,
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this distance takes the following several equivalent forms:

SKL(pg, pid) = SKL(pg−1 , pid)

= KL(pg, pid) + KL(pg−1 , pid) = KL(pg, pid) + KL(pid, pg)

= KL(pid, pg−1) + KL(pid, pg) = KL(pid, pg−1) + KL(pg−1 , pid)

=

∫

Ω

(|Dg(x)| − 1
)
log |Dg(x)|dx

=

∫

Ω

(|Dg−1(y)| − 1
)
log |Dg−1(y)|dy.

(2.15)

Given an image matching function, we argue that one achieves unbiased deformation

by seeking, among all deformations minimizing this image matching functional, the

deformation with minimal distance as given in (2.15).

To see why minimizing equation (2.15) leads to unbiased deformation in the log-

arithmic space, we observe that the integrand is always non-negative, and only evalu-

ates to zero when g is volume-preserving everywhere (Jacobian of g is 1 everywhere).

Thus, by treating it as a cost, we recover zero-change by minimizing this cost when we

compare images differing only in noise. Also, this approach is unbiased for mapping

ROIs in the logarithmic space, due to the inequality in (2.13).

Hence, we propose to minimize the regularization functional based on the symmet-

ric KL distance between pg and pid

RSKL(u) =

∫

Ω

(|D(x− u(x))| − 1
)
log |D(x− u(x))|dx. (2.16)

Under this framework, constructing deformations can be viewed as quantifying the

symmetric KL distance between the identity map and the resulting deformation (or

the inverse deformation due to the equivalence in equation (2.15)). Moreover, this

framework embeds statistical analyses into the construction of deformations, penaliz-

ing deformations that skew the distribution of test statistics. A second interpretation
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of (2.15) is that it simply calculates the mean log-Jacobian for g and its inverse inside

the domain, thus computing the integral effect of the test statistics on the whole image

domain as well. To further link this approach to other branches of mathematics, opti-

mization problems involving the Jacobian operator are commonly encountered in grid

generation [66] and in continuum mechanics, where the Hencky tensor arises in mod-

eling very large deformations. However, we believe that the logarithmic transform has

not been formally introduced in the grid generation literature and may also be useful

there.

2.2 Implementation

In this section, we generalize the viscous fluid registration model described in Section

1.4.5 to compute unbiased deformations. We provide a new energy functional incorpo-

rating the symmetric Kullback-Leibler distance from Section 2.1, give corresponding

force field equations, and describe an algorithm for the new unbiased viscous fluid

registration model (sometimes referred to as the Unbiased model).

2.2.1 Energy Minimization

We propose to minimize the following energy:

E(I1, I2, u) = F (I1, I2, u) + λRSKL(u), (2.17)

where F is the similarity measure, RSKL is the proposed regularization term given by

equation (2.16), and λ > 0 is the Lagrange multiplier. The similarity measure F can

assume the L2-norm distance between the target image I1(x) and the deformed source
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I2(x− u):

FL2(I1, I2, u) =
1

2

∣∣∣∣I2(x− u)− I1(x)
∣∣∣∣

2

=
1

2

∫

Ω

(
I2(x− u)− I1(x)

)2
dx,

(2.18)

or a negative of the mutual information between I1(x) and I2(x− u):

FMI(I1, I2, u) = −MII1,I2
u

= −
∫

R2

pI1,I2
u (i1, i2) log

pI1,I2
u (i1, i2)

pI1(i1)p
I2
u (i2)

di1di2,
(2.19)

which was defined in Section 1.3.3. The force field vector f for energy in (2.17) will

be given as

f(x, u(x, t)) = −∂uF (I1, I2, u)− λ ∂uRSKL(u). (2.20)

The L2-based similarity measure gradient ∂uFL2(I1, I2, u) is given in Section 1.3.2

and mutual information based similarity measure gradient ∂uFMI(I1, I2, u) is given in

Section 1.3.3 and is derived in Section 2.4. Gradient of regularization term RSKL(u),

namely ∂uRSKL(u), is derived in Section 2.2.2 for two-dimensional and three-dimensional

cases.

Given the velocity field v, the following partial differential equation can be solved

to obtain the displacement field u:

∂u
∂t

= v− v · ∇u. (2.21)

The instantaneous velocity as in [28] is obtained by convolving f with Gaussian kernel

Gσ of variance σ2:

v = Gσ ∗ f(x, u). (2.22)
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This equation can be solved efficiently using the Fast Fourier transform (FFT).

Remark: In Chapter 4, we will investigate a different regularization term R = RKL,

based on the Kullback-Leibler divergence

RKL(g) = KL(pid, pg),

or

RKL(u) =

∫

Ω

− log |Dg(x)|dx.

In this case, the total energy for minimization will be given as

E(I1, I2, u) = F (I1, I2, u) + λRKL(u), (2.23)

and the corresponding force field vector f is

f(x, u(x, t)) = −∂uF (I1, I2, u)− λ ∂uRKL(u). (2.24)

2.2.2 The Energy Gradients for the Unbiased Regularization

2.2.2.1 Derivations of Gradient of R(u) in Two Spatial Dimensions

In this section, we derive explicit expressions for ∂uR(u) in (2.17) and (2.23), with

R = RSKL and R = RKL, when Ω ⊂ R2. Let us denote the components of vector

x to be (x1, x2) and the components of vector u be (u1, u2). We also denote ∂jui =

∂ui/∂xj .

To simplify the notation, we let J = |Dg| = |D(x − u)|. Also, denote L(J) =

LKL(J) = − log J , when R = RKL, and L(J) = LSKL(J) = (J − 1) log J , when

R = RSKL. Note that J : M2×2(R) → R, whereM2×2(R) is the set of 2×2 matrices
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with real elements, and L : R → R. Jacobian J is a function of ∂jui, for i, j = 1, 2,

and is given by

J
(
∂1u1, ∂2u1, ∂1u2, ∂2u2

)
=

∣∣∣∣∣∣
1− ∂1u1 −∂2u1

−∂1u2 1− ∂2u2

∣∣∣∣∣∣
= (1− ∂1u1)(1− ∂2u2)− ∂2u1 ∂1u2.

We would like to minimize the functional

R(u) =

∫

Ω

L
(
∂1u1, ∂2u1, ∂1u2, ∂2u2

)
dx.

We derive the first Euler-Lagrange equation. For some η ∈ C1
c (Ω), we have

dR

dε
(u1 + εη, u2)

∣∣
ε=0

=

∫

Ω

[
dL

dJ

∂J

∂(∂1u1)
∂x1η +

dL

dJ

∂J

∂(∂2u1)
∂x2η

]
dx

= −
∫

Ω

[
∂

∂x1

(
dL

dJ

∂J

∂(∂1u1)

)
+

∂

∂x2

(
dL

dJ

∂J

∂(∂2u1)

)]
η dx.

With notation L′ = dL/dJ , the first Euler-Lagrange equation becomes:

− ∂

∂x1

(
L′

∂J

∂(∂1u1)

)
− ∂

∂x2

(
L′

∂J

∂(∂2u1)

)
= 0.

Thus, minimizing the energy R(u) with respect to u1, for fixed u2, yields the first

component of ∂uR(u):

∂u1R(u) =
∂

∂x1

((
1− ∂2u2

)
L′

)
+

∂

∂x2

(
∂1u2 L′

)
. (2.25)

Note that L′KL(J) = −1/J and L′SKL(J) = 1 + log J − 1/J .

Similarly, the Euler-Lagrange equation for the second component of ∂uR(u) can be
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found to be:

∂u2R(u) =
∂

∂x1

(
∂2u1 L′

)
+

∂

∂x2

((
1− ∂1u1

)
L′

)
. (2.26)

2.2.2.2 Derivations of Gradient of R(u) in Three Spatial Dimensions

In this section, we derive explicit expression for ∂uR(u) in (2.17) and (2.23), with

R = RSKL and R = RKL, when Ω ⊂ R3. Let us denote the components of vector x

to be (x1, x2, x3) and the components of vector u be (u1, u2, u3). Here, we will use the

notation from Section 2.2.2.1.

Jacobian J is a function of ∂jui, for i, j = 1, 2, 3, and is given by

J
(
∂1u1, ∂2u1, ∂3u1, ∂1u2, ∂2u2, ∂3u2, ∂1u3, ∂2u3, ∂3u3

)

=




1− ∂1u1 −∂2u1 −∂3u1

−∂1u2 1− ∂2u2 −∂3u2

−∂1u3 −∂2u3 1− ∂3u3




= (1− ∂1u1)(1− ∂2u2)(1− ∂3u3)− ∂1u2 ∂2u3 ∂3u1 − ∂2u1 ∂3u2 ∂1u3

−∂3u1(1− ∂2u2)∂1u3 − ∂2u1 ∂1u2(1− ∂3u3)− ∂3u2 ∂2u3(1− ∂1u1).

We would like to minimize the functional

R(u) =

∫

Ω

L
(
J(∂jui)

)
dx, 1 ≤ i, j ≤ 3.
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For some η, we have

dR

dε
(u1 + εη, u2, u3)

∣∣
ε=0

=

∫

Ω

[
dL

dJ

∂J

∂(∂1u1)
∂x1η +

dL

dJ

∂J

∂(∂2u1)
∂x2η +

dL

dJ

∂J

∂(∂3u1)
∂x3η

]
dx

= −
∫

Ω

[
∂

∂x1

(
dL

dJ

∂J

∂(∂1u1)

)
+

∂

∂x2

(
dL

dJ

∂J

∂(∂2u1)

)
+

∂

∂x3

(
dL

dJ

∂J

∂(∂3u1)

)]
ηdx.

Hence, the first Euler-Lagrange equation becomes:

− ∂

∂x1

(
L′

∂J

∂(∂1u1)

)
− ∂

∂x2

(
L′

∂J

∂(∂2u1)

)
− ∂

∂x3

(
L′

∂J

∂(∂3u1)

)
= 0.

Thus, minimizing the energy R(u) with respect to u1, for fixed u2 and u3, yields the

first component of ∂uR(u):

∂u1R(u) =
∂

∂x1

((
(1− ∂2u2)(1− ∂3u3)− ∂3u2 ∂2u3

)
L′

)

+
∂

∂x2

((
∂3u2 ∂1u3 + ∂1u2(1− ∂3u3)

)
L′

)

+
∂

∂x3

((
∂1u2 ∂2u3 + (1− ∂2u2)∂1u3

)
L′

)
.

(2.27)

Similarly, the other two Euler-Lagrange equations can be found to be:

∂u2R(u) =
∂

∂x1

((
∂2u3 ∂3u1 + ∂2u1(1− ∂3u3)

)
L′

)

+
∂

∂x2

((
(1− ∂1u1)(1− ∂3u3)− ∂3u1 ∂1u3

)
L′

)

+
∂

∂x3

((
∂2u1 ∂1u3 + ∂2u3(1− ∂1u1)

)
L′

)
,

(2.28)
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and

∂u3R(u) =
∂

∂x1

((
∂2u1 ∂3u2 + ∂3u1(1− ∂2u2)

)
L′

)

+
∂

∂x2

((
∂1u2 ∂3u1 + ∂3u2(1− ∂1u1)

)
L′

)

+
∂

∂x3

((
(1− ∂1u1)(1− ∂2u2)− ∂2u1 ∂1u2

)
L′

)
.

(2.29)

2.2.3 Numerical Discretization

2.2.3.1 Discretization in 2D

To discretize equations (2.25) and (2.26), we use finite difference schemes. Let 4x1,

4x2 be the spatial steps, 4t be the time step, and (x1i, x2j) = (i4x1, j4x2) be

the grid points, for 1 ≤ i ≤ M , 1 ≤ j ≤ N . For a function ϕ : Ω → R, let

ϕn
i,j = ϕ(n4t, i4x1, j4x2). We define the difference operators based on uniformly-

spaced grid as

Dx1ϕn
i,j =

ϕn
i+1,j − ϕn

i−1,j

24x1

, Dx2ϕn
i,j =

ϕn
i,j+1 − ϕn

i,j−1

24x2

.

Below, we will use the following notations when it is obvious that the grid point at

(i4x1, j4x2) is under consideration

ϕn := ϕn
i,j, Dxlϕn := Dxlϕn

i,j, l = 1, 2.

Hence, in the two-dimensional case, the force field f = (f1, f2) from (2.20) and (2.24),

at each grid point (i, j), at n-th time step, is approximated by

f1 ≈ −[
∂u1F (un)

]− λ
[
Dx1

((
1−Dx2un

2

)
L′

)
+ Dx2

(
Dx1un

2 L′
)]

,

f2 ≈ −[
∂u2F (un)

]− λ
[
Dx1

(
Dx2un

1 L′
)

+ Dx2
((

1−Dx1un
1

)
L′

)]
,
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where [∂ul
F (un)], l = 1, 2, is a discretization of a similarity-based gradient.

2.2.3.2 Discretization in 3D

To discretize equations (2.27), (2.28), and (2.29), we use finite difference schemes.

Let 4x1, 4x2, 4x3 be the spatial steps, 4t be the time step, and (x1i, x2j, x3k) =

(i4x1, j4x2, k4x3) be the grid points, for 1 ≤ i ≤ M , 1 ≤ j ≤ N , 1 ≤ k ≤ P .

For a function ϕ : Ω → R, let ϕn
i,j,k = ϕ(n4t, i4x1, j4x2, k4x3). We define the

difference operators based on uniformly-spaced grid as

Dx1ϕn
i,j,k =

ϕn
i+1,j,k − ϕn

i−1,j,k

24x1

,

Dx2ϕn
i,j,k =

ϕn
i,j+1,k − ϕn

i,j−1,k

24x2

,

Dx3ϕn
i,j,k =

ϕn
i,j,k+1 − ϕn

i,j,k−1

24x3

,

Dx1x1ϕn
i,j,k =

ϕn
i+1,j,k − 2ϕn

i,j,k + ϕn
i−1,j,k

4x2
1

,

Dx2x2ϕn
i,j,k =

ϕn
i,j+1,k − 2ϕn

i,j,k + ϕn
i,j−1,k

4x2
2

,

Dx3x3ϕn
i,j,k =

ϕn
i,j,k+1 − 2ϕn

i,j,k + ϕn
i,j,k−1

4x2
3

.

Hence, in the three-dimensional case, the force field f = (f1, f2, f3) from (2.20) and

(2.24), at each grid point (i, j, k), at n-th time step, is approximated by

f1 ≈ −[
∂u1F (un)

] − λ
[
Dx1

((
(1−Dx2un

2 )(1−Dx3un
3 )−Dx3un

2 Dx2un
3

)
L′

)

+Dx2

((
Dx3un

2 Dx1un
3 + Dx1un

2 (1−Dx3un
3 )

)
L′

)

+Dx3

((
Dx1un

2 Dx2un
3 + (1−Dx2un

2 )Dx1un
3

)
L′

)]
,
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f2 ≈ −[
∂u2F (un)

] − λ
[
Dx1

((
Dx2un

3 Dx3un
1 + Dx2un

1 (1−Dx3un
3 )

)
L′

)

+Dx2

((
(1−Dx1un

1 )(1−Dx3un
3 )−Dx3un

1 Dx1un
3

)
L′

)

+Dx3

((
Dx2un

1 Dx1un
3 + Dx2un

3 (1−Dx1un
1 )

)
L′

)]
,

f3 ≈ −[
∂u3F (un)

] − λ
[
Dx1

((
Dx2un

1 Dx3un
2 + Dx3un

1 (1−Dx2un
2 )

)
L′

)

+Dx2

((
Dx1un

2 Dx3un
1 + Dx3un

2 (1−Dx1un
1 )

)
L′

)

+Dx3

((
(1−Dx1un

1 )(1−Dx2un
2 )−Dx2un

1 Dx1un
2

)
L′

)]
,

where [∂ul
F (un)], l = 1, 2, 3, is a discretization of a similarity-based gradient.

2.2.4 Algorithm

In this section, we describe an algorithm for the unbiased fluid registration method,

and in the next section, we compare the results generated using this algorithm to those

obtained using the viscous fluid registration model. To obtain a fair comparison be-

tween the two methods, we do not employ re-gridding. Re-gridding is a method to

relax the energy computed from the linear elasticity prior after a certain number of

iterations, which allows large-deformation mappings to be recovered without any ab-

solute penalty on the displacement field (other than via the smoothness constraint on

the velocity field which is integrated to give the displacement) [21]. It is essentially

a memory-less procedure, as how images are matched after each re-gridding is in-

dependent of the final deformation before the re-gridding, rendering the comparison

of final Jacobian fields and cost functionals problematic. Moreover, we consider the

strategy of re-gridding, through the relaxation of deformation fields over time, to be

less rigorous from a theoretical standpoint, as the imposition of a regularizer can be

used to secure distributional properties in the resulting statistics (e.g., symmetric log-

Jacobian). For that reason, for the results presented in this chapter, velocity vector v

was obtained from equation (2.22) rather than by solving the Navier-Stokes equation
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(a) I1 (b) I2

(c) Fluid (d) Unbiased

Figure 2.1: Disk-to-Ellipse example. (a) image I1; (b) image I2; (c) image I2 is de-
formed to image I1 using the viscous fluid model; (d) image I2 is deformed to image
I1 using the Unbiased model. Yellow, blue and red contours represent the boundaries
of objects in I1, I2, and deformed I2, respectively. Note that for both methods, yellow
contour is essentially invisible due to a very close match. However, the resulting grid
of the Unbiased method is visually more regular.

for a compressible viscous fluid (1.34), for both the viscous fluid and the Unbiased

fluid registration models. From our experience, solving equation (1.34) makes it nec-

essary to employ re-gridding in order to achieve close matching.

We are now ready to give an algorithm for the proposed unbiased fluid registration
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(a) Fluid (b) Unbiased

Figure 2.2: Disk-to-Ellipse example. Jacobian map of the deformation using (a) the
viscous fluid model and (b) Unbiased model.

method.

Algorithm 1 Unbiased Nonlinear Fluid Registration
1: Initialize t = 0 and u(x, 0) = 0.
2: Given u(x, t), calculate the force field f(x, u(x, t)) using equation (2.20).

Numerical discretization of equation (2.20) is described in Section 2.2.3 for two-
dimensional and three-dimensional cases.
Note that the viscous fluid model, described in Section 1.4.5, obtains the force
field using equation (1.8).

3: Solve (2.22) for the instantaneous velocity v(x, t).
Steps 4-6 describe the procedure for solving equation (2.21), advancing u(x, t) in
time.

4: Calculate the perturbation of the displacement field
R(x) = v(x, t)− v(x, t) · ∇u(x, t).

5: Time step 4t is calculated adaptively so that 4t · max(||R||2) = δu, where δu
is the maximal displacement allowed in one iteration. Results in this work are
obtained with δu = 0.1.

6: Advance equation (2.21), i.e. ∂u(x, t)/∂t = R(x), in time, with time step from
step 4, solving for u(x, t).

7: If the cost functional in (2.17) decreases by sufficiently small amount compared to
the previous iteration, then stop.

8: Let t := t +4t and go to step 2.
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Figure 2.3: Disk-to-Ellipse example. Histograms of Jacobian values of the deforma-
tions inside the ellipse for the viscous fluid model and Unbiased model.

2.3 Results and Discussion

In this section, we tested the proposed Unbiased nonlinear registration model (referred

to as the Unbiased model) using pairs of synthetic images, binary corpus callosum im-

ages, two-dimensional serial MRI images, as well as a set of three-dimensional serial

MRI brain images. The results obtained using the Unbiased model were compared

to those computed using the viscous fluid registration method. In all examples, un-

less otherwise specified, L2-based similarity measure (2.18) was employed in equation

(2.17).

2.3.1 Disk-to-Ellipse Example

In order to gain more insight into the effect of the regularization term in (2.16) used

in Unbiased registration, we first consider matching two binary synthetic images. In

Figures 2.1 through 2.4, we show the results of deforming a disk into an ellipse (both

128 by 128; λ = 500 in equation (2.20)). As seen in Figure 2.1(c,d), both the fluid

registration (Christensen’s) model and the Unbiased model generated a close match
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(a) (b)

Figure 2.4: Disk-to-Ellipse example. (a) Standard deviation of Jacobian values in-
side the ellipse per iteration. (b) Symmetric KL distance. For the viscous fluid model
(dashed blue), both standard deviation and symmetric KL distance increase while for
Unbiased model (solid red), both standard deviation and symmetric KL distance stabi-
lize.

between the deformed source and target images. Here, optimal matching was consid-

ered achieved once the overall cost functional stopped decreasing. However, as seen in

Figures 2.2 and 2.3, the Unbiased method more evenly distributes deformation inside

and outside an ellipse (resulting from the convex property of the logarithmic mapping

in inequality (2.13)). Note the vertical stretching of the grid in the center of the ellipse

for the proposed method, which is a consequence of uniform distribution of Jacobian

values. In the case of a viscous fluid deformation, however, grid does not uniformly

adjust to object’s volume change; this is especially noticeable in the center of the el-

lipse. Figure 2.4(a) plots the standard deviation of the Jacobian field inside the ellipse

as a function of iteration number. For the viscous fluid model, the standard deviation

inside the ellipse increased with the number of iterations, while the Unbiased method

yielded an optimized standard deviation as more iterations were computed. The pro-

posed symmetric KL distance also increased for the viscous fluid method, while it was

minimized for the Unbiased method as shown in Figure 2.4(b).
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(a) I1 (b) I2

(c) I2 ◦ g, Fluid (d) I2 ◦ g, Unbiased

Figure 2.5: Corpus callosum example. (a) image I1; (b) image I2; (c) image I2 is
deformed to image I1 using the viscous fluid model; (d) image I2 is deformed to image
I1 using the Unbiased model.

2.3.2 Corpus Callosum Example

In this example, we consider matching two 2D binary images (both 289 by 289,

λ = 1000 in equation (2.20)), representing midline corpus callosum contours of two

control subjects (Figures 2.5 through 2.9). As seen in Figure 2.5, both the fluid regis-

tration model and the Unbiased model generated a close match between the deformed

source and target images. However, Figures 2.6 and 2.7 show grid lines merge and

self-cross for the viscous fluid model, which is a consequence of negative Jacobian
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Fluid Unbiased

Figure 2.6: Corpus callosum example. Results obtained with the viscous fluid model
and the Unbiased model. Yellow, blue and red contours represent the boundaries of
corpus callosum in I1, I2, and deformed I2, respectively. For both methods, yellow
contour is essentially invisible due to a very close match. However, the resulting grid
of the Unbiased method is visually more regular. Also, note the grid lines merging and
self-crossing for the viscous fluid model, signifying a topology change.

values at certain places, indicating topology change. The Unbiased method, on the

other hand, more evenly distributes deformation inside and outside the corpus callo-

sum. The histograms of the Jacobian field inside the corpus callosum are shown in

Figure 2.8 (notice the histogram for the Unbiased method is noticeably sharper). Fig-

ure 2.9(a) plots the standard deviation of the Jacobian field inside the corpus callosum

as a function of iteration number. For the viscous fluid model, the standard devia-

tion increased with the number of iterations, since the grid became less regular. On

the other hand, the Unbiased method yielded an optimized standard deviation as more

iterations were computed. The proposed symmetric KL distance also increased for

viscous fluid method, while it was minimized for the Unbiased method as shown in

Figure 2.9(b).
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Fluid Unbiased

Figure 2.7: Corpus callosum example. Jacobian map of the deformation is superim-
posed with the deformed image for the viscous fluid model and the Unbiased model.

2.3.3 2D Serial MRI Example

In Figures 2.10 through 2.15, we show the results of matching a pair of 2D slices from a

set of serial MRI images (each of size 226 by 256; λ = 400 in equation (2.20)), where

visually significant ventricle enlargement is present. Both the viscous fluid method

and the Unbiased model generated a close match between the deformed source and

target images (Figure 2.10(a-d)). Here, there is no reason not to evenly distribute

the Jacobian field inside the ventricles, as realized using the Unbiased method. In

contrast, the viscous fluid method generated a density map with extreme values along

the ventricular boundary. Indeed, given the overall longitudinal ventricular dilatation,

we argue that the corresponding density change map should be constant inside the

ventricle. As seen in Figure 2.15, both the standard deviation inside the ventricle

and the symmetric KL distance increased for the viscous fluid method, while these

quantities stabilized for the Unbiased method.
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Figure 2.8: Corpus callosum example. Histograms of Jacobian values of the deforma-
tions inside corpus callosum for the viscous fluid model and the Unbiased model.

2.3.4 3D Serial MRI Example

In this numerical example (Figures 2.16, 2.17, 2.18, 2.19), we tested the Unbiased

model using a set of three 3D Serial MRI volumes obtained from a patient with right-

side semantic dementia (temporal atrophy). In this example, the initial scan was ob-

tained in 02/1993, with the two follow-up scans, in 02/1996 and 08/1999, referred

to as time 1, time 2, and time 3, respectively (each volume was downsampled to

112x128x128). A fully three-dimensional computation was employed, with λ = 500

in equation (2.20). In Figure 2.18(a), the 3D Jacobian map generated using the viscous

fluid method is visually very noisy with extreme values along the boundaries of the

brain as well as in the background, masking the real change over the right temporal

area. In contrast, as shown in Figure 2.18(b), right temporal atrophy (RT) and ven-

tricular enlargement (V) are easily visualized in the Jacobian map generated using the

Unbiased method, demonstrating its advantages when recovering voxel-wise maps of

local tissue change.
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Figure 2.9: Corpus callosum example. (a) Standard deviation of Jacobian values inside
corpus callosum per iteration. (b) Symmetric KL distance. For the viscous fluid model
(dashed blue), both standard deviation and symmetric KL distance increase while for
the Unbiased model (solid red), both standard deviation and symmetric KL distance
decrease and stabilize.

2.3.5 Multimodal Image Matching Example

In this example, we employ mutual information (2.19) as a similarity measure in equa-

tion (2.17). In order to observe the robustness of mutual information matching and

also to gain more insight into the effect of the Unbiased regularization, in Figures 2.20

and 2.21 we consider matching pairs of 2D binary slices from a set of serial MRI

images (each of size 226 by 256), where visually significant ventricle enlargement

is present. In both figures, source and target images are of different contrast, mak-

ing the sum of squared intensity differences inapplicable as a choice of a data fidelity

term. Both viscous fluid registration and Unbiased registration generated a close match

between the deformed image and the target image (Figures 2.20(c,d) and 2.21(c,d)).

Figures 2.20(e,f) and 2.21(e,f) show Jacobian maps of deformations. Here, there is no

reason not to evenly distribute the Jacobian field inside the ventricles, as realized us-

ing the Unbiased method. In contrast, the viscous fluid method generated noisy mean
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(a) I2 (b) I1

(c) I2 ◦ g, Fluid (d) I2 ◦ g, Unbiased

Figure 2.10: Serial MRI example. (a) image I2; (b) image I1; (c) image I2 is deformed
to image I1 using the viscous fluid model; (d) image I2 is deformed to image I1 using
the Unbiased model.

Jacobian maps with extreme values along the ventricular boundary. Indeed, given

the overall longitudinal ventricular dilatation, we argue that the corresponding density

change map should be constant inside the ventricle.
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Fluid Unbiased

Figure 2.11: Serial MRI example. Results obtained with the viscous fluid model and
the Unbiased model. The resulting grid of the Unbiased method is visually more reg-
ular.

2.4 Appendix: Derivation of equations for maximization of Mu-

tual Information

In this Appendix, we derive the gradient ∂uFMI(u) of the mutual information matching

functional in (2.19), adopting the approach of [16, 47], modeling the joint intensity

distribution pI1,I2
u+εη(i1, i2) of deformed image I2(x−u) and image I1(x) as a continuous

function using the Parzen windowing method. We refer the reader to Section 1.3.3 for

the notations used in this Appendix.

We compute the first variation of FMI(u) by perturbing u in the following way

dFMI(u + εη)

dε
= − d

dε

∫

R2

pI1,I2
u+εη(i1, i2) log

pI1,I2
u+εη(i1, i2)

pI1(i1)p
I2
u+εη(i2)

di1di2. (2.30)
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Fluid Unbiased

Figure 2.12: Serial MRI example. Results obtained with the viscous fluid model and
the Unbiased model. The generated grids are superimposed with the deformed images.
Yellow, blue, and red contours represent the boundaries of ventricles in I1, I2, and
deformed I2, respectively. Note that for both methods, yellow contour is essentially
invisible due to a very close match.

Thus, we have

dFMI(u + εη)

dε
= −

∫

R2

(
1 + log

pI1,I2
u+εη(i1, i2)

pI1(i1)p
I2
u+εη(i2)

)
dpI1,I2

u+εη(i1, i2)

dε
di1di2

+

∫

R2

pI1,I2
u+εη(i1, i2)

pI2
u+εη(i2)

dpI2
u+εη(i2)

dε
di1di2.

(2.31)

However, note that ∫

R
pI1,I2

u+εη(i1, i2) di1 = pI2
u+εη(i2) (2.32)

and ∫

R
pI2

u+εη(i2) di2 = 1. (2.33)
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Fluid Unbiased

Figure 2.13: Serial MRI example. Jacobian map of the deformation is superimposed
with the deformed image for the viscous fluid model and the Unbiased model.

Hence, the second term on the right hand side of the equality in (2.31) reduces to

∫

R2

pI1,I2
u+εη(i1, i2)

pI2
u+εη(i2)

dpI2
u+εη(i2)

dε
di1di2

=

∫

R

dpI2
u+εη(i2)

dε

1

pI2
u+εη(i2)

( ∫

R
pI1,I2

u+εη(i1, i2) di1

)
di2

=

∫

R

dpI2
u+εη(i2)

dε

1

pI2
u+εη(i2)

pI2
u+εη(i2) di2

=
d

dε

∫

R
pI2

u+εη(i2) di2 = 0.

(2.34)

Equation (2.30) becomes

dFMI(u + εη)

dε
= −

∫

R2

[(
1 + log

pI1,I2
u+εη(i1, i2)

pI1(i1)p
I2
u+εη(i2)

)
dpI1,I2

u+εη(i1, i2)

dε

]
di1di2. (2.35)
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Figure 2.14: Serial MRI example. Histograms of Jacobian values of the deformations
inside ventricles for the viscous fluid model and the Unbiased model.

The joint intensity distribution estimated from I2(x− u) and I1(x) is given by

pI1,I2
u+εη(i1, i2) =

1

|Ω|
∫

Ω

ψ
(
I1

(
x
)− i1, I2

(
x− u(x)− εη(x)

)− i2

)
dx, (2.36)

where |Ω| is a volume of Ω and ψ(ξ1, ξ2) is a two-dimensional Parzen windowing

kernel.

The derivative of (2.36) can also be computed:

dpI1,I2
u+εη(i1, i2)

dε
= − 1

|Ω|
∫

Ω

∂ψ

∂ξ2

(
I1

(
x
)− i1, I2

(
x− u(x)− εη(x)

)− i2

)

×∇I2

(
x− u(x)− εη(x)

) · η(x) dx.

(2.37)

Let us denote

Qu(i1, i2) = 1 + log
pI1,I2

u (i1, i2)

pI1(i1)p
I2
u (i2)

. (2.38)

51



0 100 200 300
0

0.05

0.1

0.15

0.2

0.25

Iteration number

S
ta

nd
ar

d 
de

vi
at

io
n

 The standard deviation of Jacobian values

 

 

viscous fluid method
proposed model

0 100 200 300
0

0.01

0.02

0.03

0.04

Iteration number

S
ym

m
et

ric
 K

L 
di

st
an

ce

 The symmetric KL distance

 

 

viscous fluid method
proposed model

(a) (b)

Figure 2.15: Serial MRI example. (a) Standard deviation of Jacobian values inside
the ventricle per iteration. (b) Symmetric KL distance. For the viscous fluid model
(dashed blue), both standard deviation and symmetric KL distance increase while for
the Unbiased model (solid red), both standard deviation and symmetric KL distance
stabilize.

If we let ε = 0, equation (2.35) gives the first variation of FMI(u):

dFMI(u + εη)

dε

∣∣∣∣
ε=0

=

∫

R2

Qu(i1, i2)
1

|Ω|
∫

Ω

∂ψ

∂ξ2

(
I1(x)− i1, I2(x− u(x))− i2

)

×∇I2(x− u(x)) · η(x) dx di1di2

=
1

|Ω|
∫

Ω

[
Qu ∗ ∂ψ

∂ξ2

](
I1(x), I2(x− u(x))

)

×∇I2(x− u(x)) · η(x) dx.

(2.39)

Here, ∗ denotes a convolution. Thus,

∂uFMI(u) =
1

|Ω|
[
Qu ∗ ∂ψ

∂ξ2

]
(I1(x), I2(x− u))∇I2(x− u). (2.40)
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2.5 Conclusion

In this chapter, we applied information theory to quantify the magnitude of defor-

mations. We examined the statistical distributions of Jacobian maps in the logarith-

mic space, and developed the unbiased framework for constructing image registration

methods. The proposed framework yields both theoretically and intuitively correct de-

formation maps, and is compatible with large-deformation models. To demonstrate the

power of the proposed framework, we generalized the well known large-deformation

viscous fluid registration model to compute unbiased deformations. We showed that

unbiased fluid registration method generates more accurate maps compared to those

generated with the viscous fluid registration model.
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(a) I2 (time 1) (b) I1 (time 3) (c) I2 ◦ g, Fluid (d) I2 ◦ g, Unbiased

Figure 2.16: 3D Serial MRI example. Rows depict slices in axial (rows 1 and 2),
sagittal (row 3), and coronal (row 4) planes. Columns depict (a) I2 (time 1); (b) I1

(time 3); (c) I2 deformed using the viscous fluid model; (d) I2 deformed using the
Unbiased model. The middle time point (time 2) is not shown.
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(a) I2 (b) I1

(c) I2 ◦ g, Fluid (d) I2 ◦ g, Unbiased

(e) |Dg|, Fluid (f) |Dg|, Unbiased

Figure 2.17: 3D Serial MRI example. Volume cuts of (a) I2 (time 1), (b) I1 (time 3),
(c) I2 deformed using the viscous fluid model, and (d) I2 deformed using the Unbiased
model. The middle time point (time 2) is not shown. Volume cuts of Jacobian maps
of deformations (time 1 to time 3) for (e) the viscous fluid model and (f) the Unbiased
model. Jacobian maps of deformations from time 2 to time 3 are not shown.
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(a) viscous fluid model (b) Unbiased model
time 2 to time 3 time 1 to time 3 time 2 to time 3 time 1 to time 3

Figure 2.18: 3D Serial MRI example. Jacobian maps are superimposed with the de-
formed volumes for the viscous fluid model (columns 1 and 2) and the Unbiased model
(columns 3 and 4). Smaller deformations (time 2 to time 3) and larger deformations
(time 1 to time 3) are shown. Rows depict slices in axial (rows 1 and 2), sagittal
(row 3), and coronal (row 4) planes. Right temporal atrophy (RT) and ventricular en-
largement (V) are easily visualized in the Jacobian map generated using the Unbiased
method, while the viscous fluid method generated a very noisy map.
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Figure 2.19: 3D Serial MRI example. Symmetric KL distance is shown for the viscous
fluid and Unbiased models for a larger deformation (time 1 to time 3) and a smaller
deformation (time 2 to time 3). Note that this measure is proportional to the magnitude
of deformation. For the proposed method, the symmetric KL distance stabilizes.
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(a) I1 (c) I2 ◦ g, Fluid (e) |Dg|, Fluid

(b) I2 (d) I2 ◦ g, Unbiased (f) |Dg|, Unbiased

Figure 2.20: Serial MRI example. (a) image I1; (b) image I2; (c) image I2 is deformed
to image I1 using fluid registration coupled with mutual information; (d) image I2 is
deformed to image I1 using the Unbiased registration coupled with mutual informa-
tion. Jacobian map of the deformation is superimposed with the deformed image for
(e) the viscous fluid model and (f) the Unbiased model.
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(a) I1 (c) I2 ◦ g, Fluid (e) |Dg|, Fluid

(b) I2 (d) I2 ◦ g, Unbiased (f) |Dg|, Unbiased

Figure 2.21: Serial MRI example. (a) image I1; (b) image I2; (c) image I2 is deformed
to image I1 using fluid registration coupled with mutual information; (d) image I2 is
deformed to image I1 using the Unbiased registration coupled with mutual informa-
tion. Jacobian map of the deformation is superimposed with the deformed image for
(e) the viscous fluid model and (f) the Unbiased model.
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CHAPTER 3

Unbiased Registration via Nonlinear Elastic

Regularization

In this chapter, we propose a new large-deformation nonlinear image registration model,

based on nonlinear elastic regularization and unbiased registration. In contrast to the

proposed unbiased fluid registration method, which was described in Chapter 2, the

new model is written in a unified variational form. Both the nonlinear elastic and the

unbiased functionals are simplified introducing, in the modeling, a second unknown

that mimics the Jacobian matrix of the displacement vector field, removing the non-

linearity in the derivatives of the Euler-Lagrange equations. The energy functional is

minimized using gradient descent and is easy to implement. The proposed numerical

scheme is less sensitive to numerical constraints such as CFL condition. As a result,

the new unbiased nonlinear elasticity model is computationally efficient. In this chap-

ter, we compare the results obtained with the new unbiased nonlinear elasticity model

to those obtained with unbiased fluid registration.

3.1 Introduction

Given two images, the source and target, the goal of image registration is to find an

optimal diffeomorphic spatial transformation such that the deformed source image is

aligned with the target image. In the case of non-parametric registration methods, the
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problem can be formulated as a functional minimization problem whose unknown is

the displacement vector field u. Usually, the devised functional consists of a distance

measure (intensity-based, correlation-based, mutual-information based [73] or metric-

structure-comparison based [67]) and a regularizer that guarantees smoothness of the

displacement vector field. Generally, physical arguments motivate the selection of the

regularizer. Among those currently used is the linear elasticity smoother first intro-

duced by Broit [8]. The objects to be registered are considered to be observations

of the same elastic body at two different times, before and after being subjected to a

deformation as mentioned in [73]. The smoother, in this case, is the linearized elas-

tic potential of the displacement vector field. However, this model is unsuitable for

problems involving large-magnitude deformations.

In [21], the authors proposed a viscous fluid model to overcome this issue (see Sec-

tion 1.4.5). The deforming image is considered to be embedded in viscous fluid whose

motion is governed by Navier-Stokes equations for conservation of momentum. One

drawback of the viscous fluid method is the computational cost. Numerically, the

image-derived force field f(x, u(x, t)) is first computed at time t. Fixing the force field

f, linear equation (1.34) is solved for v(x, t) numerically using the successive over-

relaxation (SOR) scheme. Then, an explicit Euler scheme is used to advance u in time.

Recent works [10, 84, 85] applied Riemannian nonlinear elasticity priors to defor-

mation velocity fields. These alternating frameworks, however, are time-consuming,

which motivates the search for faster implementations (see for instance [7] or [28] in

which the instantaneous velocity v is obtained by convolving f with a Gaussian kernel).

In this work, which is inspired from related works on segmentation [58] and on

two-dimensional slice registration [64], we propose a novel large-deformation image

registration approach. In contrast to the unbiased fluid registration model of Chapter

2, the proposed model is derived from a variational problem which is not in the form
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of a two-step algorithm. For that purpose, a nonlinear elasticity regularization is intro-

duced. As will be seen later, the computation of the Euler-Lagrange equations in this

case is cumbersome. We circumvent this issue by introducing a second unknown, a

matrix variable V , which approximates the Jacobian matrix of u. The nonlinear elastic

regularizer is now applied to V . The Euler-Lagrange equations are straightforwardly

derived and a gradient descent method is used.

Here we use an information-theoretic approach previously introduced in [112] and

described in Chapter 2. In [112], we considered a smooth deformation g that maps

domain Ω bijectively onto itself. Consequently, g and g−1 are bijective and globally

volume-preserving. Probability density functions can thus be associated with the de-

formation g and its inverse g−1. We proposed to quantify the magnitude of the defor-

mation by means of computing the symmetric Kullback-Leibler distance between the

probability density functions associated with the deformation and the identity map-

ping. In Chapter 2, the symmetric Kullback-Leibler distance, when rewritten using

skew-symmetry properties, was viewed as a cost function and was combined with

the viscous fluid model for registration, which lead to the unbiased fluid registration

model. Unlike the unbiased fluid registration model, the unbiased nonlinear elasticity

method, introduced here, allows the functional to be written “in closed form”. The new

model also does not require expensive Navier-Stokes solver (or its approximation) at

each step as previously mentioned.

3.2 Method

Let Ω be an open and bounded domain in R3. Without loss of generality, we assume

that the volume of Ω is 1, i.e. |Ω| = 1. Let I1, I2 : Ω → R be the two images to

be registered. We seek the transformation g : Ω → Ω that maps the source image I2

into correspondence with the target image I1. As in Chapter 2, we will restrict this
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mapping to be differentiable, one-to-one, and onto. We denote the Jacobian matrix of

a deformation g to be Dg, with Jacobian denoted by |Dg(x)| := det(Dg(x)) (thus we

will use the notation |V | := det(V ) for any 3 × 3 matrix V ). The displacement field

u(x) from the position x in the deformed image I2 ◦ g(x) back to I2(x) is defined in

terms of the deformation g(x) by the expression g(x) = x−u(x) at every point x ∈ Ω.

Thus, we consider the problems of finding g and u as equivalent.

In general, nonlinear image registration models may be formulated in a variational

framework. The minimization problems often define the energy functional E as a

linear combination of image matching term F and the regularizing term R

inf
u

{
E(u) = F (u) + λ0R(u)

}
.

Here, λ0 > 0 is a weighting parameter.

3.2.1 Registration metrics

In this chapter, the matching functional F takes the form of the L2 norm (the sum of

squared intensity differences), F = FL2 , and the mutual information, F = FMI .

L2-norm: The L2-norm matching functional is suitable when the images have been

acquired through similar sensors (with additive Gaussian noise) and thus are expected

to present the same intensity range and distribution. The L2 distance between the

deformed image I2 ◦ g(x) = I2(x− u(x)) and target image I1(x) is defined as

FL2(u) =
1

2

∫

Ω

(
I2(x− u(x))− I1(x)

)2
dx. (3.1)

Mutual Information: Mutual information can be used to align images of different

modalities, without requiring knowledge of the relationship of the two registered im-

ages. Here, the intensity distributions estimated from I1(x) and I2(x − u(x)) are de-
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noted by pI1 and pI2
u , respectively, and an estimate of their joint intensity distribution

by pI1,I2
u . We let i1 = I1(x), i2 = I2(x− u(x)) denote intensity values at point x ∈ Ω.

Given the displacement field u, the mutual information computed from I1 and I2 is pro-

vided by MII1,I2
u =

∫
R2 pI1,I2

u (i1, i2) log[pI1,I2
u (i1, i2)/(p

I1(i1)p
I2
u (i2))] di1di2. We seek

to maximize the mutual information between I2(x − u(x)) and I1(x), or equivalently,

minimize the negative of MII1,I2
u :

FMI(I1, I2, u) = −MII1,I2
u . (3.2)

3.2.2 Nonlinear Elastic Regularization

The theory of elasticity is based on the notion of strain. Strain is defined as the amount

of deformation an object experiences compared to its original size and shape. In three

spatial dimensions, the strain tensor, E = [εij] ∈ R3×3, 1 ≤ i, j ≤ 3, is a symmetric

tensor used to quantify the strain of an object undergoing a deformation. The nonlinear

strain is defined as

εij(u) =
1

2

(
∂jui + ∂iuj +

3∑

k=1

∂iuk∂juk

)
,

with the nonlinear strain tensor matrix given by

E(u) =
1

2

(
Dut + Du + DutDu

)
. (3.3)

For Saint Venant-Kirchhoff material, the stored energy is defined as

W (E) =
ν

2
(trace(E))2 + µtrace(E2),
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where ν and µ are Lamé elastic material constants. The regularization for nonlinear

elasticity becomes

RE(u) =

∫

Ω

W (E(u))dx.

The regularization term RE(u) can be minimized with respect to u. However, since

the regularization term is written in terms of partial derivatives of components of u,

the Euler-Lagrange equations become complicated and are computationally expensive

to minimize. Instead, following earlier theoretical work [76], we minimize an approx-

imate functional by introducing the matrix variable

V ≈ Du (3.4)

and thus consider a new form of nonlinear elasticity regularization functional

RE(u, V ) =

∫

Ω

W (V̂ ) dx +
β

2

∫

Ω

||V −Du||2F dx, (3.5)

where V̂ =
1

2

(
V t+V +V tV

)
, β is a positive constant, and ||·||F denotes the Frobenius

norm. In the limit, as β → +∞, we obtain V ≈ Du in the L2 topology.

3.2.3 Unbiased Registration Constraint

In Chapter 2, we introduced an unbiased fluid image registration approach [112]. In

this context, unbiased means that the Jacobian determinants of the deformations re-

covered between a pair of images follow a log-normal distribution, with zero mean

after log-transformation. We argued that this distribution is beneficial when recover-

ing change in regions of homogeneous intensity, and in ensuring symmetrical results

when the order of two images being registered is switched. As derived in [112] using
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information theory, the unbiased regularization term is given as

RSKL(u) =

∫

Ω

(|D(x− u(x))| − 1
)
log |D(x− u(x))| dx. (3.6)

It is important to note that RSKL generates inverse-consistent deformation maps. The

inverse-consistent property of the unbiased technique is shown in a validation study

of the unbiased fluid registration method in Chapter 4. Also, to see why minimizing

equation (3.6) leads to unbiased deformation in the logarithmic space, we observe that

the integrand is always non-negative, and only evaluates to zero when the deformation

g is volume-preserving everywhere (|Dg| = 1 everywhere). Thus, by treating it as

a cost, we recover zero-change by minimizing this cost when we compare images

differing only in noise.

Given equation (3.4), we have Dg = D(x − u) = I − Du ≈ I − V , where I
is the 3 × 3 identity matrix. Therefore, as in Section 3.2.2, in order to simplify the

discretization of the gradient of the unbiased regularization term (3.6), we introduce

RSKL(V ) =

∫

Ω

(|I − V | − 1) log |I − V | dx. (3.7)

Recall that here |I − V | = det(I − V ).

3.2.4 Unbiased Nonlinear Elasticity Registration

The total energy functional employed in this work, is given as a linear combination of

the similarity measure F (which is either FL2 from (3.1) or FMI from (3.2)), nonlinear

elastic regularization RE in (3.5), and unbiased regularization RSKL in (3.7):

E(u, V ) = F (u) + RE(u, V ) + λRSKL(V ). (3.8)
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or

E(u, V ) = F (u) +

∫

Ω

W (V̂ )dx +
β

2

∫

Ω

||V −Du||2F dx

+λ

∫

Ω

(|I − V | − 1) log |I − V | dx.

The explicit weighting parameter is omitted in front of RE(u, V ), since this term is

weighted by Lamé constants ν and µ. Parameterizing the descent direction by an

artificial time t, we solve the Euler-Lagrange equations in u(x, t) and V (x, t) using the

gradient descent method:

∂u
∂t

= −∂Eu(u, V ) = −∂uF (u)− ∂uRE(u, V ), (3.9)

∂V

∂t
= −∂EV (u, V ) = −∂V RE(u, V )− λ∂V RSKL(V ), (3.10)

which gives systems of three and nine equations, respectively. Explicit expressions

for the gradients in equations (3.9) and (3.10) as well as the discretizations of these

equations are given in Section 3.3.

Remark: The regularization on the deformation g proposed in this work can be ex-

pressed in a general form

R(g) =

∫

Ω

R1(Dg)dx +

∫

Ω

R2(|Dg|)dx,

with |Dg| := det(Dg). For the minimization, an auxiliary variable can also be intro-

duced to simplify the numerical calculations, removing the nonlinearity in the deriva-

tives.
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3.3 Implementation

3.3.1 The Energy Gradients

Computing the first variation of functional FL2 in equation (3.1) gives the following

gradient

∂uFL2(u) = −[I2(x− u(x))− I1(x)]∇I2(x− u(x)).

The gradient of (3.2) is given by

∂uFMI(u) =
1

|Ω|
[
Qu ∗ ∂Gσ

∂ξ2

]
(I1(x), I2(x− u))∇I2(x− u),

where

Qu(i1, i2) = 1 + log
pI1,I2

u (i1, i2)

pI1(i1)p
I2
u (i2)

,

and Gσ(ξ1, ξ2) is a two-dimensional Gaussian kernel, with variance σ2, which is used

to estimate the joint intensity distribution from I2(x− u) and I1(x).

Computing the first variation of functional RE(u, V ), in equation (3.5), with re-

spect to u gives the following components of gradient ∂uRE(u, V ):

∂ul
RE(u, V ) = β

(
∂1vl1 + ∂2vl2 + ∂3vl3 −4ul

)
, l = 1, 2, 3.

The first variation of RE(u, V ) with respect to V , with V = [vij], gives ∂V RE(u, V ):

∂v11RE(u, V ) = β(v11 − ∂1u1) + νc1(1 + v11) + µ
(
c2(1 + v11) + c5v12 + c6v13

)
,

∂v12RE(u, V ) = β(v12 − ∂2u1) + νc1v12 + µ
(
c3v12 + c5(1 + v11) + c7v13

)
,

∂v13RE(u, V ) = β(v13 − ∂3u1) + νc1v13 + µ
(
c4v13 + c6(1 + v11) + c7v12

)
,

∂v21RE(u, V ) = β(v21 − ∂1u2) + νc1v21 + µ
(
c2v21 + c5(1 + v22) + c6v23

)
,
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∂v22RE(u, V ) = β(v22 − ∂2u2) + νc1(1 + v22) + µ
(
c3(1 + v22) + c5v21 + c7v23

)
,

∂v23RE(u, V ) = β(v23 − ∂3u2) + νc1v23 + µ
(
c4v23 + c6v21 + c7(1 + v22)

)
,

∂v31RE(u, V ) = β(v31 − ∂1u3) + νc1v31 + µ
(
c2v31 + c5v32 + c6(1 + v33)

)
,

∂v32RE(u, V ) = β(v32 − ∂2u3) + νc1v32 + µ
(
c3v32 + c5v31 + c7(1 + v33)

)
,

∂v33RE(u, V ) = β(v33 − ∂3u3) + νc1(1 + v33) + µ
(
c4(1 + v33) + c6v31 + c7v32

)
,

where

c1 = v11 + v22 + v33 +
1

2

(
v2

11 + v2
21 + v2

31 + v2
12 + v2

22 + v2
32 + v2

13 + v2
23 + v2

33

)
,

c2 = 2v11 + v2
11 + v2

21 + v2
31, c5 = v21 + v12 + v11v12 + v21v22 + v31v32,

c3 = 2v22 + v2
12 + v2

22 + v2
32, c6 = v31 + v13 + v11v13 + v21v23 + v31v33,

c4 = 2v33 + v2
13 + v2

23 + v2
33, c7 = v32 + v23 + v12v13 + v22v23 + v32v33.

We can compute the first variation of (3.7), obtaining ∂V RSKL(V ). We first sim-

plify the notation, letting J = |I − V |. Also, denote L(J) = (J − 1) log J . Hence,

L′(J) = dL(J)/dJ = 1 + log J − 1/J . Thus,

∂v11RSKL(V ) = −(
(1− v22)(1− v33)− v32v23

)
L′(J),

∂v12RSKL(V ) = −(
v23v31 + v21(1− v33)

)
L′(J),

∂v13RSKL(V ) = −(
v21v32 + (1− v22)v31

)
L′(J),

∂v21RSKL(V ) = −(
v32v13 + v12(1− v33)

)
L′(J),

∂v22RSKL(V ) = −(
(1− v11)(1− v33)− v13v31

)
L′(J),
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∂v23RSKL(V ) = −(
v12v31 + v32(1− v11)

)
L′(J),

∂v31RSKL(V ) = −(
v12v23 + v13(1− v22)

)
L′(J),

∂v32RSKL(V ) = −(
v21v13 + v23(1− v11)

)
L′(J),

∂v33RSKL(V ) = −(
(1− v11)(1− v22)− v12v21

)
L′(J).

3.3.2 Numerical Discretization

Let 4x1, 4x2, 4x3 be the spatial steps, 4t be the time step, and (x1i, x2j, x3k) =

(i4x1, j4x2, k4x3) be the grid points, for 1 ≤ i ≤ M , 1 ≤ j ≤ N , 1 ≤ k ≤ P .

For a function ϕ : Ω → R, let ϕn
i,j,k = ϕ(n4t, i4x1, j4x2, k4x3). We define the

difference operators based on uniformly-spaced grid as

Dx1ϕn
i,j,k =

ϕn
i+1,j,k − ϕn

i−1,j,k

24x1

,

Dx2ϕn
i,j,k =

ϕn
i,j+1,k − ϕn

i,j−1,k

24x2

,

Dx3ϕn
i,j,k =

ϕn
i,j,k+1 − ϕn

i,j,k−1

24x3

,

Dx1x1ϕn
i,j,k =

ϕn
i+1,j,k − 2ϕn

i,j,k + ϕn
i−1,j,k

4x2
1

,

Dx2x2ϕn
i,j,k =

ϕn
i,j+1,k − 2ϕn

i,j,k + ϕn
i,j−1,k

4x2
2

,

Dx3x3ϕn
i,j,k =

ϕn
i,j,k+1 − 2ϕn

i,j,k + ϕn
i,j,k−1

4x2
3

.

Below, we will use the following notations when it is obvious that the grid point at

(i4x1, j4x2, k4x3) is under consideration

ϕn := ϕn
i,j,k, Dxlϕn := Dxlϕn

i,j,k, Dxlxlϕn := Dxlxlϕn
i,j,k, l = 1, 2, 3.

To discretize equations (3.9) and (3.10), we use finite difference schemes. In order
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to restrict the maximum displacement change per time step from being large, equation

(3.9) is discretized using explicit scheme with adaptive time-stepping at every point

(i, j, k)

un+1
1 − un

1

4t
= −[

∂u1F (un)
]− β

(
Dx1vn

11 + Dx2vn
12 + Dx3vn

13

)

+ β
(
Dx1x1un

1 + Dx2x2un
1 + Dx3x3un

1

)
,

un+1
2 − un

2

4t
= −[

∂u2F (un)
]− β

(
Dx1vn

21 + Dx2vn
22 + Dx3vn

23

)

+ β
(
Dx1x1un

2 + Dx2x2un
2 + Dx3x3un

2

)
,

un+1
3 − un

3

4t
= −[

∂u3F (un)
]− β

(
Dx1vn

31 + Dx2vn
32 + Dx3vn

33

)

+ β
(
Dx1x1un

3 + Dx2x2un
3 + Dx3x3un

3

)
,

where [∂ul
F (un)], l = 1, 2, 3, is a discretization of a similarity-based gradient. In

our numerical experiments, 4x1 = 4x2 = 4x3 = 1, and 4t is chosen so that the

maximum displacement per iteration equals 0.1.

Equation (3.10) is discretized using semi-implicit scheme. This scheme is less

sensitive to numerical constraints such as CFL condition. We have

vn+1
11 − vn

11

4t
= β(Dx1un

1 − vn+1
11 )− νc1(1 + vn

11)− µ
(
c2(1 + vn

11) + c5v
n
12 + c6v

n
13

)

+ λ
(
(1− vn

22)(1− vn
33)− vn

32v
n
23

)
L′(J),

vn+1
12 − vn

12

4t
= β(Dx2un

1 − vn+1
12 )− νc1v

n
12 − µ

(
c3v

n
12 + c5(1 + vn

11) + c7v
n
13

)

+ λ
(
vn

23v
n
31 + vn

21(1− vn
33)

)
L′(J),

vn+1
13 − vn

13

4t
= β(Dx3un

1 − vn+1
13 )− νc1v

n
13 − µ

(
c4v

n
13 + c6(1 + vn

11) + c7v
n
12

)

+ λ
(
vn

21v
n
32 + (1− vn

22)v
n
31

)
L′(J),
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vn+1
21 − vn

21

4t
= β(Dx1un

2 − vn+1
21 )− νc1v

n
21 − µ

(
c2v

n
21 + c5(1 + vn

22) + c6v
n
23

)

+ λ
(
vn

32v
n
13 + vn

12(1− vn
33)

)
L′(J),

vn+1
22 − vn

22

4t
= β(Dx2un

2 − vn+1
22 )− νc1(1 + vn

22)− µ
(
c3(1 + vn

22) + c5v
n
21 + c7v

n
23

)

+ λ
(
(1− vn

11)(1− vn
33)− vn

13v
n
31

)
L′(J),

vn+1
23 − vn

23

4t
= β(Dx3un

2 − vn+1
23 )− νc1v

n
23 − µ

(
c4v

n
23 + c6v

n
21 + c7(1 + vn

22)
)

+ λ
(
vn

12v
n
31 + vn

32(1− vn
11)

)
L′(J),

vn+1
31 − vn

31

4t
= β(Dx1un

3 − vn+1
31 )− νc1v

n
31 − µ

(
c2v

n
31 + c5v

n
32 + c6(1 + vn

33)
)

+ λ
(
vn

12v
n
23 + vn

13(1− vn
22)

)
L′(J),

vn+1
32 − vn

32

4t
= β(Dx2un

3 − vn+1
32 )− νc1v

n
32 − µ

(
c3v

n
32 + c5v

n
31 + c7(1 + vn

33)
)

+ λ
(
vn

21v
n
13 + vn

23(1− vn
11)

)
L′(J),

vn+1
33 − vn

33

4t
= β(Dx3un

3 − vn+1
33 )− νc1(1 + vn

33)− µ
(
c4(1 + vn

33) + c6v
n
31 + c7v

n
32

)

+ λ
(
(1− vn

11)(1− vn
22)− vn

12v
n
21

)
L′(J),

where J = |I −V |, L(J) = (J−1) log J , and L′(J) = dL(J)/dJ = 1+log J−1/J .

3.3.3 Algorithm

We are now ready to give the algorithm for the Unbiased registration via nonlinear

elastic regularization.

72



Figure 3.1: I1 and I2 are Serial MRI images from the ADNI follow-up dataset (images
acquired one year apart). Here, volume I1 is depicted as a brain volume as well as from
sagittal, axial, and coronal views. Figure 3.2 shows volume I2. Nonrigid registration
aligns I2 into correspondence with I1.

Algorithm 2 Unbiased Registration via Nonlinear Elastic Regularization
1: Initialize t = 0, u(x, 0) = 0, and V (x, 0) = 0.
2: Calculate V (x, t) using equation (3.10), where the equation is discretized using

the semi-implicit method described in Section 3.3.2.
Steps 3-5 describe the procedure for solving equation (3.9) advancing u(x, t) in
time using the explicit scheme. Numerical discretization is described in Section
3.3.2.

3: Calculate the perturbation of the displacement field R(x) = −∂Eu(u, V ).
4: Time step 4t is calculated adaptively so that 4t · max(||R||2) = δu, where δu

is the maximal displacement allowed in one iteration. Results in this chapter are
obtained with δu = 0.1.

5: Advance equation (3.9), i.e. ∂u(x, t)/∂t = R(x), in time, with time step from step
4, solving for u(x, t).

6: If the cost functional in (3.8) decreases by sufficiently small amount compared to
the previous iteration, then stop.

7: Let t := t +4t and go to step 2.
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Figure 3.2: I1 and I2 are Serial MRI images from the ADNI follow-up dataset (images
acquired one year apart). Here, volume I2 is depicted as a brain volume as well as from
sagittal, axial, and coronal views. Figure 3.1 shows volume I1. Nonrigid registration
aligns I2 into correspondence with I1.

3.4 Results and Discussion

We tested the proposed unbiased nonlinear elastic registration model (Algorithm 2),

and compared the results to those obtained with the unbiased fluid registration method

[112] given by Algorithm 1. Here, both methods were coupled with the L2 and mutual

information (MI) based similarity measures. In our experiments, we used a pair of

serial MRI images (220 × 220 × 220) from the Alzheimer’s Disease Neuroimaging

Initiative (ADNI). Since the images were acquired one year apart, from a subject with

Alzheimer’s disease, real anatomical changes are present, which allows methods to be

compared in the presence of true biological changes.

Figure 3.1 shows the target image I1 and Figure 3.2 displays the source image I2.
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Figure 3.3: Results are obtained using unbiased fluid registration coupled with L2

matching. Jacobian maps are superimposed on the brain structure.

Figures 3.3 through 3.6 show the resulting Jacobian maps obtained using unbiased

fluid registration and unbiased nonlinear elastic registration, both coupled with L2 and

MI matching. Results generated using the fluid and nonlinear elasticity based unbiased

models are similar, both suggesting a mild volume reduction in gray and white mat-

ter and ventricular enlargement that is observed in Alzheimer’s disease patients. The

advantages of the unbiased nonlinear elasticity model is its more locally plausible re-

production of atrophic changes in the brain and its robustness to original misalignment

of brain volumes, which is especially noticeable on the brain surface. The unbiased

nonlinear elasticity model coupled with L2 matching generated very similar results to

those obtained with the MI similarity measure, partly because difference images typ-

ically contain only noise after registration. Unbiased fluid registration method, how-

ever, is more effective in modeling the regional neuroanatomical changes, showing
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Figure 3.4: Results are obtained using unbiased nonlinear elastic registration coupled
with L2 matching. Jacobian maps are superimposed on the brain structure.

more clearly which parts of the volume have undergone largest tissue changes, such as

ventricular enlargement as shown in Figures 3.3 through 3.6.

Figures 3.7 and 3.8 show deformed grids generated with unbiased fluid and unbi-

ased nonlinear elastic registration models. Figure 3.9 shows the energy decrease per

iteration for both models.

In Figure 3.10, we examined the inverse consistency of the mappings [20] gener-

ated using unbiased nonlinear elastic registration. Here, the deformation was computed

in both directions (time 2 to time 1, and time 1 to time 2) using mutual information

matching. The forward and backward Jacobian maps were concatenated (in an ideal

situation, this operation should yield the identity), with the products of Jacobians hav-

ing values close to 1.

The unbiased nonlinear elasticity model does not require expensive Navier-Stokes
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Figure 3.5: Results are obtained using unbiased fluid registration coupled with mutual
information matching. Jacobian maps are superimposed on the brain structure.

solver (or its approximation), which is employed at each iteration for fluid flow models.

Hence, in our experiments, each iteration of the unbiased nonlinear elasticity algorithm

took less time than the unbiased fluid step. Future studies will examine the registration

accuracy of the different models where ground truth is known, and will compare each

model’s power for detecting inter-group differences or statistical effects on rates of

atrophy.

3.5 Conclusion

This chapter introduces a new unbiased nonlinear elastic image registration model.

The nonlinear elastic and the unbiased regularization terms are simplified using the

change of variables by introducing an unknown that approximates the Jacobian ma-

77



Figure 3.6: Results are obtained using unbiased nonlinear elastic registration cou-
pled with mutual information matching. Jacobian maps are superimposed on the brain
structure.

trix of the displacement field. This reduces the minimization to involve differential

equations that are linear in the unknowns. In contrast to recently proposed unbiased

fluid registration method, the new model is written in a unified variational form and is

minimized using gradient descent. It is computationally efficient and easy to imple-

ment. The unbiased large-deformation nonlinear elastic registration was tested using

volumetric serial magnetic resonance images and shown to have some advantages for

medical imaging applications.
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Unbiased Fluid Unbiased Nonlinear Elasticity
with L2 matching with L2 matching

Unbiased Fluid Unbiased Nonlinear Elasticity
with MI matching with MI matching

Figure 3.7: Results obtained using unbiased fluid registration and unbiased nonlinear
elastic registration, both coupled with L2 and MI matching. The generated grids are
superimposed on top of 2D cross-sections of the 3D volumes.

79



Unbiased Fluid Unbiased Nonlinear Elasticity
with L2 matching with L2 matching

Unbiased Fluid Unbiased Nonlinear Elasticity
with MI matching with MI matching

Figure 3.8: Results obtained using unbiased fluid registration and unbiased nonlinear
elastic registration, both coupled with L2 and MI matching. The generated grids of 2D
cross-sections of the 3D volumes are shown.
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Figure 3.9: Energy per iteration for the unbiased fluid registration and unbiased non-
linear elastic registration, both coupled with L2 and MI matching.
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time 2 to time 1 time 1 to time 2 products of Jacobians

Figure 3.10: This figure examines the inverse consistency of the unbiased nonlinear
elastic registration. Here, the model is coupled with mutual information matching.
Jacobian maps of deformations from time 2 to time 1 (column 1) and time 1 to time 2
(column 2) are superimposed on the target volumes. The products of Jacobian maps,
shown in column 3, have values close to 1, suggesting inverse consistency.
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CHAPTER 4

Unbiased Image Registration Methods: Statistical

Assessment of Performance

This chapter examines the reproducibility and the power to detect real changes of dif-

ferent computational techniques. It is the first work to systematically investigate the

reproducibility and variability of different registration methods in tensor-based mor-

phometry (TBM). In particular, we compare matching functionals (sum of squared

differences and mutual information), as well as large deformation registration schemes

(symmetric and asymmetric unbiased registration and viscous fluid registration) us-

ing serial MRI scans of ten normal elderly patients from the preparatory phase of the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) and ten Alzheimer’s subjects

from the ADNI follow-up phase. Our results show that the unbiased methods, both

symmetric and asymmetric, have higher reproducibility. The unbiased methods are

less likely to produce changes in the absence of any real physiological change. More-

over, they are also better in detecting biological deformations by penalizing any bias

in the corresponding statistical maps.

4.1 Introduction

In recent years, computational neuroimaging has become an exciting interdisciplinary

field with many applications in functional and anatomic brain mapping, image-guided

83



surgery, and multimodality image fusion [1, 21, 22, 24, 44, 70, 90, 99, 106]. The goal

of image registration is to align, or spatially normalize, one image to another. In multi-

subject studies, this reduces subject-specific anatomic differences by deforming indi-

vidual images onto a population average brain template. When applied to serial scans

of human brain, image registration offers tremendous power in detecting the earliest

signs of illness, understanding normal brain development or aging, and monitoring dis-

ease progression [27, 30, 49, 87, 95, 97, 104]. Recently, there has been an expanding

literature on various nonrigid registration techniques, with different image matching

functionals, regularization schemes, and numerical implementations. In Chapter 2,

we examined the statistical properties of Jacobian maps, and proposed an unbiased

large-deformation image registration approach. In this context, unbiased means that

the Jacobian determinants of the deformations recovered between a pair of images fol-

low a log-normal distribution, with zero mean after log-transformation. We argued

that this distribution is beneficial when recovering change in regions of homogeneous

intensity, and in ensuring symmetrical results when the order of two images being

registered is switched. This method was applied to a longitudinal MRI dataset from

a single subject, showing promising results in eliminating spurious signals. We also

noticed that different registration techniques, when applied to the same longitudinal

dataset, may sometimes yield visually very different Jacobian maps, causing problems

in interpreting local structural changes. Given this ambiguity and the increasing use of

registration methods to measure brain change, more information is required concern-

ing the baseline stability, reproducibility, and statistical properties of signals generated

by different nonrigid registration techniques.

In this chapter, we introduce a novel Asymmetric Unbiased model (by contrast with

the Symmetric Unbiased model). Most importantly, we aim to provide quality calibra-

tions for different non-rigid registration techniques in TBM. In particular, we compare

two common matching functionals: L2, or the sum of squared intensity differences,
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versus mutual information, and three regularization techniques (fluid registration ver-

sus the Asymmetric Unbiased and Symmetric Unbiased techniques). Our experiments

are designed to decide which registration method is more reproducible, more reliable,

and offers less artifactual variability in regions of homogeneous image intensity. The

foundation of our calibrations is based on the assumption that, by scanning healthy nor-

mal human subjects twice over a 2-week period using the same protocol, serial MRI

scan pairs should not show any systematic biological change. Therefore, any regional

structural differences detected using TBM over such a short interval may be assumed

to be errors. We apply statistical analysis to the profile of these errors, providing

information on the reliability, reproducibility and variability of different registration

techniques. Moreover, serial images of 10 subjects from the ADNI follow-up phase

(images acquired one year apart) were analyzed in a similar fashion and compared to

the ADNI baseline data. In images collected one year apart, real anatomical changes

are present; neurobiological changes due to aging and dementia include widespread

cell shrinkage, regional gray and white matter atrophy and expansion of fluid-filled

spaces in the brain. Thus, a good computational technique should be able to differen-

tiate between longitudinal image pairs collected for the ADNI baseline (2-week) and

follow-up (1-year) phases. For details of the ADNI acquisition protocol, please refer

to [53, 55, 91, 45].

The unbiased approach, which is analyzed in this chapter, couples the computation

of deformations with statistical analyses on the resulting Jacobian maps. As a result,

the unbiased technique ensures that deformations have intuitive axiomatic properties

by penalizing any bias in the corresponding statistical maps. In the following sections,

we briefly restate the formulations of the unbiased technique, define energy functionals

for minimization, and perform thorough statistical analyses to demonstrate the advan-

tages of the unbiased registration models.
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4.2 Asymmetric and Symmetric Unbiased Large-Deformation Im-

age Registration

In Section 2.1, we described the construction of the Unbiased Large-Deformation Im-

age Registration. We associated three probability density functions to g, g−1, and the

identity mapping id:

pg(x) = |Dg(x)|, pg−1(x) = |Dg−1(x)|, pid(x) = 1.

By associating deformations with their corresponding global density maps, we ap-

plied information theory to quantify the magnitude of deformations. In our original

approach, we chose the symmetric Kullback-Leibler (SKL) distance to quantify the

deformation. In this chapter, we also investigate the Kullback-Leibler (KL) divergence

as a measure of deformations. The KL divergence between two probability density

functions, p1(x) and p2(x), is defined as

KL(p1(x), p2(x)) =

∫

Ω

p1(x) log
p1(x)

p2(x)
dx ≥ 0,

and the SKL distance as

SKL(p1(x), p2(x)) = KL(p1(x), p2(x)) + KL(p2(x), p1(x)).

The Unbiased method solves for the deformation g (or, equivalently, for the displace-

ment u) minimizing the energy functional E, consisting of the image matching term

F and the regularizing term R which is based on KL divergence or SKL distance. The

fidelity term F dependents on I2 and I1, as well as the displacement u. The general

86



minimization problem can be written as

E(I1, I2, u) = F (I1, I2, u) + λR(u),

inf
u

E(I1, I2, u).
(4.1)

Here, λ > 0 is a weighting parameter.

In this study, the matching functional F takes two forms: the L2 norm, given by

equation (1.7), and MI (mutual information), given by equation (2.19). These func-

tionals have each been widely used in the past for nonrigid registration, to measure the

intensity agreement between the deformed image and the target image.

4.2.1 Asymmetric Unbiased Registration

To quantify the magnitude of deformation g, in this chapter we introduce a new regu-

larization term RKL, which is an asymmetric measure between pid and pg:

RKL(g) = KL(pid, pg).

This regularization term can be shown to be

RKL(g) =

∫

Ω

pid log
pid

pg
dx =

∫

Ω

− log |Dg(x)|dx

=

∫

Ω

|Dg−1(y)| log |Dg−1(y)|dy.
(4.2)

Thus, the energy functional in (4.1) implementing Asymmetric Unbiased registration

can be written as

E(I1, I2, u) = F (I1, I2, u)− λ

∫

Ω

log |D(x− u(x))|dx, (4.3)

for some distance measure F between I2(x− u) and I1(x).
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4.2.2 Symmetric Unbiased Registration

The regularization functional, based on the symmetric KL distance between pid and pg,

was introduced in Chapter 2:

RSKL(g) = SKL(pid, pg).

The regularization term is linked to statistics on Jacobian maps as follows

RSKL(g) =

∫

Ω

(|Dg(x)| − 1
)
log |Dg(x)|dx

=

∫

Ω

(|Dg−1(y)| − 1
)
log |Dg−1(y)|dy.

(4.4)

The energy functional employing Symmetric Unbiased registration can be rewritten as

E(I1, I2, u) = F (I1, I2, u)

+λ

∫

Ω

(|D(x− u(x))| − 1
)
log |D(x− u(x))|dx,

(4.5)

for some distance measure F . Notice that the symmetric unbiased regularizing func-

tional (4.4) is pointwise nonnegative, while the asymmetric unbiased regularizer in

(4.2) can take either positive or negative values locally.

4.3 Summary of Models

We summarize the methods we will be referring to in our subsequent analyses. In later

discussions, minimization of the following energies

E(I1, I2, u) = FL2(I1, I2, u) + λRKL(u) (4.6)

and E(I1, I2, u) = FL2(I1, I2, u) + λRSKL(u) (4.7)
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will be referred to as L2-Asymmetric Unbiased and L2-Symmetric Unbiased models,

respectively. Similarly, minimization of

E(I1, I2, u) = FMI(I1, I2, u) + λRKL(u) (4.8)

and E(I1, I2, u) = FMI(I1, I2, u) + λRSKL(u) (4.9)

will be referred to as the MI-Asymmetric Unbiased and MI-Symmetric Unbiased mod-

els, respectively. Similar to Algorithm 1 of Chapter 2, we employ fluid regularization,

defining the force field f as

f(x, u) = −∂uE(I1, I2, u).

The instantaneous velocity is obtained by convolving f with Gaussian kernel Gσ of

variance σ2, v = Gσ ∗ f(x, u), and the following partial differential equation is solved

to obtain the displacement field u:

∂u
∂t

= v− v · ∇u.

For this reason, the model (4.6) (or (4.7)), with λ = 0, will be referred to as the L2-

Fluid model. Also, the model (4.8) (or (4.9)), with λ = 0, defines the MI-Fluid model.

4.4 Statistical Analysis

4.4.1 Statistical testing on the deviation of log Jacobian maps in the absence of

changes

Based on the authors’ approach in [60], we observe that, given that there is no sys-

tematic structural change within two weeks, any deviation of the Jacobian map from
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time 2 to time 1

time 1 to time 2
L2-Fluid L2-Asymmetric Unbiased L2-Symmetric Unbiased

Figure 4.1: Nonrigid registration was performed on an image pair from one of the
subjects from the ADNI Baseline study (serial MRI images acquired two weeks apart)
using L2-Fluid (column 1), L2-Asymmetric Unbiased (column 2), and L2-Symmetric
Unbiased (column 3) registration methods. Jacobian maps of deformations from time 2
to time 1 (row 1) and time 1 to time 2 (row 2) are superimposed on the target volumes.
The unbiased methods generate less noisy Jacobian maps with values closer to 1; this
shows the greater stability of the approach when no volumetric change is present.

one should be considered error. Thus, we expect that a better registration technique

would yield log |Dg| values closer to 0 (i.e., smaller log Jacobian deviation translates

into better methodology). Mathematically speaking, one way to test the performance

is to consider the deviation map dev of the logged (i.e., logarithmically transformed)

Jacobian away from zero, defined at each voxel as

dev(x) =
∣∣ log |Dg(x)|

∣∣. (4.10)
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L2-Fluid L2-Asymmetric Unbiased L2-Symmetric Unbiased

Figure 4.2: This figure examines the inverse consistency of deformation models. Prod-
ucts of Jacobian maps generated using all three models are shown, for forward direc-
tion (time 1 to time 2) and backward direction (time 2 to time 1). For the L2-based
unbiased methods, the products of the Jacobian maps are less noisy, with values closer
to 1, showing better inverse consistency.

For two different registration methods A and B, we define the voxel-wise deviation

gain of A over B (denoted by SA,B) as

SA,B(x) = devA(x)− devB(x). (4.11)

For the ADNI baseline dataset (in which patients are scanned twice with MRI, two

weeks apart), two distinct types of t tests are used, a within-subject paired t test and

a group paired t test. A within-subject paired t test is conducted for each subject by

pooling all voxels inside a region of interest, as defined by the ICBM whole brain mask

(the ICBM brain is a standardized population average image, defined by the Interna-

tional Consortium for Brain Mapping [69]). This determines whether two methods

differ significantly inside the whole brain (for each subject). A group paired t test,

on the other hand, is performed across subjects, by computing a voxel-wise t-map of

deviation gains. In this case, to statistically compare the performance of two registra-

tion methods, we rely on the standard t test on the voxel mean of S. To construct a
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(a) KL divergence (b) SKL distance

Figure 4.3: (a) KL divergence and (b) SKL distance per iteration are shown for
L2-Fluid (solid red), L2-Asymmetric Unbiased (solid blue), and L2-Symmetric Un-
biased (dashed green) methods. For L2-Fluid, both KL and SKL measures increase.
Even though the Asymmetric Unbiased method explicitly minimizes the KL diver-
gence, and the Symmetric Unbiased model minimizes the SKL distance, both of the
KL and SKL measures stabilize for both unbiased methods.

suitable null hypothesis, we notice that the following relation would hold, assuming B

outperforms A

SA,B > 0.

Thus, the null hypothesis in this case would be testing if the mean deviation gain is

zero

H0 : µSA,B = 0.

To determine the ranking of A and B, we have to consider one-sided alternative hy-

potheses. For example, when testing if B outperforms A, we use the following alter-

native hypothesis

H1 : µSA,B > 0.
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Figure 4.4: Histograms of voxel-wise deviation gains (a) L2-Fluid over L2- Asymmet-
ric Unbiased and (b) L2-Fluid over L2-Symmetric Unbiased for one of the subjects for
the forward direction (time 2 to time 1) and backward direction (time 1 to time 2). The
histograms are skewed to the right, indicating the superiority of Asymmetric Unbiased
and Symmetric Unbiased registration methods over Fluid registration. A paired t test
shows significance (p < 0.0001).

The voxel-wise T statistic, defined as

TSA,B(x) =

√
n · SA,B(x)

σSA,B(x)
, (4.12)

where

SA,B(x) =

∑
i S

A,B
i (x)

n
,
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time 2 to time 1

time 1 to time 2
MI-Fluid MI-Asymmetric Unbiased MI-Symmetric Unbiased

Figure 4.5: Nonrigid registration was performed on an image pair from one of the
subjects from the ADNI Baseline study (serial MRI images acquired two weeks apart)
using MI-Fluid (column 1), MI-Asymmetric Unbiased (column 2), and MI-Symmetric
Unbiased (column 3) registration methods. Jacobian maps of deformations from time 2
to time 1 (row 1) and time 1 to time 2 (row 2) are superimposed on the target volumes.
The unbiased methods generate less noisy Jacobian maps with values closer to 1; this
shows the greater stability of the approach when no volumetric change is present.

and
(
σSA,B(x)

)2
=

∑
i

(
SA,B

i (x)− SA,B(x)
)2

n− 1
,

thus follows the Student’s t distribution [37, 39, 43] under the null hypothesis and may

be used to determine the p-value that the null hypothesis is true. If the alternative hy-

pothesis is accepted, we confirm that sequence B outperforms A at point x. Otherwise,

we would rank A and B equally if the null hypothesis is not rejected.
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MI-Fluid MI-Asymmetric Unbiased MI-Symmetric Unbiased

Figure 4.6: This figure examines the inverse consistency of deformation models. Prod-
ucts of Jacobian maps generated using all three models are shown, for forward direc-
tion (time 1 to time 2) and backward direction (time 2 to time 1). For the mutual in-
formation-based unbiased methods, the products of the Jacobian maps are less noisy,
with values closer to 1, showing better inverse consistency.

4.4.2 Detecting Real Changes - Statistical testing on the mean log Jacobian

For both the ADNI follow-up dataset (in which patients are scanned twice with MRI,

one year apart) and ADNI baseline dataset, we create a voxel-wise t map using the

local log Jacobian values of the ten subjects, allowing us to test the validity of the zero

mean assumption. To simplify the notation, we introduce J to denote J := |Dg|. The

following voxel-wise T statistic compared to a two-tailed Student’s t distribution may

then be used to test the above null hypothesis

Tlog J(x) =

√
n · log J(x)

σlog J(x)
, (4.13)

where

log J(x) =

∑
i log Ji(x)

n
,

and
(
σlog J(x)

)2
=

∑
i

(
log Ji(x)− log J(x)

)2

n− 1
.
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Figure 4.7: (a) KL divergence and (b) SKL distance per iteration are shown for the
MI-Fluid (solid red), MI-Asymmetric Unbiased (solid blue), and MI-Symmetric Un-
biased (dashed green) methods. For MI-Fluid, both KL and SKL measures increase.
Even though the Asymmetric Unbiased method explicitly minimizes the KL diver-
gence, and the Symmetric Unbiased model minimizes the SKL distance, both the KL
and SKL measures stabilize for both unbiased methods.

We reject the null hypothesis if the p value calculated above exceeds a pre-set thresh-

old based on a suitable confidence interval. Notice the voxel-wise variance of log J

provides us with a way to assess the repeatability of a deformation method, i.e., mea-

suring the voxel-wise spread of the given multiple observations (with higher variance

corresponding to lower repeatability).

4.4.3 Permutation Testing to Correct Multiple Comparisons

To determine the overall global effects of different registration methods on the devi-

ation of log Jacobian maps throughout the brain, we performed permutation tests to

adjust for multiple comparisons [11, 77]. Following the analyses in [59], we resam-

pled the observations by randomly flipping the sign of SA,B
i (i = 1, 2, ..., n) under

the null hypothesis. For each permutation, voxelwise t tests are computed. We then
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Figure 4.8: Histograms of voxel-wise deviation gains (a) MI-Fluid over MI- Asymmet-
ric Unbiased and (b) MI-Fluid over MI-Symmetric Unbiased for one of the subjects,
for the forward direction (time 2 to time 1) and backward direction (time 1 to time 2).
The histograms are skewed to the right, indicating the superiority of Asymmetric Un-
biased and Symmetric Unbiased registration methods over Fluid registration. Paired t
test shows significance (p < 0.0001).

compute the percentage of voxels inside the chosen ROI (in this case the ICBM mask)

with T statistics exceeding a certain threshold. The multiple comparisons corrected

p value may be determined by counting the number of permutations whose above-

defined percentage exceeds that of the un-permuted observed data. This is comparable

to ‘set-level inference’ in the widely-used SPM (Statistical Parametric Mapping) func-

tional image analysis package [38]. For example, we say that sequence B outperforms

A on the whole brain if this corrected p value is smaller than 0.05 (that is, less than
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Baseline Study

Figure 4.9: Volume from the ADNI Baseline dataset.

5% of all permutations have the above-defined percentage greater than that of the orig-

inal data). In our study, with n = 10, all possible (210 = 1024) permutations were

considered in determining the final corrected p value.

4.4.4 Cumulative Distribution Function (CDF)

To visually assess the global significance level of the voxel-wise t tests on deviation

gains and log-Jacobian values, we also employed the cumulative distribution function

(CDF) plot, as in several prior studies [10, 18, 62, 74]. In brief, we plot observed

cumulative probabilities against the theoretical distribution under the null hypothesis.

These CDF plots are commonly created as an intermediate step, when using the false

discovery rate (FDR) method to assign overall significance values to statistical maps

[4, 5, 40, 93, 94, 116]. As they show the proportion of supra-threshold voxels in

a statistical map, for a range of thresholds, these CDF plots (sometimes called Q-Q

plots) offer a measure of the effect size in a statistical map. They also may be used to

demonstrate which methodological choices influence the effect size in a method that

creates statistical maps [10, 18, 62].

In the case of deviation gains S of a worse technique A over a better technique B in
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Baseline Study

(a) L2-Fluid (b) L2-Asym.Unbiased (c) L2-Sym.Unbiased

Figure 4.10: Nonrigid registration was performed on the ADNI Baseline study (serial
MRI images acquired two weeks apart) of ten normal elderly subjects using L2-Fluid
(column 1), L2-Asymmetric Unbiased (column 2), L2-Symmetric Unbiased (column
3) registration methods. For each method, the mean of the resulting 10 Jacobian maps
is superimposed on one of the brain volumes. Visually, L2-Fluid generates a noisy
mean map, while maps generated using L2-Asymmetric Unbiased and L2-Symmetric
Unbiased methods are less noisy with values closer to 1. For all deformation models,
regions with least stability, due to both spatial distortion and intensity inhomogeneity,
are the brain stem, thalamus, and ventricles.

the ADNI baseline data, we expect a CDF curve to lie above the Null line, in the sense

that a better technique exhibits less systematic changes. In the case of log-Jacobian

values, a better registration technique, on the other hand, should be able to separate the

CDF curves between ADNI baseline and follow-up phases (this is what we refer to as

the separation of CDF curves in the presence of real physiological changes).
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Table 4.1: Global T statistics for all ten subjects testing whether Symmetric Unbiased
registration (method B) outperforms Fluid registration (method A) when coupled with
L2.

Subject # 1 2 3 4 5

SA,B 0.0639 0.0337 0.0758 0.101 0.0968

σ2
SA,B 0.00342 0.00102 0.00567 0.00906 0.00926

TSA,B 542 524 499 525 499

Subject # 6 7 8 9 10

SA,B 0.0581 0.473 0.583 0.288 0.238

σ2
SA,B 0.00416 0.185 0.386 0.0618 0.0515

TSA,B 447 546 465 575 520

4.5 Results

In this section, we tested the Asymmetric Unbiased and Symmetric Unbiased models

and compared the results to those obtained using the Fluid registration model [21,

28]. Of note, even though Asymmetric Unbiased and Symmetric Unbiased methods

minimize different energy functionals, our experiments showed that they generate very

similar maps. For each regularization technique, we employed both L2 and mutual

information matching functionals (see equations (4.6)-(4.9)).

To obtain a fair comparison, re-gridding was not employed. Re-gridding is a

method to relax the energy computed from the linear elasticity prior after a certain

number of iterations, which allows large-deformation mappings to be recovered with-

out any absolute penalty on the displacement field (other than via the smoothness con-

straint on the velocity field which is integrated to give the displacement) [21]. It is es-

sentially a memory-less procedure, as how images are matched after each re-gridding

is independent of the final deformation before the re-gridding, rendering the compar-

ison of final Jacobian fields and cost functionals problematic. Moreover, we consider
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Table 4.2: Global T statistics for all ten subjects testing whether Symmetric Unbiased
registration (method B) outperforms Fluid registration (method A) when coupled with
mutual information.

Subject # 1 2 3 4 5

SA,B 0.0697 0.0262 0.0399 0.0342 0.0379

σ2
SA,B 0.00579 0.000774 0.00156 0.00138 0.00138

TSA,B 455 468 501 456 505

Subject # 6 7 8 9 10

SA,B 0.0820 0.0853 0.0774 0.0489 0.0773

σ2
SA,B 0.00708 0.00845 0.00698 0.00232 0.00529

TSA,B 484 460 460 504 527

the strategy of re-gridding, through the relaxation of deformation fields over time, to

be less rigorous from a theoretical standpoint, as the imposition of a regularizer can

be used to secure distributional properties in the resulting statistics (e.g., symmetric

log-Jacobian).

Uniform values of λ = 500 in equation (4.7) and λ = 1000 in equation (4.6) were

used for all deformations using L2-Symmetric Unbiased and L2-Asymmetric Unbi-

ased algorithms, respectively. Also, λ = 5 in equation (4.9) and λ = 10 in equation

(4.8) were used for deformations using MI-Symmetric Unbiased and MI-Asymmetric

Unbiased methods. Since the Asymmetric Unbiased model quantifies only the for-

ward deformation, the weight of the corresponding regularization functional is half the

magnitude of that of the Symmetric Unbiased model, and hence, a weighting parame-

ter twice as large should be used.

Some of the figures in this chapter were generated using BrainSuite visualization

tool [89].
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Baseline Study

L2-Fluid vs. L2-Asym.Unbiased L2-Fluid vs. L2-Sym.Unbiased

Figure 4.11: Voxel-wise paired t test for the deviation gain S empirically thresh-
olded at 2.82 (p = 0.005 on the voxel level with 9 degrees of freedom), showing
where L2-Asymmetric Unbiased and L2-Symmetric Unbiased registration outperform
L2-Fluid registration (regions in red) with statistical significance on a voxel level. In
contrast, there are no voxels with T values smaller than -2.82, indicating that Fluid reg-
istration does not outperform unbiased methods at any voxel. Hence, the visualization
of voxel-wise paired t test with a threshold of -2.82 is omitted.

4.5.1 ADNI Baseline Scans

In this section, nonlinear registration was performed on a dataset that we shall refer to

as the “ADNI Baseline” dataset, collected during the preparatory phase of the ADNI

project, which includes serial MRI images of ten normal elderly subjects acquired

two weeks apart. Each of the ten pairs of scans is represented on a 128 × 160 × 128

grid. Here, the foundation of calibrations is based on the assumption that, by scanning

normal control human subjects serially within a two-week period using the same MRI

protocol, no systematic structural changes should be recovered.

In our first experiment, we compared methods based on L2 matching (L2-Fluid,

L2-Asymmetric Unbiased, and L2-Symmetric Unbiased). Figures 4.1-4.4 show the re-

sults of registering a pair of serial MRI images for one of the subjects (subject 3). The

deformation was computed in both directions (time 2 to time 1, and time 1 to time 2)

using methods based on L2 matching. In Figure 4.1, Jacobian maps of deformations

102



Baseline Study

(a) MI-Fluid (b) MI-Asym.Unbiased (b) MI-Sym.Unbiased

Figure 4.12: Nonrigid registration was performed on the ADNI Baseline study (serial
MRI images acquired two weeks apart) of ten normal elderly subjects using MI-Fluid
(column 1), MI-Asymmetric Unbiased (column 2), MI-Symmetric Unbiased (column
3) registration methods. For each method, the mean of the resulting 10 Jacobian maps
is superimposed on one of the brain volumes. Visually, MI-Fluid generates a noisy
mean map, while maps generated using MI-Asymmetric Unbiased and MI-Symmetric
Unbiased methods are less noisy with values closer to 1. For all deformation models,
regions with least stability, due to both spatial distortion and intensity inhomogeneity,
are the brain stem, thalamus, and ventricles.

are superimposed on brain volumes. Both Asymmetric Unbiased and Symmetric Un-

biased methods generate less noisy Jacobian maps with values closer to the identity

mapping, which shows the superior stability of the Unbiased approach in the absence

of physiological changes. In Figure 4.2, we visually assessed the inverse consistency

of the mappings [20] by concatenating forward and backward Jacobian maps (in an

ideal situation, this operation should yield the identity). Again, we observe noticeable

visual differences between the results obtained using the unbiased methods and Fluid

103



Baseline Study

MI-Fluid vs. MI-Asym.Unbiased MI-Fluid vs. MI-Sym.Unbiased

Figure 4.13: Voxel-wise paired t test for the deviation gain S empirically thresh-
olded at 2.82 (p = 0.005 on the voxel level with 9 degrees of freedom), showing
where MI-Asymmetric Unbiased and MI-Symmetric Unbiased registration outperform
MI-Fluid registration (regions in red) with statistical significance on a voxel level. In
contrast, there are no voxels with T values smaller than -2.82, indicating that Fluid reg-
istration does not outperform unbiased methods at any voxel. Hence, the visualization
of voxel-wise paired t test with a threshold of -2.82 is omitted.

registration. Figure 4.3 plots the KL divergence and SKL distance measures for each

of the L2-based methods. For L2-Fluid method, both KL and SKL measures increase

with increasing numbers of iterations. On the other hand, even though the Asymmetric

Unbiased method minimizes the KL divergence and the Symmetric Unbiased model

minimizes the SKL distance, these two measures stabilize for both unbiased meth-

ods. Figure 4.4 shows the histograms of voxel-wise deviation gains of L2-Fluid over

L2-Asymmetric Unbiased as well as L2-Fluid over L2-Symmetric Unbiased. The his-

tograms are skewed to the right, indicating the superiority of both unbiased registration

methods over Fluid registration.

Of note, we have also considered a different deviation map, defined as dev2(x) =
∣∣|Dg(x)|− 1

∣∣, in place of (4.10). We performed statistical analyses with this definition

of deviation gain, which yielded very similar results. These results are therefore not

shown here.
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(a) L2-Fluid vs. L2-Symmetric Unbiased (b) MI-Fluid vs. MI-Symmetric Unbiased

Figure 4.14: Multiple Comparison Analysis using permutation testing on the deviation
gain S of (a) L2-Fluid over L2-Symmetric Unbiased and (b) MI-Fluid over MI-Sym-
metric Unbiased, both for baseline ADNI dataset. Each permutation randomly assigns
a positive or negative sign to each of the 10 log-Jacobian maps. Here, results are
plotted with respect to the number of positive signs (from 0 to 10) with 10 positive
signs indicating the observed data. Dark blue, light blue, and green colors indicate the
minimum, average, and maximum percentage of voxels with p < 0.05 of all possible
permutations with a given number of positive signs. There is only one observation
for the observed data, and thus, minimum, maximum, and average values are equal
for the rightmost bar. The result indicates that out of 1024 permutations, no permuta-
tion gives a greater percentage of voxels with p < 0.05 than the observed data does.
This indicates that unbiased regularization technique outperforms Fluid methods with
p < 0.001. Since the results obtained using Asymmetric Unbiased method are similar
to those obtained using Symmetric Unbiased method, they are not shown here.

In Table 4.1, we compared L2-Fluid and L2-Symmetric Unbiased methods, con-

ducting a within-subject paired t test inside the ICBM mask for each of the ten subjects.

In this case, p < 0.0001 for all subjects, indicating that the Symmetric Unbiased regis-

tration, when coupled with L2 matching cost functional, produces more reproducible

maps with less variability.

Figure 4.10 shows the mean Jacobian maps obtained using L2-Fluid, L2-Asymmetric

Unbiased, and L2- Symmetric Unbiased registration algorithms. Jacobian maps gen-
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L2−Fluid vs. L2−Unbiased
Null

(a) L2-Fluid vs. L2-Asym.Unbiased (b) L2-Fluid vs. L2-Sym.Unbiased

Figure 4.15: Cumulative distribution of p-values for the deviation gain S of (a)
L2-Fluid over L2-Asymmetric Unbiased and (b) L2-Fluid over L2-Symmetric Unbi-
ased. Here, the ADNI baseline dataset is used. In both (a) and (b), the CDF line is
well above the Null line (y = x), indicating that both asymmetric and symmetric un-
biased methods outperform Fluid method (i.e. less deviation) in being less likely to
exhibit structural change in the absence of biological change. Note that the interval
p ∈ [0, 0.05] is of most importance for observation.

erated using unbiased models have values closer to 1, whereas L2-Fluid model gener-

ated noisy mean maps. Figure 4.11, shows the results when performing 3D voxel-wise

paired t tests for the deviation gain of L2-Fluid over L2-Asymmetric Unbiased and

L2-Fluid over L2-Symmetric Unbiased. T maps for the deviation gains are empiri-

cally thresholded at 2.28 (p = 0.005 on the voxel level with 9 degrees of freedom) to

show statistical significance.

Figure 4.14(a) shows results obtained using Multiple Comparison Analysis with

permutation testing on deviation gains of L2-Fluid over L2-Symmetric Unbiased. The

results indicate that out of 1024 permutations, no permutation yields a larger percent-

age of voxels with p < 0.05 than the observed data, which indicates that L2-Symmetric

Unbiased method outperforms L2-Fluid with p < 0.001.

To emphasize the differences between the distributions of log Jacobian values for
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MI−Fluid vs. MI−Unbiased
Null

(a) MI-Fluid vs. MI-Asym.Unbiased (b) MI-Fluid vs. MI-Sym.Unbiased

Figure 4.16: Cumulative distribution of p-values for the deviation gain S of (a)
MI-Fluid over MI-Asymmetric Unbiased and (b) MI-Fluid over MI-Symmetric Un-
biased. Here, ADNI baseline dataset is used. In both (a) and (b), the CDF line is well
above the Null line, indicating that both asymmetric and symmetric unbiased methods
outperform Fluid method in being less likely to exhibit structural change in the ab-
sence of biological change. Note that the interval p ∈ [0, 0.05] is of most importance
for observation.

Fluid and unbiased (both asymmetric and symmetric) methods, in Figure 4.15, we

plotted the cumulative distribution function of the p-values in deviation gains as de-

fined in equation (4.11). In these plots, the interval p ∈ [0, 0.05] is of most importance

for observation. For a null distribution, this cumulative plot falls along the line y = x

in xy-plane, as represented by the dashed black line. Larger upward inflections of the

CDF curve near the origin are associated with significant deviation gains, indicating

that both Asymmetric Unbiased and Symmetric Unbiased methods outperform Fluid

method in being less likely to exhibit structural changes in the absence of systematic

biological changes.

In our second experiment, we compared the performance of methods based on mu-

tual information matching (MI-Fluid, MI-Asymmetric Unbiased, and MI- Symmetric

Unbiased). As for methods based on L2 matching, Figures 4.5-4.8 demonstrate MI-
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Table 4.3: Global T statistics for all ten subjects testing whether MI-Fluid (method B)
outperforms L2-Fluid (method A).

Subject # 1 2 3 4 5

SA,B 0.000997 0.00435 0.0520 0.0971 0.0721

σ2
SA,B 0.00819 0.00121 0.00529 0.0156 0.0118

TSA,B 5 62 355 385 329

Subject # 6 7 8 9 10

SA,B 0.0269 0.445 0.566 0.274 0.196

σ2
SA,B 0.00406 0.190 0.372 0.0694 0.0457

TSA,B 210 506 461 516 454

Asymmetric Unbiased and MI-Symmetric Unbiased methods to produce inverse con-

sistent maps with less variability. Table 4.2 shows the results of within-subject paired

t test for all ten subjects. The results, based on mean Jacobian maps for all subjects,

show that the Unbiased regularization technique outperforms Fluid registration with

confirmed statistical significance (Figures 4.12, 4.13, 4.14(b), and 4.16).

Lastly, we compared L2 and mutual information cost functionals for both Fluid

and Symmetric Unbiased regularization. (Since Asymmetric Unbiased and Symmet-

ric Unbiased regularizations produce similar results, we do not show the results for

the asymmetric version). We again conducted within-subject paired t tests (Tables 4.3

and 4.4) as well as group paired t tests (Figure 4.17) on the voxel-wise deviation gains

for all voxels inside the ICBM brain mask. We showed that MI-Fluid outperforms

L2-Fluid with p < 0.0001. However, the result of the comparison of L2-Symmetric

Unbiased and MI-Symmetric Unbiased is inconclusive. In other words, mutual infor-

mation performs better when coupled with Fluid registration, but there is no statistical

difference between mutual information and L2 when the Symmetric Unbiased method

is used.
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Table 4.4: Global T statistics for all ten subjects testing whether L2-Symmetric Unbi-
ased (method B) outperforms MI-Symmetric Unbiased (method A).

Subject # 1 2 3 4 5

SA,B 0.00648 0.00314 -0.0161 -0.0244 -0.0132

σ2
SA,B 0.000458 0.000111 0.000424 0.00155 0.000593

TSA,B 150 148 -387 -307 -269

Subject # 6 7 8 9 10

SA,B 0.0101 -0.0568 -0.0746 -0.0352 -0.0347

σ2
SA,B 0.000262 0.00323 0.00367 0.00133 0.00121

TSA,B 309 -497 -611 -478 -495

To explain this result, we postulate that by constraining the deformations less (i.e.,

as in Fluid registration), assuming intensity 1-to-1 correspondence (i.e., matching us-

ing L2) may lead to local oscillations of the deformation maps, as minimizing L2 forces

a local search for the smallest intensity differences. One result of this is a Jacobian map

with locally extreme values, translating into spurious signals and, in our case, less re-

producibility. On the other hand, the Symmetric Unbiased method eliminates local

oscillations, allowing globally better matching when intensity 1-to-1 correspondence

can be assumed (i.e., when L2 is applicable as a data fidelity term).

4.5.2 ADNI Follow-up Scans

In this section, we analyze a dataset we shall call the “ADNI Follow-up” phase dataset,

which includes serial MRI images (220× 220× 220) of ten subjects acquired one year

apart. These data were collected as part of a larger study to track degenerative brain

changes in MRI in 800 subjects, ages 55 to 90, including 200 elderly controls, 400

subjects with mild cognitive impairment, and 200 patients with AD. As the images are

now one year apart, real anatomical changes are present, which allows methods to be
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(a) L2-Fluid vs. MI-Fluid (b) MI-Sym.Unbiased vs. L2-Sym.Unbiased

Figure 4.17: Multiple Comparison Analysis using permutation testing on the devi-
ation gain S of (a) L2-Fluid over MI-Fluid and (b) MI-Symmetric Unbiased over
L2-Symmetric Unbiased, both for baseline ADNI dataset. Each permutation randomly
assigns positive or negative sign to each of the 10 log-Jacobian maps. Here, results
are plotted with respect to the number of positive signs (from 0 to 10) with 10 positive
signs indicating the observed data. Dark blue, light blue, and green colors indicate the
minimum, average, and maximum percentage of voxels with p < 0.05 of all possible
permutations with a given number of positive signs. There is only one observation for
the observed data, and thus, minimum, maximum, and average values are equal for the
rightmost bar. The result in (a) indicates that out of 1024 permutations, no permuta-
tion gives a greater percentage of voxels with p < 0.05 than the observed data does.
This indicates that MI-Fluid method outperforms L2-Fluid method with p < 0.001.
However, the comparison of MI-Symmetric Unbiased and L2-Symmetric Unbiased in
(b) is inconclusive. Since the results obtained using Asymmetric Unbiased method are
similar to those obtained using Symmetric Unbiased method, they are not shown here.

compared in the presence of true biological changes.

In Figure 4.19, nonlinear registration was performed using Fluid, Asymmetric Un-

biased, and Symmetric Unbiased methods coupled with L2 matching. Visually, the

Fluid method generates noisy mean Jacobian maps, while maps generated using un-

biased methods suggest a volume reduction in gray matter as well as ventricular en-

largement. Here, both Asymmetric Unbiased and Symmetric Unbiased methods per-

form equally well. Figure 4.21 displays the cumulative distribution of p-values for
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the voxel-wise log Jacobian t-maps for both ADNI Baseline and ADNI Follow-up

datasets. We expect a better method to separate these two CDF curves, indicating that

a real biological change has occurred between the two time points. A greater separa-

tion is accomplished when Asymmetric Unbiased and Symmetric Unbiased methods

are used, while the Fluid method does not differentiate between the two datasets. Sim-

ilar results are obtained using mutual information based methods (Figure 4.20).

4.5.3 Large-Scale ADNI Study

We also performed a large-scale study using 100 pairs of serial MR images, acquired

12 months apart, from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset.

The selected sample consisted of 20 patients with Alzheimer’s disease (AD), 40 indi-

viduals with mild cognitive impairment (MCI), and 40 healthy elderly controls (CTL)

[61]. Here, the images were registered using Symmetric Unbiased registration cou-

pled with L2 matching. In Figure 4.22, the mean of the resulting Jacobian maps in

each group is superimposed on a brain volume. The resulting statistical maps suggest

widespread progressive atrophy throughout the entire brain and expansion of ventric-

ular and CSF spaces in AD (compared to controls), and a more restricted pattern of

atrophy in MCI.

4.6 Conclusion

In the past decade, information theory has been studied extensively in computational

imaging. However, there have been few rigorous studies to date that investigate the sta-

tistical aspect of the resulting deformation fields. Different regularization techniques

have been proposed, sometimes generating deformations very different from one an-

other.
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Follow-up Study

Figure 4.18: Volume from the ADNI Follow-up dataset.

In this chapter, we examined the power of different nonrigid registration mod-

els to detect changes in tensor-based morphometry, and their stability when no real

changes are present. It is the first work to systematically investigate the reproducibil-

ity and variability of different registration methods in TBM. This chapter introduced

a novel asymmetric unbiased registration model (the Asymmetric Unbiased model),

which produces results that are very similar to those obtained using the previously

introduced Symmetric Unbiased model. We showed that Asymmetric Unbiased and

Symmetric Unbiased models perform significantly better than the fluid registration

technique. Although various techniques have been extensively applied to detect dis-

ease effects and monitor brain changes with TBM, this work is the first calibration

study to compare registration models for tensor-based morphometry. We believe our

results are important, as they provide greater insight into the interpretation of TBM

results in the future.
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Follow-up Study

(a) L2-Fluid (b) L2-Asym.Unbiased (c) L2-Sym.Unbiased

Figure 4.19: Nonrigid registration was performed on the ADNI Follow-up study (serial
MRI images acquired 12 months apart) using L2-Fluid (column 1), L2-Asymmetric
Unbiased (column 2), and L2-Symmetric Unbiased (column 3) registration methods.
For each method, the mean of the resulting 10 Jacobian maps is superimposed on one
of the brain volumes. Visually, L2-Fluid generates a noisy mean map, while maps
generated using the L2-Asymmetric Unbiased and L2-Symmetric Unbiased methods
suggest a volume reduction in gray matter as well as ventricular enlargement.
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Follow-up Study

(a) MI-Fluid (b) MI-Asym.Unbiased (c) MI-Sym.Unbiased

Figure 4.20: Nonrigid registration was performed on the ADNI Follow-up study (serial
MRI images acquired 12 months apart) using MI-Fluid (column 1), MI-Asymmetric
Unbiased (column 2), and MI-Symmetric Unbiased (column 3) registration methods.
For each method, the mean of the resulting 10 Jacobian maps is superimposed on one
of the brain volumes. Visually, MI-Fluid generates a noisy mean map, while maps
generated using the MI-Asymmetric Unbiased and MI-Symmetric Unbiased methods
suggest a volume reduction in gray matter as well as ventricular enlargement.
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(c)

Figure 4.21: Cumulative distribution of p-values for the voxelwise log Jacobian t-maps
(as defined in Equation (4.13)) for both ADNI Baseline (in blue) and Follow-up (in
green) using (a) L2-Fluid, (b) L2-Asymmetric Unbiased, and (c) L2-Symmetric Unbi-
ased methods. Here, a better method should separate these two CDF plots (see Section
4.4.4) with the Null line in between, indicating a real biological change has occurred
between these two time points. Hence, L2-Asymmetric Unbiased and L2-Symmetric
Unbiased methods outperform L2-Fluid method. Note that the interval p ∈ [0, 0.05] is
of most importance for observation.
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(a) AD (b) MCI (c) CTL

Figure 4.22: Unbiased registration with L2 matching was performed on 100 pairs
of serial MR images, acquired 12 months apart, from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) dataset. The selected sample consisted of 20 patients with
Alzheimer’s disease (AD), 40 individuals with mild cognitive impairment (MCI), and
40 healthy elderly controls (CTL). The mean of the resulting Jacobian maps in each
group is superimposed on a brain volume.
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CHAPTER 5

Multiphase Segmentation of Deformation using

Logarithmic Priors

In Chapter 2, we described the proposed unbiased large deformation nonlinear im-

age registration model which has been successfully used to obtain theoretically and

intuitively correct deformation maps. In this chapter, we extend this idea to simul-

taneously registering and tracking deforming objects in a sequence of two or more

images. A level set based Chan-Vese multiphase segmentation model is generalized to

consider Jacobian fields while segmenting regions of growth and shrinkage in defor-

mations. Deforming objects are thus classified based on magnitude of homogeneous

deformation.

5.1 Introduction

Segmentation of homogeneous deformation is a challenging problem which incorpo-

rates several image processing and computer vision areas including image registration,

segmentation, and tracking. The goal of deformation segmentation is to classify re-

gions of homogeneous volume/density change based on magnitude of such change.

In this work, we employ a robust image registration model for generating priors for

further segmentation of deformed features.

Image registration models are used to align, or spatially normalize, one image to
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match another. Presented with a choice of an image registration method, it is important

to ensure that the model in consideration generates meaningful deformation fields. In

general, the transformation that defines the correspondence map between the images

should be diffeomorphic, to preserve the topology. As was described in Chapter 2, not

all widely used image registration models generate theoretically and intuitively correct

deformation fields. In Chapter 2, we proposed information theory approach to quan-

tifying deformation and described the framework for constructing large deformation

diffeomorphic image registration models.

Even though a robust nonlinear registration model can generate meaningful defor-

mation maps, an automated segmentation process would be required to classify regions

of homogeneous deformation in a sequence of images. Next, we will explain how to

generalize level set based active contour without edges model [14] to classify regions

of homogeneous deformation.

5.2 Segmentation of Deforming Objects

The unbiased registration model described in Chapter 2, and given by Algorithm 1,

generates inverse consistent and topology preserving deformation maps. The Jacobian

determinants of the deformations recovered between a pair of images using unbiased

registration follow a log-normal distribution, with zero mean after log-transformation.

We demonstrated that this distribution is beneficial when recovering change in regions

of homogeneous intensity, and in ensuring symmetrical results when the order of two

images being registered is switched.

In this section, we use the Jacobian maps for segmentation of regions of homo-

geneous deformation. We refer readers to prior works on variational segmentation

models [12, 56, 57]. In our approach, we employ the two-phase and multiphase level
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set based segmentation models [14, 15, 102] originally used for segmenting intensity

images. We will explain how these models can be generalized to classify the regions

of homogeneous deformation obtained with the unbiased registration model.

5.2.1 The Chan-Vese Intensity Based Segmentation Model

The One Level Set (Two-Phase) Framework. Based on the Mumford and Shah

functional [75] for segmentation, Chan and Vese [14] proposed a level set method

based active contour model to detect objects whose boundaries are not necessarily

defined by a gradient.

Let us denote a given image by I0 : Ω → R and suppose C (C = ∂R) is a

hypersurface representing a boundary of a region of interest R ⊂ Ω. The Chan-Vese

(CV) model minimizes the following energy:

FCV
2 (c1, c2, C) =

∫

R1=R

(I0(x)− c1)
2 dx

+

∫

R2=Ω\R
(I0(x)− c2)

2 dx + β

∫

∂R

ds,
(5.1)

where c1, c2 are unknown constants, and β > 0 is the length parameter. This problem is

solved using the level set method of Osher and Sethian [82]. In a level set formulation,

a hypersurface C is represented implicitly by the zero level set of a Lipshitz continuous

function φ : Ω → R, such that:

φ(x) < 0 in R, φ(x) > 0 in Ω\R.

The Chan-Vese functional, given in equation (5.1), can be written in the level set for-
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mulation as

FCV
2 (c1, c2, φ) =

∫

Ω

(I0(x)− c1)
2(1−H(φ)) dx

+

∫

Ω

(I0(x)− c2)
2H(φ) dx + β

∫

Ω

|∇H(φ)| dx,
(5.2)

where H(y) is a heaviside function. The functional is minimized using incremental

updating along the gradient descent direction of the Euler-Lagrange equation in φ:

∂φ

∂t
= δ(φ)

[
β∇ ·

( ∇φ

|∇φ|
)

+ (I0 − c1)
2 − (I0 − c2)

2
]
,

where δ(y) is the delta function and t is an artificial time. The constants c1 and c2 are

evaluated as

c1(φ) =

∫
Ω

I0(x)(1−H(φ(t, x)))dx∫
Ω
(1−H(φ(t, x)))dx

,

c2(φ) =

∫
Ω

I0(x)H(φ(t, x))dx∫
Ω

H(φ(t, x))dx
.

Note that c1 and c2 are the averages of the intensities of I0 inside and outside C,

respectively. The two-phase segmentation of the image I0(x) is given by

I(x) = c1(1−H(φ(x))) + c2H(φ(x)).

The Two Level Set (Multiphase) Framework. In [102], the authors generalized the

one level set function active contour without edges model to multiphase framework,

which incorporates two or more level set functions. A four-phase model, described in

this section, allows for up to four regions to be segmented. Here, we suppose C1 and

C2 are hypersurfaces separating an image into four disjoint regions Ri ⊂ Ω, 1 ≤ i ≤ 4.

Some of these regions are allowed to be empty. The four phase model thus minimizes
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the following energy:

FCV
4 (c11, c12, c21, c22, C1, C2) = β

∫

C1

ds + β

∫

C2

ds

+

∫

R1

(I0(x)− c11)
2 dx +

∫

R2

(I0(x)− c12)
2 dx

+

∫

R3

(I0(x)− c21)
2 dx +

∫

R4

(I0(x)− c22)
2 dx,

(5.3)

where c11, c12, c21, c22 are unknown constants, and β > 0 is the length parameter. Rep-

resenting C1 and C2 implicity as zero level sets of functions φ1 and φ2, respectively,

such that

φ1(x) < 0, φ2(x) < 0 in R1,

φ1(x) < 0, φ2(x) > 0 in R2,

φ1(x) > 0, φ2(x) < 0 in R3,

φ1(x) > 0, φ2(x) > 0 in R4,

we can write the Chan-Vese functional, given in equation (5.3), in the level set formu-

lation as:

FCV
4 (c11, c12, c21, c22, φ1, φ2) = β

∫

Ω

|∇H(φ1)| dx + β

∫

Ω

|∇H(φ2)| dx

+

∫

Ω

(I0(x)− c11)
2(1−H(φ1))(1−H(φ2)) dx

+

∫

Ω

(I0(x)− c12)
2(1−H(φ1))H(φ2) dx

+

∫

Ω

(I0(x)− c21)
2H(φ1)(1−H(φ2)) dx

+

∫

Ω

(I0(x)− c22)
2H(φ1)H(φ2) dx,

(5.4)

where H(y) is a heaviside function. This functional can be minimized using the gradi-

ent descent of the corresponding Euler-Lagrange equations for φ1 and φ2 to obtain the
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following evolution equations:

∂φ1

∂t
= δ(φ1)

[
β∇ ·

( ∇φ1

|∇φ1|
)

+
(
(I0 − c11)

2 − (I0 − c21)
2
)
(1−H(φ2))

+
(
(I0 − c12)

2 − (I0 − c22)
2
)
H(φ2)

]
,

∂φ2

∂t
= δ(φ2)

[
β∇ ·

( ∇φ2

|∇φ2|
)

+
(
(I0 − c11)

2 − (I0 − c12)
2
)
(1−H(φ1))

+
(
(I0 − c21)

2 − (I0 − c22)
2
)
H(φ1)

]
,

where δ(y) is the delta function and t is an artificial time. The constants c11, c12, c21, c22

are evaluated as

c11(φ1, φ2) =

∫
Ω

I0(1−H(φ1))(1−H(φ2))dx∫
Ω
(1−H(φ1))(1−H(φ2))dx

,

c12(φ1, φ2) =

∫
Ω

I0(1−H(φ1))H(φ2)dx∫
Ω
(1−H(φ1))H(φ2)dx

,

c21(φ1, φ2) =

∫
Ω

I0H(φ1)(1−H(φ2))dx∫
Ω

H(φ1)(1−H(φ2))dx
,

c22(φ1, φ2) =

∫
Ω

I0H(φ1)H(φ2)dx∫
Ω

H(φ1)H(φ2)dx
.

Here, c11, c12, c21, and c22 correspond to averages of intensities of I0 in R1, R2, R3,

and R4, respectively. The four-phase segmentation of the image I0(x) is given by

I(x) = c11(1−H(φ1))(1−H(φ2)) + c12(1−H(φ1))H(φ2)

+ c21H(φ1)(1−H(φ2)) + c22H(φ1)H(φ2).
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5.2.2 Jacobian Based Segmentation using the CV Model

Two-phase segmentation of deformation. Instead of segmenting the image based on

its intensity values, we propose to classify and track regions of homogeneous deforma-

tion using the Jacobian values |Dg|. As a result, the two-phase Chan-Vese functional

in (5.2) applied to segmentation of deformation becomes

F2(J1, J2, φ) =

∫

Ω

(|Dg(x)| − J1)
2(1−H(φ)) dx

+

∫

Ω

(|Dg(x)| − J2)
2H(φ) dx + β

∫

Ω

|∇H(φ)| dx,
(5.5)

where J1, J2 are unknown constants. This functional is minimized using incremental

updating along the gradient descent direction of the Euler-Lagrange equation in φ:

∂φ

∂t
= δ(φ)

[
β∇ ·

( ∇φ

|∇φ|
)

+ (|Dg| − J1)
2 − (|Dg| − J2)

2
]
, (5.6)

where δ(y) is the delta function and t is an artificial time. The constants J1 and J2 are

evaluated as

J1(φ) =

∫
Ω
|Dg(x)|(1−H(φ(t, x)))dx∫

Ω
(1−H(φ(t, x)))dx

,

J2(φ) =

∫
Ω
|Dg(x)|H(φ(t, x))dx∫

Ω
H(φ(t, x))dx

.

(5.7)

Note that J1 and J2 are the averages of the Jacobian values of g inside and outside C,

respectively. The two-phase segmentation of the Jacobian map |Dg|, denoted as J , is

given by

J (x) = J1(1−H(φ(x))) + J2H(φ(x)). (5.8)
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Multiphase segmentation of deformation. The multiphase functional in equation

(5.4) for homogeneous deformation segmentation becomes

F4(J11, J12, J21, J22, φ1, φ2) = β

∫

Ω

|∇H(φ1)| dx + β

∫

Ω

|∇H(φ2)| dx

+

∫

Ω

(|Dg(x)| − J11)
2(1−H(φ1))(1−H(φ2)) dx

+

∫

Ω

(|Dg(x)| − J12)
2(1−H(φ1))H(φ2) dx

+

∫

Ω

(|Dg(x)| − J21)
2H(φ1)(1−H(φ2)) dx

+

∫

Ω

(|Dg(x)| − J22)
2H(φ1)H(φ2) dx.

(5.9)

This functional can be minimized using the gradient descent of the corresponding

Euler-Lagrange equations for φ1 and φ2 to obtain the following evolution equations:

∂φ1

∂t
= δ(φ1)

[
β∇ ·

( ∇φ1

|∇φ1|
)

+
(
(|Dg| − J11)

2 − (|Dg| − J21)
2
)
(1−H(φ2))

+
(
(|Dg| − J12)

2 − (|Dg| − J22)
2
)
H(φ2)

]
,

∂φ2

∂t
= δ(φ2)

[
β∇ ·

( ∇φ2

|∇φ2|
)

+
(
(|Dg| − J11)

2 − (|Dg| − J12)
2
)
(1−H(φ1))

+
(
(|Dg| − J21)

2 − (|Dg| − J22)
2
)
H(φ1)

]
.

(5.10)
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The constants J11, J12, J21, J22 are evaluated as

J11(φ1, φ2) =

∫
Ω
|Dg|(1−H(φ1))(1−H(φ2))dx∫
Ω
(1−H(φ1))(1−H(φ2))dx

,

J12(φ1, φ2) =

∫
Ω
|Dg|(1−H(φ1))H(φ2)dx∫
Ω
(1−H(φ1))H(φ2)dx

,

J21(φ1, φ2) =

∫
Ω
|Dg|H(φ1)(1−H(φ2))dx∫
Ω

H(φ1)(1−H(φ2))dx
,

J22(φ1, φ2) =

∫
Ω
|Dg|H(φ1)H(φ2)dx∫
Ω

H(φ1)H(φ2)dx
.

(5.11)

Here, J11, J12, J21, and J22 correspond to averages of Jacobian values of g in R1,

R2, R3, and R4, respectively. The four-phase segmentation of the Jacobian map |Dg|,
denoted as J , is given by

J (x) = c11(1−H(φ1))(1−H(φ2)) + c12(1−H(φ1))H(φ2)

+ c21H(φ1)(1−H(φ2)) + c22H(φ1)H(φ2).
(5.12)

5.2.3 Algorithm

We are now ready to give an algorithm for the proposed model on segmentation of de-

formation. The algorithm describes both, the two-phase and multiphase, segmentation

cases.
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Algorithm 3 Segmentation of Deformation
1: Obtain Jacobian map |Dg| using Algorithm 1.
2: Initialize t = 0. Initialize φ(0, x) = φ0(x) for the two-phase model, or

initialize φ1(0, x) = φ10(x) and φ2(0, x) = φ20(x) for the multiphase model.
3: Calculate J1 and J2 using (5.7) for the two-phase model, or

calculate J11, J12, J21, J22 using (5.11) for the multiphase model.
4: Advance φ(x, t) in time using equation (5.6) for the two-phase model, or

advance φ1(x, t) and φ2(x, t) in time using equation (5.10) for the multiphase
model.

5: If the cost functional in equation (5.5) for the two-phase model, or the cost func-
tional in equation (5.9) for the multiphase model, decreases by sufficiently small
amount compared to the previous iteration, then stop.
Segmented Jacobian map of the deformation is given by equation (5.8) for the
two-phase model, or equation (5.12) for the multiphase model.

6: Let t := t +4t and go to step 3.

Of note, for providing additional flexibility, both intensity values of a target im-

age and the Jacobian field of the deformation could be incorporated as two channels

into a multichannel model described in [13]. Depending on an application, additional

channels may be incorporated into the model.

5.3 Results

In this section, we tested the proposed segmentation of homogeneous deformation

framework. In the first numerical example in Figure 5.1 we considered matching two

synthetic images (each of size 256 by 256, λ = 1000 in equation (2.17) for unbi-

ased nonlinear registration). The geometrical objects on each of these images (Fig-

ure 5.1(a,b)) are of identical intensity; however, each of these four objects undergoes a

deformation of a different magnitude (Figure 5.1(d,e,f)). The upper-left object (a circle

to an ellipse transformation) undergoes the biggest positive deformation (expansion)

and the lower-right object (an ellipse to a circle transformation) is being contracted.

Note that the square does not deform. In this example, the segmentation was done us-
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ing the four-phase segmentation model (5.9) with the length parameter β = 0.02·2552.

The four regions of homogeneous deformation were detected (Figure 5.1(g,h)). The

background and non-deforming square were classified as a single region of identity (or

almost identity) deformation.

In Figure 5.2, we show the results of matching a pair of two-dimensional slices

(Figure 5.2(a,b)) from a set of serial MRI images (each of size 226 by 256, λ = 400 in

equation (2.17)), where visually significant ventricle enlargement is present. Here, it is

desirable to distinguish the region of ventricular expansion from the rest of the image.

This is successfully accomplished using the segmentation of homogeneous deforma-

tion procedure (Figure 5.2(g,h)). The four-phase segmentation model was employed

in this example (with the length parameter β = 0.1 · 2552 in equation (5.9)), locating

only two regions of homogeneous deformation, which is intuitively correct.

In the last numerical example (Figures 5.3 and 5.4), we tested the proposed model

using a pair of three-dimensional serial MRI volumes (each of size 112x128x128)

which, similar to a previous two-dimensional example, display significant ventricular

growth. A fully three-dimensional computation was employed, with λ = 500 in equa-

tion (2.17), and β = 0.05 · 2552 in a two-phase segmentation model (5.5). Figure 5.4

displays the volume cuts of the two volumes matched as well as the result of seg-

mentation in the form of a surface (zero level set of function φ) of the ventricle. The

two-dimensional slices of the three-dimensional volume, as well as the correspond-

ing segmentation of deformation, are shown in Figure 5.3. The region of growth was

identified and separated from the rest of the image in this example.
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5.4 Conclusion

This chapter introduces a novel framework for simultaneously registering and tracking

deforming objects in a sequence of two or more images. We employ unbiased non-

linear image registration for generating priors for further segmentation of deformed

features. A level set based active contour without edges and multiphase segmenta-

tion models are generalized to consider Jacobian fields while segmenting regions of

growth and shrinkage in deformations. Deforming objects are thus classified based on

magnitude of homogeneous deformation.
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(a) I1 (b) I2 (c) I2 ◦ g (d) |Dg|

(e) deformed grid (f) I2 ◦ g (g) segmentation (h) segmentation
and grid contours of |Dg|

Figure 5.1: Segmentation of deformation for a synthetic image. (a) image I1; (b) im-
age I2; (c) image I2 is deformed into image I1. The upper-left circle in the image
undergoes the largest expansion (density change), while the lower-right ellipsoid un-
dergoes the contraction. The upper-right square does not deform. (d) The Jacobian
map of the deformation. Dark and bright spots represent expanding and contracting
areas, respectively. (e) The deformed grid; (f) the deformed grid and the deformed im-
age. Here, yellow, blue, and red contours represent boundaries of objects in I1, I2, and
deformed I2, respectively. (g) Segmentation results are obtained using the four-phase
(multiphase) segmentation model, which enables to find up to four regions in the im-
age. Green and yellow contours represent the zero level sets of φ1 and φ2, respectively.
The four regions of homogeneous change in density are located. (h) The segmented
Jacobian map is displayed.
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(a) I1 (b) I2 (c) I2 ◦ g (d) |Dg|

(e) deformed grid (f) I2 ◦ g (g) segmentation (h) I2 ◦ g and
and grid contours segmentation

Figure 5.2: Segmentation of deformation for 2D serial MRI image. (a) image I1; (b)
image I2; (c) image I2 is deformed into image I1. The ventricle is noticeably enlarged.
(d) The Jacobian map of the deformation; (e) the deformed grid; (f) the deformed grid
and the deformed image. Here, yellow, blue, and red contours represent the bound-
aries of objects in I1, I2, and deformed I2, respectively. (g) Segmentation results are
obtained using the four-phase (multiphase) segmentation model, which enables to find
up to four regions in the image. However, since only the ventricle had undergone
the deformation, the image is partitioned into two parts. (h) The deformed image is
superimposed with the segmentation of the deformation.
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I1

I2

I2 ◦ g and segmentation

Figure 5.3: Segmentation of deformation for 3D serial MRI image. Columns depict:
axial (column 1), sagittal (column 2), and coronal (column 3) slices of image I1; image
I2; deformed image I2 superimposed with the segmentation of deformation. Segmen-
tation results are obtained using the two-phase segmentation model, which enables to
separate two regions in the image. Since the ventricle underwent the largest deforma-
tion, it is separated from the rest of the image.
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I1 I2

segmentation of
I2 ◦ g deformed region

Figure 5.4: Segmentation of deformation for 3D serial MRI image. Volume cuts of
image I1, image I2, and deformed image I2 are shown. The surface (zero level set
of function φ) of the ventricle is shown. The ventricle surface is enlarged for better
visualization.
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APPENDIX A

Information Theory

A.1 Shannon entropy

We provide the definition of the Shannon entropy or information entropy, which is a

measure of the uncertainty of a random variable. Let X be a discrete random variable

with a set of outcomes X . The probability mass function is defined as p(x) = Pr{X =

x}, x ∈ X . The cumulative distribution function P (x) of a random variable X is

P (x) = Pr{X ≤ x}, (A.1)

and we have

Pr{x < X ≤ z} = P (z)− P (x). (A.2)

For a discrete random variable X

P (x) =
∑

∀k≤x

p(k). (A.3)

The enropy H(X) of a discrete random variable X is defined by

H(X) = −
∑
x∈X

p(x) log p(x). (A.4)

It is sometimes convenient to denote the above quantity as H(p).
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The joint entropy H(X, Y ) of a pair of discrete random variables (X, Y ) with a

joint distribution p(x, y) is defined as

H(X, Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y), (A.5)

and the conditional entropy H(Y |X) is defined as

H(Y |X) =
∑
x∈X

p(x)H(Y |X = x) (A.6)

= −
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log p(y|x) (A.7)

= −
∑
x∈X

∑
y∈Y

p(x, y) log p(y|x). (A.8)

Here, p(y|x) is the conditional probability mass function. It can be shown that the joint

entropy of two random variables is the entropy of one plus the conditional entropy of

the other:

H(X, Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y) (A.9)

= −
∑
x∈X

∑
y∈Y

p(x, y) log p(x)p(y|x) (A.10)

= −
∑
x∈X

∑
y∈Y

p(x, y) log p(x)−
∑
x∈X

∑
y∈Y

p(x, y) log p(y|x) (A.11)

= −
∑
x∈X

p(x) log p(x)−
∑
x∈X

∑
y∈Y

p(x, y) log p(y|x) (A.12)

= H(X) + H(Y |X). (A.13)
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A.2 Differential entropy

The differential entropy is an extension of the idea of the Shannon entropy to continu-

ous probability distributions. Let X be a continuous random variable with continuous

cumulative distribution function P (x) = Pr{X ≤ x}. Let p(x) = P ′(x) when the

derivative is defined. If
∫

p(x)dx = 1, p(x) is called the probability density function

for X . The differential entropy H(X) of a continuous random variable X with density

p(x) is defined as

H(X) = −
∫

D

p(x) log p(x) dx, (A.14)

where D is the support set of the random variable. The joint differential entropy

H(X, Y ) of a pair of random variables X and Y with joint density function p(x, y)

is defined as

H(X, Y ) = −
∫

p(x, y) log p(x, y) dxdy, (A.15)

and the conditional differential entropy H(X|Y ) is provided by

H(X|Y ) = −
∫

p(x, y) log p(x|y) dxdy. (A.16)

A.3 Kullback-Leibler divergence

The relative entropy or Kullback-Leibler divergence, which is a measure of the distance

between two probability mass functions p(x) and q(x), is defined as

KL(p, q) =
∑
x∈X

p(x) log
p(x)

q(x)
. (A.17)
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The continuous version is

KL(p, q) =

∫
p(x) log

p(x)

q(x)
dx. (A.18)

Although KL(p, q) ≥ 0 and KL(p, q) = 0 if and only if p = q, the Kullback-Leibler

divergence is not a true metric because it is not necessarily symmetric. Furthermore,

KL(·, ·) need not satisfy the triangle inequality.

A.4 Mutual information

We now introduce mutual information, which is a measure of the amount of informa-

tion that one random variable contains about another random variable. Consider two

random variables X and Y with joint probability mass function p(x, y) and marginal

probability mass functions p(x) and p(y). The mutual information MI(X, Y ) is the

relative entropy between the joint distribution and the product of marginal distribu-

tions:

MI(X, Y ) = KL(p(x, y), p(x)p(y)) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
. (A.19)

It can be shown that

MI(X,Y ) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
=

∑
x,y

p(x, y) log
p(x|y)

p(x)
(A.20)

= −
∑
x,y

p(x, y) log p(x) +
∑
x,y

p(x, y) log p(x|y) (A.21)

= H(X)−H(X|Y ). (A.22)
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Hence, the mutual information MI(X,Y ) is the reduction in the uncertainty of X due

to the knowledge of Y . Mutual information can be equivalently expressed as

MI(X,Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) = H(X) + H(Y )−H(X,Y ),

where H(X) and H(Y ) are the marginal entropies, H(X|Y ) and H(Y |X) are the

conditional entropies, and H(X, Y ) is the joint entropy of X and Y .

The mutual information MI(X, Y ) between continuous random variables, X and

Y , is defined as

MI(X,Y ) =

∫
p(x, y) log

p(x, y)

p(x)p(y)
dxdy. (A.23)

The properties of MI(X,Y ) in continuous case are the same as in the discrete case.

137



APPENDIX B

Level Set Method

B.1 The Level Set Equation

The level set method, introduced by Osher and Sethian [82], has been widely used in

computational fluid dynamics, computer vision, computer graphics, image analysis,

and medical imaging. For a recent survey on the level set method, we refer readers to

[79, 80, 81].

Consider an interface C in Rn of codimension one bounding an open region R ⊂
Ω. We wish to analyze and compute its subsequent motion under a velocity field v,

where the velocity can depend on position, time, the geometry of the interface, and

external physics. A moving interface C(t), at time t, is represented implicitly by the

zero level set of a Lipschitz continuous function φ(x, t), such that

φ(x, t) < 0 in R(t),

φ(x, t) = 0 on ∂R(t),

φ(x, t) > 0 in Ω\R(t).

Implicit function φ is used both to represent the interface and to evolve it. The evolu-

tion of implicit function φ is governed by the convection equation

φt + v · ∇φ = 0. (B.1)
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(a) (b)

Figure B.1: (a) Signed distance function φ : Ω ⊂ R2 → R is shown. The inter-
section of φ with the x1x2-plane defines the zero level set of φ. (b) An interface
C = {x | φ(x) = 0} in the x1x2-plane defines a boundary of region R ⊂ Ω.

Equation (B.1) is sometimes referred to as the level set equation.

Denoting n to be the outward unit normal to the interface and τ be any tangent

vector to the interface, the velocity v can be written as v = vNn + vT τ . Here, vN

and vT are the components of the velocity in the normal and tangential directions,

respectively. Equation (B.1) can be written as

φt +
(
vNn + vT τ

) · ∇φ = 0.

Since n and ∇φ point in the same direction, τ · ∇φ = 0. Thus, the level set equation

is equivalent to

φt + vNn · ∇φ = 0. (B.2)
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Also, since the unit normal to the interface can be expressed as

n =
∇φ

|∇φ| ,

we can rewrite equation (B.2) as

φt + vN |∇φ| = 0.

B.2 Geometry and Calculus Toolboxes

Geometric and calculus quantities are easily expressed in the level set notation. The

mean curvature κ of the interface is defined as the divergence of the normal n, κ =

∇ · n, or

κ = ∇ ·
( ∇φ

|∇φ|
)

.

The one-dimensional Heaviside function is

H(φ) =





0 if φ ≤ 0

1 if φ > 0.

In one spatial dimension, the delta function is defined as the derivative of the one-

dimensional Heaviside function

δ(φ) = H ′(φ).
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The length of C = {x | φ(x) = 0} is

|C| =
∫

Ω

|∇H(φ)| dx =

∫

Ω

δ(φ)|∇φ| dx.

The area of region R = {x | φ(x) < 0} ⊂ Ω is

|R| =
∫

Ω

(1−H(φ)) dx.

Similarly, the area of the complement of region R, namely Rc, is defined as

|Rc| =
∫

Ω

H(φ) dx.

The volume integral of a function f over the region R ⊂ Ω is defined as

∫

Ω

f(x)(1−H(φ)) dx.

The mean of f in R is

∫
Ω

f(x)(1−H(φ)) dx∫
Ω
(1−H(φ)) dx

.
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