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Abstract

We propose a simple yet efficient algorithm for total variation (TV)
minimizations with applications in the image processing realm. This
descent-type algorithm alternates between the primal and dual for-
mulations and exploit the information from both the primal and dual
variables. It converges significantly faster than some popular exist-
ing methods as demonstrated in our experiments. This approach is
to some extent related to projection type methods for solving varia-
tional inequalities. It can be applied to solve other TV model and L1

minimization problem.

1 Introduction

1.1 Background

Variational models have been extremely successful in a wide variety of image
restoration problems, and remain one of the most active areas of research in
mathematical image processing and computer vision. The most fundamen-
tal image restoration problem is perhaps denoising. It forms a significant
preliminary step in many machine vision tasks such as object detection and
recognition. Total variation based image restoration models were first in-
troduced by Rudin, Osher, and Fatemi(ROF) in their pioneering work [17].
It was designed with the explicit goal of preserving sharp discontinuities
(edges) in an image while removing noise and other unwanted fine scale
detail. It was formulated as the following minimization problem.

min
u

∫

Ω
|∇u| s.t. ‖u− f‖22 ≤ |Ω|σ

2. (1)

Here, Ω denotes the image domain with its area being |Ω|, the function
f : Ω→ R represents the given observed image and σ2 is an estimate of the
variance of the noise in the image f .

Rather than solving the constrained minimization problem (1), ROF
and sub-sequent researchers also considered the unconstrained minimization
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problem which uses TV as a Tikhonov regularization

min
u

∫

Ω
|∇u| +

λ

2
‖u− f‖22 (2)

The above problem (2) yields the same solution as (1) for a suitable choice
of the Lagrange multiplier λ (see [5]).

More recently, the dual formulation of unconstrained ROF model (2) has
also also been studied and numerical algorithms are proposed correspond-
ingly (see [6], [2], [4]). It was shown that the desired clean image u∗, or the
global minimizer of primal ROF (2), can be obtained by

u∗ = f +
1

λ
∇ · w∗, (3)

where w∗ solves the following dual problem

min
|w|≤1

‖∇ · w + λf‖22. (4)

From the computational point of view, the primal and dual formulations
pose different challenges for computing their optimality solutions (see Ta-
ble 1). The total variation term in the primal formulation is non-smooth
at where |∇u| = 0, which makes the derivative-based methods impossible
without an artificial smoothing parameter. The dual formulation imposes
constraints which usually require extra effort compared to unconstrained
optimizations. Being quadratic, the dual energy is less nonlinear than the
primal energy, but the rank-deficient operator ∇· makes the dual minimizers
possibly non-unique. Finally, they share the same problem of spatial stiff-
ness due to the global couplings in their energy functions, which presents a
challenge to any algorithm in order to control the computational complexity
that scales reasonably bounded with the number of pixels.

Primal Problem (2) Dual Problem (4)

· Nondifferentiable at |∇u| = 0 · Non-uniqueness due to rank-deficient ∇·
· Highly nonlinear · Extra constraints
· Spatial stiffness · Spatial stiffness

Table 1: Computational Challenges for Primal and Dual ROF

Over the years, the ROF model has been extended to many other im-
age processing tasks, including inpaintings, blind-deconvolutions, cartoon-
texture decompositions and vector valued images. It has also been modified
in a variety of ways to improve its performance. (Interested reader can see
[3] and the reference therein for recent developments in TV based image pro-
cessing.) In this paper, we shall focus on solving the original ROF restoration
problem, but we point out that our idea can be naturally extended to other
relevant models.
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1.2 Existing Algorithms

A great amount of algorithms have been developed, aiming to solve efficiently
either the primal formulation (2) or the dual formulation (4) of the ROF
model. We shall review some of the numerical methods here and refer the
interested readers to [7] for a more comprehensive survey.

In their original paper [17], the authors proposed a time marching scheme
to solves the associated Euler-Lagrange equation of (2). The method is very
slow due to the CFL stability constraints (see [16]). In fact the time step con-
straint is near zero when the solution develop flat regions(where |∇u| ≈ 0).
Hence this scheme is only of practical use to provide low-accurate solutions,
and sometimes it may even require substantial cost to just compute a vi-
sually satisfactory image. In [18], Vogel etc. proposed to solve the same
Euler-Lagrange equation of (2) via a fixed point iteration method. The
method, requiring to solve a linear system at each iteration, is proved to
be global convergent and asymptotically much faster than the explicit time
marching scheme.

The idea of duality was first introduced in [6], where the authors ap-
plied Newton’s method to solve the primal-dual system of the ROF model.
The primal-dual Newton or CGM method was shown to have a fast locally
quadratic convergence rate. Therefore, it can be used to generate high-
accurate benchmark solutions.

The dual problem (4) alone was tackled by Chambolle in in [4], where he
proposed a semi-implicit gradient descent algorithm based on some original
observation he made on the Lagrange multipliers. The method is global
convergent with suitable stepsize. It has become popular for its simplicity
and fast convergence to medium-accurate visually satisfactory solutions.

Goldfarb and Yin proposed in [8] a unified approach that reformulates
both the primal model (1) and dual modle (4) to Second-Order Cone Pro-
gramming(SOCP) and solved them by corresponding algorithms (i.e. primal-
dual interior-point method with MOSEK package). This approach essen-
tially need to solve the update direction at each step by Newton’s lineariza-
tion and hence has the similar convergence properties to the CGM method.

More recently, Wang etc. introduced a model [19] that splits the TV term
into two parts and hereby constructed an iterative procedure of alternately
solving a pair of easy subproblems associated with an increasing sequence of
penalty parameter values. Their algorithm focus on solving the more general
denoising/deblurring problem. Later, Goldstein and Osher [9] proposed an
method based on the same splitting technique but uses Bregman distance
to deal with the artificial constraints. Both of these methods were shown to
converge very fast to a visually satisfactory solution.
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1.3 Notations and Discretizations

From now on, and until the end of the paper, we will restrict our attention to
the discrete setting. Let us fix our main notations before get into numerical
algorithms.

For the sake of simplicity, We assume that the image domain Ω is a
square, and define a regular n × n grid of pixels, indexed as (i, j), for
i = 1, 2, · · · , n, j = 1, 2, · · · , n. We represent images as two-dimensional
matrices of dimension n× n, where ui,j represents the value of the function
u at pixel (i, j). (Adaption to less regular domains is not difficult in princi-
ple.) To define the discrete total variation, we introduce a discrete gradient
operator, whose two components at each pixel (i, j) are defined as follows:

(∇u)1i,j =

{

ui+1,j − ui,j if i < n
0 if i = n

(∇u)2i,j =

{

ui,j+1 − ui,j if j < n
0 if j = n

(Thus ∇u ∈ R
n×n×2.) The discrete TV of u is then defined by

TV(u) =
∑

1≤i,j,≤n

‖(∇u)i,j‖

where ‖ · ‖ is the Euclidean (ℓ2) norm in R
m (in this case, R

2), and we shall
use this notation for the rest of the paper. Note that this norm is not a
smooth function of its argument.

To describe the problem in matrix algebra language, we reorder the
image matrix u (resp. f) row-wisely into a vector y (resp. z), associating the
(i, j) element of the two-dimensional structure with the element (j− 1)n+ i
of the vector structure, as follows:

y(j−1)n+i = ui,j, 1 ≤ i, j ≤ n.

We have y ∈ R
N , where N = n2. The (i, j) component of the gradient ∇u

can thus be represented as a multiplication of the vector y ∈ R
N by a matrix

Ak ∈ RN×2, for k = 1, 2, · · · , N :

AT
l y =















(yl+1 − yl, yl+n − yl)
T if l mod n 6= 0 and l ≤ N − n

(0, yl+n − yl)
T if l mod n = 0 and l ≤ N − n

(yl+1 − yl, 0)T if l mod n 6= 0 and l > N − n
(0, 0)T if l mod n = 0 and l > N − n.

Using this notation, the discrete version of the primal ROF model (2) can
be written as

min
y

P (y) :=

N
∑

l=1

‖AT
l y‖+

λ

2
‖y − z‖2, (5)
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1.4 Duality

As we see in the previous part of this paper, duality theory plays an impor-
tant role in TV based image restoration models, especially in developing fast
numerical algorithms to compute their optimality solutions. In this section,
we discuss about duality, and first we shall derive the dual formulation of
the discrete primal ROF model (5).

For any vector b, we have

‖a‖ = max
‖b‖≤1

aT b, (6)

which is a direct consequence from the Cauchy-Schwartz inequality.
Using the above equation, the discrete TV of y can be written as:

N
∑

l=1

‖AT
l y‖ = max

‖xl‖≤1

N
∑

l=1

(AT
l y)T xl

= max
‖xl‖≤1

yT
N

∑

l=1

Alxl (7)

= max
x∈X

yT Ax,

where

A = [A1, A2, · · · , AN ] ∈ R
N×2N , xl =

[

x1
l

x2
l

]

∈ R
2, x =











x1

x2
...

xN











∈ R
2N .

X = {x : x ∈ R
2N , ‖xl‖ ≤ 1 for l = 1, 2, · · · , N} (8)

From equation (7), we can reform the primal ROF model (5) to the
following min-max or max-min problem:

min
y

max
x∈X

Φ(y, x) := yT Ax +
λ

2
‖y − z‖2 (9a)

= max
x∈X

min
y

yT Ax +
λ

2
‖y − z‖2, (9b)

where the equality follows from the min-max theorem (see [11, Chapter VII, The-
orem 4.3.1]).

The inner minimization problem in (9b) can be solved exactly as

y = z −
1

λ
Ax. (10)
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Substituting (10) back to (9b) yields the following dual problem

max
x∈X

D(x) :=
λ

2

[

‖z‖2 −
∥

∥

∥

1

λ
Ax− z

∥

∥

∥

2
]

, (11)

or equivalently
min
x∈X

‖Ax− λz‖2. (12)

Problem (12) is the discrete counterpart of problem (4). (The matrix A is
the discrete version of the negative divergence operator −∇· and x is the
discrete dual variable.)

For primal-dual feasible pair (y, x), the duality gap G(y, x) is defined as
the difference between the primal and dual objectives:

G(y, x) = P (y)−D(x)

=
N

∑

l=1

‖AT
l y‖+

λ

2
‖y − z‖2 −

λ

2

[

‖z‖2 −
∥

∥

∥

1

λ
Ax− z

∥

∥

∥

2
]

=

N
∑

l=1

(

‖AT
l y‖ − xT

l AT
l y

)

+
λ

2

∥

∥

∥
y − z +

1

λ
Ax

∥

∥

∥

2
(13)

The duality gap is a measure of closeness of the primal-dual pair (y, x) to
the primal-dual solution, and also bounds the differences P (y) − P ∗ and
D∗−D(x), where P ∗ = D∗ is the (common) optimal objective value for the
primal and dual problems, respectively. Therefore, G(y, x) can be useful in
designing the stopping criterion for a numerical algorithm.

If y and x are feasible, then it is clear from (13) that G(y, x) ≥ 0, and
that G(y, x) = 0 iff.

{

‖AT
l y‖ − xT

l AT
l y = 0 for l = 1, · · · , N

y − z + 1
λ
Ax = 0

(14)

which is also equivalent to

{

‖AT
l y‖xl −AT

l y = 0 for l = 1, · · · , N
y − z + 1

λ
Ax = 0

(15)

(15) is refered as the primal-dual optimality system.

2 Primal-Dual hybrid gradient Algorithm

2.1 Motivations

Most existing numerical algorithms to solve ROF models (5) or (11) can be
loosely divided into two categories: those that need to solve a linear system
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of equations at each iteration (implicit) and those that require only a matrix-
vector multiplication in the discrete setting (explicit). Generally speaking,
the implicit methods(e.g. CGM and SOCP) have fast asymptotical conver-
gence rate and can provide highly accurate benchmark solutions. However,
explicit methods are preferred in many situations for their simplicity and
their fast initial convergence to medium-accurate and visually satisfactory
results. Their low memory requirements make them even more attractive
to large-scale problems. As an example for the high memory requirement of
implicit schemes, we note that an image of size 512×512 is close to the limit
of what the SOCP solver Mosek can handle on a workstation with 2GB of
memory.

In this paper, we shall develop some simple yet efficient algorithms. They
are explicit so the memory requirement is low and each iteration only takes
O(N) operations. They converge very fast to visually satisfactory solutions
and also have much improved asymptotical convergence rate compared with
existing explicit methods. Our proposed algorithms shall also exploit some
use of the dual variable since a pure primal formulation usually requires a
numerical smoothing parameter that would prevent the resulting algorithm
from converging to the true optimizer.

Previous developed gradient descent type methods are the primal time
marching method in [17] and Chambolle’s duality based semi-implicit gra-
dient descent type method in [4]. In this chapter, we refer to these two
methods as the primal gradient descent algorithm and dual gradient descent
algorithm. They are showed briefly as follows.

Primal ROF:

min
y∈RN

N
∑

l=1

‖AT
l y‖+

λ

2
‖y − z‖2, (16)

Primal gradient descent algorithm (smoothed with β):

yk+1 = yk − θk

( 1

λ

N
∑

l=1

AlA
T
l yk

√

‖AT
l yk‖2 + β

+ yk − z
)

, (17)

Primal gradient descent algorithm (unsmoothed subgradient):

yk+1 = yk − θk

( 1

λ

N
∑

l=1

Alx
k
l + yk − z

)

, (18)

where

xk
l =

{

AT

l
yk

l

‖AT

l
yk

l
‖
, if AT

l yk
l 6= 0

any element in the unit ball B(0, 1) ⊂ R
2, else

(19)
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Dual ROF:

max
x∈X

‖Ax− λz‖2

where X = {x : x ∈ R
2N , ‖xl‖ ≤ 1 for l = 1, 2, · · · , N} (20)

Dual gradient descent algorithm (Chmbolle):

xk+1
l =

xk
l − τkA

T
l (Axk − λz)

1 + τk‖A
T
l (Axk − λz)‖

. (21)

We realize that the above methods are based exclusively either on the pri-
mal formulation (5) or the dual formulation (11). Our approach is, however,
to unify the primal and dual formulations into one framework and develop
a gradient descent type method based on both formulations. Therefore, at
each step, the updates will exploit the information in both the primal and
dual states and we expect it to improve the convergence speed. We notice
that the primal problem and the dual problem has different computational
challenges. The primal problem is difficult to solve and has slow convergence
at the nonsmooth pixels where ‖AT

i y‖ = 0. The dual problem is difficult
to solve and has slow convergence at the pixels where constraints are ac-
tive : ‖xi‖ = 1. These two difficulties are almost exclusive (not strictly
exclusive, which corresponding to the strict complementarity condition of
the dual problem), hence by combining these two formulation into one al-
gorithm framework, we might be able to solve each difficulty using the help
from the other.

2.2 The Proposed Algorithm

Our approach can be most effectively illustrated under the setting of the
primal-dual formulation (9), which we rewrite here:

min
y∈RN

max
x∈X

Φ(y, x) := yT Ax +
λ

2
‖y − z‖2

Given any intermediate solution (yk, xk) at iteration step k, the proposed
algorithm updates the solution as follows.

1. Dual Step

Fix y = yk, apply one step of (projected) gradient acescent method to
the maximization problem

max
x∈X

Φ(yk, x). (22)

The ascent direction ∇xΦ(yk, x) = AT yk, so we update x as

xk+1 = PX

(

xk + τkλAT yk
)

, (23)
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where τk is the (dual) stepsize and PX denotes the projection onto the
set X:

PX(z) = arg min
x∈X
‖z − x‖.

The projection can be simply computed in our case (see remark 2 in
section 2.3). The factor λ is used in (23) so that the stepsize τk will
not be sensitive to different problems or scales of gray levels, which
also explains the same situation in (25).

2. Primal Step

Fix x = xk+1, apply one step of gradient descent method to the mini-
mization problem

min
y∈RN

Φ(y, xk+1). (24)

The ascent direction is ∇yΦ(y, xk+1) = Axk+1+λ(yk−z) and therefore
the update is

yk+1 = yk − θk(
1

λ
Axk+1 + yk − z), (25)

where θk is the (primal) stepsize.

Put them all together, we have the following algorithm.

Algorithm PDHG

Step 0. Initialization. Pick y0 and a feasible x0 ∈ X, set k ← 0.

Step 1. Choose stepize τk and θk.

Step 2. Updating.

xk+1 = PX

(

xk + τkλAT yk
)

(26a)

yk+1 = (1− θk)y
k + θk(z −

1

λ
Axk+1) (26b)

Step 3. Terminate if a stopping criterion is satisfied; otherwise set k ←
k + 1 and return to step 1.

The above algorithm is very simple. Notice here AT y and Ax are just
∇u and −∇ · w and can be computed efficiently using difference instead of
matrix-vector multiplication.

9



2.3 Remarks

1. The hybrid gradient algorithm (26) can also be developed as a (primal-
dual) proximal-point method:

xk+1 = arg max
x∈X

Φ(yk, x)−
1

2λτk

‖x− xk‖2 (27a)

yk+1 = arg min
y∈RN

Φ(y, xk+1) +
λ(1− θk)

2θk

‖y − yk‖2 (27b)

The idea here is that when using dual variable to update the primal
variable, since the dual variable is not optimal yet, we do not want
to solve the primal minimization problem exactly, instead, we add a
penalty term to force the new update close to the pervious value, vice
versa for the dual step.

2. The projection PX in (27a) can be computed in the following straight-
forward way:

(

PX(x)
)

l
=

xl

max{‖xl‖, 1}
, l = 1, 2, . . . , N. (28)

Here, since X is a Cartesian product of unit Euclidean balls, the above
operation (28) actually projects each 2 × 1 subvector of x separately
onto the unit ball in R

2.

3. Both problem (22) and (24) can be solved exactly, which would yield
the following updating formula (taking τk =∞ and θk = 1 in (26)):

xk+1
l =

AT
l yk

‖AT
l yk‖

, for l = 1, · · · , N (29a)

yk+1 = z −
1

λ
Axk+1. (29b)

However, we choose not to do so since the above algorithm does not
converge.
As a special case, if we only solve subproblem (22) exactly (taking
τk =∞ in (26) ), the resulting algorithm would be

yk+1 = yk − θk

( 1

λ

∑ AlA
T
l yk

‖AT
l yk‖

+ yk − z
)

, (30)

The above algorithm is exactly a subgradient descent method for the
primal formulation (5).

Another special case is that we solve subproblem (24) exactly (taking
θk = 1 in (26)) and still apply gradient ascent method to (22). The
resulting algorithm is as follows

PX

(

xk − τkA
T (Axk − λz)

)

, (31)
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which is a (projected) gradient descent method for dual problem (12).

Hence, the primal subgradient descent method and the dual projected
gradient descent method are two special cases of our algorithm, which
correspond to taking special stepsizes τk =∞ and θk = 1 respectively
in (26).

4. The convergence of the PDHG is (empirically) observed for a variety of
suitable stepsize pairs (τ, θ). Moreover, the choice of stepsizes are in-
sensitive to different problems or scales of gray levels. In some range,
the stability constraint on the stepsizes seems more relevant to the
product τθ rather than to τ or θ individually. For example, our ex-
periments show that convergence can be obtained for the stepsize pair
(2, 0.2) as well as for (4, 0.1). Finally, the numerical results also re-
veal that a pair of relatively small τ and large θ gives faster initial
convergence rate and the opposite choice gives faster asymptotic con-
vergence. Therefor, we can optimize the performance of the algorithm
through some strategy of choosing (τk, θk), although simple fixed step-
sizes might already give satisfactory results.

2.4 Extensions

Our algorithm can be naturally extended to other TV image restoration
models without any major modifications.

2.4.1 Constrained ROF Model

The original constrained ROF model (1) has the following discrete form

(P) min
y∈Y

N
∑

l=1

‖AT
l y‖, (32)

where Y ≡ {y ∈ R
N : ‖y − z‖ ≤ nσ}.

Using the same idea in section (1.4), we can obtain the primal-dual and
dual formulation of (32) as follows

(PD) min
y∈Y

max
x∈X

yT Ax (33)

(D) max
x∈X

−nσ‖Ax‖+ zT Ax (34)

Both the primal problem (32) and dual problem (34) are difficult to solve
since their objectives are non-smooth. However, our proposed approach
based on the primal-dual formulation (33) are simply

xk+1 = PX

(

xk +
τk

σ
AT yk

)

(35a)

yk+1 = PY

(

yk − σθkAxk+1
)

, (35b)
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where the projection PY is given by

PY (y) = z +
y − z

max
{

‖y − z‖/(nσ), 1
} (36)

The full primal-dual hybrid gradient method for constrained ROF model
is shown as follows:

Algorithm PDHG-C

Step 0. Initialization. Pick y0 and a feasible x0 ∈ X, set k ← 0.

Step 1. Choose stepize τk and θk.

Step 2. Updating.

xk+1 = PX

(

xk +
τk

σ
AT yk

)

(37a)

yk+1 = PY

(

yk − σθkAxk+1
)

, (37b)

Step 3. Terminate if a stopping criterion is satisfied; otherwise set k ←
k + 1 and return to step 1.

2.4.2 TV Deblurring Model

The total variation based image restoration model (2) can be extended to
recover blurry and noisy image f by solving the following problem:

(P) min
u

∫

Ω
|∇u| +

λ

2
‖Ku− f‖22 (38)

where K is a given linear blurring operator and every other term is defined
the same as in (2). In this model, f is formulated as the sum of a Gaussian
noise v and a blurry image Ku resulting from the linear blurring operator
K acting on the clean image ū, i.e., f = Ku + v.

Among all linear blurring operators, many are shift-invariant and can be
expressed in the form of convolution:

(Ku)(x) = (h ∗ u)(x) =

∫

Ω
h(x− y)u(y) dy, (39)

where h is the given point spread function (PSF) associated with K.
The discrete form of model (38) is

min
y

N
∑

l=1

‖AT
l y‖+

λ

2
‖By − z‖2, (40)
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where B is the discretization of the blurring operator K.
The primal-dual and dual formulation of (40) can be obtained in the

same way as in section (1.4) and are shown as follows

(PD) min
y

max
x∈X

yTAx +
λ

2
‖By − z‖2 (41)

(D) max
x∈X

−
1

2λ
‖B−1Ax− λz‖+

λ

2
‖z‖2. (42)

However, the blurring matrix B is highly ill-posed (non-invertible in
some cases), making it difficult if not impossible to compute the inverse
B−1. Therefore the dual formulation (42) is of little use in practice and
sometimes may not ever exist. On the other hand, our primal-dual hybrid
gradient descent algorithm based on formulation (41) still works well. The
core part of the algorithm are given as follows

xk+1 = PX

(

xk + τkA
T yk

)

(43a)

yk+1 = yk − θk

(

Axk+1 + λBT (Byk+1 − z)
)

. (43b)

Note the primal update step (43b) here is semi-implicit. The motiva-
tion here is that since B is ill-posed, the explicit gradient descent will have
slow asymptotic convergence. Since B is the matrix representation of a
convolution operator K, the Fourier transform of matrix multiplication by
B becomes point-wise multiplication in the frequency domain. Hence, step
(43b) can be efficiently solved by FFT and inverse FFT:

yk+1 = F−1

[

F(yk − θkAxk+1) + θkλF(K)∗ ⊙F(z)

1 + θkλF(K)∗ ⊙F(K)

]

, (44)

where F(·) and F−1(·) are FFT and inverse FFT operators, ∗ denotes the
complex conjugate and ⊙ is the pointwise multiplication operator.

The full hybrid gradient descent method for debluring (PDHG-D)is defined
as follows:

Algorithm PDHG-D

Step 0. Initialization. Pick y0 and a feasible x0 ∈ X, set k ← 0.

Step 1. Choose stepize τk and θk.

Step 2. Updating.

xk+1 = PX

(

xk + τkA
T yk

)

(45a)

yk+1 = F−1

[

F(yk − θkAxk+1) + θkλF(K)∗ ⊙F(z)

1 + θkλF(K)∗ ⊙F(K)

]

(45b)

Step 3. Terminate if a stopping criterion is satisfied; otherwise set k ←
k + 1 and return to step 1.
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3 Theoretical Connections

Our method is related to projection type methods existing in the literature
for finding saddle points and, more generally, solutions to variational in-
equalities. In this section, we shall discuss very briefly about the framework
of projection methods for solving variational inequalities and point out the
connections and difference between our method and previous work. We refer
interested readers to the survey papers [10] and [20] for the background of
this area.

Let H be a real Hilbert space (in our case, R
n), whose inner product and

norm are denoted by 〈·〉, and ‖ · ‖ respectively. Let K be a closed convex set
in H and F be a mapping from H into itself. We now consider the problem
of finding v∗ ∈ K such that

〈v − v∗, F (v∗)〉 ≥ 0, ∀ v ∈ K. (46)

The above problem is called a variational inequality problem with v∗ being
one of its solution. We denote the above variational inequality problem by
VI(K,F ). In most real applications, K is convex and F satisfy some mono-
tonicity and Lipschitz continuity properties, which we defined as follows:

Definition 1 F is said to be

(i) monotone if 〈u− v, F (u) − F (v)〉 ≥ 0 ∀u, v ∈ H.

(ii) strongly monotone if

∃ ν > 0 s.t. 〈u− v, F (u) − F (v)〉 ≥ ν‖u− v‖2 ∀u, v ∈ H.

(iii) pseudomonotone if 〈u− v, F (v)〉 > 0 ⇒ 〈u− v, F (u)〉 ≥ 0 ∀u, v ∈ H.

(iv) Lipschitz continuous if ∃L > 0 s.t. ‖F (u)− F (v)‖ ≤ L‖u− v‖ ∀u, v ∈ H.

Finding a saddle point (y∗, x∗) to the min-max problem

min
y∈Y

max
x∈X

Φ(y, x)

can be written as a special case of the variational inequality problem:

find v∗ ∈ K s.t. 〈v − v∗, F (v∗)〉 ≥ 0 ∀ v ∈ K, (47)

where

v =

[

y
x

]

F (v) =

[

Φy(x, y)
−Φx(x, y)

]

and K = Y ×X.

In particular Our ROF problem (9) and (33) can both be transformed
into a variational inequality problem VI(K,F ) in (47) with F and K defined
as follows.

For unconstrained ROF (9):

F (v) =

[

Ax + λ(y − z)
−AT y

]

and K = R
N ×X.
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For constrained ROF (33):

F (v) =

[

Ax
−AT y

]

and K = Y ×X.

Variational inequality problem is closely related to the fixed-point prob-
lem. The fixed-point theory has played an important role in the development
of various algorithms for solving variational inequalities. In fact we have the
following well-known result (see, e.g. [1, pp. 267]):

Lemma 1 v∗ is a solution of VI(K,F ) if and only if

v∗ = PK

(

v∗ − αF (v∗)
)

for any α > 0.

The fixed-point formulation in the above lemma suggests the simple iterative
algorithm of solving for u∗.

VI Algorithm 1

vk+1 = PK

(

vk − αkF (vk)
)

. (48)

The convergence of the above algorithm requires F to be strongly mono-
tone and Lipschitz continuous, which is too restrictive in many cases. An
alternative approach is to consider the following ‘implicit’ iterative scheme

VI Algorithm 2

vk+1 = PK

(

vk − αkF (vk+1)
)

. (49)

The convergence of this new algorithm only requires monotonicity of F but
it is often difficulty to solve the implicit update at each iteration, making it
less practical.

To overcome the drawbacks of the projection methods defined in (48) and
(49), Korpelevich [12] first proposed a modified method called extragradient
algorithm. It consists two projections at each iteration: a predictor step and
a corrector step.

VI Algorithm 3

v̄k = PK

(

vk − αkF (vk)
)

(50a)

vk+1 = PK

(

vk − αkF (v̄k)
)

(50b)

Global convergence is proved for the above algorithm if F is pseudomonotone
or Lipschitz continuous or the problem satisfy some local error bound (see
[20]), provided the step size αk is small enough to satisfy

αk‖F (vk)− F (v̄k)‖ ≤ µ‖vk − v̄k‖ for some fixed µ ∈ (0, 1),
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which can be obtained by simple Armijo type line search.
There are many other variants of the original extragradient algorithm

with different predictor search rule and corrector step size aiming to improve
performance (see [15] and [20]). New related developments in this direction
can also be found in [13] and [15], where the final solution is obtained by
averaging along the solution path.

Our ROF problem (9) and (33) can both be transformed into a varia-
tional inequality problem VI(K,F ) with a monotone and Lipschitz contin-
uous mapping F . Some of the existing algorithms can be applied directly
with proved global convergence. However, numerical experiments show that
none of these existing methods has comparable performance to our algo-
rithm. There are many possible explanations for this. First of all, in the
variational inequality setting the variables y and x are combined as one vari-
able u and have to be updated in one step with same steplength; while in our
approach the primal y and dual x are updated alternatively in a Gauss-seidal
type of way with freedom to choose their own step sizes. More importantly,
all the existing algorithms are developed to solve variational inequalities as
a general class; while our method exploits the particular information of the
problem, including the bilinear function F and special structure of the set
K, which allow us to choose optimal step size to improve the performance.
On the other hand, our approach is lack of a global convergence proof which
would be useful to provide some benchmark rules and can help us better
understand how the algorithm works.

4 Numerical Experiments

We report on computational experiments for three test problems in image
denoising and four test problems in image deblurring. All the programs are
run in an IBM T61 Notebook PC with Intel Core 2 Duo 2.5G CPU All
methods are coded in MATLAB. It is expected that the performance can
be improved by recoding in C or C++, but we believe that improvements
would be fairly uniform across all the algorithms.

4.1 Experiments on Image Denoising

We test three problems on image denoising. The original clean images and
the input noisy images are shown in Figure(1). The size of the two test
problems are 128 × 128, 256 × 256, and 512 × 512 respectively. The noisy
images are generated by adding Gaussian noises with standard deviation
σ = 20 to the original clean images.

The parameter λ in the unconstrained ROF model (2) is inverse related
to the noise level σ and usually need to be tuned for each individual image. In
our case, λ is chosen in the following way. We first compute the constrained
ROF model by algorithm PDHG-C for the optimality solution (y∗, x∗). Then
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the particular λ that will make the unconstrained ROF model (2) equivalent
to the constrained model (1) is given by

λ =
‖Ax∗‖

nσ
. (51)

For our test problems, the parameters λ obtained in the above way are
0.0415, 0.053 and 0.0485 respectively.

We tested the following algorithms for denoising problems:

• Chambolle’s semi-implicit gradient descent method [4];

• Split Bregman method of [9]

• The CGM method of [6].

• Primal-dual hybrid gradient methods proposed in Section 2;

Although suitable constant stepsizes will give fast convergence results
already, the power of our proposed algorithm shall be most exploit with some
optimal strategy of choosing stepsizes (τk, θk). Throughout the experiments,
we use the following stepsize strategy:

Algorithm PDHG τk = 0.2 + 0.08k, θk = (0.5 − 5
15+k

)/τk;

Algorithm PDHG-C τk = 0.2 + 0.08k θk = 0.5/τk.

In Chambolle’s method, we take the time step to be 0.248 for its near op-
timal performance. In the CGM implementation, we used a direct solver for
the linear system at each iteration by using sparse Choleskey factorization
with symmetric approximate minimum degree ordering (the built-in symamd

and chol functions in MATLAB). We note the conjugate gradient iterative
solver was slower on these examples. The smooth parameter β is dynami-
cally updated based on duality gap rather than fixed. In particular we take

β(0) = 100 and let β(k) = β(k−1) ·
(

G(k)

G(k−1)

)2
. We noticed that this simple

strategy of updating β borrowed from interior-point methods outperforms
the classical CGM measured by the decrease of duality gap.

The decision about when an approximate solution is of sufficiently high
quality to terminate the algorithm can be difficult for general constrained
optimization problems. Often, we wish the approximate solution x to be
close to a global minimizer x∗ and/or the function value F (x) be close to
F (x∗). In the denoising case, the duality gap provides a reliable and eas-
ily calculated stopping criterion. We terminate our program whenever the

relative duality gap G(yk ,xk)
D(xk)

reaches a pre-specified tolerance threshold tol.

Tables 3, 4 and 5 report numbers of iterations and CPU times required
by two primal-dual hybrid gradient algorithms as well as by Chambolle’s
algorithm and CGM method for the relative duality gap to achieve certain
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threshold. In all codes, we used the same starting point (y0, x0) = (z, 0).
(Convergence does not depend on initial conditions though.) We vary the
threshold tol from 10−2 to 10−6, producing results of increasingly high
accuracy as tol is decreased. Note we have not put the split Bregman
method here because this method can not generate duality gap as a stop
criterion.

The results in the tables demonstrates that our proposed approaches is
very competitive to existing methods. They are the winners for all tests
with different stopping criterions TOL = 10−2, 10−4, 10−6. It is significantly
faster than Chambolle’s method to obtain medium-high accurate solutions
and significantly faster than CGM method to obtain low-medium accurate
solutions.

Figure 2 shows the denoised images obtained at different values of tol.
Note that visually there is little difference between the results obtained with
two tolerance values 10−2 and 10−4. Smaller values of tol do not produce
further visual differences.

Figure 3 plots the relative duality gap against the CPU time cost for
Chambolle’s method, CGM method as well as the PDHG algorithm.

Figure 4 plots the relative L2 error and L∞ against the CPU time cost.
The errors are defined as

Relative L2error =
‖yk − y∗‖

‖y∗‖

L∞error = ‖yk − y∗‖∞,

where the exact solution u∗ is computed using CGM method with G(y∗,x∗)
D(x∗)

reaches tol = 10−12.
Figure 5 plots the “visual error” against the CPU time cost. The visual

error is defined as the ratio of pixel that differer from the exact solution
visually. More specifically, if we use [a] to denote the closed integer to
number a, then the visual error is defined as

VE(u) =
#

{

(i, j) : [ui,j] 6= [u∗
i,j]

}

n2

From all four different measures in Figure 3, 4 and 5, we see that the
primal-dual hybrid gradient method is the best performer in all situations
in terms of efficiency. We also confirmed that the Split-Bregman algorithm
have very fast visual convergence as the authors claimed in [9]. The overall
comparison results in different scopes of accuracies are listed as follows:

1. Low-accuracy, visually acceptable solution. PDHG, Split-Bregman,
and Chambolle’s method are all competitive, with PDHG slightly
faster than the other two.
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2. medium accuracy, visually satisfactory solution. Chambolle’s method
starts losing its competency. PDHG and Split-Bregman are still com-
petitive, with PDHG being from slightly faster to much faster than
Split-Bregman.

3. medium-high accurate, visually convergent (i.e. visual error =0) so-
lution. Split-Bregman starts losing its competency. PDHG is signif-
icantly faster than Split-Bregman and Split-Bregman is significantly
faster than Chambolle’s method. CGM is catching to catch up but
PDHG is still the fastest.

4. super-high accurate benchmark solution. High-order implicit method
like CGM finally wins.

4.2 Experiments on Image Deblurring/Denoising

The original images France (512 × 512) and Man (1024 × 1024) are shown
in Figure (). The intensities of the original images are scaled into the range
between 0 and 1. We tested two typical types of blurring effects: motion
and Gaussian. Specifically, we used the functions fspecial and imfilter

from the MATLAB Image Processing Toolbox with the types “motion” and
“gaussian”, and then added to the resulting blurry images the Gaussian
white noise with a mean 0 and a standard deviation 10−3 by MATLAB
function imnoise. With the “motion” blurring, we set the angle parameter
“theta” to 135 and the motion distance parameter “len” to two different
values 21 and 91 corresponding to the medium and severe levels of blurring,
respectively. With the “medium” Gaussian blurring, we set the blurring
window size “hsize” equal to 21 and the standard deviation “sigma” equal
to 5, and with the “severe” Gaussian blurring, 41 and 10, respectively. We
summarize the information on the four test images in Table 2.

Table 2: Information on Test Deblurring Problems
Test Problem Original Image Size Blurring Type

1 France 512 × 512 medium “motion”
2 France 512 × 512 severe “motion”

3 Man 1024 × 1024 medium “Gaussian”
4 Man 1024 × 1024 severe “Gaussian”

We tested our PDHG-D algorithm proposed in section 2.4 and the FTVd

algorithm in [19]. The parameter λ is chosen as λ = min{0.2/σ2, 2 · 10−11}.
For algorithm PDHG-D, we terminate the algorithm when the stop criterion

‖yk − yk−1‖∞ ≤ tol = 10−3

is satisfied. (Note the intensity is scaled in the range [0, 1]). One can also
use a smaller tol to achieve better solutions.
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Although suitable constant stepsize works well in FTVd, some adaptive
stepsize rule works even better. We use the following strategy for stepsize:

τk = 10 + 40k, θk = (1−
0.2

k
)/τk.

Note the place of the parameter λ is different for stepsize in PDHG algorithm
(26) and PDHG-D algorithm (45).

Figure 7 and 8 showed the blurry images and the deblurring results
by our our algorithm . Table 6 reports the average computational costs
of PDHG-D as well as of FTVd algorithm. It shows that the new proposed
algorithm is very competitive to existing fast methods.

5 Conclusions

We have proposed a primal-dual hybrid gradient method to solve the to-
tal variation based image restoration model of Rudin, Osher and Fatemin
(ROF) [17]. The algorithm tries to improve performance by alternating
between the primal and dual variable and exploit information from both
variables. We compare our method with two popular existing approaches
proposed by Chambolle [4], Goldstein and Osher [9] and Chan, Golub, and
Mulet [6] and show our method is consistently faster than earlier approaches
in all experiments with different stopping criterions. Our algorithm can be
applied to solve both the unconstrained ROF and constrained ROF model
and, in theory, it can be applied to solve other TV minimization model or
L1 minimization problem by transforming it to the min-max form. We also
pointed out that our algorithm is related to existing projection type methods
for solving variational inequalities.
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Figure 2: The denoised images with different level of termination criterions.
left column: tol = 10−2, right column: tol = 10−4.
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Figure 4: Plot of relative L2 error and L∞ error v.s. CPU time.

Left: relative L2 error ‖yk−y∗‖
‖y∗‖ , Right: L∞ error ‖yk − y∗‖∞.

Top: problem 1. Middle: problem2. Bottom: problem 3.
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Figure 5: Plot of visual error VE v.s. CPU Time. Top left: test problem 1.
Top right: test problem2. Bottom: test problem 3.

Figure 6: Original test images for delurring. Left: 512×512 France. Right:
1024 × 1024 man.
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Figure 7: Debluring problems 1 and 2. Left: blurry image, Right: delurring
results. Top: medium “motion” blur, Bottom: severe “motion” blur.
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Figure 8: Debluring problems 3 and 4. Left: blurry image, Right: delurring
results. Top: medium “Gaussian” blur, Bottom: severe “Gaussian” blur.
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