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Abstract

Variational segmentation methods have been intensively studied. Tra-
ditionally, the Euler-Lagrange equations are solved by some iterative nu-
merical methods. Normally, the speed is slow. In this work, the piecewise
constant level set method (PCLSM) is used for the multiphase Mumford-
Shah segmentation model. Instead of solving the Euler-Lagrange equa-
tions, we propose to solve the resulting minimization problem by graph
cuts, a combinatorial optimization technique. By finding the minimum
cut on a special graph, we obtain the solution for the segmentation prob-
lem. Numerical experiments show that the new approach is very superior
in terms of efficiency, while maintaining the same quality of results.

1 Introduction

The level set method [18, 40] is a powerful tool for representing moving or
stationary interfaces. The interface may typically be the solution of a geomet-
ric PDE or a geometric variational problem. The level set method has seen a
remarkable number of applications in image analysis, fluid dynamics, inverse
problems and computer vision [9, 8, 19, 39, 42]. The idea is to implicitly repre-
sent the interface as the zero level set of a function defined in a higher dimen-
sional euclidian space. The geometric PDE or variational problem can then be
redefined on functions in a euclidian space.

There are many options for constructing the level set function. Originally
the signed distance function to the interface was used. As an alternative, the
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work of [34, 33, 45] proposed to use piecewise constant level set functions, rep-
resenting the interfaces by discontinuities. This has certain advantages, such as
eliminating the need for reinitialization of the level set function during evolu-
tion. Another important advantage is the ability to represent several interfaces
by one single level set function. This method will be referred to as the piecewise
constant level set method (PCLSM).

The papers [34, 33, 32, 45] deal with PCLSM for the Mumford-Shah model,
which is an established variational model for image segmentation [38]. Mum-
ford Shah image segmentation was also one of the first application areas of the
level set method in computer vision. Chan and Vese [8] proposed to use the
traditional level set method as a numerical realization for this model.

In this work we will review the relationship between the Mumford-Shah
model [38], the Chan-Vese model [8] and the PCLSM [34]. Afterwards, we
reveal a relationship between the piecewise constant level set method [34] and
an integer optimization technique called graph cuts [29]. Graph cuts is a well-
known technique in image analysis and computer vision [20, 5, 21, 2, 27, 28].
What makes graph cuts so powerful, is its efficiency and ability to find global
minima. In the recent years, the relationship between graph cuts and variational
problems has started to establish [3, 4, 17]. In this work we aim to further
unify graph cuts and the level set method, and shrink the gap between some
integer and continuous optimization problems. We will show that the multiphase
Mumford-Shah functional can be minimized via graph cuts in the framework of
PCLSM. To the best of our knowledge, we are the first to attempt this.

The paper is organized as follows. Section 2.3 starts by a review of the
PCLSM and its application to Mumford-Shah image segmentation. In Section
3 we propose graph cuts as a new optimization method for the resulting mini-
mization problems. Finally, in Section 4, experiments are set up, comparing the
two approaches.

2 Previous work on PDE based image segmen-

tation

In [7], a good survey has been given to PDE based image segmentation. Due
to its wide range of applications for real problems, Mumford-Shah type of seg-
mentation methods have been intensively studied in the past years. In the
following, we review the Mumford-Shah model and the Chan-Vese model and
then show the relationship with the PCLSM. Until now, it has been common to
use some explicit time marching scheme to solve the equations resulting from
these models. The convergence is normally slow. In the next section, we show
that graph-cut type of integer minimization techniques can be used to get some
faster algorithms.
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2.1 Mumford-Shah model

The Mumford-Shah functional [38] is an established model for image segmenta-
tion problems. Let u0 be a given image defined in the domain Ω. One seek n
interfaces Γi and an approximation image u that minimizes

E(u,Γi) =

∫

Ω

(u− u0)2dx+ µ

∫

Ω\∪iΓi

|∇u|2dx+

n
∑

i=1

ν

∫

Γi

ds. (1)

For many applications, it is enough to assume that u is a piecewise constant
function. For such cases, the second term disappears from the above minimiza-
tion functional. Among the ways of representing the unknown interfaces, the
level set method is the most elegant due to its ability to deal with unknown
topology. Its main drawback is expensive computation.

2.2 Chan-Vese model

In [8], Chan and Vese proposed a level set method for numerical realization of
the optimization problem (1), assuming that u is a piecewise constant function.
In this approach, the unknown interfaces are represented by the zero level set
of a Lipschitz continuous function φ(x) : Ω 7→ R. The idea is to express the
functional (1) in terms of the level set function φ. One ends up with

min
φ,c1,c2

∫

Ω

(|∇H(φ)|+ λ{H(φ)(c1 − u0)2 + (1−H(φ))(c2 − u0)2})dx, (2)

where H(·) : R 7→ R is the Heaviside function H(x) = 0 if x < 0 and H(x) = 1
if x ≥ 0. The resulting Euler-Lagrange equation for φ is:

φt = δ(φ)

{

∇ ·
( ∇φ
|∇φ|

)

− λ{(c1 − u0)2 − (c2 − u0)2}
}

, (3)

The constant values c1 and c2 are updated in each iteration according to

c1 =

∫

ΩH(φ)u0dx
∫

Ω
H(φ)dx

c2 =

∫

Ω(1−H(φ))u0dx
∫

Ω
1−H(φ)dx

. (4)

For numerical simulations, the functions H(φ) and δ(φ) are replaced by some
smoothed regularizations. Often δ(φ) is replaced with |∇φ|. The gradient de-
cent equation is solved using an explicit finite difference scheme. The above
formulation differs a little from the original model [8], because we denote the
constant values by c.

The level set based algorithm of Chan and Vese can be extended to multi-
phase piecewise constant models as in [49]. The idea is simply to introduce new
level set functions to describe a greater number of regions using intersections
between interiors and exteriors of the level sets [44]. One can then use the
Heaviside function to express characteristic functions of the various regions that
appear in the integrals of (2) in terms of these level set functions. Subsequently,
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finding the Euler-Lagrange equations for the energy functional thus expressed
in terms of level set functions yields a coupled system of non-linear parabolic
PDEs to be solved by gradient descent. The details can be found in [49]. It must
also be mentioned that some work has been made incorporating a priori shape
information into the above functionals. The details can be found in [12, 13].

2.3 Piecewise constant level set method

One can also minize the Mumford-Shah functional by PCLSM as in [34]. The
PCLSM can be described as follows. One seek a partitioning of the domain Ω
into n subdomains {Ωi}ni=1 satisfying

∩n
i=1Ωi = Ø, ∪n

i=1Ωi = Ω. (5)

The subdomains Ωi can be multiple connected. A partitioning of Ω as in (5)
can be described in terms of a piecewise constant level set function φ

φ = i in Ωi for i = 1, 2, ..., n. (6)

In contrast to the traditional level set method [40, 8], interfaces between the
subdomains are represented as discontinuities in the level set function φ. More-
over, no more than one function φ is needed to represent any numbers of phases.
It must be emphasized that the maximum number of phases n needs to be given
in advance. Given a φ satisfying (6), it is possible to construct the characteristic
functions ψi of each subdomain Ωi by

ψi =
1

αi

∏

j=1j 6=i

(φ− j) with αi =
∏

k=1k 6=i

(i− k). (7)

We can retrieve all the geometrical information of the boundaries of Ωi from their
characteristic functions. For example, these functions can be used to calculate
the perimeter of the interfaces surrounding each subdomain Ωi:

Per(Γi) =

∫

Ω

|∇ψi| dx. (8)

In addition, any piecewise constant function u can be written as a linear com-
bination of the characteristic functions {ψi}

u =

n
∑

i=1

ciψi. (9)

Since ψi is extracted from φ, we see that u is completely characterized by the n
scalars c = {ci}ni=1 and the level set function φ. It is easy to see that a function
given in the form (9), is a piecewise constant function having values u = ci in
Ωi.
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Following the ideas outlined above, the multiphase Mumford-Shah functional
(1) can now be written in terms of the piecewise constant level set function φ

E(c, φ) =
n

∑

i=1

∫

Ω

(u− u0)2dx+
ν

2

n
∑

i=1

∫

Ω

|∇ψi|dx. (10)

The last term, which is the total variation of the characteristic function of each
subdomain, measures the perimeters.

However, this approach of regularizing each characteristic function can slow
down the convergence of the iterative scheme used for solving the minimization
problem. Almost the same results can be obtained by regularizing the level set
function φ directly (see for instance [45])

E(c, φ) =

n
∑

i=1

∫

Ω

(u− u0)2dx+ ν

∫

Ω

|∇φ|dx. (11)

This approximation of the perimeters, is somewhat similar to the original mul-
tiphase approach of Chan and Vese [49]. There are some variants of the total
variation regularization term. The commonly used version is the isotropic total
variation

TV2(φ) =

∫

Ω

|∇φ|2 dx =

∫

Ω

√

|φx1
|2 + |φx2

|2 dx (12)

In order to simplify computation, often a simpler version is used

TV1(φ) =

∫

Ω

|∇φ|1 dx =

∫

Ω

|φx1
|+ |φx2

| dx. (13)

However, since TV1 is not isotropic, regularization will be stronger in certain
directions. A more isotropic version based on the 1-norm can be obtained by
splitting TV1 between the original function, and one rotated counterclockwise
π/4 radians, c.f [6, 41].

TV1, π

4
(φ) =

1

2

∫

Ω

{

|∇φ(x)|1 + |Rπ

4
∇φ(x)|1

}

dx. (14)

Above, Rπ

4
is the rotation matrix that rotates a vector π/4 radians in the

counterclockwise direction. It is also possible to create even more isotropic
versions by considering more such rotations. Previously, (10) or (11) have be
minimized by continuous optimization techniques [34]. A function φ satisfies
(6) if and only if it is a zero of the polynomial

K(φ) =

n
∏

i=1

(φ− i). (15)

i.e. K(φ) = 0. Thus, in order to use φ to minimize the Mumford-Shah func-
tional, we need to solve the following constrained optimization problem

min
c,φ

E(c, φ) subject to K(φ) = 0.
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This can be achieved by searching for a saddle point of the augmented lagrangian
functional, c.f. [34]

L(c, φ, λ) = E(c, φ) +

∫

Ω

λK(φ) dx +
r

2

∫

Ω

|K(φ)|2dx, (16)

where λ is a function defined on Ω and r ∈ R
+. At the saddle point, the

following Euler-Lagrange equations must be satisfied

∂L

∂φ
= 0,

∂L

∂λ
= 0,

∂L

∂ci
= 0. (17)

A common approach is to solve the above equations by a gradient decent time
marching scheme with finite difference approximations. In [34], a gradient de-
cent method was used to solve the equation (17). Several faster methods have
been tested in [10, 31, 47, 45, 35, 11]. In [47, 46], Newton’s method was used
to accelerate the convergence. On the other hand, AOS method [36, 37, 50]
was used in [31, 11] to get faster algorithms for equations (17). We shall also
mention that multigrid methods [10] and MBO type of projection methods [45]
can be used to solve the equations (17). In this work, we use graph cuts to solve
the minimization problem. Numerical experiments show that this algorithm is
many times faster than the afore mentioned acceleration schemes. Some fast
curve evolution methods that do not involve PDEs have also recently been pro-
posed [43], although these seem to have a bit of trouble for very noisy images.

2.4 Relations between the methods

We can see that the Chan-Vese model [8, 49] is essentially trying to use the
level set method [40] for the Mumford shah segmentation model, while the work
[34] is trying to use PCLSM for the Mumford-Shah model. Both the CVM
and the PCLSM are trying to use different mathematical methods to solve the
same problem. They produce different nonlinear partial differential equations
in the continuous setting. Comparisons between PCLSM and CVM have been
done in [34, 33, 11, 47]. Compared with CVM, the minimization functional of
PCLSM is convex and it avoids the use the Heaviside function and also the
re-initialization procedure of the traditional level set method. PCLSM can also
identify an arbitrary number of phases with just one function.

3 Integer optimization for PCLSM

Minimizing (10) or (11) by continuous optimization methods require us to add
the constraint K(φ) = 0 to force φ to take only integer values. We instead
propose the much more natural approach of using integer optimization to solve
(11). Instead of discretizing the Euler-Lagrange equations, we will discretize the
variational problem (11). This results in an energy function, which we show can
be minimized by a graph-cut algorithm in case the values c are known. Finally,
an algorithm is designed to minimize over both c and φ simultaneously.
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3.1 Background on graph cuts and terminology

Graph cuts is a well known optimization problem. Due to a duality theorem
by Ford and Fulkerson [29], there are several fast algorithms for this problem.
It was introduced as a computer vision tool by Greig et. al. [21] in connection
with markov random fields [20]. It has later been studied by Kolmogorov et. al.
[2, 27], and has recently received a lot of attention due to its connection with
continuous variational problems and PDEs [3, 4, 6, 17, 25]. Its applications range
from stereo vision [26], segmentation [1, 24, 51, 16] to noise removal [6, 17]

A graph G = (V , E) is a set of vertices V and a set of edges E . We let (a, b)
denote the edge going from vertex a to vertex b, and let c(a, b) denote the cost
(weight) on this edge. In the graph cut scenario there are two distinguished
vertices in V , called the source {s} and the sink {t}. A cut on G is a partition
of the vertices V into two disjoint sets (Vs, Vt) such that s ∈ Vs and t ∈ Vt. For
a given cut, the set of severed edges C is defined as

C = {(a, b) | a ∈ Vs, b ∈ Vt and (a, b) ∈ E}. (18)

We say that the cut severs the edge e if e is contained in C. The cost of the cut
is defined as

|C| =
∑

e∈C

c(e). (19)

We are interested in finding the cut of minimum cost on G, from now on called
the minimum cut. The duality theorem by Ford and Fulkerson [29] states this
is equivalent to finding the maximum flow from {s} to {t}, with edge weights
indicating bounds on the maximum amount of flow that can be pushed through
the edges. Cuts of minimum cost can thus be computed very efficiently by max-
flow algorithms such as Ford-Fulkerson [29]. See [2] for a detailed discussion
about implementation.

3.2 Discretization of energy functional

We want a discrete representation of the energy functional (11), by restricting
the level set function to take values on a uniform grid. Let P = {(i, j) | i ∈
{1, ..., N}, j ∈ {1, ...,M}} be the set of grid points, and δ = 1 be the mesh
size. Correspondingly, φi,j ,u0

i,j and ui,j denote values of functions at the grid
points. We would ideally like a discrete version of TV2

TV d2(φ) =
∑

i,j

δ
√

|φi+1,j − φi,j |2 + |φi,j+1 − φi,j |2 . (20)

However, this form is not graph representable. Instead we can consider the
anisotropic total variation

TV d1(φ) =
∑

i,j

δ {|φi+1,j − φi,j |+ |φi,j+1 − φi,j | } , (21)
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or the more isotropic version

TV d1, π

4
(φ) =

1

2

∑

i,j

δ {|φi+1,j − φi,j |+ |φi,j+1 − φi,j | } (22)

+
1

2
√

2

∑

i,j

δ {|φi+1,j+1 − φi,j |+ |φi+1,j−1 − φi,j | } .

Using (22), the discrete version of (11) can now be written

Ed(c, φ) =
∑

i,j

δ2|ui,j − u0
i,j|2 + νTV d1, π

4
(φ). (23)

where ui,j is related to φi,j and c by (9).
For a given p = (i, j) ∈ P , let Nk(p) for k = 4 or 8 be the set of neighboring

points of p defined as:

N4(p) = {(i± 1, j), (i, j ± 1)}, and N8(p) = {(i± 1, j), (i, j ± 1), (i± 1, j ± 1)}.

The modification of the definition for boundary points is clear. Using this
notation, (23) can be written more compactly

Ed(c, φ) =
∑

p∈P

δ2(up − u0
p)

2 + ν
∑

p∈P

∑

q∈Nk(p)

1

2
wpq|φp − φq |, (24)

where wpq = 4δ2

k||p−q||2
. Thus the last summation is TV d1(φ) for k = 4 and

TV d1, π

4
(φ) for k = 8. Since wpq = wqp, each term is being counted twice in the

last summation. This is compensated by multiplication by the factor 1
2 .

Remark 1. In case of 2-phase segmentation, TV1, π

4
and TV1 approximates the

perimeter of the interface between the phases. A different approach to approxi-
mate the curve length was given in [3], by using a result from integral geometry
called the Cauchy-Crofton formula. Their approach do not rely on level set
functions. Interestingly, they derive the same coefficients wpq , with the excep-
tion of a factor close to one dependent on the angle between the neighboring
directions. For both TV d1, π

4
and TV d1, this angle is uniform in all directions.

In the following sections, we show that the minimizer of (23) can be obtained
by finding the minimum cut over an appropriate graph, i.e. we will construct a
graph G such that

min
C cut on G

|C| = min
φ
Ed(c, φ) + σ, (25)

where σ is a constant that will be specified later. Note that the minimizer φ is
not affected by this constant.
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(a) (b)

Figure 1: (a) The graph corresponding to a 1D signal of 6 grid points used for
two phase segmentation. Edges in ED are depicted as vertical arrows and edges
in ER are depicted as horizontal arrows. The gray curve is used to visualize the
cut, vertices in the interior to the curve belongs to Vs, vertices in the exterior to
the curve belongs to Vt. Edges in C are depicted as dotted arrows. Figure (b)
shows the values of φ at each grid point corresponding to the cut in (a), they
are determined from definition 3.1

3.3 Graph cuts for 2 phases

We start by showing how graph cut algorithms can be used to minimize (23)
in case of n = 2. The graph construction is particularly easy in this case. The
extension to more than 2 phases will later be regarded as a generalization.

Since any cut naturally separates the graph in two parts, we can associate
each grid point p with a vertex vp. The set of all vertices is thus defined as

V = {vp | p ∈ P} ∪ {s} ∪ {t}.

Edges are added from the source to every vertex, and from every vertex to the
sink. Edges are also added between vertices corresponding to neighboring grid
points.

E = {(vp, vq) | p ∈ P , q ∈ Nk(p)} ∪ {(s, vp) | ∀p ∈ P} ∪ {(vp, t) | ∀p ∈ P}

The relationship between a cut on G and the level set function φ can now be
established.

Definition 3.1. Let (Vs,Vt) be a cut on G and C the set of severed edges. For
any grid point p ∈ P , the corresponding level set function φ is defined as

φp =

{

1 if (s, vp) ∈ C,
2 if (vp, t) ∈ C. (26)

For illustration purposes, the graph corresponding to a 1D signal of six grid
points, P = {1, 2, ..., 6}, is displayed in Figure 1(a). In 1D, the neighborhood
system reduces to N2(p) = (p±1). In Figure 1(b) the values of φ corresponding
to the cut on this graph are shown.
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By setting the following edge weights, the equality (25) can be established
with σ = 0

c(s, vp) = δ2|u0
p − c1|2, ∀p ∈ P ,

c(vp, t) = δ2|u0
p − c2|2, ∀p ∈ P ,

c(vp, vq) = νwpq , ∀p ∈ P , ∀q ∈ Nk(p),
(27)

i.e. for any cut and its corresponding φ, we have

|C| = Ed(c, φ). (28)

Therefore, the function φ corresponding to a minimum cut on this graph, is a
minimizer of the energy function (23).

This type of graph construction for binary optimization problems is well
known. There has also been some work on graph cut optimization for the 2-
phase Mumford-Shah functional [6, 51].

3.4 Graph cuts for more than 2 phases

The extension to more than two phases (n > 2) poses a fundamental problem.
Regularizing each characteristic function as in (10) can be seen as a multi-way
cut problem, which is shown to be NP hard [15]. The usual graph cut approach
to optimization problems of several labels, is to use some sort of approximation
method. The idea is to solve a sequence of binary minimization problems, even-
tually converging to a suboptimal approximate solution in polynomial time.
One of these methods is the so called alpha expansion, which has a linear con-
vergence rate in the number of labels [5]. Some improvements of this method
can be found in [28]. A similar method, which has a logarithmic convergence
rate in the number of labels can be found in [30]. See [14] for some other inte-
ger optimization methods which has been used for image analysis, one of them
based on Lagrangian relaxation.

It is difficult to analyze how close the approximate solution is to the exact for
these methods, although there are some bounds on the maximum error. Our
approach is different in that we construct a numerical method for finding an
exact solution. We will instead do the approximation directly in the model,
namely by regularizing φ as in (11). Previous experiments have shown that
this is indeed a very good approximation when the number of phases is not
too large. The exact minimum of (23) will be obtained by finding the cut on a
special graph. Some similar graph constructions has been given by Ishikawa in
[23, 24]. Some of the differences is that our graph consists of less vertices and
edges, and is a generalization from the binary case.

Our graph cut approach is based on a strikingly similar idea as the level
set method [40]. We will introduce an extra dimension to take care of the
difficulties associated with several phases. First note that a piecewise constant
level set function φ, representing a family of interfaces in R

d can be regarded
as a surface Sφ = { (x, z) ∈ R

d × R | φ(x) − z = 0} embedded in R
d+1.

The idea is to represent this surface implicitly on a grid in R
d+1 by another
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(a) (b)

Figure 2: (a) The graph corresponding to a 1D signal of 6 grid points used for
4 phase segmentation. Edges in ED are depicted as vertical arrows and edges
in ER are depicted as horizontal arrows. The gray curve is used to visualize the
cut, vertices in the interior to the curve belongs to Vs, vertices in the exterior to
the curve belongs to Vt. Edges in C are depicted as dotted arrows. Figure (b)
shows the values of φ at each grid point corresponding to the cut in (a), they
are determined from definition 3.2

higher dimensional level set function. This higher dimensional function will be
estimated in a somewhat similar fashion as in Section 3.3. In order to explain
the idea in more details, recall that φ is defined on the 2D grid P = {(i, j) | i ∈
{1, ..., N}, j ∈ {1, ...,M}}. We want to use φ to partition this grid into n
phases as in (6). We regard φ as a surface in R

3, implicitly defined on a 3D
grid. For notational convenience, this 3D grid is defined as {(p, ℓ) ∈ R

2×R | p ∈
P , ℓ ∈ (1, ..., n−1)}. As we can see, the grid consists of MN(n−1) grid points.
The reason for choosing n − 1 grid points in the z direction will soon become
clear.

As in Section 3.3 we let each vertex correspond to a grid point (p, ℓ). Such
a vertex will be denoted vp,ℓ. The set of vertices V is formally defined as

V = {vp,ℓ | p ∈ P , ℓ ∈ {1, ..., n− 1}} ∪ {s} ∪ {t}.

An illustration in case of a 1D image where P = {1, 2, ..., 6}, is shown in Figure
2. For ease of visualization, no 2D cases are shown.

The edges are arranged in two groups, ED and ER. The first group ED
corresponds to the data term in (24). It is defined as

ED = ∪p∈PEp,

where for each p ∈ P the edge set Ep is defined as

Ep = (s, vp,1) ∪n−2
ℓ=1 (vp,ℓ, vp,ℓ+1) ∪ (vp,n−1, t).

The edges in ED are illustrated as the vertical arrows in Figure 2. The second
group of edges ER corresponds to the regularization term in (23). These are
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illustrated as the horizontal arrows in Figure 2, i.e.

ER = {(vp,ℓ, vq,ℓ) | p ∈ P , q ∈ Nk(p), ℓ ∈ {1, ..., n− 1}}.
For each p ∈ P , any cut on G must sever at least one edge from Ep, otherwise
{s} and {t} are not separated. As a consequence, any cut must sever at least
MN edges in ED. We say that a cut is admissible if it severs exactly one edge
in Ep for each p ∈ P , in which case exactly MN edges from ED are severed. The
cut shown in Figure 3 is not admissible. It severs more than one edge from Ep
for some of the grid points.

Similarly as in Section 3.3, we can now establish the relationship between a
cut on G and a level set function φ.

Definition 3.2. Let (Vs,Vt) be an admissible cut on G, and let C ⊂ E be the set
of severed edges. For any grid point p ∈ P , the corresponding level set function
φ is defined as

φp =







1 if (s, vp,1) ∈ C,
ℓ+ 1 if (vp,ℓ, vp,ℓ+1) ∈ C,
n if (vp,n−1, t) ∈ C.

(29)

Because of the admissible cut requirement, any such φ is single valued. In
order to exclude non-admissible cuts, we set the value

σ = M ·N · (n− 1) · k · ν · max
p∈P, q∈Nk(p)

wpq. (30)

We can now define the edge costs (weights) such that the relationship (25) is
satisfied. We start by edges in ED, i.e. the data edges

c (s, vp,1) = δ2|u0
p − c1|2 + σ

MN
∀p ∈ P ,

c (vp,ℓ, vp,ℓ+1) = δ2|u0
p − cℓ|2 + σ

MN
∀p ∈ P , ∀ℓ ∈ {1, ..., n− 2},

c (vp,n, t) = δ2|u0
p − cn|2 + σ

MN
∀p ∈ P .

(31)

The costs (weights) for the regularization edges ER are defined by

c (vp,ℓ, vq,ℓ) = νwpq , ∀p ∈ P , ∀q ∈ Nk(p), ∀ℓ ∈ {1, ..., n− 1}. (32)

By the choice of σ, cuts on G of minimum cost are all admissible. They must
sever exactly one edge from Ep for each p ∈ P , otherwise a cut of lesser cost
exists. This is because the cost of severing one edge in ED is higher than the
cost of severing k · (n − 1) edges in ER. Non-admissible cuts, such as the one
depicted in Figure 3, cannot be a minimum cut.

To summarize, for any piecewise constant level set function φ taking values
in {1, 2, · · ·n}, there exists a unique admissible cut on G. Moreover, the function
φ and its corresponding cut satisfies

|C| = Ed(c, φ) + σ. (33)

Thus, we see that a function φ corresponding to a minimum cut, is a minimizer
of the functional (23), i.e. it solves the segmentation problem. Note that in case
n = 2, the extra dimension breaks down, and the graph becomes identical to
the binary construction.
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Figure 3: For this 1D example, any cut must sever at least 6 edges in ED. Ad-
missible cuts must sever exactly 6 edges in ED. The cut shown is not admissible
as 7 edges in ED are severed

3.5 Algorithm for minimizing the Mumford-Shah func-

tional

The algorithm presented in the last section minimizes Ed(c, φ) with respect to
φ for a fixed c. Vice versa, for a fixed φ the values c minimizing Ed(c, φ) are
given by

ci =

∫

Ω
u0(x)ψi(x) dx
∫

Ω
ψi(x) dx

i = 1, 2, ..., n, (34)

or in discrete form

ci =

∑

p∈P u
0
pψi,p

∑

p∈P ψi,p

i = 1, 2, ..., n. (35)

We want an algorithm to minimize both with respect to φ and c. This is achieved
by combining the two above results in the following iterative descent algorithm.

Algorithm 1. Estimate initial values c
0, set l = 0.

while( ||cl − c
l−1|| < tol )

1. Use graph cuts to estimate φ from

φ = arg min
φ̃

Ed(c
l, φ̃). (36)

2. Update c
l+1 according to equation (35).

3. Update l ← l + 1.

In all our experiment, this algorithm converged in 4-12 iterations. The value
of tol can for instance be set to machine precision. It must be noted that this
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(a) Input image u
0

(b) From left to right: Phase 1 - Phase 4 extracted by graph
cuts

(c) From left to right: Phase 1 - Phase 4 extracted by gra-
dient descent

Figure 4: Experiment 1: In (b) and (c), each phase is depicted as a bright
region.

algorithm is no longer guaranteed to find the global minima. Theoretically it
may get trapped in a local minima close to the initial values c0. However, in
practice it is usually rather insensitive to initialization. The initial values c0 are
computed very efficiently by the isodata algorithm, see [22, 48].

In order to speed up the computation, TV1 can be used to regularize φ in all
iterations of Algorithm 1 until ||cl − cl−1|| reaches a small threshold. Only in
the final iterations is it necessary to use the more computationally demanding
TV1, π

4
norm.

4 Numerical experiments

In this section we validate our new optimization method by numerical experi-
ments on synthetic and real data. The results are compared with the original
gradient descent approach presented in [34, 32]. The implementation of both
these methods is made in C++. Comparisons are made both with respect to
quality and computation time on an intel 2.19 GHz laptop. The list of compu-
tation times is shown in Table 4.

In all graph cut experiments, φ is regularized using the combination of the
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(a) Input image u
0

(b) From left to right: Phase 1 - Phase 5 extracted by graph cuts

(c) From left to right: Phase 1 - Phase 5 extracted by gradient descent

Figure 5: Experiment 2: In (b) and (c) each phase is depicted as a bright region.

TV1 norm and the TV1, π

4
norm as explained in Section 3.5. In the gradient

descent experiments, the TV2 norm is used to regularize each ψi as in (10). All
images are scaled between 0 and 255, and a mesh size of δ = 1 is used.

In the first experiment, we evaluate segmentation results on a synthetic im-
age of 4 regions corrupted by gaussian noise, see Figure 4(a). The segmentation
results from graph cut optimization 4(b) is as good as the results from the PDE
approach 4(c). As we can see, sharp corners and inside holes are captured with
no problem. Traditional level set methods would need to use two level set func-
tions and solve two coupled nonlinear PDEs. For our approach we do not need
to solve any PDEs, and one level set function is enough. As can be seen from
Table 4, c.f. ”Experiment1”, the computation time for graph cuts is a lot faster
than for PDEs [34].

Next we investigate how the method handles situations where the number
of phases is unknown. This can be achieved by minimizing the Mumford-Shah
functional with more phases than necessary, hopefully leading to some empty
phases. In Figure 5(b)(c) the image from the last experiment has been pro-
cessed using a 5-phase segmentation approach. With the exception of a few
misclassifications, the correct regions gets extracted by phase 1,3,4,5 with sec-
ond phase becoming empty for graph cuts. Interestingly, gradient descent [34]
results in the third phase becoming empty. Computationally, graph cuts are
much cheaper, see ”Experiment2” in Table 4. An advantage of representing in-
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(a) Input image u
0

(b) From left to right: Phase 1 - Phase 5 extracted by graph cuts

(c) From left to right: Phase 1 - Phase 5 extracted by gradient descent

Figure 6: Experiment 3: In (b) and (c), each phase is depicted as a bright
region.

terfaces by the level set method, is its ability to deal with unknown topology. In
Figure 6, we seek a partitioning of the image where three of the regions clearly
are disconnected. As we can see, both graph cuts and gradient descent are able
to extract the correct phases by finding the most suitable topology of the curves.
See ”Experiment3” in Table 4 for comparison of the execution times.

So far, we have only discussed artificial images where the resolution is quite
low. Next we apply our method to a real brain MR image of high resolution.
For such a brain image, one would like to extract 3 different tissue classes. This
can be achieved by using a 4-phase image segmentation approach. The regions
one would like to extract can be classified as: region 1; background, region 2;
cerebrospinal fluid, region 3; gray matter and region 4; white matter. As shown
in Figure 7, we get almost identical results as the PDE approach [34]. The
computation time, on the other hand, is dramatically improved, as can be seen
in the row for ”Brain” in Table 4.

We conclude this section by showing two experiments for the special case
of two-phase segmentation, see Figure 8, 9. In the satellite image of Europe in
Figure 8, one of the regions is characterized by a scattered set of light point.
Our goal is to merge this scattered set into a larger object, constituting the land
area of Europe. For this kind of image, edges give very little information about
the actual regions. Thus we expect a region based segmentation model like the
Mumford-Shah to give the best results. The result of graph cut optimization of
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(a) Input noisy MR-image

(b) Phase 1 graph cut (c) Phase 1 PDE

(d) Phase 2 graph cut (e) Phase 2 PDE

(f) Phase 3 graph cut (g) Phase 3 PDE

(h) Phase 4 graph cut (i) Phase 4 PDE

Figure 7: Brain: In (b)-(i), each phase is depicted as a bright region.
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(a) (b) (c)

Figure 8: (a) Europe by night. (b) Graph cut segmentation with low regu-
larization ν = 8 · 105. (c) Graph cut segmentation with high regularization
ν = 1.5 · 106.

the Mumford-Shah functional is shown in Figure 8 for different regularization
parameters. As can be seen, we are able to extract the land continent of Europe
in the first region, and the ocean in the second region.

Finally, in Figure 9 we show how the method performs for extracting text
from a newspaper. Because of its very high efficiency, this shows the method
has potential for becoming competitive in the preprocessing step of reading text
from photographic sources.

To summarize, all experiments show that the quality of results for graph
cut optimization is as good as PDE based optimization for PCLSM applied to
multiphase 2D image segmentation. Furthermore, in the graph cut approach,
no parameters need to be tuned and a global minimizer is always found for given
values c.

Comparing the computational cost, graph cuts is several hundreds of times
faster than gradient descent. We have not made comparison with any of the fast
acceleration schemes such as AOS [31, 11], MBO [45] or Newton [47, 46, 45].
Although the improvement should be less dramatic in these cases, we believe
graph cuts is the fastest optimization method to current date. Compared with
an optimized matlab implementation of AOS, the graph cut method is at least
40-50 times faster.

Size Phases Gradient descent Graph Cut
Experiment1 100x100 4 50.3 0.12
Experiment2 100x100 5 70.0 0.179
Experiment3 92x98 5 55.4 0.165
Brain 671x531 4 1988 15.74

Table 1: Computation times in seconds for gradient descent vs graph cut opti-
mization
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(a) (b)

Figure 9: (a) A page from newspaper, (b) segmentation of the letters using
graph cuts.

5 Conclusions

In this work, we have presented a new minimization method for the piecewise
constant level set representation of the multiphase Mumford-Shah functional.
This minimization method is based on graph cuts. Numerical experiments
demonstrated the method is superior in efficiency compared to previous PDE
approaches, while maintaining the same quality of results. We have aimed to
further unify graph cuts and the level set method. Future work will be general-
ization of the method to other inverse problems, and other applications of the
level set method.
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