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ABSTRACT OF THE DISSERTATION

Variational PDE-based Image Segmentation and
Inpainting with Applications in Computer Graphics

by

Kang-Yu Ni
Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2008

Professor Tony F. Chan, Chair

This dissertation explores the applications of variational PDE models to image process-

ing, computer vision, and computer graphics, and also to building efficient numerical

algorithms and schemes. In particular, the areas of contributions are segmentation,

inpainting, and matting. There are three separate topics in segmentation. The first is

unsupervised segmentation, in which we propose and analyze a nonparametric region-

based active contour model for segmenting cluttered scenes. The novelty is the use of

the Wasserstein distance in segmentation, which is able to measure the dissimilarity

between histograms, either continuous or discontinuous, in a reasonable manner. We

employ a fast global minimization method to solve the proposed model. An advan-

tage of this method is that initializations can be arbitrary to obtain a global minimizer.

Moreover, our proposed model has several properties due to the use of the Wasserstein

distance. A variant of the proposed model is presented to handle local illumination

changes in an image.

The second topic of segmentation examines the issue of scale in modeling texture

for the purpose of segmentation. We propose a scale descriptor for texture and an

energy minimization model to find the intrinsic scale of a texture at each location. For

xviii



each pixel, we use the intensity distribution of its local patch to determine the smallest

size of the domain that can be used to generate neighboring patches. The obtained

scale descriptor is applied for improving the segmentation model described above.

In the third topic of segmentation, we propose a multiphase segmentation algo-

rithm based on Chan and Vese’s two-phase piecewise constant segmentation model.

The proposed algorithm recursively splits a partitioned region into two, starting from

the largest scale, and automatically detects when all the regions cannot be partitioned

further. The number of phases is not given prior and can be arbitrary, and the junc-

tions of phase boundaries are implicitly dealt with. Additionally, the proposed model

provides a full hierarchical representation of the structure of a image.

In the area of inpainting, we present a new technique that works well in both tex-

tured and non-textured areas of an image. Euler’s elastica inpainting is a PDE-based

variational model that works well for repairing smooth areas of an image while main-

taining edge detail. However, it is slow due to a stiff, fourth order PDE and is difficult

to control. On the other hand, texture synthesis techniques work well in inpainting for

areas that contain repeating patterns. We combine these two techniques to accelerate

and constrain the PDE solution. Instead of a stiff minimization, we have a combinato-

rial optimization problem that is quicker to solve.

In the area of matting, we propose a new algorithm that takes into account both

texture and geometric structures of the foreground and background of the given im-

age. We propose to utilize our inpainting algorithm for the matting problem, which

extrapolates both geometric features and texture into unknown regions. The proposed

matting algorithm improves previous algorithms, whose performance is uncertain in

the presence of sharp discontinuities in the foreground and/or background.

xix



CHAPTER 1

Introduction

The areas of contributions in this dissertation are segmentation, inpainting, and mat-

ting. Each chapter is based on a separate topic from these areas, although they are

related. Chapter 2 is based on Histogram based Segmentation using Wasserstein Dis-

tances and Local Histogram based Segmentation using the Wasserstein Distance. An

unsupervised segmentation model is proposed to separate two cluttered regions of a

gray-scale image. Chapter 3 is based on Scale of Texture and its Application to Seg-

mentation. A texture scale model is proposed to find at each location the intrinsic

scale for texton, which is the smallest basic element of texture. The obtained scale is

then applied to the histogram based segmentation shown in Chapter 2. Chapter 4 is

based on Unsupervised Multiphase Segmentation and Hierarchical Representation of

Image Structure. An unsupervised multiphase segmentation model is proposed that

provides hierarchical representation of the structure of an image. Chapter 5 is based

on A Texture Synthesis Approach to Elastica Inpainting and Matting through Texture

and Geometric Inpainting. We develop an efficient numerical scheme for variational

inpainting and also combine this algorithm with a texture synthesis technique so that it

works for both texture and geometric areas of an image. Chapter 6 is based on Matting

through Variational Inpainting and Matting through Texture and Geometric Inpainting.

We take a new approach that utilizes variational inpainting within the matting problem.

In Chapter 2, we propose and analyze a nonparametric region-based active contour

model for segmenting cluttered scenes. This model is unsupervised and assumes that

1



pixel intensity is independently identically distributed. The proposed segmentation

energy consists of a geometric regularization term that penalizes the length of region

boundaries, and a region-based image term that uses the probability density function

(or histogram) of pixel intensity to distinguish different regions. More specifically,

the region data encourages partitioning the image domain so that the local histograms

within each region are approximately uniform. The solutions of the proposed model

do not need to differentiate histograms. The similarity between normalized histograms

is measured by the Wasserstein distance with exponent 1, which is able to fairly com-

pare two histograms, both continuous and discontinuous. We employ a fast global

minimization method based on [4, 5] to solve the proposed model. The advantages of

this method include less computational time compared with the standard minimization

method by gradient descent of the associated Euler-Lagrange equation and the ability

to find a global minimizer. Moreover, our proposed model has several desired prop-

erties due to the use of the Wasserstein distance. We further propose a variant of the

model that addresses local illumination changes in an image.

Chapter 3 examines the issue of scale in modeling texture for the purpose of seg-

mentation. We propose a scale descriptor for texture and an energy minimization

model to find the scale of a given texture at each location. For each pixel, we use the

intensity distribution in a local patch around that pixel to determine the smallest size of

the domain that can be used to generate neighboring patches. The energy functional we

propose to minimize is comprised of three terms: The first is the dissimilarity measure

using the Wasserstein distance or Kullback-Leibler divergence between neighboring

patch distributions; the second maximizes the entropy of the local patch, and the third

penalizes larger size at equal fidelity. Our experiments show the proposed scale model

successfully captures the intrinsic scale of texture at each location. We also apply our

scale descriptor for improving texture segmentation based on the model in Chapter 2.
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In Chapter 4, we propose an unsupervised multiphase segmentation algorithm

based on Bresson et al.’s fast global minimization of Chan and Vese’s two-phase piece-

wise constant segmentation model. The proposed algorithm recursively splits a par-

titioned region into two, starting from the largest scale, and automatically terminates

and detects when all the regions cannot be partitioned further. The number of phases

is not given and can be arbitrary, and the junctions of phase boundaries are implicitly

dealt with. Additionally, the proposed model provides a full hierarchical representa-

tion of the structure of a given image. Experimental results show that the recursive

segmentation successfully partitions the given images according to region scale and

contrast in an intuitive way.

In Chapter 5, we present a new technique for wire and scratch removal (inpainting)

that works well in both textured and non-textured areas of an image and also efficiently

extend our algorithm for multiple frames for either static or moving camera/objects. [6]

introduced a technique for inpainting using an Euler’s elastica energy-based variational

model that works well for repairing smooth areas of the image while maintaining edge

detail. The technique is very slow due to a stiff, 4th order PDE and difficult to control.

[7] used texture synthesis techniques for inpainting and hole filling. This works well

for areas of an image that contain repeating patterns. We have combined these two

techniques to accelerate and constrain the solution of the fourth order PDE. Instead

of a stiff minimization, we have a combinatorial optimization problem that is much

quicker to solve and gets to similar solutions of elastica inpainting. Furthermore, we

combine this algorithm with texture synthesis by a threshold to fully make use of both

repeating patterns and geometry in both space and time.

In Chapter 6, we propose a new matting algorithm that takes into account both tex-

ture and geometric structures of the foreground and background of the given image.

The matting problem extracts the object of interest of an image with an accurate trans-

3



parency (or matte) of the object. This is an under-constrained problem because there

are too many unknowns. Previous matting algorithms impose priors on the unknowns

and work well for many natural images. However, their performance is uncertain in the

presence of sharp discontinuities in the foreground and/or background regions. This

is because those algorithms are based on statistical estimates of the unknowns and ge-

ometry is not considered. In response to this shortcoming, we propose to employ our

proposed inpainting algorithm in Chapter 5 to solve the matting algorithm. Our exper-

imental results show that the proposed matting algorithm accurately extracts the matte

of an image with geometric and/or texture structures.
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CHAPTER 2

Local Histogram based Segmentation using the

Wasserstein Distance

2.1 Introduction

Image segmentation plays an important role in computer vision. The process involves

partitioning the image domain into several regions either according to edge informa-

tion or region information so that the image within each region has uniform charac-

teristics. The characterized regions depend on the application and may include one or

more of the following: edges, intensities, textures, and shapes. Snake [8], balloon [9],

and geodesic active contours based [10, 11] methods use edge detection functions and

evolve contours towards sharp gradients of pixel intensity. This classic active contour

approach is widely used in medical imaging. However, it is not robust to noise because

noise also has large gradients. Typically a noisy image has to be smoothed, which may

lose important edge information. Region-based active contours incorporate region and

boundary information and are robust to noise. Furthermore, they are able to detect

objects with either sharp or smooth edges. One of the first region-based active con-

tours is the Mumford-Shah segmentation model [12], which approximates an image

by a piecewise smooth function, with a length penalizing term. However, this model

is difficult to solve in practice because of the edge set. The active contours without

edges (ACWE) model [1], a variant of the piecewise constant Mumford-Shah model,
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approximates an image by a two-phase piecewise constant function and is based on

a level-set implementation [13]. The minimizing flow is derived by computing the

variation of the energy with respect to the level set function. Region competition [14]

is a statistical and variational model that is based on minimizing a generalized Bayes

and Minimum description length criterion. The model penalizes the boundary length

and the Bayes error within each region, in which appropriate probability distributions

are chosen. The ACWE, region competition, and other parametric region-based active

contour models, such as [15, 16], assume the probability density function (pdf) of the

pixel intensity in each region up to a few parameters. For example, often a Gaussian

distribution is assumed with mean and variance the only unknowns. However, many

natural images are not necessarily described by a specific distribution. Nonparametric

region-based active contour models, such as [2, 3, 17, 18], use the full pdf, or his-

togram, of the intensity to drive the segmentation. Therefore, they do not suffer from

the above limitations. Our model is related to, yet different from, previous work. In

[18, 17], the segmentation model is supervised and the data descriptors directly depend

on the regions, which consequently involves histogram differentiation in the evolution

equations. Unsupervised segmentation models in [2, 3] take an information-theoretic

approach and their data descriptors also directly depend the regions. In our work, each

pixel is initially assigned with a local histogram, i.e. a normalized histogram of the

pixel intensities in a neighborhood of that pixel. The model finds a partition such that

the local histograms in each region are similar to one another. We use an optimal

transport distance to measure the similarity between histograms.

Previous models are quite effective in segmenting images when the histograms in

each region are distinct. However, the distances used for comparing histograms are

pointwise and may not be reliable even under simple circumstances. Furthermore,

some distances used are not metrics; for instance, triangle inequality is not satisfied.

As an example of this issue, the pointwise distance between two delta functions with
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disjoint supports is the same no matter how far apart the supports are; this is a situation

that arises often in segmentation applications, since for example images consisting of

two objects with approximately constant but different intensities would fall into this

category. Previous nonparametric approaches did not address this issue and used the

Parzen window method [19] to approximate and smooth histograms. The degree of

smoothness has to be controlled by a user-selected parameter. To overcome this issue,

we propose to use an optimal transport distance to compare histograms, which extends

as a metric to measures such as the delta function. We believe this to be the more

natural and appropriate way to compare histograms.

The optimal transport, or the Monge-Kantorovich problem, is to find the most ef-

ficient plan to rearrange one probability measures into another. We will introduce

Kantorovich’s version [20] here. Let (X, µ) and (Y, ν) be two probability measure

spaces. Let π be a probability measure on the product space X × Y and Π(µ, ν) =

{π ∈ P (X × Y ) : π[A× Y ] = µ[A], and π[X × B] = ν[B] hold for all measureable

sets A ∈ X and B ∈ Y } be the set of admissible transference plans. For a given cost

function c : X × Y → R, the total transport cost, associated to plan π ∈ Π(µ, ν), is

I[π] =

∫

X×Y

c(x, y)dπ(x, y).

The optimal transport cost between µ and ν is

Tc(µ, ν) = inf
π∈Π(µ,ν)

I[π].

More details can be found in [21] and [22]. In the case of probability measures µ and

ν on R, with cost function c(x, y) = |x − y|p, the optimal transport cost has a closed
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form,

Tp(µ, ν) =

∫ 1

0

|F−1(t)−G−1(t)|pdt,

where F and G are the cumulative distribution functions of µ and ν, respectively and

F−1 and G−1 represent their corresponding inverse functions. The optimal transport

distance, commonly called the Wasserstein distance with exponent p, is Wp(µ, ν) =

Tp(µ, ν)1/p. When the cost function is Euclidean distance c(x, y) = |x− y|,

W1(µ, ν) =

∫ 1

0

|F−1(t)−G−1(t)|dt =

∫

R
|F (x)−G(x)|dx.

The last equality is obtained by Fubini’s Theorem. The Wasserstein distance defines a

metric and is insensitive to oscillations [21].

The main contributions of this chapter are as follows:

1. the novelty of using the Wasserstein distance to properly compare histograms,

both discontinuous and continuous,

2. a segmentation model that does not need to differentiate histograms to find a

solution,

3. the use of the fast global minimization method [5] to solve the proposed model,

which significantly improves the previous model [23] in two ways, the compu-

tational time is less than the standard method and initialization can be arbitrary,

4. mathematical properties of the proposed model are presented.

The goal of this work is to understand low-order feature segmentation, which is

based on the statistics of image intensity and does not consider high-order features,
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such as gradient, curvature, orientation and scale. We specifically discuss a nonpara-

metric region-based active contour variational model in [23] and derive its mathemat-

ical properties. We also discuss its limitations.

2.2 Related Works

Kim et al. took an information-theoretic approach and proposed a nonparametric

region-based active contours model. Given an image I : Ω → [0, L] with two re-

gions, in each of which pixel intensities are independently identically distributed, a

curve
−→
C is evolved towards the boundary. The region inside (resp. outside) the curve

−→
C is denoted by R+ (resp. R−). Define the region labels associated with curve

−→
C by

L−→
C

(x) =





L+ if x ∈ R+

L− if x ∈ R−.

The proposed model maximizes the mutual information between the image pixel in-

tensities and region labels, subject to a constraint on the total length of the region

boundaries:

inf−→
C

λ

∮
−→
C

ds− |Ω|M(I(X); L−→
C

(X)), (2.1)

where λ is a positive parameter and

M(I(X); L−→
C

(X)) = h(I(X))− h(I(X)|L−→
C

(X)).

Since the entropy of the image h(I(X)) is constant, maximizing the mutual informa-

tion between I(X) and L−→
C

(X) minimizes the conditional entropy h(I(X)|L−→
C

(X)).

The curve
−→
C is evolved so that knowing which region a pixel belongs to decreases the
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uncertainty of the pixel intensity. The conditional entropy is

h(I(X)|L−→
C

(X))

= − 1

|Ω|
( ∫

R+

log P+(I(x))dx +

∫

R−
log P−(I(x))dx

)
,

where the probability density functions P+(I(x)) and P−(I(x)) of each region are

approximated using the Parzen window method [19],

P+(I(x)) =
1

|R+|
∫

R+

K(I(x)− I(x̂))dx̂, (2.2)

P−(I(x)) =
1

|R−|
∫

R+

K(I(x)− I(x̂))dx̂. (2.3)

The Gaussian function K(z) = (1/
√

2πσ2)e−z2/2σ2 is used as a smoothing kernel,

where σ is a scalar parameter that controls the smoothness of the approximation. The

minimization problem (2.1) is solved by the following gradient flow:

∂
−→
C

∂t
=

[
log

P+(I(
−→
C ))

P−(I(
−→
C ))

+
1

|R+|
∫

R+

K(I(x)− I(
−→
C ))

P+(I(x))
dx

− 1

|R−|
∫

R−

K(I(x)− I(
−→
C ))

P−(I(x))
dx

]−→
N − λκ

−→
N , (2.4)

where
−→
N is the outward normal and κ is the curvature of

−→
C . The level-set method

with narrow band approach was used for implementation.

Herbulot et al. also took a nonparametric region-based active contours approach

and used information entropy as competition between two regions:

inf−→
C

λ

∮
−→
C

ds + h(I(X), R+) + h(I(X), R−), (2.5)
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where the entropy of pixel intensities in each region is

h(I(X), R+) = −
∫

R+

P+(I(x)) log P+(I(x))dx

h(I(X), R−) = −
∫

R−
P−(I(x)) log P−(I(x))dx.

The probability density functions P+(I(x)) and P−(I(x)) are approximated using the

Parzen window method as described in (2.2) and (2.3). The minimization is solved by

the following gradient flow:

∂
−→
C

∂t
=

[
−

(
P+(log P+ + 1)− P−(log P− + 1)

)

− 1

|Ω|

(
h(I(X), R+)− h(I(X), R−)

+

∫

R+

K(I(x)− I(
−→
C )) log P+(I(x))dx

+

∫

R−
K(I(x)− I(

−→
C )) log P−(I(x))dx

)]
−→
N − λκ

−→
N ,

The curve evolution is implemented by using smoothing B-splines.

2.3 Proposed Model I

In this section, we discuss an unsupervised segmentation model proposed in our pre-

vious work [23] for cluttered images. Suppose the observed gray-scale image I : Ω →
[0, L] is measurable and has two regions of interests and the pixel intensity in each

region is independently identically distributed. Denote by Rx,r the ball of radius r

centered at x. For a Lebesgue-measurable subset S of R2, denote |S| its 2-dimensional
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Lebesgue measure, i.e. its area. Define the local histogram of a pixel x ∈ Ω by

Px(y) :=
|{z ∈ Rx,r ∩ Ω : I(z) = y}|

|Rx,r ∩ Ω| ,

for 0 ≤ y ≤ L. Define the corresponding cumulative distribution function by

Fx(y) :=
|{z ∈ Rx,r ∩ Ω : I(z) ≤ y}|

|Rx,r ∩ Ω| , (2.6)

for 0 ≤ y ≤ L. These are the image data used in the following proposed segmentation

model:

inf
Σ,P1,P2

{
E1(·, ·, ·|I) = Per(Σ) + λ

∫

Σ

W1(P1, Px)dx + λ

∫

Σc

W1(P2, Px)dx

}
, (2.7)

where Per(Σ) is the perimeter of the set Σ. This minimization problem finds an optimal

region Σ ⊆ Ω and approximates the local histograms inside Σ (resp. Σc) by a constant

histogram P1 (resp. P2). Recall that W1 is the Wasserstein distance with exponent 1,

described in the introduction:

W1(P1, P2) =

∫ L

0

|F1(y)− F2(y)|dy. (2.8)

Energy functional (2.7) can be formulated in terms of the level set method [13]. The

boundary between Σ and Σc is represented by the 0-level set of a Lipschitz function

12



φ : Ω → R.

inf
φ,F1,F2

{
E1(·, ·, ·|I) =

∫

Ω

|∇H(φ(x))|dx (2.9)

+λ

∫

Ω

H(φ(x))

∫ L

0

|F1(y)− Fx(y)|dy dx

+λ

∫

Ω

[1−H(φ(x))]

∫ L

0

|F2(y)− Fx(y)|dy dx

}
,

where H is the Heaviside function,
∫
Ω
|∇H(φ(x))|dx represents Per(Σ), and H(φ)

(resp. 1−H(φ)) defines Σ (resp. Σc).

The minimization of (2.9) can be achieved by a standard two-step scheme. First, we fix

φ and minimize with respect to F1 and F2, respectively. Variations with respect to F1

and F2 yield the following optimality conditions that should be held for all 0 ≤ y ≤ L,

∫
H(φ(x))

F1(y)− Fx(y)

|F1(y)− Fx(y)|dx = 0

and ∫
[1−H(φ(x))]

F2(y)− Fx(y)

|F2(y)− Fx(y)|dx = 0,

respectively. Therefore,

F1(y) = median of Fx(y), over {x : φ(x) ≥ 0} (2.10)

and

F2(y) = median of Fx(y), over {x : φ(x) < 0}. (2.11)

Next, with fixed F1 and F2, the gradient descent of Euler-Lagrange equation for φ
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gives

φt = δ(φ)

[
∇ ·

( ∇φ

|∇φ|
)
− λ

∫ L

0

(|F1(y)− Fx(y)| − |F2(y)− Fx(y)|)dy

]
, (2.12)

where δ is a regularized Dirac function and∇·
(
∇φ
|∇φ|

)
is the curvature of the level sets.

Steps (2.10), (2.11), and (2.12) are iterated alternately, until convergence to a steady

state solution.

However, numerically, equation (2.12) has serious time-step restrictions. The cur-

vature term can be approximated by

∂

∂x

(
φx√

φ2
x + φ2

y + ε2

)
+

∂

∂y

(
φy√

φ2
x + φ2

y + ε2

)
,

where ε > 0 so that the denominators are not zero but small enough to stay close to the

solution. Therefore, the time-step restriction of the explicit scheme for (2.12) is [24]

4t ≤ c · ε · (4x)2, where c is a constant. This time-step restriction can be improved

to4t ≤ c · (4x)2 with Chambolle’s method [25], which is presented in Section 2.4.3.

2.4 Fast Global Minimization of Model I

2.4.1 Global Minimization of Model I

Like many variational segmentation models, model (2.7) suffers from being non-convex

(with respect to Σ) and is therefore sensitive to initializations. The requirement of rea-

sonable initializations conflicts the purpose of automatic segmentation. Numerically, a

non-compactly supported dirac function is used in [1] to increase the chances of find-

ing global minimizers of the piecewise constant segmentation model. Theoretically,

based on the framework of [5, 4, 26], we propose the following global minimization
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of Model I:

min
0≤u≤1,P1,P2

{
E2(·, ·, ·|I) =

∫

Ω

|∇u(x)|dx + λ

∫

Ω

W1(P1, Px)u(x)dx (2.13)

+ λ

∫

Ω

W1(P2, Px)(1− u(x))dx

}
.

This problem is equivalent to problem (2.7) but overcomes the non-convexity. Let

1S denote the characteristic function of set S. This model (2.13) extends the original

minimization over the non-convex set {u ∈ BV (Ω) : u = 1Σ for some set Σ with finite

perimeter} to the convex set {u ∈ BV (Ω) : 0 ≤ u ≤ 1}. Thus, (2.13) is convex with

respect to u and, unlike (2.7), does not have (non-global) local minima with respect to

the geometric unknown.

The major advantage of (2.13) is that initializations can be arbitrary. The relation

between (2.7) and (2.13) is that, for fixed F1 and F2, a global minimizer of (2.7) can

be found through a global minimizer of (2.13). This relation is stated in the following

theorem, which is based on the geometric properties of TV.

Theorem 1: (Global Minimizers) Suppose I(x) ∈ [0, 1]. If P1, and P2 are fixed,

and u(x) is any minimizer of E2(·, P1, P2|I), then for a.e. µ ∈ [0, 1], 1{x:u(x)>µ}(x) is

a global minimizer of E1(·, P1, P2|I).

Proof: By the coarea formula and setting Σ(µ) := {x : u(x) > µ} , we can write

E2 in terms of E1 in the following [4],
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E2(u, P1, P2|I) =

∫ 1

0

{
Per(Σ(µ)) + λ

∫

Σ(µ)

W1(P1, Px)dx

+ λ

∫

Ω−Σ(µ)

W1(P2, Px)dx

}
dµ

=

∫ 1

0

E1(Σ(µ), P1, P2|I)dµ,

Therefore, if u is a minimizer of E2(·, P1, P2|I), then for a.e. µ ∈ [0, 1], Σ(µ) is a

minimizer of E1(·, P1, P2|I).¤

Variations of E2 with respect to F1 and F2 yield the following optimality conditions

that should hold for all 0 ≤ y ≤ L:

∫
u(x)

F1(y)− Fx(y)

|F1(y)− Fx(y)|dx = 0

and ∫
[1− u(x)]

F2(y)− Fx(y)

|F2(y)− Fx(y)|dx = 0,

respectively. Therefore,

F1(y) = weighted (by u(x)) median of Fx(y), (2.14)

and

F2(y) = weighted (by 1− u(x)) median of Fx(y), (2.15)

Minimizing E2 with respect to u is postponed until Sec. 2.4.3.
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2.4.2 Existence of Global Minimization Solutions

In this section, we show the existence of a minimizer for and convexity of model (2.13).

Theorem 2: (Existence of Solutions) For fixed P1 and P2,

min
0≤u≤1

{
E2(·, P1, P2 | I) =

∫

Ω

|∇u(x)|dx (2.16)

+λ

∫

Ω

W1(P1, Px)u(x)dx

+λ

∫

Ω

W1(P2, Px)(1− u(x))dx

}

has a solution u ∈ BV (Ω) with 0 ≤ u ≤ 1.

Proof: Let {un} ∈ BV (Ω) with 0 ≤ u ≤ 1 be a minimizing sequence. Then,
∫
Ω
|Dun| is uniformly bounded. Since every uniformly bounded sequence in BV (Ω)

is relatively compact in L1(Ω), there exists a subsequence {unk
} converging to some

u ∈ BV (Ω). Since unk
→ u in L1(Ω), we have unk

→ u in measure, i.e. |{x :

|unk
(x)− u(x)| ≥ ε}| → 0 as ε → 0. Since we also have 0 ≤ unk

≤ 1, u satisfies 0 ≤
u ≤ 1. Finally, we can check that u is indeed a minimizer. By the lower semicontinuity

of BV (Ω), ∫

Ω

|Du| ≤ lim inf
k→∞

∫

Ω

|Dunk
|.

By Fatou’s lemma,

∫

Ω

W1(P1, Px)u(x)dx ≤ lim inf
k→∞

∫

Ω

W1(P1, Px)unk
(x)dx
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and

∫

Ω

W1(P2, Px)( 1 −u(x))dx ≤

lim inf
k→∞

∫

Ω

W1(P2, Px)(1− unk
(x))dx.

Therefore,

E2(u, F1, F2|I) ≤ lim inf
k→∞

E2(unk
, F1, F2|I).

¤

We will next show that E2[u, P1, P2|I] is convex with respect to each variable.

First, E2 is convex with respect to u because
∫
Ω
|Du(x)|dx is convex in u and the set

{u ∈ BV (Ω) : 0 ≤ u ≤ 1} is convex. Moreover,

Theorem 3: The minimization problem

min
P1∈P (Ω)

E2[u, ·, P2|I]

is convex, where P (Ω) denotes the set of Borel probability measures on Ω.

Proof: E2[u, ·, P2|I] is convex in P1 because the Wasserstein distance is a metric

and in particular satisfies the triangle inequality. Since P (Ω) is a convex set, mini-

mization with fixed u and P2 is a convex problem.¤

Similarly, the minimization minP2∈P (Ω) E2[u, P1, ·|I] is convex.

2.4.3 Fast Minimization

Minimizing the proposed energy E2 in (2.13) with respect to u can be efficiently solved

by applying methods in [27, 5]. The regularization and data terms in (2.13) can be

decoupled by using a new variable v to replace u in the data term and adding a convex
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term that forces v and u to be the same:

min
u,0≤v≤1

∫

Ω

|∇u(x)|dx+
1

2θ

∫

Ω

(u(x)− v(x))2dx (2.17)

+λ

∫

Ω

r(x, F1, F2)v(x)dx ,

where

r(x, F1, F2) =

∫ L

0

|F1(y)− Fx(y)| − |F2(y)− Fx(y)|dy,

and θ > 0 is a small parameter. Minimizing the convex variational model (2.17) can

be approached by alternately solving the following coupled problems:

min
u

∫

Ω

|∇u(x)|+ 1

2θ
(u(x)− v(x))2dx (2.18)

min
0≤v≤1

∫

Ω

1

2θ
(u(x)− v(x))2 + λr(x, F1, F2)v(x)dx (2.19)

Minimization in (2.18) can be achieved fast by Chambolle’s method [25], based on

the dual formulation of the total variation norm:

u(x) = v(x)− θdivp(x) , (2.20)

where p = (p1, p2) solves ∇(θdivp − v) − |∇(θdivp − v)|p = 0 and is solved by a

fixed point method,

pn+1 =
pn + δt∇(divpn − v/θ)

1 + δt|(divpn − v/θ)| . (2.21)
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The solution of (2.19) is found as in [5]:

v(x) = max{min{u(x)− θλr(x, F1, F2), 1}, 0} . (2.22)

Our fast minimization scheme is to iterate (2.14), (2.15), (2.21), (2.20), and (2.22)

alternately, until convergence.

2.5 Proposed Model II

We propose a variant of Model I that handles segmentation properly when the captured

image has uneven lighting exposure, due to reasons such as the location of the light

source and camera. The original model considers the data term globally, i.e. com-

pares all the local histograms within each region. Therefore, when the local lighting

changes significantly, local histograms of the same feature may have similar shapes

but are far apart by a translation in the intensity axis. As a result, the Wasserstein dis-

tance between them is large and thus the original model is not designed to deal with

uneven lighting. To model this variation, we introduce a function a(x), representing

the translation in the intensity axis, and propose a new model:

inf
Σ,a,F1,F2

{
E3(Σ, a, F1, F2|I) = Per(Σ)+

α

2

∫
|∇a(x)|2dx (2.23)

+λ

∫

Σ

∫ L

0

|F1(y)− Fx(y − a(x))|dy dx

+λ

∫

Σc

∫ L

0

|F2(y)− Fx(y − a(x))|dy dx
}

.

This model allows local histograms to translate on the intensity axis in order to find

a best fit among one another within each region. A regularity constraint
∫ |∇a(x)|2dx
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is imposed to ensure smoothness of a.

To solve this minimization problem, we have the following three-step scheme. The

evolution equations for F1, F2 and φ can be derived similarly as before:

F1(y) = median of Fx(y − a(x)), over {φ ≥ 0} (2.24)

F2(y) = median of Fx(y − a(x)), over {φ < 0} (2.25)

φt = δ(φ)

[
∇·

( ∇φ

|∇φ|
)
− λ

∫ L

0

(
|F1(y)− Fx(y − a(x))|

−|F2(y)− Fx(y − a(x))|
)

dy

]
. (2.26)

The minimization with respect to a(x) is to solve:

inf
a

E3(Σ, ·, F1, F2|I) =
α

2

∫
|∇a(x)|2dx (2.27)

+λ

∫

Σ

∫ L

0

|F1(y)− Fx(y − a(x))|dy dx

+λ

∫

Σc

∫ L

0

|F2(y)− Fx(y − a(x))|dy dx .

Without the first term, a(x) can be solved explicitly by

a0(x) =





F−1
1 (0.5)− F−1

x (0.5) if φ(x) > 0

F−1
2 (0.5)− F−1

x (0.5) if φ(x) ≤ 0

Therefore, the problem of (2.27) is transformed into solving the following:
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inf
a

1

2

∫
|a(x)− a0(x)|2dx +

α

2

∫
|∇a(x)|2dx . (2.28)

The solution to (2.28) is a(x) − α4a(x) = a0(x), which can be solved by fast

fourier transform. We may also employ the fast global minimization technique for

Model II, instead using (2.26).

2.6 Properties of Proposed Models

Our model has several desired mathematical properties as shown in Table 1. In Sec.

2.4.2, we show the existence of solution and convexity of model in each variable. In

the discrete sense, if the resolution of an image f is m×n and L is the number of gray

levels, then u ∈ Rm×n and P ∈ P ({0, 1, ...L}) ⊂ RL. Therefore, the model in the

discretized form is convex in Rm×n × P ({0, 1, ...L}) and thus a global minimizer can

be found. Based on Chambolle’s dual method regarding the length-penalizing term,

the solution converges after a small number of iterations, compared to directly solv-

ing the associated Euler-Lagrange equation. Moreover, since the Wasserstein distance

is insensitive to oscillations, our model is intrinsically robust to noise. On the other

hand, it does not require histograms to be smoothed, which has to be done for many

segmentation models even for noiseless images. For instance, the Wasserstein distance

is able to distinguish the distance between any pair of delta functions with disjoint sup-

ports. Many distances do not tell apart the distance between two disjointly supported

histograms unless the histograms are smoothed. The complexity of computing one

iteration is O(Lmn). For a 200 × 150 image, the computational time for a solution to

converge is approximately two minutes. Since the partition is implicitly embedded in
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function u, the model is able to handle topological changes.

Kim et al.’s model also has existence of solution. Their model minimizes over a

non-convex set {u ∈ BV (Ω) : u = 1Σ for some set Σ with finite perimeter}, thus

does not guarantee to get a global minimizer. The gradient flow (2.4) has a curvature

term and the convergence can be slow, due to the CFL condition discussed in Sec.

2.3. However, the fast global minimization method may be applicable to their model.

The probability density functions are estimated by the Parzen window method. This

enables their model to handle noise but introduces a user-selected parameter, i.e. kernel

width. They use the fast Gauss transform to compute probability densities, which

reduces the complexity of computing one iteration to O(M), where M is the size of

the narrow band. The level-set method is used for curve evolution and thus allows

topological changes.

Herbulot et al. use smoothing B-splines to implement their derived evolution equa-

tion instead of the usual level-set method to avoid extensive computational time. The

complexity of each iteration is O(LM), where L is the number of gray levels and M and

the size of the narrow band. The parametric method using B-splines does not handle

topological changes of the contours. They further use a smoothing B-splines in order

to be more robust to noise. The tradeoff between the smoothness and interpolation

error is controlled by a parameter that has to be chosen by the user. Their model also

minimizes over a non-convex set, thus does not guarantee to get a global minimizer.

2.7 Experimental Results

2.7.1 Comparison with other methods

Our model does not require histograms to be smoothed for proper performance. In

contrast, Parzen window method [19] requires a parameter selection to estimate prob-
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Table 2.1: Properties of the proposed, Kim et al. [2], and Herbulot et al. [3] models
Our model Kim et al. [2] Herbulot et al. [3]

existence of solution X X X
global minimum/convexity X x x
fast minimization X x X
insensibility to noise X - -
no need to smooth histograms X x x
local change of lighting X x x
complexity for one iteration O(Lmn) O(M) O(LM)
computational time 2 mins 10 mins 10 mins
handle topological changes X X x

ability density functions. For instance, if the width of the kernel is too small, point-

wise metrics cannot detect similar intensities. In Fig.2.1, we have a synthetic image

with three regions, in each of which the pixel intensity is independently identically dis-

tributed. The middle and outer regions are similarly distributed and their correspond-

ing images look similar. A desired partition is to group these two regions together

and distinguish them from the inner region. In (b), we see that the final contour of

our model captures this. On the other hand, without smoothing histograms, the final

contour (a) of the model in [2] falsely groups the inner and middle regions together.

This is because the histograms of the inner and middle regions overlap 50% but the

histograms of the middle and outer region do not overlap.

We emphasize here how nonparametric models are able to deal with a greater vari-

ety of images than parametric models. In this experiment, the object and background

have the same intensity mean and variance. In Fig.2.2(a), we show the boundaries of

the objects in red curves and the corresponding histograms in each region. Fig.2.2(c)

and (b) are the final contours of our proposed model and ACWE, respectively. The

proposed model is able to distinguish the objects from the background, as well as

other nonparametric models, such as [2, 3, 17, 18] (not shown). On the other hand the
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Mutual information

Model I

Figure 2.1: The given image, shown in upper left corner, has three regions, in which
pixel intensity is independently identically distributed. The inner and outer regions
look similar, as well as their corresponding histograms and cumulative distributions.
Wasserstein distance does not require histograms to be smoothed in order to properly
compare histograms. Upper right shows the final contour of Kim et al.’s model when
the histograms are not smoothed. Bottom right shows the final contour of proposed
model I.

ACWE model cannot handle this case due to its parametric nature.

2.7.2 Comparison between original model and fast global minimization

The proposed fast global minimization improves the original minimization in [23] of

model I. Fig.2.3 is a downsized 175× 135 image of cheetah. In Sec. 2.4.1, we explain

that the global minimization model does not have local minima and thus is guaranteed

to find a global minimum. We experiment with several images with different and

arbitrary initializations and all arrive at similar results. This is a nice consequence of

the global minimization model being convex with respect to each variable. On the

other hand, the original minimization is non-convex and thus requires initializations
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(a) locations object boundary (b) ACWE (c) Model I
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Figure 2.2: Objects and background regions have the same intensity mean and vari-
ance. (b) Final contours of ACWE model. (c) Final contours of proposed Model I.

to be reasonably close to the final contours. Moreover, the fast global minimization

improves the speed from two hours to two minutes.

2.7.3 Robustness to noise/More results of Model I and Model II

Fig.2.4(a) is a clean image of cheetah and (b) is with noise. The final contour shown

in (d) by the global minimization of Model I is able to segment the cheetah patterns

and is nearly as good as the result in (c) of the clean image. Since noisy images need

more data for local histograms, the neighborhood size needs to be large enough. In

this experiment, the neighborhood radius is 11.

Fig.2.5 shows other experimental results of Model I. The first experiment is a 285×
281 image consisting of two Brodatz textures. The final contours are shown in (a)

and the corresponding histograms on each region are plotted in (c). Model I is able

distinguish these two Brodatz textures, even though their intensity distributions are
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(a) result of [23] (b) result of (2.13)

Figure 2.3: Down-sized cheetah image. Global minimization improves segmentation
result.

highly discontinuous. The second is a 481 × 321 image of tiger; (b) shows the final

contours by Model I and (d) shows the histograms in each region. The final contour

successfully selects the tiger patterns.

Fig.2.6 shows that Model II improves Model I when there are local lighting changes

in the image. The first experiment is on a 384×223 image of cheetah. In (a), we see that

Model I is able to capture some of the cheetah patterns but not near the back legs, due

to the local lighting difference. Final contours of Model II, in (b), are more accurate.

Another experiment is a 282×218 image of fish. The final contours by Model I, in (d),

do not select the fish patterns accurately, because the local illumination is significantly

uneven. Model II, on the other hand, is able to overcome this difficulty, as shown in

(e) the final contours separates the fish patterns from the background.

2.7.4 Implementation issues

We show a method to solve the weighted median for F1(y) in equation (2.14) in the

discrete case.

For each y = 0, 1, ..., L,

1. Compute the weighted histogram Hy of value Fx(y), with weight u(x). More
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(a) clean cheetah image (b) noisy cheetah image

(c) final contour of clean image (d) final contour of noisy image

Figure 2.4: The performance of Model I is nearly as good even with added noise to the
original image.
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Figure 2.5: Final contours of Model I.
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(a) Model I (b) Model II (c) a(x)

(d) Model I (e) Model II (f) a(x)

Figure 2.6: The smoothness component of Model II (b) allows local illumination
changes and captures more of the cheetah patterns than Model I (a). Similarly, Model
I decently segments the fish patterns (d), and Model II is able to improve the result (e).

precisely, for all pixels x ∈ Ω, each Fx(y) is counted u(x) times. Then, the

weighted histogram Hy is normalized by dividing by the total count
∑

x∈Ω u(x).

2. For each weighted histogram Hy, compute the cumulative distribution Cy.

3. The weighted median is then F1(y) = C−1
y (0.5).

The calculation of F2(y) is similar and with weight 1− u(x).

We empirically demonstrate that segmentation results are not sensitive to the size

of local neighborhood histograms, within a reasonable range. The experiment is on

a 384 × 223 image of cheetah, shown in Fig.2.4(a). Fig.2.7 shows final contours by

global minimization of Model I with different neighborhood sizes, radius ranging from

1 to 25. If the neighborhood size is smaller than the clutter features, the final contour

partitions clutter features into smaller regions, an undesired result. If the neighborhood

size is large enough, our results show the cheetah patterns are segmented for a large
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range of neighborhood sizes.

2.7.5 Limitations and extensions

Our segmentation model is formulated for gray-scale images but can be extended to

color images. The data term can be generalized because the Wasserstein distance is

defined on any space of probability measures. However, the implementation would

be much more complicated because there is no closed form for the Wasserstein dis-

tance between probability measures on Euclidean spaces with dimensions larger than

one. The Earth Movers Distance between signatures is equivalent to the Wasserstein

distance when signatures have the same total mass (or normalized discrete pdfs) and

the optimization has been investigated in [28]. This can be a possible direction to ex-

tend our segmentation model. Works in [29, 30] numerically solve the the optimal

maps of the optimal transport problem on R2 and may also be applied to our exten-

sion. Another limitation is that our model assumes the given image has two regions of

clutters. Many natural images have more than two regions and requires a multi-phase

segmentation model. This limitation can be overcome, since our model has a natural

extension to multi-phase segmentation as in [31]. Moreover, since our model has a

minimal assumption on the intensity probability density, it does not take into account

higher-order characteristics, such as gradient, scale, and orientation. For example, if

two textures have the same intensity probability density, our model is not able to dis-

tinguish them. Therefore, suitable characteristics have to be added in order distinguish

different regions. In addition, our segmentation model can be contributed to exist-

ing segmentation algorithms [32] that consider many image characteristics, including

clutters.
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r = 1 r = 2 r = 3

r = 5 r = 7 r = 9

r = 11 r = 13 r = 16

r = 19 r = 22 r = 25

Figure 2.7: The neighborhood size in model (2.13) needs to be equal or bigger than
the smallest features of interest in the given image. The segmentation results are not
too sensitive to the size r of the neighborhood, but are more accurate when the size is
closer to that of the smallest image features of interest.
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2.8 Conclusion

In this chapter, we proposed a fast global minimization of a local histogram based

model using the Wasserstein distance with exponent 1 to segment cluttered images.

Our model is different from previous nonparametric region-based active contours in

two ways. The first is the use of the Wasserstein distance, which is able to compare

both continuous and discontinuous histograms properly. The second is that the pro-

posed model does not need to differentiate histograms to find the solutions. We have

proved a number of desired mathematical properties of the model and provided exper-

imental verifications. In the future, we will generalize our model to color images and

multi-phase segmentation. The former can be achieved by using the fast minimization

of vectorial total variation in [33] and adapting the numerical scheme for computing

the optimal transport distance in [28, 29, 30]. The later can be approached by applying

methods such as the multi-phase level set framework [31].

32



CHAPTER 3

Scale of Texture and its Application to Segmentation

3.1 Introduction

A “texture” is a region of the image that exhibits stationary – or cyclostationary –

statistics of some sort. If one were to compute the histogram in a region around each

pixel, there would be some function of this histogram that is either constant (in practice

slowly-varying) or periodic as we move the pixel within the texture. Because the local

statistics are pooled from a region around each pixel, a fundamental question in the

definition, design, or classification of texture is the area of this region, or “scale”.

Some statistics are only stationary when computed at a certain scale, but not at larger

and/or smaller scales. The “right” scale thus defines the texture and plays an important

role, recognized early in the pioneering work of Julesz [34, 35], with many subsequent

attempts to define “elementary texture elements”.

Textures are important in the analysis of images, as they provide a mid-level rep-

resentation that is robust to the actual realization (pixel values) [36, 37, 38, 39], so

that “segments” of the image that have a consistent texture can be used as “tokens”

[40, 41, 42]; this is also important in image modeling, compression and synthesis

[43, 7, 44]. An arsenal of different analytical tools has been brought to bear in the anal-

ysis of textures, from statistical models to filtering methods, to geometric approaches.

Zhu et al. [43] model texture as a Markov random field (MRF), or equivalently the

Gibbs distribution. Efros and Leung [7] observe that textures range in between regular
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(repeating) and stochastic (without explicit textels) and many synthesis methods often

fail in preserving the geometric structures. Their synthesis method is based on a sta-

tistical non-parametric model that preserves spatial locality. Inspired by Julesz, Zhu et

al. and Wu et al. [45, 46] take a mathematical approach and identify a texture by an

equivalence class of statistical features. They later connect this idea with MRF texture

models by a minimax entropy scheme [47].

In this work, we address the issue of scale in textures head-on. As Zhu et al. [48]

point out, the basic texture element, also referred to as “texton” in the MRF literature

and considered a fundamental token for pre-attentive visual perception [35], remains

a vague concept in need of a better formalization. We provide a characterization of

scale that is not restricted to simple statistics, but instead – in a generative framework

– we see it as the generator, or “seed,” of a texture using any generative model. Rather

than texture modeling and classification, therefore, we focus our attention entirely on

determining the size a texton in a given image.

The scale descriptor in this work corresponds to the texton size or texture scale.

Many previous works define scale in relation to certain diffusion operators or filters.

Lindeberg [49] associates scale with the size of intensity gradient and uses the Gaus-

sian kernel to examine the local scale at each pixel. Brox and Weickert [50] and Strong

et al. [51] define scale based on the region size a pixel belongs to. They observe that

under the total variation regularization, the intensity change in a pixel is inversely pro-

portional to the region size. In [50], scale is defined as the time taken for a feature

to disappear under the TV flow and is applied to accomplish difficult texture segmen-

tation. In [51], scale is the inverse of the intensity change under the TV denoising

model [52]. SIFT [53] describes local features in an image by taking the differences

of blurred-images that are obtained by convolving with Gaussian filters with differ-

ent variances. These definitions of scale do not take into account the neighborhood
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statistics so that they cannot provide an intrinsic texture scale that measure the small-

est repetitive pattern locally. For regular (or repeated) textures, scale is the size of the

smallest image patch that generates a texture by repeating the patch side by side. Wolf

et al. [42] use a patch matching criterion to find texture edges and then incorporate

it into a region based active contour model for texture segmentation. Their texture

map is successful for segmentation but does not reveal any signs of the correct texton

size. For stochastic textures, the spatial relation may not be found and thus may not

be obtained by simply stitching textons together. Instead, we take a non-parametric

approach and use the entire distribution of the patch to find a texton’s size.

For stationary textures, the intrinsic scale is the size of the smallest domain where

the distribution is close to that of any other domain of the same size within the texture.

Because in practice the statistics may not be strictly stationary, but slowly-varying

instead, in practice we look for the smallest local patch whose probability density

function (pdf) is similar to the one computed on its neighboring local patches (which

we later call “neighboring patch” for short).

We introduce an intrinsic scale in modeling of texture and use it to improve seg-

mentation models. The intrinsic scale is not uniform across the image domain. This

is in contrast to many schemes for texture segmentation where local pdfs are com-

pared, for instance using the Wasserstein distance [54], but they are computed on a

local domain the size of which is fixed throughout the image. If the selected size is

smaller than the texton, these schemes over segment the texture; if it is too large, the

segmentation may not be accurate because local patches cross over texture boundaries.

Not only is the texton size not constant across regions, it may even vary within a tex-

ture region, albeit slowly. We believe that by automatically finding the intrinsic scale,

histogram-based segmentation will improve its performance. Additionally, the scale

can also be added into the data term to distinguish two textons with the same pdf but
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different scales. Huang et al. [55] also use scale as feature for segmentation. They

use local patch’s pdf to find a best natural scale of textons. However, our model is

significantly different in two ways. The first is that our scale finds the intrinsic scale

of texture which is obtained by the size of texton whereas their scale gives a local fea-

ture for segmentation but is not necessary the size of texton that is a basic element of

texture. The second is that our segmentation model is a convex minimization problem

in a variational framework, in which initialization can be arbitrary, whereas they use

a probabilistic model that requires proper initializations along with feature given by

filter response.

3.2 Texture Scale

3.2.1 Notations

Let I : Ω ⊂ R2 → [0, 1] be an observed gray-scale image. Define the local patch Rx,r

around the pixel point x = (x1, x2) ∈ Ω with size r (“radius” in analogy to circles) by:

Rx,r = {z ∈ Ω | max
1,2
{|x1 − z1|, |x2 − z2|} < r} (3.1)

Define the neighboring patch of the local patch by:

Nx,r = Rx,3r\Rx,r. (3.2)

The local histogram, hR(y), on R counts the number of pixels whose intensity is

y ∈ [0, 1]:

hR(y) =

∫

R
δ(y − I(x))dx, (3.3)
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where δ is Dirac’s Delta.

The probability density function (or normalized histogram), PR, on R is the probabil-

ity of a pixel having value y ∈ [0, 1]:

PR(y) =

∫
R δ(y − I(x))dx∫

R dx
. (3.4)

In this chapter, histograms are normalized. The cumulative distribution function, FR,

describes the probability of a pixel having value less than y, for all y ∈ [0, 1]:

FR(y) =

∫ y

0

PR(t)dt. (3.5)

The Wasserstein distance with exponent 1 between two probability density functions

P1 and P2 is:

DW (P1, P2) =

∫ 1

0

|F1(y)− F2(y)|dy, (3.6)

where F1 and F2 are the corresponding cumulative distribution functions.

The Kullback-Leibler divergence DKL from P1 to P2 is:

DKL(P1||P2) =

∫ 1

0

P1(y) log
P1(y)

P2(y)
dy. (3.7)

The entropy of P is:

H(P ) = −
∫ 1

0

P (y) log P (y)dy. (3.8)
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(a) Texture (b) Energy plot

Figure 3.1: Synthetic texture example: (a) Local patch at ‘X’ (inside red) and neigh-
boring patch (between red and blue). (b) Energy vs. patch size. Red: histogram
difference using the Kullback-Leibler divergence. Green: histogram difference using
the Wasserstein distance. Blue: entropy of the local patch histogram

3.2.2 Description of the scale model

Our proposed scale descriptor is derived by energy minimization of the following

model:

inf
r

D(PRx,r , PNx,r)− αH(PRx,r) + βr(x), (3.9)

where α and β are positive design parameters. In the first term, D is an appropriate

measure of the dissimilarity between two probability distributions; for example, we use

both the Wasserstein distance DW and the Kullback-Leibler divergence DKL in this

chapter. The first term of this energy functional measures the difference between the

pdf on the local patch and the pdf on the neighboring patch. Minimizing the difference

finds a size whose local patch satisfies the histogram matching criterion. The second

term maximizes the entropy of PRx,r , the complexity of the histogram on the local

patch. This term avoids selecting homogeneous patches as textons despite their small

difference in the pdf with their neighborhood. The third term penalizes the size r to
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find the smallest one among all the ones that satisfy the criterion. To understand the

proposed model, we show a synthetic texture example and plot the first and second

terms versus the patch size r, at the indicated pixels. Fig.3.1 (a) shows a local patch

(in red) around pixel ‘X’ and a neighboring patch (in between the blue and red curves).

In (b), we look at how the first and second terms of (3.9) change with respect to r. The

green and red curves are the first terms with the Wasserstein distance and Kullback-

Leibler divergence, respectively. The blue curve is the entropy of the histogram on the

local patch, whose maxima (patch being most complex) appear periodically when r

is a multiple of the texton size. Minima (satisfy histogram matching criterion) appear

periodically at multiples of r. Therefore, the correct scale should be the smallest one

among all arguments of the minimum. In this example, the texton size is 1, or a 3× 3

patch. The entropy term is redundant in this example but is necessary in general when

there are homogeneous areas within the texton.

Fig.3.2 is an example consisting of two synthetic textures, on each of which we

select two pixels (A, B and C, D), one closer to the texture edge than the other. From

the energy plots, we see that the entropy increases rapidly with patch size as soon as

the patch begins to overlap both texture regions. Therefore, measuring the complexity

of a local patch’s histogram alone is not sufficient to find the scale. The distance

between the histograms on the local patch and neighboring patch also increases rapidly

as the local patch begins to overlap both textures, indicating the correct texton size has

already been passed. This shows a appropriateness of using the histogram matching

criterion.

The proposed model (3.9) finds the local scale of a texture. However, it may not

be accurate at locations near texture edges, due to the nature of patches. Fig.3.3 (a)

marks three locations, one at the left texture, one near the texture edge, and one on

the right texture. The histogram differences by both Wasserstein distance in (c) and

39



Kullback-Leibler divergence in (d) attain local minima periodically because both lo-

cal and neighboring patches are almost symmetric about the texture edge when the

patch size is large. Therefore, histogram comparison must be modified in order to find

the correct scale especially for the pixels in the vicinity of the boundary of different

textures. We propose the following modification of model (3.9):

inf
r

D∗(PRx,r , PNx,r)− αH(PRx,r) + βr(x) (3.10)

and

D∗(PRx,r , PNx,r) = min
i

D(PRx,r , PNx,r,i
), (3.11)

and Nx,r,i is a sub-neighboring patch within Nx,r whose size is r. For computational

efficiency, 8 sub-neighboring patches are pre-defined as follows:

{R(x1+2r,x2+2r),r,R(x1,x2+2r),r,R(x1−2r,x2+2r),r,R(x1−2r,x2),r,

R(x1−2r,x2−2r),r,R(x1,x2−2r),r,R(x1+2r,x2−2r),r,R(x1+2r,x2),r}

Numerically, the proposed models are solved in the discrete setting, instead of the

standard PDE method that derives the Euler-Lagrange equations of the energy func-

tionals (3.9) and (3.10), followed by the steepest descent. This is because r is a discrete

variable. Moreover, as also seen in the energy plots, the proposed model has many lo-

cal minima, thus the steepest descent method does not find a global minimum.
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Figure 3.2: Image consisting of two synthetic textures. (a) Mark two locations A, B on
the left texture and two locations C, D on the right. (b) Entropy vs. size of local patch
at A and B. (c) Entropy vs. size of local patch at C and D. (d) Histogram difference vs.
size with Kullback-Leibler divergence at A and B. (e) Histogram difference vs. size
with Kullback-Leibler divergence at C and D. (f) Histogram difference vs. size with
Wasserstein distance at A and B. (g) Histogram difference vs. size with Wasserstein
distance at C and D
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Figure 3.3: Image consisting of two synthetic textures. (a) Mark three locations A on
the left texture, B near the texture edge and B on the right. (b) Entropy vs. size of
local patch at each location. (c) Histogram difference vs. size with Kullback-Leibler
divergence at each location. (d) Histogram difference vs. size with Kullback-Leibler
divergence at each location.

(a) Texture (b) Intensity (c) Scale 1 (d) Scale 4

Figure 3.4: (a) Image consisting of two synthetic textures with the same histogram
but different scales. (b) Segmentation by using intensity [1]. (c) Histogram based
segmentation with scale r = 1. (d) Histogram based segmentation with scale r = 4.
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3.3 Texture Segmentation

In this section, we utilize scale and propose an unsupervised texture segmentation

model. Our model is adapted from the histogram based segmentation [54], a two-

phase nonparametric region-based active contour that uses local histograms as image

features. The model partitions the image domain into two regions so that the local

histograms within each region are homogeneous. In [54], the local histograms have

a uniform patch size and we propose to use an adaptive scale. In addition, we use

scale as an image feature in the segmentation model. We give an example to show

that scale plays an important role. Fig.3.4 (a) is an image consisting of two textures

with the same histogram but different scales. The segmentation result in (b) is by the

two-phase piecewise constant active contour model [1], indicated by the intensities

black and white. The partition is within textons and does not distinguish textures,

because two textures have the same intensity mean. In (c), we show the partition using

histogram based segmentation model with global scale r = 1. The partition captures

the inner texture but also falsely includes partial outer texture, because the scale is

too small for the outer region. In (d), the global scale r = 4 is large enough and two

textures are considered the same because they have the same histogram. To distinguish

them, scale has to be added as an image feature in the segmentation model.

Our proposed model uses scale for characterizing histograms and also as an image

feature, as shown in the following:

min
0≤u≤1,P1,P2,r1,r2

∫

Ω

|∇u| +

∫

Ω

[λ1DW (P1, Px,r(x)) + λ2(r1 − r(x))2]u(x)dx (3.12)

+

∫

Ω

[λ1DW (P2, Px,r(x)) + λ2(r2 − r(x))2](1− u(x))dx,
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where λ1 and λ2 are positive parameters. Minimizing this energy functional separates

the image domain into two so that the local histograms within each region are ho-

mogeneous and the scale intensities are homogeneous within each region. The first

term penalizes the total length of the object boundary. The second and third are fi-

delity terms. The partition can be obtained by the following thresholding: Ω = {u ≤
0.5} ∪ {u > 0.5}. P1 and P2 are the optimal histograms in each region; r1 and r2 are

the approximated scale constants in each region.

The minimization of (3.12) can be approximated by a three-step scheme, using the

methods in [54] and [56]. First, we fix u, r1, and r2 and minimize with respect to F1

and F2. The optimality conditions yield

∫
u(x)

F1(y)− Fx,r(x)(y)

|F1(y)− Fx,r(x)(y)|dx = 0

and ∫
[1− u(x)]

F2(y)− Fx,r(x)(y)

|F2(y)− Fx,r(x)(y)|dx = 0,

respectively, for each 0 ≤ y ≤ L. Therefore,

F1(y) = weighted median of Fx,r(x)(y) with weight u(x), (3.13)

and

F2(y) = weighted median of Fx,r(x)(y) with weight (1− u(x)). (3.14)

Second, fixing u, F1, and F2 and minimizing with respect to r1 and r2 gives
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Figure 3.5: Brodatz texture image. (a) Mark three locations A, B, and C. (b) Entropy
vs. size of local patch at A, B, and C. (c) Selected scales by proposed model using
Wasserstein distance at A, B, and C. (d) Histogram difference vs. size with Wasserstein
distance at A, B, and C. (e) Selected scales by proposed model using Kullback-Leibler
divergence at A, B, and C. (f) Histogram difference vs. size with Wasserstein distance
at A, B, and C. (g) Histogram difference vs. size with Kullback-Leibler divergence at
A, B, and C.
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r1 =

∫

Ω

r(x)u(x)dx/

∫

Ω

u(x)dx, (3.15)

and

r2 =

∫

Ω

r(x)(1− u(x))dx/

∫

Ω

(1− u(x))dx. (3.16)

Third, fixing F1 and F2, minimization in u can be solved efficiently by using the

methods in [25] and [56]. The regularization term and the data terms in (3.12) can be

decoupled by adding a new variable v in a convex term:

min
u,0≤v≤1

∫

Ω

|∇u(x)|dx +
1

2θ

∫

Ω

(u(x)− v(x))2dx +

∫

Ω

f(x)v(x)dx ,

where f(x) = λ1

∫ L

0
|F1(y)−Fx,r(x)(y)| − |F2(y)−Fx,r(x)(y)|dy + λ2[(r1− r(x))2−

(r2 − r(x))2], and θ is a scalar parameter that is sufficiently small.

The convex minimization problem (3.17) can be solved the following coupled prob-

lems, alternately:

min
u

∫

Ω

|∇u(x)|+ 1

2θ
(u(x)− v(x))2dx (3.17)

and

min
0≤v≤1

1

2θ

∫

Ω

(u(x)− v(x))2dx +

∫

Ω

f(x)v(x)dx . (3.18)
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Equation (3.17) can be solved efficiently by the Chambolle’s method [25], based on the

dual formulation of the total variation norm,
∫

Ω
|∇u(x)|dx = sup

{ ∫
Ω

u div p dx
∣∣∣ p ∈

C1
c (Ω;R2) : |p(x)| ≤ 1,∀x ∈ Ω

}
. The solution is

u(x) = v(x)− θ divp(x) , (3.19)

where p solves the equation ∇(θ divp− v)− |∇(θ divp− v)|p = 0, which is solved

by a fixed point method,

pn+1 =
pn + δt∇(divpn − v/θ)

1 + δt|(divpn − v/θ)| . (3.20)

The solution of (2.19) is [56]:

v(x) = max{min{u(x)− θ f(x), 1}, 0} . (3.21)

The minimization scheme iterates (3.13), (3.14), (3.15), (3.16), (3.20), (3.19), and

(3.21) alternately, until convergence. The discretization of div and ∇ are the same as

described in [25, 56].

3.4 Experiments

We first show experimental results of the proposed scale model on several Brodatz

textures. Fig.3.5(a) shows three arbitrarily chosen pixels on a Brodatz texture. In (b),

the curve of entropy versus patch size at each indicated pixel is almost increasing and

does not have a global maximum as patch size continues to increase. The histograms

gain complexity as the patch size increases and there is no clear sign of the correct
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Figure 3.6: Comparison of scale maps with other methods on Brodatz texture images.
(a) Brodatz texture images with patches with texton scales obtained by our model at
arbitrarily selected pixels. (b) Scale map by Tikhonov flow. (c) Scale map by TV flow.
(d) Scale map by the proposed model with α = 0.001 and β = 0.1.
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scale according to these curves, which emphasizes that entropy alone is not enough

to find the scale. On the contrary, in (d), we see the histogram difference (using the

Wasserstein distance) versus patch size obtains a global minimum and the texton size

can be clearly identified at the first minimum from left, away from r = 0. In (c), the

scale at each indicated pixel by the proposed model with the Wasserstein distance is

accurate. In (f), the histogram difference versus patch size plot shows the Kullback-

Leibler divergence captures the characteristics to some extend but not as well as the

Wasserstein distance. The selected scale shown in (e) is roughly correct. The reason of

the Wasserstein distance outperforming the Kullback-Leibler divergence in this exper-

iment is that the Wasserstein distance overcomes the deficiency of pointwise metrics,

as addressed in [54].

Fig.3.6 shows five Brodatz textures in column (a) and their scale maps by Tikhonov

flow [49] in column (b), by TV flow [57, 50] in column (c), and by the proposed model

in column (d). We use our own implementation of [57, 50, 49] in this experiment. The

scale maps for these textures are expected to be homogeneous and only our model

captures this characteristic. The parameters are α = 0.001 and β = 0.1 in (3.9) for

all five textures. We show in column (a) the scales obtained by our model at three

arbitrarily selected locations which are accurate and agree with visual perception. In

the first row, the scale map by Tikhonov flow highlights the edge of circles because the

scale is associated with intensity gradients. The scale map by TV flow (d) highlights

the circle regions since the scale is proportional to the size of a homogeneous region.

Neither of the previous scale descriptors describe the size of the texture. We also apply

the proposed scale model to several natural images from the Berkeley Segmentation

Dataset as shown in the following.

Fig.3.7-3.9 shows the scale maps of the given images and compares the histogram

based segmentation model [54] and the proposed model. (d) shows the given natural
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Figure 3.7: (a) Segmentation with global scale r = 4. (b) Segmentation with global
scale r = 16. (c) Segmentation with global scale r = 32. (d) Image. (e) Scale map by
the proposed model. (f) Segmentation by proposed model.

images. (a), (b), and (c) are the segmentation results by [54] with global scale r =

4, 16, and 32, respectively. Fig.3.7(a), with r = 4, the segmentation selects within

the cheetah patterns at some locations because the global scale is too small for those

locations. In (b) (with r = 16) and in (c) (with r = 32), segmentation does not

partition within the cheetah patterns but does not fall on the boundary accurately. This

is because the global scale is too large, resulting many patches cross over both regions.

The scale maps in (e) describe correctly each object region by a homogeneous scale

and each background region by another homogeneous scale. The results in (f) by the

proposed model with scale improve the segmentation results significantly.

3.5 Conclusion

In this work, we define a scale descriptor associated with texture. We propose a non-

parametric model that seeks the scale by matching histograms in a self-repeating man-

ner. The proposed energy functional consists of three terms. The first finds a size that

satisfies a histogram matching criterion that compares the local patch with the neigh-
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Figure 3.8: (a) Segmentation with global scale r = 4. (b) Segmentation with global
scale r = 16. (c) Segmentation with global scale r = 32. (d) Image. (e) Scale map by
the proposed model. (f) Segmentation by proposed model.

Figure 3.9: (a) Segmentation with global scale r = 4. (b) Segmentation with global
scale r = 16. (c) Segmentation with global scale r = 32. (d) Image. (e) Scale map by
the proposed model. (f) Segmentation by proposed model.
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boring patch. The second maximizes the complexity of a patch to avoid choosing the

wrong size when there are homogeneous regions within a texton. The third penalizes

the size because texton is the smallest element that generates a texture. We show that

these three terms are not redundant to one another. We also propose a modified model

suited for finding the scale near texture edges. Our experimental results show that the

scale map of a texture by the proposed model is highly accurate. Furthermore, we use

scale as an image feature and also use it for characterizing local histograms in the pro-

posed segmentation model. Our segmentation results on several natural images show

an improvement over approaches that rely on a fixed scale.
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CHAPTER 4

Unsupervised Multiphase Segmentation and

Hierarchical Representation of Image Structure

4.1 Introduction

Image segmentation aims to partition an image domain into different regions in a

meaningful way. Edge-based active contours methods [8, 10, 11] pose segmentation

as an energy minimization problem and use edge detection functions that are based on

local features to evolve contours towards object edges. Region-based active contours

models incorporate both regions and edges to find a partition. Our proposed algorithm

takes a region-based active contours approach because it is robust to noise and based

on more global features. One of the early efforts towards region-based active contours

was made by the Mumford and Shah segmentation model [12], which approximates a

given image by a piecewise smooth image. However, the posed energy minimization

problem is difficult to solve. Zhu and Yuille [14] use a family of Gaussian distributions

to describe each region’s data, i.e. mean and variance, and determine the boundaries

of regions by competing with neighboring regions to best fit models at the largest pos-

sible areas. However, their proposed energy minimization problem is difficult to solve.

Chan and Vese [1] is a two-phase piecewise constant model, a variant of Mumford and

Shah. The novelty of their work is the use of the level set method to represent the

evolving curve. The minimization is conveniently obtained by the gradient descent of
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the Euler-Lagrange equation of the energy functional. However, the extension of the

Chan and Vese two-phase model to multiphase segmentation is not so natural. Several

attempts have been made towards this extension. Vese and Chan [31] use n level set

functions to represent up to 2n regions because each level set function splits the image

domain into two. This method implicitly represents the constraint of disjoint regions

so no coupling forces are needed in order to constrain disjoint regions. However, n

has to be properly chosen. Chung and Vese [58] use only one level set function but

with level lines other than the zero-level line to represent contours. This method can

represent n regions and the constraint of disjoint regions is also implicitly dealt with.

However, their model cannot deal with triple junctions and the authors suggest com-

bining their method with the Vese and Chan model to overcome this problem. Lie et

al. [59] introduce to segmentation a piecewise constant level set function to represent

each phase with a constant value. The piecewise constant constraint on the level set

function is solved by using the augmented Lagrangian. Their level set method does not

require re-initialization that is necessary for the classical level set method. However,

extra work, as described in their paper, is needed for noisy images. The segmentation

methods described above do not require any training set but the number of regions or

at least an upper bound has to be given.

Brox and Weickert [60] use one level set function for each region to represent Zhu

and Yuille’s model. Brox and Weickert propose using a coupled curve evolution to

solve this multiphase segmentation model but assume the number of regions is known.

They also propose to automatically find the number of regions by a coarse-to-fine strat-

egy coupled with a hierarchical splitting. The authors apply a two-phase segmentation

on a subregion, and if the Zhu and Yuille’s energy functional is lowered, they continue

the current segmentation. This process is repeated for all regions until the Zhu and

Yuille’s energy functional cannot be lowered. The number of phases obtained by this

procedure is used in their multiphase segmentation model. Sandberg et al.’s segmenta-
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tion model [61] automatically determines the number of regions and finds partitioning

simultaneously. In the energy functional, they introduce a feature balancing term, the

sum of all the inverse of region scales from each region, which is used to implicitly

penalize the number of regions in addition to the total length of the boundaries. The

region scale of a region is the quotient of its area and perimeter. Their model can be

easily solved by a pixel-wise decision algorithm which implicitly deals with the dis-

joint constraint on all phases. This minimization method is very efficient but not robust

to noise.

In this chapter, we provide a spatial enclosure relationship between higher-level

and lower-level regions so that one can analyze an image at a certain level of scale.

Scale is related to contrast and region scale, and we use the definition of the TV scale

in [57], which is defined as the time taken for a feature to disappear under the total

variation flow. Tu and Zhu [32] consider segmentation a computing process rather

than a vision task. The more one looks at an image, the more one sees. Therefore, seg-

mentation results are not universal. We provide a “structure” of an image because that

is how an image is usually interpreted. Following this idea, we propose to start from

the coarsest partitioning and then refine each partitioning individually. Our proposed

multiphase piecewise constant segmentation first applies the Chan and Vese model to

partition an image domain into two and then recursively applies the Chan and Vese

model in each partitioned region. This procedure gives a structure of an image im-

plicitly utilizing the notion of “saliency” [62] that involves scale and intensity contrast

in its determination. We additionally propose some stopping conditions to terminate

the two-phase segmentation on the indicated region when it becomes meaningless to

partition further. The stopping conditions use region scale and contrast to detect over-

segmentation.
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4.2 Two-phase Piecewise Constant Segmentation on an Indicated

Region

In this section, we first describe previous two-phase piecewise constant segmentation

models and then present a natural extension to partition any given subregions that may

be of arbitrary shapes. Let f : Ω → [0, L] be the given grey-scale image. A two-

phase piecewise constant version of the Mumford-Shah model [12] evolves a curve C

towards the boundary between two regions and approximates f by two constants c1

and c2 inside the curve C and outside the curve C, respectively. The Chan and Vese

model [1] is the following energy minimization problem:

inf
C,c1,c2

{
E1[C, c1, c2] =

∫

C

ds + λ

∫

inside(C)

(c1 − f(x))2 dx (4.1)

+λ

∫

outside(C)

(c2 − f(x))2 dx

}
,

where the first term measures the total length of the curve C to penalize compli-

cated interface between two regions and λ is a scalar parameter that controls the bal-

ance between regularization and data. This model can be represented in the following

level-set formulation:

inf
φ,c1,c2

{
E1[φ, c1, c2] =

∫
|∇H(φ(x))| dx +λ

∫
H(φ(x))(c1 − f(x))2 dx (4.2)

+λ

∫ [
1−H(φ(x))

]
(c2 − f(x))2 dx

}
,

where H is the Heaviside function and φ is the level set function [13] such that φ >
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0 inside C and φ < 0 outside C. The minimization of this level set formulation can

be solved naturally by the standard PDE method [1] and allows topological changes

of the curve. However, this model is not convex and thus a reasonable initialization is

necessary to avoid getting stuck at undesired local minima.

Bresson et al. [5] proposed a fast global minimization of the Chan and Vese model.

There are two major advantages of their algorithm. The first is that the initialization

can be arbitrary. The second is that the solutions can be obtained much faster than the

standard PDE method. Bresson et al.’s model is the following minimization problem:

min
u,0≤v≤1,c1,c2

{
E2

Ω[u, v, c1, c2] = TVΩ(u) +
1

2θ
||u− v||L2(Ω) (4.3)

+λ

∫

Ω

v(x)(c1 − f(x))2 + [1− v(x)](c2 − f(x))2 dx

}
,

where θ is small enough so that u and v are are significantly close, λ is a parameter

controlling the data fidelity term, and the total variation of u is defined in the following:

TVΩ(u) = sup

{ ∫

Ω

u div p dx
∣∣∣ p ∈ C1

c (Ω;R2) : |p(x)| ≤ 1,∀x ∈ Ω

}
. (4.4)

If u∗ = argmin E2
Ω[u, v, c1, c2], the partition can be chosen to be, for instance,

{u∗ ≥ 0.5} and {u∗ < 0.5}. Let r(x, c1, c2) = (c1 − f(x))2 − (c2 − f(x))2. The

minimization is solved by alternating the following equations [5]:

c1 =

∫
Ω

f(x)v(x)dx∫
Ω

v(x)dx
(4.5)

c2 =

∫
Ω

f(x)[1− v(x)]dx∫
Ω
[1− v(x)]dx

(4.6)

p(x) =
p(x) + ∆t ∇(div p(x)− v(x)/θ)

1 + ∆t|∇(div p(x)− v(x)/θ)| (4.7)
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u = v − θ div p (4.8)

v(x) = min
{

max
{

u(x)− θλr(x, c1, c2), 0
}

, 1
}

, (4.9)

where ∆t is the time step. These equations are iterated until convergence.

Let the resolution of image be M × N and write p = (p1, p2). The discretization

of div and ∇ that satisfy the definition of TV norm in equation (4.4) are defined in the

following ways [5, 25]:

(
∇u

)1

i,j
=





ui+1,j − ui,j if i < M

0 if i = M
(4.10)

(
∇u

)2

i,j
=





ui,j+1 − ui,j if j < N

0 if j = N
(4.11)

(
div p

)
i,j

=





p1
i,j − p1

i−1,j if 1 < i < M

p1
i,j if i = 1

−p1
i−1,j if i = M

+





p2
i,j − p2

i,j−1 if 1 < j < N

p2
i,j if j = 1

−p2
i,j−1 if j = N .

(4.12)

We generalize Bresson et al.’s algorithm described above for partitioning a given

region S ⊆ Ω that may have arbitrary shapes, in the following:

min
u,0≤v≤1,c1,c2

{
E2

S[u, v, c1, c2] = TVS(u) +
1

2θ
||u− v||L2(S) (4.13)

+λ

∫

S

v(x)(c1 − f(x))2 + [1− v(x)](c2 − f(x))2 dx

}
,
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The minimization equations are the same as equations (4.5)-(4.9), except the solu-

tions are restricted on the indicated region S. Simple modifications of (4.10), (4.11),

and (4.12) can be made to suit arbitrary regions S and still satisfy the definition of the

TV norm in equation (4.4). For all (i, j) such that χS(i, j) = 1,

(
∇u

)1

i,j
= χ

S
(i + 1, j)(ui+1,j − ui,j) (4.14)

(
∇u

)2

i,j
= χ

S
(i, j + 1)(ui,j+1 − ui,j) (4.15)

(
div p

)
i,j

= χ
S
(i + 1, j) p1

i,j − χ
S
(i− 1, j) p1

i−1,j (4.16)

+χ
S
(i, j + 1) p1

i,j − χ
S
(i, j − 1) p1

i,j−1 .

4.3 Hierarchical Representation of an Image

In this section, we present our proposed segmentation algorithm which provides a full

hierarchical representation of the structure of a given image. The proposed algorithm

recursively applies equation (4.13) to split a partitioned region into two and gener-

ates an ordered binary tree to represent the structure of the image. Fig. 4.1(a) is an

example of the process of the proposed recursive segmentation. Initially, the two-

phase piecewise constant segmentation is applied on the entire image domain so the

root node, Q0, represents the entire image domain. The partitioned regions of Q0 are

stored in Q1(L,Q0) and Q2(R,Q0) where the second place, Q0, indicates the parent

node, and L and R represent left child node and right child node, respectively. Since

the initialization of the two-phase segmentation (4.13) can be arbitrary, we choose the
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Figure 4.1: An example of the proposed recursive two-phase segmentation. (a) shows
an ordered binary tree that represents the structure of an image. (b) shows the process,
from top to bottom, of the recursive segmentation in which each partitioned region is
stored in a queue. The bottom row is the final tree structure in the queue representation.
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image itself (normalized to range from 0 to 1) as initialization for v in (4.13). The

segmented regions are {u ≥ th} and {u < th}, where th is the intensity mean of

the current region (or the union of both segmented regions). The left child node rep-

resents region {u ≥ th} and the right child represents region {u < th}. Since the

minimization is a gradient descent, by our initialization, the intensity mean of the left

child node is always higher than that of the right child node. In this way, the order

of intensity means of the partitioned regions are preserved and we obtain an ordered

binary tree. Next, we apply the two-phase segmentation on the region in Q1(L,Q0)

and store the segmented regions into Q3(L,Q1) and Q4(R,Q1). Then, we continue

this method and proceed segmentation on Q2(L,Q0), which is split into Q5(L,Q2)

and Q6(R, Q2). This process gives us a hierarchical representation of the image struc-

ture. However, this process becomes meaningless when the scale of structure becomes

too small. Therefore, we propose to terminate segmentation of a region if one of the

following three conditions is satisfied. The first is when the evolving curve disappears,

which happens naturally if the current region has homogeneous intensity. The sec-

ond stopping condition uses region scale to prevent oversegmentation. The third is

when the approximated constants are so similar that it becomes meaningless to parti-

tion that region. In this fashion, a region that satisfies any of the stopping condition

above becomes a leaf of the ordered binary tree. In the example of Fig. 4.1, region

Q3(L,Q1) meets one of the stopping criteria and thus has no child nodes. Similarly,

region Q4(R, Q1) has no child nodes.

To implement the recursive segmentation described above, we use a queue to store

the segmented regions. Fig. 4.1(b) shows the procedure, from top to bottom, of the

implementation of the example in Fig.4.1(a). The first row shows that the current

node is Q0 and the partitioned regions are stored into Q1(L,Q0) and Q2(R,Q0). The

subindex of Q is the position of entity in the queue. The second row shows that the

current node is Q1(L,Q0) and the partitioned regions are stored into Q3(L,Q1) and
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Q4(R,Q1). The third row shows that the current node is Q2(R,Q0) and the partitioned

regions are stored into Q5(L,Q2) and Q6(R, Q2). The forth row shows that the current

node is Q3(L,Q1) and does not need to be partitioned. This process is continued until

there is no more node stored in the queue. The pseudo code is shown in Algorithm 1.

Initially, the region to be segmented is the entire image domain and this is represented

by a characteristic function χ
Ω

. ‘Phase’ is a matrix of the size of image that records the

leaf regions and j is the label of each phase; n keeps track of current entity in queue to

be segmented, and N is the position of the entity in queue a newly segmented region

to be stored. The function ‘two-phase piecewise constant segmentation’ uses equation

(4.13) and returns two characteristic functions χ1 and χ2 that represent the segmented

regions on the current region. It additionally returns a true and false variable ‘split’

according to the stopping conditions. If one of the stopping conditions is satisfied,

‘split’ is false; otherwise, ‘split’ is true.

Algorithm 1 Recursive two-phase segmentation
Given image f : Ω → [0, L]
Q0 ⇐ χ

Ω

Phase ⇐ ~0
n ⇐ 0
N ⇐ 0
j ⇐ 0
while Qn exists do

[χ1 , χ2 , split] = two-phase piecewise constant segmentation(f,Qn)
if split = true then

QN+1(L,Qn) ⇐ χ1

QN+2(R,Qn) ⇐ χ2

N ⇐ N + 2
else

Phase ⇐ Phase + j ∗Qn

j ⇐ j + 1
end if
n ⇐ n + 1

end while
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4.4 Experimental results

Fig. 4.2 shows experiments on synthetic images with five and eight regions, respec-

tively. The proposed algorithm automatically detects each region of the images. The

segmentation results are shown in different colors to represent each phase of the seg-

mentation. As can be seen, the recursive approach implicitly deals with junctions. Fig.

4.3 shows the ordered binary tree structure of the image. The red region represents the

extracted region, black represents the irrelevant region, and blue represents the com-

plement of the red in the relevant region. Fig. 4.4 shows the binary tree structures of

image (a) and image (b) in the queue representation. We will show other results of

image structures in the queue representation.

In Fig. 4.5, (a) shows that the proposed segmentation starts from the coarsest scale.

The two rectangles are first separated from the background and then separated from

each other. In (b), the contrast of the right rectangle is high and also the region scale

of it is high enough. Therefore, the right rectangle is first separated from the union

of the left rectangle and background, and then the left rectangle and background are

separated. This is the case when the contrast is high enough to have greater influence

on the segmentation result than the region scale. Fig. 4.6 also shows that recursive

segmentation competes between the region scale and contrast in a reasonable manner.

In (a), the contrasts from the background to the top-left rectangle, from the top-left

to the top-right, from the top-right to the bottom-left, and from the bottom-left to the

bottom-right are all the same. All five regions have the same area but the perimeter of

the background is larger than those of the rectangles. Therefore, as expected according

to region scale, the first segmentation separates the rectangle with lowest intensity and

the background from the rest of the rectangles. In (b), the bottom-right rectangle has

the highest contrast and its region scale is large enough. Therefore, the first segmen-

tation extracts it from other regions. Fig. 4.7 shows that the order of segmentation is
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from the largest region scale, as in (a) and (d), and also depends on the contrast, as in

(b) and (c). In (a), the center circle has a very high contrast but its region scale is small.

Therefore, all the circles as a unit are separated from the background in the first seg-

mentation step. In (b), (c), and (d), all high-contrasted circles’ scales are large enough

and thus the segmentation is performed according to the contrast. All results show that

recursive segmentation competes region scale and contrast in an intuitive way.

Fig. 4.8 and 4.10 show the segmentation results of some real images. The proposed

algorithm automatically detects each region of the given images. The segmentation re-

sults are obtained by applying the proposed algorithm on the respective grey-scale im-

ages of the color images shown in the figure. The proposed algorithm can be naturally

applied to vector images such as color images. Fig. 4.9 and 4.11 show that the images

are first roughly partitioned into two regions of similar sizes and then partitioned at

finer scale as the tree level goes down. In fig. 4.9(a), the sky and far mountains are

separated from the near mountains and trees. Then, the sky and the far mountains are

separated and the near mountains and trees are separated. Finally, different layers of

the near mountains are separated. In (b), the sky and far mountains are separated from

near mountains and rocks. Then, the sky and far mountains are separated and the near

mountains and rocks are separated. In 4.11(a), the trees and sky are separated first.

Then, the sky is partitioned into two because its intensity is not homogeneous. Finally,

the moon is separated from the sky. In (b), the sky and the buildings are separated first,

except for the roof because its intensity is similar to that of the sky. Then, the roof is

separated from the sky.

4.5 Conclusion

In this chapter, we proposed a segmentation algorithm that provides the structure of

an image from the largest scale. The proposed algorithm recursively applies Bres-
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given image segmentation result given image segmentation result

Figure 4.2: The proposed algorithm automatically detects each region in the given
images and junctions are preserved. Each color represents a phase of the segmentation.

Figure 4.3: Image structure by the proposed segmentation. Red: extracted region,
black: irrelevant region, blue: complement of red in relevant region.
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Figure 4.4: Tree structures of image (a) and image (b) in the queue representation.
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Figure 4.5: (a) shows that segmentation starts from the largest region scale. In (b),
the right rectangle has a higher contrast and its region scale is also large enough, so
segmentation first separates it from the rest.

son et al.’s two-phase piecewise constant segmentation on the partitioned region. We

defined an ordered binary tree to represent this process to show the structure of an

image. This ordered binary tree is implemented by storing each node as an entity

in a queue. We proposed three stopping conditions to detect when segmenting a re-

gion further is trivial. This can be used to give a multiphase segmentation result, in

which the leaf of the tree represents each phase of the multiphase segmentation. Given

the stopping conditions, the number of phases can be unknown and can be arbitrary.

Additionally, junctions of contours are implicitly dealt with by the recursive segmen-

tation method. We have shown several experiments on synthetic images to see that the

proposed segmentation follows the order of region scale and contrast in a reasonable

manner. Experimental results on real images show that the obtained image structures

are consistently intuitive.

67



Figure 4.6: The proposed segmentation starts from the largest region scale and highest
contrast. In (a), the contrasts from the background to the top-left rectangle, from the
top-left to the top-right, from the top-right to the bottom-left, and from the bottom-left
to the bottom-right are all the same. All five regions have the same area but the perime-
ter of the background is larger than those of the rectangles. Therefore, the first seg-
mentation separates the rectangles with the lowest intensity and the background from
the rest. (b) The bottom-right rectangle has the highest contrast and is extracted first.
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Figure 4.7: The segmentation is from the largest region scale, in (a) and (d), but also
depends on the contrast when region scale is large enough, in (b) and (c).

Figure 4.8: The proposed algorithm automatically detects each region in the given
images. The segmentation results are obtained by experimenting on the respective
grey-scale images of the color images shown here.
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Figure 4.9: The structures of the images in the queue representation. These images are
first roughly partitioned into two regions of similar sizes and then partitioned at finer
scale as the tree level goes down. (a) First the sky and far mountains are separated
from the near mountains and trees. (b) First the sky and far mountains are separated
from near mountains and rocks.
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Figure 4.10: The proposed algorithm automatically detects each region in the given
images. The segmentation results are obtained by experimenting on the respective
grey-scale images of the color images shown here.

Figure 4.11: The structures of the images in the queue representation. These images
are first roughly partitioned into two regions of similar sizes and then partitioned at
finer scale as the tree level goes down. (a) The trees and sky are separated first. (b)
The sky and the buildings are separated first, except for the roof because its intensity
is close to that of the sky. The experiments are on the respective grey-scale images of
the original color images shown here.
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CHAPTER 5

Texture and Geometric Inpainting

5.1 Introduction

Inpainting is an image interpolation problem or the task of repairing the damaged re-

gion of an image. For example, an artist fills in an old painting’s missing pieces by

using the colors from the surrounding areas. Digital inpainting provides a safe method

to experiment with different colors without damaging the original painting. Moreover,

with the increase of digital photography, digital inpainting plays an important role

in image processing and also the movie industry when creating special effects, such

as removing unwanted objects in an image. In this chapter, we focus on automatic

inpainting techniques rather than sophisticated graphics software that require tremen-

dous manual labor. Once the inpainting region is provided by the user, the inpainting

process is automatic.

Bertalmio et al. [63] introduce PDE inpainting models into the field of image

processing. If I is the given image intensity, Ω is the image domain, and D ∈ Ω is the

inpainting region, the image is repaired by propagating I along its isophotes’ direction

into D by the following PDE

∂u

∂t
= ∇⊥u · ∇4u, (5.1)

where ∇⊥ = (−∂y, ∂x) and u denotes the repaired intensity. When u reaches a steady
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state, it is a solution that repairs the original image I in the region D. Additional

anisotropic diffusion is applied to u once every few iterations of (5.1) to preserve

sharpness of edges, as shown in the following equation

∂u

∂t
= ∇ ·

( ∇u

|∇u|
)
|∇u|. (5.2)

Bertalmio’s subsequent work with Bertozzi and Sapiro [64] makes the connec-

tion with classical fluid dynamics. In particular, their method is directly based on the

two dimensional Navier-Stokes equations. The image intensity, u, is analogous to the

stream function of fluid; isophote direction, v = ∇⊥u, is analogous to fluid velocity;

and smoothness of image w = 4u is analogous to vorticity. Instead of solving the

transport equation described in (5.1), they solve a vorticity transport equation for w,

∂w

∂t
+ v · ∇w = µ∇ · (g(|∇w|)∇w), (5.3)

where µ is a scalar parameter and g(|∇w|) allows anisotropic diffusion. The repaired

image, u, is then obtained by solving

4u = w,

with boundary condition

u|∂D = I.

A crucial observation of the inpainting problem is that sharp edges play an impor-

tant role in visual perception. Inspired by Bertalmio et al.’s [63] PDE approach, Chan

and Shen [65] propose a TV (total variation) inpainting model based on the Bayesian

and variational principles. TV inpainting is adapted from the Rudin-Osher-Fatemi de-

noising model [52] and is an edge-based model that minimizes the total variation of
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an image over the inpainting region with suitable boundary conditions. The image is

repaired by the following energy minimization

min
u∈BV (Ω)

Etv[u] =

∫

Ω

|∇u|, (5.4)

with constraint

u |Ω−D= I |Ω−D . (5.5)

Minimizing this energy functional is equivalent to connecting the level sets across the

inpainting region with the smallest distance. This can be seen by the coarea formula

∫
|∇u|dx =

∫ 1

0

∫

Γλ

dsdλ ,

where Γλ = {x : u(x) = λ} is the level set and ds is the arc length of the level

sets. The total variation of u is the total length of all level sets. Therefore, with the

constraint in (5.5), sharp edges are connected according to the level lines in the known

region.

The gradient descent of the Euler-Lagrange equation for (5.4) is

∂u

∂t
= ∇ · ( ∇u

|∇u|), (5.6)

with constraint

u |Ω−D= I |Ω−D .

TV inpainting interpolates images across the missing regions, while preserving

sharp edges. However, it does not always connect edges correctly. For example, when

the inpainting region is too large, the level lines may form kinks at the boundary of the
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inpainting region in order to make the shortest level line connection, which often does

not agree with visual perception.

Chan, Kang, and Shen [6] proposed to minimize Euler’s elastica energy instead

of the total variation. Euler’s elastica inpainting improves TV inpainting because the

curvature of level lines is additionally penalized. Therefore, it does not allow kinks at

the inpainting region boundary because the curvature of kinks is infinite. Moreover,

curved edges, as well as straight edges, are extended correctly across the inpainting

region. Euler’s elastica inpainting repairs the missing region by the following energy

minimization:

min
u∈BV (Ω)

Eelas[u] =

∫
(a + bκ2)|∇u|dx, (5.7)

with constraint

u |Ω−D= I |Ω−D,

leaving the outside of the inpainting region untouched. In this functional, a and b are

positive constants and κ = ∇ · ( ∇u
|∇u|) is the curvature of u. Minimizing this energy

functional is equivalent to connecting sharp edges according to the curvature of the

level lines in the known region. This can be explained by the coarea formula

∫
(a + bκ2)|∇u|dx =

∫ 1

0

∫

Γλ

(a + bκ2)dsdλ .

The gradient descent of the Euler-Lagrange equation of model (5.7) is

∂u

∂t
= ∇ · [(a + bκ2)−→n −

−→
t

|∇u|
∂(2bκ|∇u|)

∂
−→
t

]
, (5.8)

where−→n = ∇u
|∇u| is the normal vector,

−→
t = −→n ⊥ is the tangent vector, and ∂

∂
−→
t

=
−→
t ·∇

is the directional derivative.
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There are additional methods that involves solving stiff fourth order PDEs in the

inpainting problem. Bertozzi et al. [66, 67] proposed a model for inpainting binary

images by modifying the Cahn-Hilliard equation. They made the observation that

the fourth order gradient flow of the Esedoglu-Shen’s inpainting model [68], based

on the Mumford-Shah-Euler image model, has partial commonality with the Cahn-

Hilliard equation, for which fast solutions are available. The two-scale Cahn-Hilliard

model for inpainting is successful in connecting edges across large inpainting regions,

at orders of magnitude faster than Euler’s elastica inpainting. Recently, Dobrosotskaya

and Bertozzi [69] proposed a wavelet-based inpainting which adapts the second-order

Allen-Cahn equation and maintains comparable inpainting speed. Additionally, their

model was extended to grey-scale images.

There are various works that combine PDE-based inpainting and texture synthe-

sis. In [70], an image is first decomposed into the sum of two functions including a

geometric part and a texture part. The inpainting region of the geometric part is re-

paired by [63]’s PDE inpainting, while the texture part is repaired by texture synthesis

[7]. The final solution is the sum of the repaired parts. Criminisi et al. [71] improve

exemplar-based texture synthesis by using a PDE-inspired method to determine the or-

der of the filling process. The inpainting algorithm by Grossauer [72] also decomposes

an image into a geometric part and a texture part. The geometric part is repaired by a

PDE inpainting method and then is segmented into different regions. Texture synthesis

is performed on the texture, on which each of the segmented regions in the inpainting

region are synthesized separately.

In this chapter, we propose a new inpainting algorithm that works for both textured

and non-textured areas of an image. As described above, [6] introduced a technique

for inpainting using an Euler’s elastica energy-based variational model that works well

for repairing smooth areas of the image while maintaining edge detail. However, their
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technique is very slow due to a stiff, fourth order PDE. One the other hand, Efros

and Leung [7] used texture synthesis techniques for inpainting and hole filling. This

works well for areas of an image that contain repeating patterns. Demanet et al. [73]

proposed a correspondence map formulation for inpainting that is related to texture

synthesis methods in [7, 74]. Many other works relating to texture synthesis exist in

the literature, although this is not the focus of this work, and will not be presented. In

the next section, we present Efros and Leung’s texture synthesis. We use the idea of

texture synthesis to accelerate and constrain the PDE solution of elastica inpainting.

Instead of a stiff minimization, we have a combinatorial optimization problem. This

method gets close to the PDE solutions of elastica inpainting. We further combine this

algorithm with texture synthesis by thresholding so that repeating patterns are fully

utilized.

5.2 Non-parametric Texture Synthesis

Texture synthesis by non-parametric sampling in Efros and Leung’s work [75] syn-

thesizes texture using an initial seed. This method can be used for filling in missing

image data when the image has repeating patterns and the undamaged part can be used

as an initial seed. Texture synthesis models texture as a Markov Random Field and

uses a pixel’s local patch as conditional probability to search for similar patches. It

grows pixels one at a time, starting from the edge of the initial seed. For inpainting,

the missing region is repaired from its boundary inward, in concentric layers. To do

this, each pixel is initially assigned with a confidence value from 0 to 1, 1 being known

and 0 being unknown. Then, compute the priority map, which is the sum of the con-

fidence values of a pixel’s eight neighboring pixels. The priority value of a missing

pixel represents the count of the known pixels surrounding it. The order in which the

pixels are repaired follows the priority values from high to low. The confidence map
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and priority map are updated every time a pixel is repaired, because a repaired pixel

becomes partially known. To repair a pixel, its local patch colors are used to search for

similar patches in the undamaged part. The degree of similarity between two patches

is measured by the Sum of Squared Differences (SSD) on the patch colors. In addition,

the SSD is weighted in favor of pixels near the center pixel. Finally, the color of the

center pixel from the most similar patch is copied into the current pixel.

We summarize one iteration of the texture inpainting algorithm in the following

steps:

1. Update the confidence map and the priority map.

2. For the remaining missing pixels, find one with the highest priority.

3. Fill in the current pixel using its local patch and search for a similar patch ac-

cording to the weighted SSD.

These steps are iterated until a steady state is reached.

5.3 Constrained Elastica Inpainting Algorithm

The minimization flow, Eq. (5.8), that solves the elastica inpainting problem is a stiff

fourth-order PDE. To avoid stiff minimization, we propose a fast algorithm that ap-

proximates the solution of Euler’s elastica inpainting. The proposed algorithm is based

on the observation that the colors of missing pixels are likely to exist in the image. Us-

ing the idea of texture synthesis, some of the pixels neighboring an unknown pixel

can be used if they are known. Therefore, we have a constrained elastica inpainting

problem, which turns the stiff minimization problem into a combinatorial optimization

problem. To fill in a missing pixel, the neighboring pixels are marked “known”, and

these are used to find the best color candidate according to the Euler’s elastica energy.
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Like texture synthesis, the algorithm proceeds from the boundary of the inpainting

region inward in an upwind scheme. We use also the confidence map, in which a

pixel’s confidence value equals the number of known neighboring pixels, to proceed

this ordering. The missing pixel is replaced by the candidate that minimizes Euler’s

elastica energy of the local neighborhood. This process is iterated until pixel colors no

longer change or a steady-state solution is reached. We summarize one iteration of the

proposed algorithm in the following steps:

1. Update the confidence map and the priority map.

2. For the remaining missing pixels, find one with the highest priority.

3. Using a greedy algorithm, choose the color, from all color candidates in the

image, that minimizes Euler’s elastica energy of the local area, while the neigh-

boring colors are fixed.

These steps are iterated until a steady state is reached. This algorithm approximates

the solution of elastica inpainting and converges very fast compared to the PDE solver

(5.8). Experiments show that the proposed algorithm is two orders of magnitude faster

[76].

5.4 Texture and Geometric Inpainting Algorithm

The proposed algorithm in the previous section is a fast algorithm that approximates

the solution of Euler’s elastica inpainting problem. Therefore, like elastica inpaint-

ing, it performs well for completing smooth regions while maintaining sharp edges but

does not complete textures. To overcome this limitation, we propose to combine the

constrained elastica inpainting algorithm with texture synthesis. As described in sec-

tion 5.2, texture synthesis fills in a pixel by copying the center color of a similar patch
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found through minimizing the weighted sum of squared differences (SSD) with the

current patch. The proposed algorithm here uses texture synthesis when a repeating

pattern is found and uses elastica energy criteria otherwise to complete the geome-

try. The decision is determined by a user-defined threshold. For a missing pixel, if the

smallest weighted SSD among all candidates is smaller than the threshold, texture syn-

thesis is used for repairing the current pixel. Otherwise, constrained elastica inpainting

algorithm is used. The proposed algorithm is outlined as follows:

1. Update the confidence map and the priority map.

2. For the remaining missing pixels, find one with the highest priority.

3. Filling in pixel according to its current neighborhood and searching for similar

patches (using weighted SSD). If the current patch is not repeated in existing

part, fill in with the color that satisfies the elastica energy criteria.

These steps are iterated until a steady state is reached.

The definition of the neighborhood can be extended to include images forward

and backward in time. Often, the exact pixel value for repairing the wire is visible

in either the previous or next frame because of motion of the wire, the camera or

the background. The combinatorial optimization will quickly choose the replacement

pixel because it will satisfy both the Euler’s elastica equation and the texture synthesis

heuristic.

Using these techniques, we have produced an algorithm that works on both moving

and static wire and scratch removal and accelerates the solution of the Euler’s elastica

inpainting method from hours to less than a minute.
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5.5 Numerical Methods

We extrapolate
−→
I into the inpainting region D by the proposed texture and geometric

inpainting algorithm in section 5.4. The following describes the numerical scheme:

1. Define the confidence map C : Ω → R by

C(i, j) =





1 if (i, j) ∈ Ω−D

1− 0.70 otherwise

2. Compute the priority map P : D → R. The priority value at pixel (i, j) is

P (i, j) =
i+1∑

k=i−1

j+1∑

l=j−1

C(i, j).

3. For all missing pixels

4. Find a pixel (i, j) that has not been repaired and with the highest confidence

value.

5. Consider the local patch ωi,j centered at (i, j) with size s. Compute the weighted

SSD between ωi,j and an existing patch ωk,l within search radius R,

d(ωi,j, ωk,l) =
s∑

dy=−s

s∑

dx=−s

g(dx, dy)|−→I i+dx,j+dy −−→I k+dx,l+dy|2,

where g(x) is a positive, symmetric, and decreasing weight function, such as

Gaussian.

6. If

min
(k−i)2+(l−j)2<R2

d(ωi,j, ωk,l) < th,
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where th is the user-defined threshold, set
−→
I i,j =

−→
I k∗,l∗ , where ωk∗,l∗ =

argmin d(ωi,j, ωk,l).

If

min
(k−i)2+(l−j)2<R2

d(ωi,j, ωk,l) > th,

do the following:

Fixing the neighboring pixel colors, for each color candidate −→v , replace
−→
I i,j =

−→v and compute the local elastica energy. Denote uO = ui,j , uE = ui+1,j ,

uN = ui,j+1, uW = ui−1,j , and uS = ui,j−1. The local elastica energy is

∑
c=R,G,B

j+1∑

l=j−1

i+1∑

k=i−1

(a + bκ2
k,l,c)|∇uk,l,c|,

where

κi,j =
uE − uO√

(uE − uO)2 + 1
4
(uNE − uSE + uN − uS)2 + ε2

+
uN − uO√

(uN − uO)2 + 1
4
(uNE − uNW + uE − uW )2 + ε2

+
uW − uO√

(uW − uO)2 + 1
4
(uNW − uSW + uN − uS)2 + ε2

+
uS − uO√

(uS − uO)2 + 1
4
(uSE − uSW + uE − uW )2 + ε2

and

|∇ui,j| = 1√
2

√
(uE − uO)2 + (uW − uO)2 + (uN − uO)2 + (uS − uO)2,

with ε sufficiently small. After computing the elastica energy for all color can-
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didates, choose the one that results the smallest elastica energy to replace
−→
I i,j .

7. Set confidence value C(i, j) = 1−0.7t, t being current iteration number, update

the priority map, and mark current pixel being repaired.

8. Repeat step 4-7 until all missing pixels are filled in.

9. Iterate 8 until no pixel changes its color.

5.6 Experimental Results

Fig. 5.1 shows results of the proposed inpainting algorithm in section 5.4. The original

image is in (a), and in (b) the wire is removed by the proposed inpainting algorithm.

The sharp edges of the window and the clothes are preserved, as shown in fig. 5.2

(b) and fig. 5.2 (f). The smoothness of the hair is also naturally extended into the

occlusion region, in fig. 5.2 (d).

Fig. 5.3 shows another experiment, relating to the removal of objects from the

given image in (a). The inpainting region, in (b), is indicated by the user. The results

by TV inpainting and the proposed inpainting algorithm are shown in (c) and (d),

respectively. Fig.5.4 shows the selected regions of the inpainted results. The proposed

method is able to complete the geometry of the clock face (top right in fig. 5.4) and

is able to repair corners (bottom right of fig. 5.4) because such structures in the image

are repeated. In fig. 5.5, the proposed method produces realistic results by utilizing

texture synthesis.
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(a) Given image (b) Wire removed

Figure 5.1: Wire removal using the proposed inpainting algorithm.

5.7 Conclusion

In this chapter, we first proposed a fast algorithm that approximates the solution of Eu-

ler’s elastica inpainting. Motivated by the texture synthesis techniques, the proposed

algorithm turned the original PDE solution into a constrained combinatorial optimiza-

tion problem. Texture synthesis sometimes can be useful for completing geometric

structures, especially when the inpainting region is much larger than the image fea-

tures. Based on this observation, we combined the proposed algorithm and texture

synthesis with a threshold to determine which algorithm should be used for the current

damaged pixel. Our experiments show that high quality inpainting results are pro-

duced. In the future, we would like to consider a user-interactive algorithm that helps

to generate a proper inpainting region without too much manual effort.
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(a) Given image (b) Wire removed

(c) Given image (d) Wire removed

(e) Given image (f) Wire removed

Figure 5.2: Selected regions of the wire removal results.
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(a) given image (b) given mask

(c) TV inpainting (d) Proposed inpainting

Figure 5.3: Inpainting experiment. The given image (a) has unwanted objects, indi-
cated by the user-defined inpainting region (b). (c) is the result by TV inpainting and
(d) is by the proposed inpainting algorithm in section 5.4.
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Original TV inpainting Proposed inpainting

Original TV inpainting Proposed inpainting

Figure 5.4: Selected regions of the inpainting results. The proposed algorithm is able
to complete both geometric structures (clock face), repeating structures (building). On
the other hand, TV inpainting is not able to do so when the image features are smaller
than the width of the inpainting region.

87



Original TV inpainting Proposed inpainting

Figure 5.5: Selected region of the inpainting results. Moreover, TV inpainting is not
able create oscillating patterns (tree leaves)
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CHAPTER 6

Matting

6.1 Introduction

Digital image composition is frequently used by the graphics community to combine

objects from different images into a single image. This technique enables filmmakers

to film actors and backgrounds separately. For example, the images of actors captured

in a controlled studio can be combined with desired backgrounds to produce new im-

ages. A crucial step preceding image compositing is to accurately extract the object

from its original background; the transparency of the object boundary must be cap-

tured. The above step is referred to as image matting, and additionally as in our work,

if the background is unknown, it is referred to as natural image matting.

Given a color image
−→
I : Ω → [0, 1]3 containing the object of interest, the matting

problem is commonly solved by using the following matting equation:

−→
I = α

−→
F + (1− α)

−→
B .

In this equation,
−→
F : Ω → [0, 1]3 is the foreground color corresponding to the object,

−→
B : Ω → [0, 1]3 is the background color, and α : Ω → [0, 1] is the soft-segmentation

(i.e. α-matte) that reflects the transition between the foreground and background. Re-

covering (α,
−→
F ,
−→
B ) is an ill-posed problem because there are three unknowns but only

one equation. To solve the matting problem, additional a priori assumptions for α,
−→
F
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and
−→
B are needed.

One of the early approaches for image matting is blue screen matting [77]. The

background is a known constant, yet it is still insufficient to fully constrain the prob-

lem. When the background is unknown, a natural matting problem, the object of in-

terest has to be indicated by the user. A common approach is to simplify it by a

user-specified trimap that partitions the image domain into three regions; as shown in

fig.6.1, definite foreground ΩF , definite background ΩB, and an unknown transition

region D. Thus the problem of recovering (α,
−→
F ,

−→
B ) is restricted only to D. Many

previous methods approach it by first imposing statistical priors on (
−→
F ,

−→
B ) [78, 79]

and then regularity constraints [80] on α. In Knockout [81],
−→
F and

−→
B are assumed to

be smooth and the estimated α is obtained as a weighted average of
−→
F and

−→
B . Instead

of a simple weighted sum as the estimation of a local intensity distribution, a mix-

ture of un-oriented Gaussians has been used in [79] and principal component analysis

has been used in [82]. In [78], Chuang et al. proposed a Bayesian matting algorithm

where a mixture of oriented Gaussians is employed to estimate the local distribution

and
−→
F ,
−→
B and α are estimated by a maximum a posterior in a Bayesian framework.

The Poisson matting algorithm was proposed in [80], where the alpha matte is obtained

from its gradient field by solving a Poisson equation using the boundary information

provided by a trimap. Robust matting [83] samples foreground and background col-

ors for each unknown pixels and analyzes the confidence of the samples. The alpha

estimate is then optimized by a Random Walk using the the confidence values of the

samples and enforcing the smoothness of the matte. These methods generally produce

good results, but have a major drawback. When the foreground and background has

sharp discontinuities, the performance is unreliable. The nearby pixel regions and do

not take into account the inherent geometry. For example, in Fig.6.2, (a) is an image

occluded by an object (gray region). (b) shows the desired background estimation.
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(c) is the result using nearest neighbor interpolation, variants of which are used in

current matting algorithms such as Poisson matting [80]. We see from (c) that such

methods are not able to achieve correct inpainting results. Hence, the extracted mattes

may be erroneous even for images with simple geometric structures. This drawback is

especially severe when the foreground color and background color are similar.

We propose to solve this issue by utilizing variational inpainting algorithms to

solve the matting problem for non-textured images [84]. Since the geometric struc-

tures are accurately extrapolated into the unknown regions, the extracted matte solved

by the matting equation is reliable. However, this method cannot be used for im-

ages with oscillating patterns, such as textures. Therefore, we utilize the proposed

inpainting algorithm in Chapter 5, which is able to correctly connect edges of geo-

metric structures into the unknown region and also complete repeating patterns. The

proposed matting algorithm consists of three steps, alternating the solutions of F , B,

and α in the unknown region. The first step is to update the unknown region according

to the obtained α estimation. In the second step, the foreground and the background

are extrapolated by the proposed inpainting algorithm. In the third step, α is solved by

the proposed variational model for α that consists of a fidelity term, using the matting

equation, and a regularization term, searching for α in the Sobolev space H1(Ω).

We here mention some other natural matting approaches that are out of the scope

of this chapter. These methods are concerned with the problem of the trimap simpli-

fication approaches, in which solutions are considerably dependent on the user speci-

fied trimap. Generating an accurate trimap could be time-consuming and intractable.

Some of the recent works combine image segmentation and matting. One approach

is based on a few user-specified strokes rather than on trimap using Belief Propaga-

tion techniques [85] and Markov Random Field [86] for modeling unknown regions

[86, 87, 85]. In [88], the matte is solved by a variational PDE based model for non-
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ΩB

D

ΩF

Figure 6.1: A user define a trimap that partitions the image domain Ω into three re-
gions: definite foreground ΩF , definite background ΩB, and unknown regionD

texture images. This model is robust with respect to the initial trimap, because of the

additional priors on α.

(a) damaged (b) desired (c) nearest interp.

Figure 6.2: Failure example of interpolating the missing (gray) region of an image by
using the nearest known pixel values.

The organization of the remaining chapter is the following. We next describe re-

lated works, Poisson matting [80], that takes a variational approach to solve α within

the matting problem and robust matting [83]. Section 6.2 presents the proposed mat-

ting algorithm that employs TV inpainting for gray-scale images. We also propose a

variational model for solve α. Section ?? shows the proposed matting algorithm that

utilizes geometric and texture inpainting for color images. In section 6.4, we show

several results of the proposed algorithm and the related works. Finally, we conclude

this chapter in section 6.5.
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6.1.1 Related work: Poisson matting

Poisson matting [80] solves the matting problem by a three-step iterative scheme: up-

dating the unknown region, extrapolating F and B, and solving for α. The alpha matte

is solved by a variational PDE-based model. This model is derived from the matting

equation with the assumption that the foreground and background of a given image are

smooth. Taking the gradient of the matting equation and approximating ∇F and ∇B

by zero, one gets

∇α ≈ 1

F −B
∇I.

According to this equation, Poisson matting is to solve the following energy minimiza-

tion problem:

min
α

∫
||∇α(x)− 1

F (x)−B(x)
∇I(x)||2dx, (6.1)

with the boundary conditions:

α|ΩF
= 1 and α|ΩB

= 0. (6.2)

The Euler-Lagrange equation of energy in (6.1) is:

4α = div(
∇I

F −B
). (6.3)

Poisson matting is summarized in the following iterative scheme:

1. Trimap refinement: A prior segmentation step refines the user defined trimap

to conform to the actual α-transition region. Update ΩF = {x ∈ Ω|α(x) >

0.95, I(x) ≈ F (x)} and ΩB = {x ∈ Ω|α(x) < 0.05, I(x) ≈ B(x)}.
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2. Extrapolating F and B: The foreground and background intensities, F and B

are extrapolated into the transition region by the nearest foreground value and

the nearest background value, respectively. Then, the constructed F − B is

smoothed by a Gaussian filter.

3. Solving for α: α is solved in the transition region by (6.3) with boundary con-

ditions (6.2).

These steps are repeated until convergence. For color images, the implementation is

on a single channel to obtain the alpha matte.

6.1.2 Related work: Robust matting

Robust matting [83] is based on an optimized color sampling scheme and is more

robust for natural images. The algorithm first samples a large number of foreground

and background samples to estimate true foreground and background colors for each

unknown pixel. In particular, the foreground and background samples are spread along

the known boundaries, instead to using nearby pixels, to fully capture the variation of

the foreground and background colors. For each pair of foreground and background

samples, F and B, the estimated alpha value is

α =
(I −B)(F −B)

||F −B||2 .

The confidence of each pair is analyzed, and only high confidence samples are chosen

to obtain an initial alpha estimate. The initial alpha estimate is then further improved

by a graph-labeling problem which is minimized by a Random Walk. The graph-

labeling problem enforces the smoothness of the matte in addition to the data constraint

for each pixel. The balance between the data term and smoothness term is controlled

by the confidence value; if the confidence value is high, the alpha value depends on
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the matting equation from the selected samples more than the smoothness constraint.

The constructed graph-labeling problem is solved by a Random Walk to minimize the

total graph energy.

Even though robust matting is able to produce mattes quite accurately for natural

images, we observed that the foreground and background sampling method is not ac-

curate near sharp gradients in the foreground, which leads to inaccurate foreground

extraction. The reason is also that the confidence value does not take into account the

geometry of the foreground and/or background.

6.2 Matting through Variational Inpainting

Let I : Ω → [0, 1] be the given image. A trimap is provided by the user, indicating the

definite background region ΩB, the definite foreground region ΩF and the unknown

region D, see figure 6.1. The proposed matting algorithm is the following iterative

scheme, n = 1, 2, ... .

1. Trimap refinement:

Ω
(n)
F = {x ∈ Ω : α(n−1)(x) > 0.95}

Ω
(n)
B = {x ∈ Ω : α(n−1)(x) < 0.05}

2. Extrapolating F and B:

B(n) = arg min
B

Etv[B], with B|
Ω

(n)
B

= I|
Ω

(n)
B

F (n) = arg min
F

Etv[F ], with F |
Ω

(n)
F

= I|
Ω

(n)
F
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3. Solving for α:

α(n) = arg min
α

∫
(αF (n) + (1− α)B(n) − I)2 +

λ

2
|∇α|2,

with constraint α|
Ω

(n)
F

= 1 and α|
Ω

(n)
B

= 0

Steps 1 − 3 are repeated until α converges, i.e. d(α(n), α(n+1)) < ε, where d, for

example, can be the l1-norm and ε is small.

The first subsection describes the second step that extrapolates background B :

Ω → [0, 1] and foreground F : Ω → [0, 1] through the total variation. The background

is obtained by inpainting the data on the definite background ΩB into the unknown

region D. Similarly, the foreground is obtained by inpainting the data on the definite

foreground ΩF into D. The second subsection describes the variational model in step

3 for extracting the matte.

6.2.1 Total variation inpainting

As explained in Chapter 5, TV inpainting is a PDE-based variational model, adapted

from the ROF denoising model [52]. It is based on the observation that edges play

an important role in the geometry of an image. The TV inpainting interpolates im-

ages across the missing regions, while preserving sharp edges. We propose to utilize

this technique to extrapolate the background and foreground for the matting problem.

The extrapolated background through the TV inpainting is obtained by the following

energy minimization:

min
B∈BV (D∪ΩB)

Etv[B] =

∫

D∪ΩB

|∇B|, (6.4)

with constraint
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B |ΩB
= I |ΩB

. (6.5)

The gradient descent of the Euler-Lagrange equation for the energy minimization prob-

lem (6.4) is
∂B

∂t
= 1D∪ΩB

∇ · ( ∇B

|∇B|), (6.6)

with constraint (6.5). The boundary condition along the boundary between D and ΩF

is
∂B

∂−→ν = 0.

The formulation for estimating the foreground can be derived similarly.

6.2.2 Matte extracting

The α matte according to the estimated foreground and background is extracted by

minimizing the following proposed variational problem:

min
α

∫
(αF + (1− α)B − I)2 +

λ

2
|∇α|2dx , (6.7)

with constraints

α |ΩF
= 1 and α |ΩB

= 0.

This imposes smoothness of α while the composite image is close to the given

image.
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6.2.3 Convergence proof of the iterative scheme

Assumptions: The ground truth image I is a linear combination of F and B, both in

the BV space.

In step 2 of our iterative scheme (see Sec.6.2), the existence of a noise-free TV

inpainting is proved in [6]. In step 3, existence and uniqueness can be proved in a

standard argument (by coercivity, lower semi-continuity, and strict convexity). In step

1, {ΩF,n} and {ΩB,n} are constructed according to α ∈ H1, so they are measurable.

Observe also that by the construction of the iterative scheme, the sequences {ΩF,n} and

{ΩB,n} are increasing and bounded by ΩF ∪D and ΩB ∪D, respectively. Therefore,

1ΩF,n
≤ 1ΩF,n+1

,

1ΩF,n
→ 1∪ΩF,n

a.e. pointwise,

1ΩB,n
≤ 1ΩB,n+1

,

1ΩB,n
→ 1∪ΩB,n

a.e. pointwise.

By the Monotone Convergence Theorem,

1ΩF,n
→ 1∪ΩF,n

and 1ΩB,n
→ 1∪nΩB,n

in L1.

Claim 1: {Fn} and {Bn} are Cauchy sequences in L1(D).

Proof: We will show Claim 1 for the sequence {Fn}. The proof for {Bn} is similar.

First, note that

Fn = argmin
∫

1D\ΩF,n
|∇F |, with constraint F |ΩF,n

= I|ΩF,n
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Fn+1 = argmin
∫

1D\ΩF,n+1
|∇F |, with constraint F |ΩF,n+1

= I|ΩF,n+1

Let En[F ] =
∫

D
|∇F |. We will show that given ε > 0,

En[Fn] ≤ En+1[Fn+1] ≤ En+1[Fn] ≤ En[Fn] + ε , for n large enough. (∗)

The first two inequalities of (∗) are straightforward. Write

En+1[Fn] =

∫
1D\ΩF,n+1

|∇Fn|+ 1ΩF,n+1\ΩF,n
|∇I|+ 1D∩ΩF,n

|∇I|

and

En[Fn] =

∫
1D\ΩF,n

|∇Fn|+ 1ΩF,n+1\ΩF,n
|∇Fn|+ 1D∩ΩF,n

|∇I|.

Since ∃N , such that |ΩF,n+1 − ΩF,n| < ε, ∀n ≥ N, we have

En+1[Fn]− En[Fn] =

∫

ΩF,n+1\ΩF,n

|∇I| − |∇Fn| ≤ ε,

up to a scalar constant, depending only on I. This proves the third inequality of (∗).

Immediately, (∗) gives 0 ≤ En+1[Fn+1] − En[Fn] ≤ ε, i.e. 0 ≤ ∫
D
|∇Fn+1| −

|∇Fn| ≤ ε. With our construction that Fn is the initial state of Fn+1 in the minimization

procedure, ∫

D

|∇Fn+1 −∇Fn| → 0.

Note that we take n large enough to pass critical situations∗, if necessary.

Since Fn+1 = Fn on ∂D, by Poincaré inequality,

∫

D

|Fn+1 − Fn| < C

∫

D

|∇Fn+1 −∇Fn|, for some constant C.
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Therefore, {∇Fn} is a Cauchy sequence in L1(D). ¤

Claim 2: {αn} converges in H1(D).

proof: By Claim 1, since L1(D) is complete, Fn and Bn converges, say to F̂ and B̂,

respectively. Let

En[α] =

∫

D

(αFn + (1− α)Bn − I)2 +
λ

2
|∇α|2 and

Ê[α] =

∫

D

(αF̂ + (1− α)B̂ − I)2 +
λ

2
|∇α|2.

Then,

|En[α]−Ê[α]| =
∫
|α(F n−F̂ )+(1−α)(Bn−B̂)||α(F n+F̂ )+(1−α)(Bn+B̂)−I|.

The first factor in the integral is less than |F n − F̂ |+ |Bn − B̂| and the second factor

is bounded. Thus, En[α] → Ê[α].

Recall that

αn = argmin En[α], with constraints α|ΩF,n
= 1 and α|ΩB,n

= 0,

and let

α̂ = argmin Ê[α], with constraints α|ΩF̂
= 1 and α|ΩB̂

= 0.

We will show that αn → α̂ in L2(D) (stability of minimizers).

Since

lim sup En[αn] ≤ lim sup En[α̂] = Ê[α̂],
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{
∫

D

|∇αn|2} is bounded.

Moreover, since 0 ≤ αn ≤ 1 and D is bounded, {αn} is bounded in L2(D). So {αn}
is bounded in H1(D).

Suppose on the contrary that αn does not converge to α̂ in L2(D). By the Rellich-

Kondrachov Compactness Theorem, there is a subsequence {αnk
} that converges in

L2(D) to a function ᾱ ∈ L2(D). Moreover, {αnk
} also contains a subsequence (which

we continue to denote by {αnk
}) that converges weakly to some α′ ∈ H1(D), αnk

⇀

α′. (Since every bounded sequence in a Hilbert space contains a weakly convergent

subsequence.) But αnk
→ ᾱ in L2(D) implies that we must have ᾱ = α′. So we have

∫
D
|∇ᾱ|2 ≤ lim inf

∫
D
|∇αnk

|2.

Therefore,

Ê[ᾱ] ≤ lim inf Ê[αnk
]

= lim(Ê[αnk
]− Enk

[αnk
]) + lim inf Enk

[αnk
]

≤ 0 + lim inf Enk
[α̂]

= Ê[α̂].

The last two inequalities are by Enk
[αnk

] ≤ Enk
[α̂] and En[α] → Ê[α].

This contradicts to the uniqueness solution of argmin Ê[α]. Therefore, ||αn−α̂||L2(D) →
0.

Finally, we will prove that ||∇αn+1 −∇α̂||L2(D) → 0

Since αn = argmin En[α] and α̂ = argmin Ê[α], αn and α̂ satisfy the Euler-Lagrange
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equations associated with En[α] and Ê[α], respectively:

4αn =
1

λ
(αnFn + (1− αn)Bn − I)(Fn −Bn)

and

4α̂ =
1

λ
(α̂F̂ + (1− α̂)B̂ − I)(F̂ − B̂).

Then,

∫
|∇α̂−∇αn|2

=

∫
(∇α̂−∇αn) · (∇α̂−∇αn)

= −
∫
4(α̂− αn)(α̂− αn)

= −1

λ

∫
{(αnFn + (1− αn)Bn − I)(Fn −Bn)− (α̂F̂ + (1− α̂)B̂ − I)(F̂ − B̂)}(α̂− αn)

≤ 1

λ

∫
M |α̂− αn|, for some constant M

≤ M ||α̂− αn||L2(D)|D|.

Thus, ||α̂− αn||H1(D) → 0. ¤

Therefore, our proposed iterative scheme converges.

∗ A critical situation of a TV inpainting scenario is when there are more than one

global minimizers. The occurrence of this situation depends on the inpainting domain.

Given a BV image, there are at most finitely many critical situations over a set of

decreasing inpainting regions.
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6.3 Matting through Texture and Geometric Inpaintping

In this section, we propose to use the texture and geometric inpainting algorithm de-

scribed in the previous chapter within the matting algorithm. The inpainting algorithm

is used to extrapolate the background color
−→
B : Ω → [0, 1]3 and the foreground color

−→
F : Ω → [0, 1]3 into the unknown region D. The proposed matting algorithm is the

following iterative scheme, n = 1, 2, ... .

1. Trimap refinement:

Ω
(n)
F = {x ∈ Ω : α(n−1)(x) > 0.95}

Ω
(n)
B = {x ∈ Ω : α(n−1)(x) < 0.05}

2. Extrapolating F and B:

Use texture and geometric inpainting described in section 5.4 to obtain
−→
B (n) and

−→
F (n) with boundary constraints

−→
B |

Ω
(n)
B

=
−→
I |

Ω
(n)
B

and
−→
F |

Ω
(n)
F

=
−→
I |

Ω
(n)
F

,

respectively.

3. Solving for α:

min
α

∫

D

|α−→F + (1− α)
−→
B −−→I |2 + λ|∇α|2dx , (6.8)
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with constraints

α |ΩF
= 1 and α |ΩB

= 0,

where λ is a parameter and | · | denotes the Euclidean distance.

Initially, α(0) is given by the user; 1, 0.5, 0 represent definite foreground, unknown

region, and definite background, respectively. The matting algorithm repeats step 1−3

until α converges, i.e. d(α(n), α(n+1)) < ε, where d for example can be the l1-norm

and ε is small.

In step 2,
−→
B is extrapolated into the unknown region D by the proposed texture and

geometric inpainting algorithm in section 5.4. The numerical implementation follows

section 5.5 directly, except for the following minor adaption:

The confidence map C : Ω → R is defined by

C(i, j) =





1 if (i, j) ∈ ΩB(n)

0 if (i, j) ∈ ΩF (n)

1− 0.70 otherwise

The confidence map in extrapolating
−→
F into the unknown region D can be defined

simply by replacing Ω
(n)
B by Ω

(n)
F .

In step 3, we propose a variational model (6.8) to extract the matte, using the

matting equation and current
−→
F and

−→
B . The constraints force α to equal 1 in the

definite foreground region and equal 0 in the definite background region. The first

term in the energy seeks an α that adheres to the matting equation. This term alone

is not enough to extract α matte. Even when
−→
F and

−→
B are correct, the solution α

of the matting equation is not unique. This occurs when
−→
F and

−→
B at some pixels

have the same colors. Numerically, the solutions are unstable and thus a regularization

must be imposed. The second term enforces smoothness of α, according to parameter

104



λ. We look for a solution in the Sobolev space, α ∈ H1(Ω). This proposed energy

minimization problem is strictly convex and there exists a unique solution for fixed
−→
F

and
−→
B . The solution, α, is evolved by the gradient flow of the energy in (6.8) until

convergence, shown in the following

∂α

∂t
= −

[
α
−→
F + (1− α)

−→
B − I

]
(
−→
F −−→B ) + λ4 α. (6.9)

Numerically, the solution of α matte is obtained by the steepest descent of Euler-

Lagrange equation shown in (6.9), which is discretized in the following:

αn+1 − αn

δt
=

∑
c=R,G,B

{[
αnFc + (1− αn)Bc − Ic

]
(Fc −Bc)

}
− λ4αn,

where

4α = −4αi,j + αi+1,j + αi−1,j + αi,j+1 + αi,j−1

is the usual five point discrete Laplacian.

6.4 Experimental Results

In this section, we show experimental results of the proposed matting algorithm on

various natural images and compare them with experimental results of Poisson matting

and robust matting.

Fig.6.3 shows an experimental result of the proposed matting algorithm. The object

of the given image (b) occludes a geometric structure in the background. The trimap

given by the user is shown in (a). Column (d) is the results by Poisson matting, column
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(e) is the results by robust matting, and column (f) is the results by the proposed algo-

rithm. The top row shows the extracted mattes by each method, and Poisson matting

is not accurate near sharp gradients in the background. The extracted mattes by robust

matting and the proposed algorithm are accurate. The second row shows the extracted

foregrounds by each method. The third row shows a selected region of the extracted

foregrounds. Poisson matting, shown in bottom (d), is erroneous near the boundary of

the bear and geometric structure. The reason is that the nearest neighbor interpolation

fails to accurately recover the underlying geometry of the background.

In the matting experiment in Fig.6.4, the object of the given image (b) occludes a

checkerboard, as the background. The trimap given by the user is shown in (a). The

first and second rows show the extracted mattes and extracted foreground by Poisson

matting and the proposed matting algorithm, respectively. The proposed matting al-

gorithm outperforms Poisson matting and robust matting because the former is able to

complete the texture structure in the unknown region. This can be seen in the bottom

row, in which we illustrate the selected local regions of Poisson matting (d), robust

matting (e), and the proposed matting (f).

Fig. 6.5(b) has a highly oscillating background and the object’s hair color is simi-

lar to part of the background. The trimap is shown in (a). Poisson matting, in column

(d), is erroneous due to the smoothness assumption on the foreground and background.

Robust matting, in column (e), is able to extract an accurate alpha matte but the ex-

tracted foreground is not as good as that of the proposed matting, in column (f). In fig.

6.6, the extracted foreground by robust matting is erroneous near color transitions in

the foreground.

In the matting experiment in Fig. 6.7, the proposed matting algorithm is able to

accurately extract the object and outperforms Poisson matting and robust matting. Fig.

6.8 is an application of matting. (a) and (b) are two images with similar backgrounds.
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(a) Given trimap (d) Poisson matting (e) Robust matting (f) Proposed matting

(b) Given image (d) Poisson matting (e) Robust matting (f) Proposed matting

(c) Original image (d) Poisson matting (e) Robust matting (f) Proposed matting

Figure 6.3: Matting experiment. The object of the given image (a) occludes the geo-
metric structure in the background. (b) is the given trimap. (c) and (d) are the extracted
mattes by Poisson matting and the proposed matting algorithm, respectively. (e) and (f)
are the extracted foregrounds by Poisson matting and the proposed matting algorithm,
respectively. The proposed algorithm is able to accurately extract the foreground near
sharp gradients in the background because it utilizes Euler’s elastica inpainting in the
extrapolating step.

The object of (a) is extracted by the proposed matting algorithm (c) and then is used

to composite with image (b). The final result (d) is realistic.

The above results demonstrate that when the background has either geometric or

texture structures occluded by the foreground, an inpainting algorithm that works for

both geometry and texture regions of an image, are able to recover the background

correctly. Consequently, the extracted matte is more accurate. From our experiment,

the extracted mattes from the iterative scheme do not change significantly after about

3 iterations. The numerical error converges in about 30 iterations.
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(a) Given trimap (d) Poisson matting (e) Robust matting (f) Proposed matting

(b) Given image (d) Poisson matting (e) Robust matting (f) Proposed matting

(c) Original image (d) Poisson matting (e) Robust matting (f) Proposed matting

Figure 6.4: The proposed matting algorithm produces an accurate matte of the object.
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(a) Given trimap (d) Poisson matting (e) Robust matting (f) Proposed matting

(b) Given image (d) Poisson matting (e) Robust matting (f) Proposed matting

Figure 6.5: In this matting experiment, the background of the given image (a) has
sharp gradients. Moreover, the foreground and background have similar colors. The
extracted matte by Poisson matting (e) is erroneous because the nearest neighbor inter-
polating is not correct and also due to the smoothness assumptions on the foreground
and background.
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(c) Original image (d) Poisson matting (e) Robust matting (f) Proposed matting

(c) Original image (d) Poisson matting (e) Robust matting (f) Proposed matting

(c) Original image (d) Poisson matting (e) Robust matting (f) Proposed matting

Figure 6.6: Robust matting (e) gives a reasonable solution because there is no smooth-
ness assumptions on the background and/or foreground. However, the extracted fore-
ground is not as good as that of the proposed matting algorithm (f), which additionally
correctly inpaints the background and foreground into the unknown region.
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(a) Given trimap (d) Poisson matting (e) Robust matting (f) Proposed matting

(b) Given image (d) Poisson matting (e) Robust matting (f) Proposed matting

(c) Original image (d) Poisson matting (e) Robust matting (f) Proposed matting

(c) Original image (d) Poisson matting (e) Robust matting (f) Proposed matting

Figure 6.7: In this matting experiment, the proposed matting algorithm outperforms
Poisson matting.
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(a) given image (b) given image

(c) extracted matte (d) composite image

Figure 6.8: An application of the matting problem. The object of image (a) is extracted
to combine with image (b). The composite image (d) looks realistic.

112



6.5 Conclusion

In this chapter, we propose to solve the matting problem by utilizing the inpainting

algorithm presented in Chapter 5, which combines variational PDE-based inpainting

and texture synthesis. We use the inpainting algorithm to extrapolate the foreground

and background into the unknown region within the proposed iterative matting scheme.

Our experiments show the proposed matting algorithm is effective for both geometric

and texture images. In the future, we will improve the proposed matting algorithm

so that it does not depend on the initial user-defined trimap. Several directions have

been investigated as mentioned in introduction. One possibility is to add a region-

growing step to generate a reasonable trimap from the user’s rough guess. Another

direction is to utilize the image data in the inpainting step that estimates the foreground

and background in the unknown region, in addition to completing the geometry and

texture.
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