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Abstract. The Cahn-Hilliard equation is a fourth order reaction diffusion equation originating in material
science for modeling phase separation and phase coarsening in binary alloys. The inpainting of binary images using
the Cahn-Hilliard equation is a new approach in image processing. In this paper we discuss the stationary state
of the proposed model and introduce a generalization for grayvalue images of bounded variation. This is realized
by using subgradients of the total variation functional within the flow, which leads to structure inpainting with
smooth curvature of level sets.
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1. Introduction. An important task in image processing is the process of filling in missing
parts of damaged images based on the information obtained from the surrounding areas. It is
essentially a type of interpolation and is referred to as inpainting. Given an image f in a suitable
Banach space of functions defined on Ω ⊂ R2, an open and bounded domain, the problem is to
reconstruct the original image u in the damaged domain D ⊂ Ω, called inpainting domain. In
the following we are especially interested in so called non-texture inpainting, i.e., the inpainting
of structures, like edges and uniformly colored areas in the image, rather than texture.

In the pioneering works of Caselles et al. [11] (with the term disocclusion instead of inpainting)
and Bertalmio et al. [5] partial differential equations have been first proposed for digital non-
texture inpainting. The inpainting algorithm in [5] extends the graylevels at the boundary of the
damaged domain continuously in the direction of the isophote lines to the interior via anisotropic
diffusion. The resulting scheme is a discrete model based on the nonlinear partial differential
equation

ut = ∇⊥u · ∇∆u,

to be solved inside the inpainting domain D using image information from a small strip around D.
The operator ∇⊥ denotes the perpendicular gradient (−∂y, ∂x). In subsequent works variational
models, originally derived for the tasks of image denoising, deblurring and segmentation, have
been adopted to inpainting. In contrast to former approaches (like [5]) the proposed variational
algorithms are applied to the image on the whole domain Ω. This procedure has the advantage
that inpainting can be carried out for several damaged domains in the image simultaneously and
that possible noise outside the inpainting domain is removed at the same time. The general form
of such a variational inpainting approach is

û(x) = argminu∈H1

(
J(u) = R(u) +

1
2
‖λ(f(x)− u(x))‖2H2

)
,

where f ∈ H2 (or f ∈ H1 depending on the approach) is the given damaged image and û ∈ H1

is the restored image. H1,H2 are Banach spaces on Ω and R(u) is the so called regularizing
term R : H1 → R. The function λ is the characteristic function of Ω \D multiplied by a (large)
constant, i.e., λ(x) = λ0 >> 1 in Ω \D and 0 in D. Depending on the choice of the regularizing
term R(u) and the Banach spaces H1, H2 various approaches have been developed. The most
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famous model is the total variation (TV) model, where R(u) = |Du| (Ω), is the total variation of
u, H1 = BV (Ω) the space of functions of bounded variation (see Appendix A for the definition of
functions of bounded variation) and H2 = L2(Ω), cf. [16, 14, 31, 32]. A variational model with

a regularizing term of higher order derivatives, i.e., R(u) =
∫
Ω
(1 +

(
∇ · ( ∇u

|∇u| )
)2

)|∇u| dx, is the
Euler elastica model [13, 25]. Other examples are the active contour model based on the Mumford
and Shah segmentation [33], and the inpainting scheme based on the Mumford-Shah-Euler image
model [19].

Second order variational inpainting methods (where the order of the method is determined by
the derivatives of highest order in the corresponding Euler-Lagrange equation), like TV inpainting
(cf. [32], [14], [15]) have drawbacks as in the connection of edges over large distances or the
smooth propagation of level lines (sets of image points with constant grayvalue) into the damaged
domain. In an attempt to solve both the connectivity principle and the so called staircasing effect
resulting from second order image diffusions, a number of third and fourth order diffusions have
been suggested for image inpainting.

A variational third order approach to image inpainting is the CDD (Curvature Driven Diffu-
sion) method [15]. While realizing the Connectivity Principle in visual perception, (i.e., level lines
are connected also across large inpainting domains) the level lines are still interpolated linearly
(which may result in corners in the level lines along the boundary of the inpainting domain).
This has driven Chan, Kang and Shen [13] to a reinvestigation of the earlier proposal of Masnou
and Morel [25] on image interpolation based on Eulers elastica energy. In their work the authors
present the fourth order elastica inpainting PDE which combines CDD and the transport process
of Bertalmio et. al [5]. The level lines are connected by minimizing the integral over their length
and their squared curvature within the inpainting domain. This leads to a smooth connection of
level lines also over large distances. This can also be interpreted via a second boundary condition,
necessary for an equation of fourth order. Not only the grayvalues of the image are specified
on the boundary of the inpainting domain but also the gradient of the image function, namely
the directions of the level lines are given. Further, also combinations of second and higher order
methods exist, e.g. [24]. The combined technique is able to preserve edges due to the second order
part and at the same time avoids the staircasing effect in smooth regions. A weighting function is
used for this combination.

The main challenge in inpainting with higher order flows is to find simple but effective models
and to propose stable and fast discrete schemes to solve them numerically. To do so also the
mathematical analysis of these approaches is an important point, telling us about solvability and
convergence of the corresponding equations. This analysis can be very hard because often these
equations do not admit a maximum or comparison principle and sometimes do not even have a
variational formulation.

A new approach in the class of fourth order inpainting algorithms is inpainting of binary
images using a modified Cahn-Hilliard equation, as proposed in [6], [7] by Bertozzi, Esedoglu
and Gillette. The inpainted version u of f ∈ L2(Ω) assumed with any (trivial) extension to the
inpainting domain is constructed by following the evolution of

ut = ∆(−ε∆u+
1
ε
F ′(u)) + λ(f − u) in Ω, (1.1)

where F (u) is a so called double-well potential, e.g., F (u) = u2(u− 1)2, and - as before:

λ(x) =

{
λ0 Ω \D
0 D

is the characteristic function of Ω \D multiplied by a constant λ0 >> 1. In [7] the authors prove
global existence and uniqueness of a weak solution of (1.1). Moreover, they derive properties of
possible stationary solutions in the limit λ0 →∞. Nevertheless the existence of a solution of the
stationary equation

∆(−ε∆u+
1
ε
F ′(u)) + λ(f − u) = 0 in Ω, (1.2)
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remains unaddressed. The difficulty in dealing with the stationary equation is the lack of an
energy functional for (1.1), i.e., the modified Cahn-Hilliard equation (1.1) cannot be represented
by a gradient flow of an energy functional over a certain Banach space. One challenge of this
paper is to extend the analysis from [7] by partial answers to questions concerning the stationary
equation (1.2) using alternative methods, namely by fixed point arguments. We shall prove

Theorem 1.1. Equation (1.2) admits a weak solution in H1(Ω) provided λ0 ≥ O( 1
ε3 ).

We will see in our numerical examples that the condition λ0 ≥ O( 1
ε3 ) in Theorem 1.1 is

naturally fulfilled, since in order to obtain good visual results in inpainting approaches λ0 has to
be chosen rather large in general. Note that the same condition also appears in [7] where it is
needed to prove the global existence of solutions of (1.1).

The second goal of this paper is to generalize the Cahn-Hilliard inpainting approach to gray-
value images. This is realized by using subgradients of the TV functional within the flow, which
leads to structure inpainting with smooth curvature of level sets. To build the connection to
Cahn-Hilliard inpainting we shall see that solutions of an appropriate time-discrete Cahn-Hilliard
inpainting approach Γ-converge, as ε → 0, to solutions of an optimization problem regularized
with the TV norm. A similar form of this approach already appeared in the context of decompo-
sition and restoration of grayvalue images, see for example [30] and [23]. We shall call this new
inpainting approach TV −H−1 inpainting and define it in the following way: The inpainted image
u of f ∈ L2(Ω), shall evolve via

ut = ∆p+ λ(f − u), p ∈ ∂TV (u), (1.3)

with

TV (u) =

{
|Du| (Ω) if |u(x)| ≤ 1 a.e. in Ω
+∞ otherwise.

(1.4)

The inpainting domain D and the characteristic function λ(x) are defined as before for the Cahn-
Hilliard inpainting approach. The space BV (Ω) is the space of functions of bounded variation
on Ω and |Du| (Ω) denotes the total variation of the distributional derivative Du (cf. Appendix
B). Further ∂TV (u) denotes the subdifferential of the functional TV (u) (cf. Appendix C for the
definition).

The L∞ bound in the definition of the TV functional (1.4) is quite natural as we are only
considering digital images u whose grayvalue can be scaled to [0, 1]. It is further motivated by the
Γ− convergence result of the Cahn-Hilliard inpainting approach in Section 3.1.

Using a similar methodology as in the proof of Theorem 1.1 we obtain the following existence
theorem,

Theorem 1.2. Let f ∈ L2(Ω). The stationary equation

∆p+ λ(f − u) = 0, p ∈ ∂TV (u) (1.5)

admits a solution u ∈ BV (Ω).
We shall also give a characterization of elements in the subdifferential ∂TV (u) for TV (u)

defined as in (1.4), i.e., TV (u) = |Du| (Ω)+χ1(u), where |Du| (Ω) is the total variation of Du and

χ1(u) =

{
0 if |u| ≤ 1 a.e. in Ω
+∞ otherwise.

For (1.3) we additionally give error estimates for the inpainting error and stability information
in terms of the Bregman distance (defined later).

Finally we present numerical results for the proposed binary- and grayvalue inpainting ap-
proaches and briefly explain the numerical implementation using convexity splitting methods.
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Organization of the paper. In Section 2 a fixed point approach is proposed to prove the
existence of a stationary solution for the modified Cahn-Hilliard equation (1.1) with Dirichlet
boundary conditions. In Section 3 we discuss the new TV −H−1 inpainting approach. We show
in subsection 3.1 that the Γ−limit, as ε → 0, of the corresponding optimization approach gives
a fourth order problem with a subgradient of the total variation within its flow. This Γ−limit
is generalized to an inpainting approach for grayvalue images, called TV − H−1 inpainting (cf.
(1.3)). Similarly to the existence proof in Section 2 we prove in subsection 3.2 the existence of a
stationary solution of this new inpainting approach for grayvalue images. In Section 3.3 we addi-
tionally give a characterization of elements in the subdifferential of the corresponding regularizing
functional (1.4). In addition we present error estimates for both the error in inpainting the image
by means of (1.3) and for the stability of solutions of (1.3) in terms of the Bregman distance.
Section 4 is dedicated to the numerical solution of Cahn-Hilliard- and TV −H−1−inpainting and
the presentation of numerical examples. Finally in Appendix A the space H−1

∂ is defined and
its elements are characterized in order to analyze (1.1) for Neumann boundary conditions. In
Appendix B basic facts about functions of bounded variation are presented.

Notation. Before we begin with the discussion of our results let us introduce some no-
tations. By ‖.‖ we always denote the norm in L2(Ω) with corresponding inner product 〈., .〉
and by ‖.‖−1 :=

∥∥∇∆−1.
∥∥ the norm in H−1(Ω) = (H1

0 (Ω))∗ with corresponding inner product
〈., .〉−1 :=

〈
∇∆−1.,∇∆−1.

〉
where ∆−1 denotes the inverse of the Laplacian on H1

0 .

2. Cahn-Hilliard inpainting - Proof of Theorem 1.1. In this chapter we prove the
existence of a weak solution of the stationary equation (1.2). Let Ω ⊂ R2 be a bounded Lipschitz
domain and f ∈ L2(Ω) given. Instead of Neumann boundary data as in the original Cahn-Hilliard
inpainting approach (cf. [7]) we use Dirichlet boundary conditions for our analysis, i.e., we consider{

ut = ∆
(
−ε∆u+ 1

εF
′(u)

)
+ λ(f − u) in Ω

u = f,−ε∆u+ 1
εF

′(u) = 0 on ∂Ω. (2.1)

This change from a Neumann- to a Dirichlet problem makes it easier to deal with the boundary
conditions in our proofs but does not have a significant impact on the inpainting process as long as
we assume that D̄ ⊂ Ω. In Appendix A we nevertheless propose a setting to extend the presented
analysis for (1.1) to the originally proposed model with Neumann boundary data. In our new
setting we define a weak solution u ∈ H1

0 (Ω) of equation (1.2) by

〈ε∇u,∇φ〉+
〈

1
ε
F ′(u), φ

〉
− 〈λ(f − u), φ〉−1 = 0, ∀φ ∈ H1

0 (Ω). (2.2)

Remark 2.1. With u ∈ H1(Ω) and the compact embedding H1(Ω) ↪→↪→ Lq(Ω) for every
1 ≤ q <∞ and Ω ⊂ R2 the weak formulation is well defined.

To see that (2.2) defines a weak formulation for (1.2) with Dirichlet boundary conditions we
integrate by parts in (2.2) and get∫

Ω
(−ε∆u+ 1

εF
′(u)−∆−1 (λ(f − u))) φ dx

−
∫

∂Ω
∆−1 (λ(f − u))∇∆−1φ · ν dH1, ∀φ ∈ H1

0 (Ω),

where H1 denotes the one dimensional Hausdorff measure. This yields{
ε∆u− 1

εF
′(u) + ∆−1 (λ(f − u)) = 0 in Ω

∆−1 (λ(f − u)) = 0 on ∂Ω. (2.3)

Assuming sufficient regularity on u and using the assumption that the inpainting domain fulfills
D̄ ⊂ Ω we can use the definition of ∆−1 to see that u solves{

−ε∆∆u+ 1
ε ∆F ′(u) + λ(f − u) = 0 in Ω

u = f,−∆u+ 1
εF

′(u) = 0 on ∂Ω,

i.e., u solves (1.2) with Dirichlet boundary conditions.
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For the proof of existence of a solution to (2.2) we follow the subsequent strategy. We consider
the fixed point operator A : L2(Ω) → L2(Ω) where A(v) = u fulfills for a given v ∈ L2(Ω) the
equation{

1
τ ∆−1(u− v) = ε∆u− 1

εF
′(u) + ∆−1 [λ(f − u) + (λ0 − λ)(v − u)] in Ω,

∆−1
(

1
τ (u− v) + λ(f − u) + (λ0 − λ)(v − u)

)
= 0 on ∂Ω, (2.4)

where τ > 0 is a parameter. We define the weak formulation of (2.4) as before by〈
1
τ (u− v), φ

〉
−1

+ 〈ε∇u,∇φ〉+
〈

1
εF

′(u), φ
〉

−〈λ(f − u) + (λ0 − λ)(v − u), φ〉−1 ∀φ ∈ H1
0 (Ω).

(2.5)

A fixed point of the operator A, provided it exists, then solves the stationary equation with
Dirichlet boundary conditions as in (2.3).

Note that in (2.4) the characteristic function λ in the fitting term λ(f −u)+(λ0−λ)(v−u) =
λ0(v−u)+λ(f−v) only appears in combination with given functions f, v and is not combined with
the solution u of the equation. For equation (2.4) we can therefore state a variational formulation,
i.e., for a given v ∈ L2(Ω) equation (2.4) is the Euler-Lagrange equation of the minimization
problem

u∗ = argminu∈H1(Ω) J
ε(u, v)

with

Jε(u, v) =
∫

Ω

(
ε

2
|∇u|2 +

1
ε
F (u)

)
dx+

1
2τ

‖u− v‖2−1 +
λ0

2

∥∥∥∥u− λ

λ0
f −

(
1− λ

λ0

)
v

∥∥∥∥2

−1

. (2.6)

We are going to use the variational formulation (2.6) to prove that (2.4) admits a weak solution
in H1(Ω). This solution is unique under additional conditions.

Theorem 2.2. Equation (2.4) admits a weak solution in H1(Ω). For τ ≤ O(ε3) the weak
solution of (2.4) is unique.

Further we prove that the operator A admits a fixed point under certain conditions.
Theorem 2.3. Set A : L2(Ω) → L2(Ω), A(v) = u, where u ∈ H1(Ω) is the unique weak

solution of (2.4). Then A admits a fixed point û ∈ H1(Ω) if τ ≤ O(ε3) and λ0 ≥ O( 1
ε3 ).

Hence the existence of a stationary solution of (1.1) follows under the condition λ0 ≥ O(1/ε3).
We begin with considering the fixed point equation (2.4), i.e., the minimization problem

u∗ = argminu∈H1(Ω) J
ε(u, v)

with Jε defined as in (2.6). In the following we prove the existence of a unique weak solution of
(2.4) by showing the existence of a unique minimizer for (2.6).

Proof. (Proof of Theorem 2.2) We want to show that Jε(u, v) has a minimizer in H1(Ω).
For this we consider a minimizing sequence un ∈ H1(Ω) of Jε(u, v). To see that un is uniformly
bounded in H1(Ω) we show that Jε(u, v) is coercive in H1(Ω). With F (u) ≥ C1u

2 − C2 for two
positive constants C1, C2 > 0 and the triangular inequality in the H−1(Ω) space, we obtain

Jε(u, v) ≥ ε

2
‖∇u‖22 +

C1

ε
‖u‖22 −

C2

ε
+

1
2τ

(
1
2
‖u‖2−1 − ‖v‖2−1

)
+
λ0

2

(
1
2
‖u‖2−1 −

∥∥∥∥ λλ0
f +

(
1− λ

λ0

)
v

∥∥∥∥2

−1

)

≥ ε

2
‖∇u‖22 +

C1

ε
‖u‖22 +

(
λ0

4
+

1
4τ

)
‖v‖2−1 − C3

Therefore a minimizing sequence un is bounded in H1(Ω) and it follows that un ⇀ u∗ in
H1(Ω). To finish the proof of existence for (2.4) we have to show that Jε(u, v) is weakly lower
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semicontinuous in H1(Ω). For this we divide the sequence Jε(un, v) of (2.6) in two parts. We
denote the first term

an =
∫

Ω

(
ε

2
|∇un|2 +

1
ε
F (un)

)
dx︸ ︷︷ ︸

CH(un)

and the second term

bn =
1
2τ

‖un − v‖2−1︸ ︷︷ ︸
D(un,v)

+
λ0

2

∥∥∥∥un − λ

λ0
f −

(
1− λ

λ0

)
v

∥∥∥∥2

−1︸ ︷︷ ︸
FIT (un,v)

.

Since H1 ↪→↪→ L2 it follows un → u∗ in L2(Ω). Further we know that if bn converges strongly,
then

lim inf (an + bn) = lim inf an + lim bn. (2.7)

We begin with the consideration of the last term in (2.6). We denote f̃ := λ
λ0
f + (1 − λ

λ0
)v.

We want to show ∥∥∥un − f̃
∥∥∥2

−1
−→

∥∥∥u∗ − f̃
∥∥∥2

−1
⇐⇒

〈∆−1(un − f̃), un − f̃〉 −→ 〈∆−1(u∗ − f̃), u∗ − f̃〉.

For this we consider the absolute difference of the two terms,

|〈∆−1(un − f̃), un − f̃〉 − 〈∆−1(u∗ − f̃), u∗ − f̃〉|
= |〈∆−1(un − u∗), un − f̃〉 − 〈∆−1(u∗ − f̃), un − u∗〉|
≤ |〈un − u∗,∆−1(un − f̃)〉|+ |〈∆−1(u∗ − f̃), u∗ − un〉|

≤ ‖un − u∗‖︸ ︷︷ ︸
→0

·
∥∥∥∆−1(un − f̃)

∥∥∥+ ‖un − u∗‖︸ ︷︷ ︸
→0

·
∥∥∥∆−1(u∗ − f̃)

∥∥∥
Since the operator ∆−1 : H−1(Ω) → H1

0 (Ω) is a linear and continuous operator it follows that∥∥∆−1F
∥∥ ≤ ∥∥∆−1

∥∥ · ‖F‖ for all F ∈ H−1(Ω).

Thus

|〈∆−1(un − f̃), un − f̃〉 − 〈∆−1(u∗ − f̃), u∗ − f̃〉|

≤ ‖un − u∗‖︸ ︷︷ ︸
→0

∥∥∆−1
∥∥︸ ︷︷ ︸

const

∥∥∥un − f̃
∥∥∥︸ ︷︷ ︸

bounded

+ ‖un − u∗‖︸ ︷︷ ︸
→0

∥∥∆−1
∥∥︸ ︷︷ ︸

const

∥∥∥u∗ − f̃
∥∥∥︸ ︷︷ ︸

const

−→ 0 as n→∞,

and we conclude that FIT (un, v) converges strongly to FIT (u∗, v). With the same argument it
follows that D(un, v) converges strongly and in sum that the sequence bn converges strongly in
L2(Ω). Further CH(.) is weakly lower semicontinuous, which follows from the lower semicontinuity
of the Dirichlet integral and from the continuity of F by applying Fatou’s Lemma. Hence we obtain

Jε(u∗, v) ≤ lim inf Jε(un, v).

Therefore Jε has a minimizer in H1, i.e.,

∃u∗ with u∗ = argminu∈H1(Ω)J
ε(u, v).
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For simplicity let in the following u = u∗. To see that the minimizer u is a weak solution of
(2.4) we compute the corresponding Euler-Lagrange equation to the minimization problem. For
this sake we choose any testfunction φ ∈ H1

0 (Ω) and compute the first variation of Jε, i.e.,(
d

dδ
Jε(u+ δφ, v)

)
δ=0

,

which has to be zero for a minimizer u. Thus we have

ε 〈∇u,∇φ〉+
1
ε
〈F ′(u), φ〉+

〈
1
τ

(u− v) + λ0

[
u− λ

λ0
f −

(
1− λ

λ0

)
v

]
, φ

〉
−1

= 0.

Integrating by parts in both terms we get〈
−ε∆w +

1
ε
F ′(w)−∆−1

(
1
τ

(u− v) + λ0

[
u− λ

λ0
f −

(
1− λ

λ0

)
v

])
, φ

〉
+
∫

∂Ω

∇u · νφ ds+
∫

∂Ω

∆−1

(
1
τ

(u− v) + λ0

[
u− λ

λ0
f −

(
1− λ

λ0

)
v

])
∇∆−1φ · ν ds = 0.

Since φ is an element in H1
0 (Ω) the first boundary integral vanishes and we obtain that u fulfills

the weak formulation (2.5) of (2.4).
For the uniqueness of the minimizer, we need to prove that Jε is strictly convex. To do so,

we prove that for any u1, u2 ∈ H1(Ω),

Jε(u1, v) + Jε(u2, v)− 2Jε

(
u1 + u2

2
, v

)
> 0, (2.8)

based on an assumption that F (.) satisfies F (u1) +F (u2)− 2F (u1+u2
2 ) > −C(u1 − u2)2, with the

constant C > 0. For example, when F (u) = 1
8 (u2 − 1)2, C = 1

8 . Denote u = u1 − u2, we have

Jε(u1, v) + Jε(u2, v)− 2Jε

(
u1 + u2

2
, v

)
>
ε

4
‖u‖2H1 +

(
1
4τ

+
λ0

4

)
‖u‖2−1 −

C

ε
‖u‖22

By using the inequality

‖u‖22 ≤ ‖u‖H1 ‖u‖−1 , (2.9)

and the Cauchy-Schwarz inequality, for (2.8) to be fulfilled, we need

2

√
ε

4

(
1
4τ

+
λ0

4

)
≥ C

ε
.

i.e.,

ε3
(
λ0 +

1
τ

)
≥ C2.

Therefore Jε(u, v) is strictly convex in u and our minimization problem has a unique minimizer if
τ is chosen smaller than O(ε3). Because of the convexity of Jε in ∇u and u, every weak solution
of the Euler-Lagrange equation (2.4) is in fact a minimizer of Jε. This proves the uniqueness of a
weak solution of (2.4) provided τ << O(ε3).

Next we want to prove Theorem 2.3, i.e., the existence of a fixed point of (2.4) and with this
the existence of a stationary solution of (1.1). To do so we are going to apply Schauder’s fixed
point theorem.

Proof. (Proof of Theorem 2.3) We consider a solution A(v) = u of (2.4) with v ∈ L2(Ω)
given. In the following we will prove the existence of a fixed point by using Schauder’s fixed point
theorem. For this we will show

‖u‖2 ≤ β ‖v‖2 + α, (2.10)
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with β < 1. Having this we have shown that A is a map from the closed ball K = B(0,M) ={
u ∈ L2(Ω) : ‖u‖ ≤M

}
into itself for an appropriate constant M > 0. Then K is a compact and

convex subset of L2(Ω), because K is the ball with radius M around 0.
By inverting ∆−1 in (2.4), i.e., by applying the operator −∆ to the equation, we obtain

1
τ

(u− v) = −∆(ε∆u− 1
ε
F ′(u)) + [λ(f − u) + (λ0 − λ)(v − u)] .

With λ(f − u) + (λ0 − λ)(v − u) = λ(f − v) + λ0(v − u), and by multiplying the above equation
by u we conclude∫

Ω

u · 1
τ

(u− v) = −ε ‖∆u‖2 − 1
ε

∫
Ω

F ′′(u) |∇u|2 dx

+λ0

(∫
Ω\D

u(f − u) dx+
∫

D

u(v − u) dx

)
.

With F ′′(u) ≥ C1u
2−C2 for some constants C1, C2 > 0 and for all u ∈ R, and by further applying

the Cauchy-Schwarz inequality to terms connected to λ0 we obtain∫
Ω

u · 1
τ

(u− v) ≤ −ε ‖∆u‖2 − C1

ε
‖u |∇u|‖2 +

C2

ε
‖∇u‖2

+λ0

[
−
(

1− δ

2

)∫
Ω\D

u2 dx+
(
δ1
2
− 1
)∫

D

u2 dx

+
1

2δ1

∫
D

v2 dx+ C(|Ω \D| , f)
]
.

Setting δ = 1 and δ1 = 2 we see that∫
Ω

u · 1
τ

(u− v) ≤ −ε ‖∆u‖2 − C1

ε
‖u |∇u|‖2 +

C2

ε
‖∇u‖2

+λ0

[
−1

2

∫
Ω\D

u2 dx+
1
4

∫
D

v2 dx+ C(|Ω \D| , f)

]
.

We follow the argumentation of the proof of existence for (1.1) in [7] by observing the following
property: A standard interpolation inequality for ∇u reads

‖∇u‖2 ≤ δ1 ‖∆u‖2 +
C3

δ1
‖u‖2 . (2.11)

The domain of integration in the second integral of the equation above can be taken to be smaller
than Ω by taking a larger constant C3. By further using the L1 version of Poincare’s inequality,
i.e., Theorem C.2 in Appendix C, we obtain

‖u‖2 ≤ C4

∥∥∇u2
∥∥

L1(Ω)
+ C4

∫
Ω\D

u2 dx,

where C4 depends on the size of D compared to Ω. By Hölders inequality we also have that∥∥∇u2
∥∥

L1(Ω)
≤ α

2
‖u |∇u|‖2 +

C5

2α
.

Putting the last three inequalities together we obtain

‖∇u‖2 ≤ δ1 ‖∆u‖2 +
C3C4α

2δ1
‖u |∇u|‖2 +

C3C4

δ1

∫
Ω\D

u2 dx+
C3C4C5

2αδ1
.
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We now use the last inequality to bound the gradient term in our estimates from above to get∫
Ω
u · 1

τ (u− v) ≤ (C2δ1
ε − ε) ‖∆u‖2 + (C2C3C4α

2δ1ε − C1
ε ) ‖u |∇u|‖2

+(C2C3C4
δ1ε − C4λ0

2 ) ‖u‖2 + λ0
4

∫
D
v2 dx+ C(λ0, f, ε,Ω, D).

(2.12)

With δ1 <
ε2

C2
and α small enough the first two terms can be estimated from above by zero.

Applying the Cauchy-Schwarz inequality on the left-hand side and rearranging the terms on both
sides of the inequality we conclude(

1
2τ

+
C4λ0

2
− CC2

δ1ε

)
‖u‖2 ≤

(
λ0

4
+

1
2τ

)
‖v‖2 + C(λ0, |Ω \D| , f).

Choosing λ0 ≥ O( 1
ε3 ) the solution u and v fulfill

‖u‖2 ≤ β ‖v‖2 + C, (2.13)

with β < 1 and a constant C independent of v. Hence u is bounded in L2(Ω).
In addition the operator A is continuous. Indeed if vk → v in H1(Ω) then A(vk) = uk is

bounded in H1(Ω) for all k = 0, 1, 2, . . .. To see this we consider (2.12) with appropriate constants
δ1 and α as specified in the paragraph below (2.12). But now we only estimate the second term
on the right side by zero and keep the first term. By applying the Cauchy-Schwarz inequality and
rearranging the terms as before we obtain(

1
2τ

+
C4λ0

2
− CC2

δ1ε

)
‖u‖2 +

(
ε− C2δ1

ε

)
‖∆u‖2 ≤

(
λ0

4
+

1
2τ

)
‖v‖2 + C(λ0, |Ω \D| , f),

with the coefficient ε− C2δ1
ε ≥ 0 due to our choice of δ1. Therefore not only the L2− norm of u is

uniformly bounded but also the L2− norm of ∆u. By the standard interpolation inequality (2.11)
the boundedness of u in H1(Ω) follows. Thus, we can consider a weakly convergent subsequence
ukj

⇀ u in H1(Ω). Because H1(Ω) ↪→↪→ Lq(Ω), 1 ≤ q < ∞ the sequence ukj
converges also

strongly to u in Lq(Ω). Hence, a weak solution A(vk) = uk of (2.4) weakly converges to a weak
solution u of

1
τ

(−∆−1)(u− v) = ε∆u− 1
ε
F ′(u)−∆−1 [λ(f − u) + (λ0 − λ)(v − u)] ,

where u is the weak limit of A(vk) as k → ∞. Because the solution of (2.4) is unique provided
τ ≤ O(ε3) (cf. Theorem 2.2), u = A(v), and therefore A is continuous. Applying Schauder’s
Theorem we have shown that the fixed point operator A admits a fixed point û in L2(Ω) which
fulfills

〈ε∇û,∇φ〉+
〈

1
ε
F ′(û), φ

〉
−〈λ(f − û), φ〉−1+

∫
∂Ω

∆−1 (λ(f − û))∇∆−1φ·ν dH1 = 0, ∀φ ∈ H1
0 (Ω).

Because the solution of (2.4) is an element of H1(Ω) also the fixed point û ∈ H1(Ω).
Following the arguments from the beginning of this section we conclude with the existence of

a stationary solution for (1.1).
By modifying the setting and the above proof in an appropriate way one can prove the existence

of a stationary solution for (1.1) also under Neumann boundary conditions, i.e.,

∇u · ν = ∇∆u · ν = 0, on∂Ω.

A corresponding reformulation of the problem is given in Appendix A.
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3. Total Variation - H−1 inpainting. In this section we discuss our newly proposed in-
painting scheme (1.3), i.e., the inpainted image u of f ∈ L2(Ω) evolves via

ut = ∆p+ λ(f − u), p ∈ ∂TV (u),

with

TV (u) =

{
|Du| (Ω) if |u(x)| ≤ 1 a.e. in Ω
+∞ otherwise.

Before starting this section we suggest readers who are unfamiliar with the space BV (Ω) to first
read Appendix B and maybe recall the definition of the subdifferential of a function in Definition
C.1.

3.1. Γ-Convergence of the Cahn-Hilliard energy. In the following we want to see what
happens if we send the parameter ε in (1.1) to zero. In other words we want to know how the
Γ-limit ’of the equation’ looks like. Before starting our discussion lets recall the definition of
Γ-convergence and its impact within the study of optimization problems. For more details on
Γ-convergence we refer to [26].

Definition 3.1. Let X = (X, d) be a metric space and (Fh), h ∈ N be family of functions
Fh : X → [0,+∞]. We say that (Fh) Γ-converges to a function F : X → [0,+∞] on X if ∀x ∈ X
we have

(i) for every sequence xh with d(xh, x) → 0 we have

F (x) ≤ lim inf
h

Fh(xh);

(ii) there exists a sequence x̄h such that d(x̄h, x) → 0 and

F (x) = lim
h
Fh(x̄h)

(or, equivalently, F (x) ≥ lim suph Fh(x̄h)).
We write F (x) = Γ − limh Fh(x), x ∈ X, is the Γ-limit of (Fh) in X. The formulation of the
Γ-limit for ε→ 0 is analogous by defining a sequence εh with εh → 0 as h→∞.

The important property of Γ-convergent sequences of functions Fh is that its minima converge
to minima of the Γ-limit F . In fact we have the following theorem

Theorem 3.2. Let (Fh) be like in Definition 3.1 and additionally equicoercive, that is there
exists a compact set K ⊂ X (independent of h) such that

inf
x∈X

{Fh(x)} = inf
x∈K

{Fh(x)}.

If Fh Γ-converges on X to a function F we have

min
x∈X

{F (x)} = lim
h

inf
x∈X

{Fh(x)} .

In fact Modica and Mortola have shown in [28] and [29] that the sequence of Cahn-Hilliard
functionals

CH(u) =
∫

Ω

(
ε

2
|∇u|2 +

1
ε
F (u)

)
dx

Γ-converges in the topology L1(Ω) to

TV (u) =

{
C0 |Du| (Ω) if |u(x)| = 1 a.e. in Ω
+∞ otherwise
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as ε → 0, where C0 = 2
∫ 1

−1

√
F (s) ds. (The space BV (Ω) and the total variation |Du| (Ω) are

defined in Appendix B.)
Because of the lack of an energy functional for the evolution equation (1.1) we consider the

functional Jε for our fixed point approach (2.4):

Jε(u, v) =
∫

Ω

(
ε

2
|∇u|2 +

1
ε
F (u)

)
dx︸ ︷︷ ︸

:=CH(u)

+
1
2τ

‖u− v‖2−1︸ ︷︷ ︸
:=D(u,v)

+
λ0

2

∥∥∥∥u− λ

λ0
f − (1− λ

λ0
)v
∥∥∥∥2

−1︸ ︷︷ ︸
:=FIT (u,v)

, (3.1)

for a given function v ∈ L2(Ω). Jε(u) is the sum of the regularizing term CH(u), the damping
term D(u, v) and the fitting term FIT (u, v). We recall the following fact,

Theorem 3.3. [Dal Maso, [26], Prop. 6.21.] Let G : X → R be a continuous function and
(Fh) Γ− converges to F in X, then (Fh +G) Γ− converges to F +G in X.

Since D(u, v) and FIT (u, v) are continuous with respect to u and due to Theorem 3.3 the
modified Cahn-Hilliard functional Jε can be seen as a regularized approximation in the sense of
Γ-convergence of the TV-functional

J(u, v) = TV (u) +D(u, v) + FIT (u, v),

for functions u ∈ BV (Ω) with |u(x)| = 1 a.e. in Ω.
This property leads us from the Cahn-Hilliard inpainting approach for binary images to a

generalization for grayvalue images u ∈ BV (Ω) with |u(x)| ≤ 1, namely our so called TV −H−1

inpainting equation (1.3).

3.2. Existence of a stationary solution - proof of Theorem 1.2. Our strategy for
proving the existence of a stationary solution for TV − H−1 inpainting (1.3) is similar to our
existence proof for a stationary solution of the modified Cahn-Hilliard equation (1.1) in Section
2. Similarly as in our analysis for (1.1) in Section 2 we consider equation (1.3) with Dirichlet
boundary conditions, namely

ut = ∆p+ λ(f − u) in Ω
u = f on ∂Ω,

for p ∈ ∂TV (u).
Now let f ∈ L2(Ω), |f | ≤ 1 be the given grayvalue image. For v ∈ Lr(Ω), 1 < r < 2, we

consider the minimization problem

u∗ = arg min
u∈BV (Ω)

J(u, v),

with functionals

J(u, v) := TV (u) +
1
2τ
||u− v||2−1︸ ︷︷ ︸
D(u,v)

+
λ0

2
||u− λ

λ0
f − (1− λ

λ0
)v||2−1︸ ︷︷ ︸

FIT (u,v)

, (3.2)

with TV (u) defined as in (1.4), i.e.,

TV (u) =

{
|Du| (Ω) if |u(x)| ≤ 1 a.e. in Ω
+∞ otherwise.

Note that Lr(Ω) can be continuously embedded in H−1(Ω). Hence the functionals in (3.2) are
well defined.

First we will show that for a given v ∈ Lr(Ω) the functional J(., v) attains a unique minimizer
u∗ ∈ BV (Ω) with |u∗(x)| ≤ 1 a.e. in Ω.

Theorem 3.4. Let f ∈ L2(Ω) be given with |f(x)| ≤ 1 a.e. in Ω and v ∈ Lr(Ω). Then the
functional J(., v) has a unique minimizer u∗ ∈ BV (Ω) with |u∗(x)| ≤ 1 a.e. in Ω.



12 M. Burger, L. He, and C.-B. Schönlieb

Proof. Let (un)n∈N be a minimizing sequence for J(u, v), i.e.,

J(un, v) → inf
u∈BV (Ω)

J(u, v).

Then un ∈ BV (Ω) and |un(x)| ≤ 1 in Ω (because otherwise TV (un) would not be finite). Therefore

|Dun| (Ω) ≤M, for an M ≥ 0 and for all n ≥ 1,

and, because of the uniform boundedness of |u(x)| for every point x ∈ Ω,

‖un‖Lp(Ω) ≤ M̃, for an M ≥ 0, ∀n ≥ 1, and 1 ≤ p ≤ ∞.

Thus un is uniformly bounded in Lp(Ω) and in particular in L1(Ω). Together with the boundedness
of |Dun| (Ω), the sequence un is also bounded in BV (Ω) and there exists a subsequence, still
denoted un, and a u ∈ BV (Ω) such that un ⇀ u weakly in Lp(Ω), 1 ≤ p ≤ ∞ and weakly∗ in
BV (Ω). Because L2(Ω) ⊂ L2(R2) ⊂ H−1(Ω) (by zero extensions of functions on Ω to R2) un ⇀ u
also weakly in H−1(Ω). Because |Du| (Ω) is lower semicontinuous in BV (Ω) and by the lower
semicontinuity of the H−1 norm we get

J(u, v)= TV (u) +D(u, v) + FIT (u, v)
≤ lim infn→∞(TV (un) +D(un, v) + FIT (un, v))
= lim infn→∞J(un, v).

So u is a minimizer of J(u, v) over BV (Ω).

To prove the uniqueness of the minimizer we (similarly as in the proof of Theorem 2.2) show
that J is strictly convex. Namely we prove that for all u1, u2 ∈ BV (Ω), u1 6= u2

J(u1, v) + J(u2, v)− 2J
(
u1 + u2

2
, v

)
> 0.

We have

J(u1, v) + J(u2, v)− 2J
(
u1 + u2

2
, v

)
=
(

1
2τ

+
λ0

2

)(
‖u1‖2−1 + ‖u2‖2−1 − 2

∥∥∥∥u1 + u2

2

∥∥∥∥2

−1

)

+TV (u1) + TV (u2)− 2TV
(
u1 + u2

2

)
≥
(

1
4τ

+
λ0

4

)
‖u1 − u2‖2−1 > 0.

This finishes the proof.
Next we shall prove the existence of stationary solution for (1.3). For this sake we consider

the corresponding Euler-Lagrange equation to (3.2), i.e.,

∆−1

(
u− v

τ

)
+ p−∆−1 (λ(f − u) + (λ0 − λ)(v − u)) = 0,

with weak formulation〈
1
τ (u− v), φ

〉
−1

+ 〈p, φ〉 − 〈λ(f − u) + (λ0 − λ)(v − u), φ〉−1 ∀φ ∈ H1
0 (Ω).

A fixed point of the above equation, i.e., a solution u = v, is then a stationary solution for (1.3).
Thus, to prove the existence of a stationary solution of (1.3), i.e., to prove Theorem 1.2, we as
before are going to use a fixed point argument. Let A : Lr(Ω) → Lr(Ω), 1 < r < 2, be the operator
which maps a given v ∈ Lr(Ω) to A(v) = u under the condition that A(v) = u is the minimizer
of the functional J(., v) defined in (3.2). The choice of the fixed point operator A over Lr(Ω) was
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made in order to obtain the necessary compactness properties for the application of Schauder’s
theorem.

Since here the treatment of the boundary conditions is similar as in Section 2 we will leave
this part of the analysis in the upcoming proof to the reader and just carry out the proof without
explicitly taking care of the boundary.

Proof. Let A : Lr(Ω) → Lr(Ω), 1 < r < 2, be the operator that maps a given v ∈ Lr(Ω) to
A(v) = u, where u is the unique minimizer of the functional J(., v) defined in (3.2). Existence
and uniqueness follow from Theorem 3.4. Since u minimizes J(., v) we have u ∈ L∞(Ω) hence
u ∈ Lr(Ω). Additionally we have J(u, v) ≤ J(0, v), i.e.,

1
2τ ||u− v||2−1 + λ0

2 ||u−
λ
λ0
f − (1− λ

λ0
)v||2−1 + TV (u) ≤ 1

2τ ||v||
2
−1 + λ0

2 ||
λ
λ0
f + (1− λ

λ0
)v||2−1

≤ |Ω|
2τ + λ0(|Ω|+ |D|).

(3.3)
Here the last inequality was obtained since Lr(Ω) ↪→ H−1(Ω) and hence ||v||−1 ≤ C and ||λv||−1 ≤
C for a C > 0. (In fact, since H1(Ω) ↪→ Lr′(Ω) for all 1 ≤ r′ < ∞ from duality it follows
that Lr(Ω) ↪→ H−1(Ω) for, 1 < r < ∞.) By the last estimate we obtain u ∈ BV (Ω). Since
BV (Ω) ↪→↪→ Lr(Ω) compactly for 1 ≤ r ≤ 2 and Ω ⊂ R2 (cf. Theorem B.7), the operator A maps
Lr(Ω) → BV (Ω) ↪→↪→ Lr(Ω), i.e., A : Lr(Ω) → K, where K is a compact subset of Lr(Ω). Thus,
for v ∈ B(0, 1) (where B(0, 1) denotes the ball in L∞(Ω) with center 0 and radius 1), the operator
A : B(0, 1) → B(0, 1) ∩K = K̃, where K̃ is a compact and convex subset of Lr(Ω).

Next we have to show that A is continuous in Lr(Ω). Let (vk)k≥0 be a sequence which
converges to v in Lr(Ω). Then uk = A(vk) solves

∆pk =
uk − vk

τ
− (λ(f − uk) + (λ0 − λ)(vk − uk)) ,

where pk ∈ ∂TV (uk). Thus uk is uniformly bounded in BV (Ω) ∩ L∞(Ω) (and hence in Lr(Ω))
and, since the right-hand side of the above equation is uniformly bounded in Lr(Ω), also ∆pk is
bounded in Lr(Ω). Thus there exists a subsequence pkl

such that ∆pkl
⇀ ∆p in Lr(Ω) and a

subsequence ukl
that converges weakly ∗ to a u in BV (Ω)∩L∞(Ω). Since BV (Ω) ↪→↪→ Lr(Ω) we

have ukl
→ u strongly in Lr(Ω). Therefore the limit u solves

∆p =
u− v

τ
− (λ(f − u) + (λ0 − λ)(v − u)) . (3.4)

If we additionally apply Poincare’s inequality to ∆pk we conclude

‖∇pk − (∇pk)Ω‖Lr(Ω) ≤ C ‖∇ · (∇pk − (∇pk)Ω)‖Lr(Ω) ,

where (∇pk)Ω = 1
|Ω|
∫
Ω
∇pk dx. In addition, since pk ∈ ∂TV (uk), it follows that (pk)Ω = 0 and

‖pk‖BV ∗(Ω) ≤ 1. Thus (∇pk)Ω <∞ and pk is uniformly bounded in W 1,r(Ω). Thus there exists a
subsequence pkl

such that pkl
⇀ p in W 1,r(Ω). In addition Lr′(Ω) ↪→ BV ∗(Ω) for 2 < r′ <∞ (this

follows again from Theorem B.7 by a duality argument) and W 1,r(Ω) ↪→↪→ Lq(Ω) for 1 ≤ q < 2r
2−r

(cf. Theorem C.3). By choosing 2 < q < 2r
2−r we have in sum W 1,r(Ω) ↪→↪→ BV ∗(Ω). Thus

pkl
→ p strongly in BV ∗(Ω). Hence the element p in (3.4) is an element in ∂TV (u).
Because the minimizer of (3.2) is unique, u = A(v), and therefore A is continuous in Lr(Ω).

From Schauder’s fixed point theorem the existence of a stationary solution follows.

3.3. Characterization of Solutions. Finally we want to compute elements p̂ ∈ ∂TV (û).
Like in [10] the model for the regularizing functional is the sum of a standard regularizer plus the
indicator function of the L∞ constraint. Especially we have TV (u) = |Du| (Ω) + χ1(u), where
|Du| (Ω) is the total variation of Du and

χ1(u) =

{
0 if |u| ≤ 1 a.e. in Ω
+∞ otherwise.

(3.5)
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We want to compute the subgradients of TV by pretending ∂TV (u) = ∂ |Du| (Ω) + ∂χ1(u). This
means we can separately compute the subgradients of χ1. To guarantee that the splitting above is

allowed we have to consider a regularized functional of the total variation, like
∫
Ω

√
|∇u|2 + δ dx.

This is sufficient because both |D.| (Ω) and χ1 are convex and |D.| (Ω) is continuous (compare [18]
Proposition 5.6., pp. 26).

The subgradient ∂ |Du| (Ω) is already well described, as, for instance, in [4] or [34]. We will
just shortly recall its characterization. Thereby we do not insist on the details of the rigorous
derivation of these conditions, and we limit ourself to mention the main facts.

It is well known [34, Proposition 4.1] that p ∈ ∂|Du|(Ω) implies{
p = −∇ · ( ∇u

|∇u| ) in Ω
∇u
|∇u| · ν = 0 on ∂Ω.

The previous conditions do not fully characterize p ∈ ∂|Du|(Ω), additional conditions would be
required [4, 34], but the latter are, unfortunately, hardly numerically implementable. Since we
anyway consider a regularized version of |Du| (Ω) the subdifferential becomes a gradient which
reads  p = −∇ · ( ∇u√

|∇u|2+δ
) in Ω

∇u√
|∇u|2+δ

· ν = 0 on ∂Ω.

The subgradient of χ1 is computed like in the following Lemma.
Lemma 3.5. Let χ1 : Lr(Ω) → R ∪ {∞} be defined by (3.5), and let 1 ≤ r ≤ ∞. Then

p ∈ Lr∗(Ω), for r∗ = r
r−1 , is a subgradient p ∈ ∂χ1(u) for u ∈ Lr(Ω) with χ1(u) = 0, if and only

if

p = 0 a.e. on supp({|u| < 1})
p ≤ 0 a.e. on supp({u = −1})
p ≥ 0 a.e. on supp({u = 1}).

Proof. Let p ∈ ∂χ1(u). Then we can choose v = u + εw for w being any bounded function
supported in {|u| < 1− α} for arbitrary 0 < α < 1. If ε is sufficiently small we have |v| ≤ 1.
Hence

0 ≥ 〈v − u, p〉 = ε

∫
{|u|<1−α}

wp dx.

Since we can choose ε both positive and negative, we obtain∫
{|u|<1−α}

wp dx = 0.

Because 0 < α < 1 and w are arbitrary we conclude p = 0 on the support of {|u| < 1}. If we
choose v = u+ w with w is an arbitrary bounded function with{

0 ≤ w ≤ 1 on supp({−1 ≤ u ≤ 0})
w = 0 on supp({0 < u ≤ 1}).

Then v is still between −1 and 1 and

0 ≥ 〈v − u, p〉 =
∫
{u=−1}

wp dx+
∫
{u=1}

wp dx

=
∫
{u=−1}

wp dx.
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Because w is arbitrary and positive on {u = −1} it follows that p ≤ 0 a.e. on {u = −1}. If we
choose now v = u+ w with w is an arbitrary bounded function with{

w = 0 on supp({−1 ≤ u ≤ 0})
−1 ≤ w ≤ 0 on supp({0 < u ≤ 1}).

Then v is still between −1 and 1 and

0 ≥ 〈v − u, p〉 =
∫
{u=−1}

wp dx+
∫
{u=1}

wp dx

=
∫
{u=1}

wp dx.

Analogue to before, since w is arbitrary and negative on {u = 1} it follows that p ≥ 0 a.e. on
{u = 1}.
On the other hand assume that

p = 0 a.e. on supp({|u| < 1})
p ≤ 0 a.e. on supp({u = −1})
p ≥ 0 a.e. on supp({u = 1}).

We need to verify the subgradient property

〈v − u, p〉 ≤ χ1(v)− χ1(u) = χ1(v) for all v ∈ Lr(Ω)

only for χ1(v) = 0, since it is trivial for χ1(v) = ∞. So let v ∈ Lr(Ω) be a function between −1
and 1 almost everywhere on Ω. Then with p as above we obtain

〈v − u, p〉 =
∫
{u=−1}

p(v − u) dx+
∫
{u=1}

p(v − u) dx

=
∫
{u=−1}

p(v + 1) dx+
∫
{u=1}

p(v − 1) dx.

Since −1 ≤ v ≤ 1 the first and the second term are always ≤ 0 since p ≤ 0 for {u = −1} and p ≥ 0
for {u = 1} respectively. Therefore 〈v − u, p〉 ≤ 0 and we are done.

3.4. Error estimation and stability analysis with the Bregman distance. In the
following analysis we want to present estimations for both the error we actually make in inpainting
an image with our TV −H−1 approach (1.3) (see (3.11)) and for the stability of solutions for this
problem (see (3.12)) in terms of the Bregman distance. Let fdam ∈ L2(Ω) be the given damaged
image with inpainting domain D ⊂ Ω and ftrue the original image. We consider the stationary
equation to (1.3), i.e.,

−∆p+ λ(u− fdam) = 0, p ∈ ∂TV (u), (3.6)

where we define TV (u) as a functional over L2(Ω) as

TV (u) =

{
|Du| (Ω) if u ∈ BV (Ω), ‖u‖L∞ ≤ 1
+∞ otherwise.

In the subsequent analysis we want to characterize the error we make by solving (3.6) for u, i.e.,
how large do we expect the distance between the restored image u and the original image ftrue to
be. We are going to determine the inpainting error of our approach (3.6) in terms of the Bregman
distance (cf. [10]). In [10] the general equation

p+ λ0A
∗(Au− fdam) = 0,
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is considered, where A is a bounded linear operator and A∗ its adjoint. Let ∆−1 be the inverse
operator to −∆ with zero Dirichlet boundary conditions as before. In our case the operator A is
the embedding operator from L2(Ω) into H−1(Ω) and the adjoint operator A∗ = ∆−1 which maps
H−1(Ω) into H1

0 (Ω). We assume that the given image fdam coincides with ftrue outside of the
inpainting domain, i.e.,

fdam = ftrue in Ω \D
fdam = 0 in D. (3.7)

Further we assume that ftrue satisfies the so called source condition:

There exists ξ ∈ ∂TV (ftrue) such that ξ = A∗q = ∆−1q for a source element q ∈ H−1(Ω). (3.8)

It can be shown (cf. [9]) that this is equivalent to require from ftrue to be a minimizer of

TV (u) +
λ0

2
‖Au− fdam‖2 ,

for arbitrary fdam ∈ H−1(Ω) and λ0 ∈ R.
For the following analysis we first rewrite (3.6). For û, a solution of (3.6), we get

p̂+ λ0∆−1(û− ftrue) = ∆−1 [(λ0 − λ)(û− ftrue)] , p̂ ∈ ∂TV (û).

Here we replaced fdam by ftrue using assumption (3.7). By adding a ξ ∈ ∂TV (ftrue) from (3.8)
to the above equation we obtain

p̂− ξ + λ0∆−1(û− ftrue) = −ξ + λ0∆−1

[(
1− λ

λ0

)
(û− ftrue)

]
Taking the duality product with û− ftrue (which is just the inner product in L2(Ω) in our case)
we get

Dsymm
TV (û, ftrue) + λ0 ‖û− ftrue‖2−1 =

〈
∇ξ,∇∆−1(û− ftrue)

〉
+ λ0

〈(
1− λ

λ0

)
(û− ftrue), û− ftrue

〉
−1

,

where

Dsymm
TV (û, ftrue) = 〈û− ftrue, p̂− ξ〉 , p̂ ∈ ∂TV (û), ξ ∈ ∂TV (ftrue),

is the symmetric Bregman distance (cf. [10]). An application of Young’s inequality yields

Dsymm
TV (û, ftrue) +

λ0

2
‖û− ftrue‖2−1 ≤

1
λ0
‖ξ‖21 + λ0

∥∥∥∥(1− λ

λ0

)
(û− ftrue)

∥∥∥∥2

−1

(3.9)

For the last term we obtain∥∥∥(1− λ
λ0

)
v
∥∥∥
−1

= supφ,‖φ‖−1=1

〈
φ,
(
1− λ

λ0

)
v
〉
−1

= supφ,‖φ‖−1=1−
〈
∆−1φ,

(
1− λ

λ0

)
v
〉

= supφ,‖φ‖−1=1−
〈(

1− λ
λ0

)
∆−1φ, v

〉
≤Hölder ‖v‖2 · supφ,‖φ‖−1=1

∥∥∥(1− λ
λ0

)
∆−1φ

∥∥∥
2
.

With ∆−1 : H−1 → H1 ↪→ Lr, 2 < r <∞ we get∫
Ω

((
1− λ

λ0

)
∆−1φ

)2

dx =
∫

D

(
∆−1φ

)2
dx ≤Hölder |D|

1
q′ ·
(∫

Ω

(
∆−1φ

)2q
) 1

q

=choose q= r
2
|D| r−2

r ·
∥∥∆−1φ

∥∥2

p
≤H1↪→Lr C|D| r−2

r ‖φ‖2−1 = C|D| r−2
r ,

i.e., ∥∥∥∥(1− λ

λ0

)
v

∥∥∥∥2

−1

≤ C|D|
r−2

r ‖v‖2 . (3.10)
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Applying (3.10) to (3.9) we see that

Dsymm
TV (û, ftrue) +

λ0

2
‖û− ftrue‖2−1 ≤

1
λ0
‖ξ‖21 + Cλ0 |D|(r−2)/r ‖û− ftrue‖2

To estimate the last term we use some error estimates for TV− inpainting computed in [12]. First
we have

‖û− ftrue‖2 =
∫

Ω\D
(û− ftrue)2 dx+

∫
D

(û− ftrue)2 dx.

Since û − ftrue is uniformly bounded in Ω (this follows from the L∞ bound in the definition of
TV (u)) we estimate the first term by a positive constant K1 and the second term by the L1 norm
over D. We obtain

‖û− ftrue‖2 ≤ K1 +K2

∫
D

|û− ftrue| dx.

Now let û ∈ BV (Ω) be given by û = us + ud, where us is a smooth function and ud is a piecewise
constant function. Following the error analysis in [12] (Theorem 8.) for functions û ∈ BV (Ω) we
have

‖û− ftrue‖2 ≤ K1 +K2err(D)
≤ K1 +K2

(
|D|C (M(us), β) + 2

∣∣R(ud)
∣∣) ,

where M(us) is the smoothness bound for us, β is determined from the shape of D, and the error
region R(ud) is defined from the level lines of ud. Note that in general the error region from
higher-order inpainting models including the TV seminorm is smaller than that from TV − L2

inpainting (cf. Section 3.2. in [12]).
Finally we end up with

Dsymm
J (û, ftrue) +

λ0

2
‖û− ftrue‖2−1 ≤

1
λ0
‖ξ‖21 + Cλ0 |D|(r−2)/r errinpaint, (3.11)

with

errinpaint := K1 +K2

(
|D|C (M(us), β) + 2

∣∣R(ud)
∣∣) .

The first term in (3.11) depends on the regularizer TV , and the second term on the size of the
inpainting domain D.

Remark 3.6. From inequality (3.11) we derive an optimal scaling for λ0, i.e., a scaling which
minimizes the inpainting error. It reads

λ2
0 |D|

r−2
r ∼ 1

λ0 ∼ |D|−
r−2
2r .

In two space dimensions r can be chosen arbitrarily big, which gives λ0 ∼ 1/
√
|D| as the optimal

order for λ0.
Stability estimates for (3.6) can also be derived with an analogous technique. For ui being

the solution of (3.6) with fdam = fi (again assuming that fi = ftrue in Ω \D), the estimate

Dsymm
J (u1, u2) +

λ0

2
‖u1 − u2‖2−1 ≤

λ0

2

∫
D

(f1 − f2)2 dx (3.12)

holds.
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4. Numerics. In the following numerical results for the two inpainting approaches (1.1) and
(1.3) are presented. For both approaches we used convexity splitting algorithms, proposed by Eyre
in [21], for the discretization in time. For more details to the application of convexity splitting
algorithms in higher order inpainting compare [8].

For the space discretization we used the cosine transform to compute the finite differences for
the derivatives in a fast way and to preserve the Neumann boundary conditions in our inpainting
approaches (also cf. [8] for a detailed description).

4.1. Convexity splitting scheme for Cahn-Hilliard inpainting. For the discretization
in time we use a convexity splitting scheme applied by Bertozzi et al. [7] to Cahn-Hilliard inpaint-
ing. The original Cahn-Hilliard equation is a gradient flow in H−1 for the energy

E1[u] =
∫

Ω

ε

2
|∇u|2 +

1
ε
F (u) dx,

while the fitting term in (1.1) can be derived from a gradient flow in L2 for the energy

E2[u] =
1
2

∫
Ω

λ(f − u)2 dx.

We apply convexity splitting for both E1 and E2 separately. Namely we split E1 as E1 = E11−E12

with

E11 =
∫

Ω

ε

2
|∇u|2 +

C1

2
|u|2 dx,

and

E12 =
∫

Ω

−1
ε
F (u) +

C1

2
|u|2 dx.

A possible splitting for E2 is E2 = E21 − E22 with

E21 =
1
2

∫
Ω

C2

2
|u|2 dx,

and

E22 =
1
2

∫
Ω

−λ(f − u)2 +
C2

2
|u|2 dx.

For the splittings discussed above the resulting time-stepping scheme is

uk+1 − uk

τ
= −∇H−1(Ek+1

11 − Ek
12)−∇L2(Ek+1

12 − Ek
22),

where ∇H−1 and ∇L2 represent gradient descent with respect to the H−1 inner product and the
L2 inner product respectively. This translates to a numerical scheme of the form

uk+1 − uk

τ
+ ε∆∆uk+1 − C1∆uk+1 + C2uk+1 =

1
ε
∆F ′(uk)− C1∆uk + λ(f − uk) + C2uk.

To make sure that E11, E12 and E21, E22 are convex the constants C1 >
1
ε , C2 > λ0.

4.2. Convexity splitting scheme for TV −H−1 inpainting. We consider equation (1.3)
where p̂ ∈ ∂TV (u) is replaced by the formal expression ∇ · ( ∇u

|∇u| ), namely

ut = −∆(∇ · ( ∇u
|∇u|

)) + λ(f − u). (4.1)
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Fig. 4.1. Destroyed binary image and the solution of Cahn-Hilliard inpainting with switching ε value: u(1200)
with ε = 0.1, u(2400) with ε = 0.01

Fig. 4.2. Destroyed binary image and the solution of Cahn-Hilliard inpainting with switching ε value: u(800)
with ε = 0.8, u(1600) with ε = 0.01

Similar to the convexity splitting for the Cahn-Hilliard inpainting we propose the following splitting
for the TV-H−1 inpainting equation. The regularizing term in (4.1) can be modeled by a gradient
flow in H−1 of the energy

E1 =
∫

Ω

|∇u| dx.

We split E1 in E11 − E12 with

E11 =
∫

Ω

C1

2
|∇u|2 dx

E12 =
∫

Ω

−|∇u|+ C1

2
|∇u|2 dx.

The fitting term is a gradient flow in L2 of the energy

E2 =
1
2

∫
Ω

λ(f − u)2dx

and is splitted into E2 = E21 − E22 with

E21 =
∫

Ω

C2

2
|u|2 dx

E22 =
1
2

∫
Ω

−λ(f − u)2 + C2|u|2 dx.

Analogous to above the resulting time-stepping scheme is

uk+1 − uk

τ
+ C1∆∆uk+1 + C2uk+1 = C1∆∆uk −∆(∇ · ( ∇uk

|∇uk|
)) + C2uk + λ(f − uk).

In order to make the scheme unconditionally stable, the constants C1 and C2 have to be chosen
so that E11, E12, E21, E22 are all convex. The choice of C1 depends on the regularization of the

total variation we are using. Using the square regularization |∇u| is replaced by
√
|∇u|2 + δ2 the

condition turns out to be C1 >
1
δ and C2 > λ0.
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Fig. 4.3. Destroyed binary image and the solution of Cahn-Hilliard inpainting with switching ε value: u(800)
with ε = 0.8, u(1600) with ε = 0.01

Fig. 4.4. TV −H−1 inpainting: u(1000) with λ = 103
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Appendix A. Neumann boundary conditions and the space H−1
∂ (Ω).

In this section we want to pose the Cahn-Hilliard inpainting problem with Neumann boundary
conditions in a way such that the analysis from Section 2 can be carried out in a similar way.
Namely we consider {

ut = ∆(−ε∆u+ 1
εF

′(u)) + λ(f − u) in Ω,
∂u
∂ν = ∂∆u

∂ν = 0 on ∂Ω,

For the existence of a stationary solution of this equation we consider again a fixed point approach
similar to (2.4) in the case of Dirichlet boundary conditions, i.e.,{

u−v
τ = ∆(−ε∆u+ 1

εF
′(u)) + λ(f − u) + (λ0 − λ)(v − u) in Ω,

∂u
∂ν =

∂(ε∆u− 1
ε F ′(u))

∂ν = 0 on ∂Ω.
(A.1)

To reformulate the above equation in terms of the operator ∆−1 with Neumann boundary condi-
tions we first have to introduce the space H−1

∂ (Ω) in which the operator ∆−1 is now the inverse
of −∆ with Neumann boundary conditions.

Thus we define the non-standard Hilbert space

H−1
∂ (Ω) =

{
F ∈ H1(Ω)∗ | 〈F, 1〉(H1)∗,H1 = 0

}
.
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Fig. 4.5. TV −H−1 inpainting: u(1000) with λ = 103

Since Ω is bounded we know 1 ∈ H1(Ω), hence H−1
∂ (Ω) is well defined. Before we define a norm

and an inner product on H−1
∂ (Ω) we have to define more spaces. Let

H1
φ(Ω) =

{
ψ ∈ H1(Ω) :

∫
Ω

ψ dx = 0
}
,

with norm ‖u‖H1
φ

:= ‖∇u‖L2 and inner product 〈u, v〉H1
φ

:= 〈∇u,∇v〉L2 . This is a Hilbert space

and the norms ‖.‖H1 and ‖.‖H1
φ

are equivalent on H1
φ(Ω). Let (H1

φ(Ω))∗ denote the dual of H1
φ(Ω).

We will use (H1
φ(Ω))∗ to induce an inner product on H−1

∂ (Ω). Given F ∈ (H1
φ(Ω))∗ with associate

u ∈ H1
φ(Ω) (from the Riesz representation theorem) we have by definition

〈F,ψ〉(H1
φ)∗,H1

φ
= 〈u, ψ〉H1

φ
= 〈∇u,∇ψ〉L2 ∀ψ ∈ H1

φ(Ω).

Lets now define a norm and an inner product on H−1
∂ (Ω).

Definition A.1.

H−1
∂ (Ω) :=

{
F ∈ H1(Ω)∗ | 〈F, 1〉(H1)∗,H1 = 0

}
‖F‖H−1

∂
:=
∥∥F |H1

φ

∥∥
(H1

φ)∗

〈F1, F2〉H−1
∂

:= 〈∇u1,∇u2〉L2 ,

where F1, F2 ∈ H−1
∂ (Ω) and where u1, u2 ∈ H1

φ(Ω) are the associates of F1|H1
φ, F2|H1

φ ∈
(H1

φ(Ω))∗.
At this point it is not entirely obvious that for a given F ∈ H−1

∂ (Ω) we have F |H1
φ ∈ (H1

φ(Ω))∗.
That this is the case though is explained in the following theorem.

Theorem A.2.
1. H−1

∂ (Ω) is closed in (H1(Ω))∗.
2. The norms ‖.‖H−1

∂
and ‖.‖(H1)∗ are equivalent on H−1

∂ (Ω).
Theorem A.2 can be easily checked just by the application of the definitions and the fact that

the norms ‖.‖H1 and ‖.‖H1
φ

are equivalent on H1
φ(Ω). From point 1. of the theorem we have that

H−1
∂ (Ω) is a Hilbert space w.r.t. the (H1(Ω))∗ norm and point 2. tells us that the norms ‖.‖H−1

∂

and ‖.‖(H1)∗ are equivalent on H−1
∂ (Ω). Therefore the norm in Definition A.1 is well defined and

H−1
∂ (Ω) is a Hilbert space w.r.t. ‖.‖H−1

∂
.

In the following we want to characterize elements F ∈ H−1
∂ (Ω). By the above definition we

have for each F ∈ H−1
∂ (Ω), there exists a unique element u ∈ H1

φ(Ω) such that

〈F,ψ〉(H1)∗,H1 =
∫

Ω

∇u · ∇ψ dx, ∀ψ ∈ H1
φ(Ω). (A.2)
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Since 〈F, 1〉(H1)∗,H1 = 0, we see that 〈F,ψ +K〉(H1)∗,H1 = 〈F,ψ〉(H1)∗,H1 for all constants K ∈ R
and therefore (A.2) extends to all ψ ∈ H1(Ω). We define

∆−1F := u (A.3)

the unique solution to (A.2).
Now suppose F ∈ L2(Ω) and assume u ∈ H2(Ω). Set 〈F,ψ〉 :=

∫
Ω
Fψ dx. Because L2(Ω) ⊂

H−1
∂ (Ω) an element F is also an element in H−1

∂ (Ω). Thus there exists a unique element u ∈ H1
φ(Ω)

such that ∫
Ω

(−∆u− F )ψ dx+
∫

∂Ω

∇u · νψ ds = 0, ∀ψ ∈ H1
φ(Ω).

Therefore u ∈ H1
φ(Ω) is the unique weak solution of the following problem:{

−∆u− F = 0 in Ω
∇u · ν = 0 on ∂Ω. (A.4)

Remark A.3. With the above characterization of elements F ∈ H−1
∂ (Ω) and the notation

(A.3) for its associates the inner product and the norm can be written as

〈F1, F2〉H−1
∂

:=
∫

Ω

∇∆−1F1 · ∇∆−1F2 dx, ∀F1, F2 ∈ H−1
∂ (Ω),

and norm

‖F‖H−1
∂

:=

√∫
Ω

(∇∆−1F )2 dx.

Throughout the rest of this appendix we will write the short forms 〈., .〉−1 and ‖.‖−1 for the inner
product and the norm in H−1

∂ (Ω) respectively.
Now its important to notice that in order to rewrite (A.1) in terms of ∆−1 we require the

”right hand side” of the equation, i.e., u−v
τ + λ(u− f) + (λ0 − λ)(u− v) to be an element of our

new space H−1
∂ (Ω) (cf. Definition A.1). In other words the ”right hand side” has to have zero

mean over Ω. Because we cannot guarantee this property for solutions of the fixed point equation
(A.1) we are going to modify the right hand side by subtracting its mean. Let

FΩ = 1
τ F

1
Ω + λ0F

2
Ω

F 1
Ω = 1

|Ω|
∫
Ω
(u− v) dx

F 2
Ω = 1

|Ω|
∫
Ω

λ
λ0

(u− f) +
(
1− λ

λ0

)
(u− v) dx,

and consider instead of (A.1) the equation{
ε∆u− 1

εF
′(u) = ∆−1

(
u−v

τ − λ(f − u)− (λ0 − λ)(v − u)− FΩ

)
in Ω,

∂u
∂ν = 0 on ∂Ω,

where the second Neumann boundary condition
∂(ε∆u− 1

ε F ′(u))
∂ν = 0 on ∂Ω is included in the

definition of ∆−1. The functional of the corresponding variational formulation then reads

Jε(u, v) =
∫
Ω

(
ε
2 |∇u|

2 + 1
εF (u)

)
dx+ 1

2τ

∥∥(u− v)− F 1
Ω

∥∥2

−1

+λ0
2

∥∥∥(u− λ
λ0
f −

(
1− λ

λ0

)
v
)
− F 2

Ω

∥∥∥2

−1
.

With these definitions the proof for the existence of a stationary solution for the modified Cahn-
Hilliard equation with Neumann boundary conditions can be carried out similarly to the proof in
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Section 2. Note that every solution of (1.1) fulfills d
dt

∫
Ω
u dx =

∫
Ω
λ(f − u) dx. This means that

for a stationary solution û the integral C
∫
Ω
λ(f − u) dx = 0 for every constant C ∈ R (,i.e., the

”right hand side” has zero mean and therefore F 1
Ω = F 2

Ω = 0).

Appendix B. Functions of bounded variation.
The following results can be found in [3]. Let Ω ⊂ R2 be an open and bounded Lipschitz

domain. As in [3] the space of functions of bounded variation BV (Ω) in two space dimensions is
defined as follows:

Definition B.1. (BV (Ω)) Let u ∈ L1(Ω). We say that u is a function of bounded
variation in Ω if the distributional derivative of u is representable by a finite Radon measure in
Ω, i.e., if ∫

Ω

u
∂φ

∂xi
dx = −

∫
Ω

φdDiu ∀φ ∈ C∞c (Ω), i = 1, 2,

for some R2− valued measure Du = (D1u,D2u) in Ω. The vector space of all functions of bounded
variation in Ω is denoted by BV (Ω). Further, the space BV (Ω) can be characterized by the total
variation of Du. For this we first define the so called variation V (u,Ω) of a function u ∈ L1

loc(Ω).
Definition B.2. (Variation) Let u ∈ L1

loc(Ω). The variation V (u,Ω) of u in Ω is defined
by

V (u,Ω) := sup
{∫

Ω

u divφ dx : φ ∈
(
C1

c (Ω)
)2
, ‖φ‖∞ ≤ 1

}
.

A simple integration by parts proves that

V (u,Ω) =
∫

Ω

|∇u| dx,

if u ∈ C1(Ω). By a standard density argument this is also true for functions u ∈W 1,1(Ω). Before
we proceed with the characterization of BV (Ω) let us recall the definition of the total variation of
a measure:

Definition B.3. (Total variation of a measure) Let (X, E) be a measure space. If µ is a
measure, we define its total variation |µ| as follows:

|µ| (E) := sup

{ ∞∑
h=0

|µ(Eh)| : Eh ∈ E pairwise disjoint , E =
∞⋃

h=0

Eh

}
, ∀E ⊂ E .

With Definition B.2 the space BV (Ω) can be characterized as follows
Theorem B.4. Let u ∈ L1(Ω). Then, u belongs to BV (Ω) if and only if V (u,Ω) < ∞.

In addition, V (u,Ω) coincides with |Du| (Ω), the total variation of Du, for any u ∈ BV (Ω) and
u 7→ |Du| (Ω) is lower semicontinuous in BV (Ω) with respect to the L1

loc(Ω) topology.
Note that BV (Ω) is a Banach space with respect to the norm

‖u‖BV (Ω) = ‖u‖L1(Ω) + |Du| (Ω).

Now we introduce so called weak∗ convergence in BV (Ω) which is useful for its compactness
properties. Note that this convergence is much weaker than the norm convergence.

Definition B.5. (Weak∗ convergence) Let u, uh ∈ BV (Ω). We say that (uh) weakly∗

converges in BV (Ω) to u (in signs uh
∗
⇀ u) if (uh) converges to u in L1(Ω) and (Duh) weakly∗

converges to Du in all (Ω), i.e.,

lim
h→∞

∫
Ω

φ dDuh =
∫

Ω

φ dDu ∀φ ∈ C0(Ω).

A simple criterion for weak∗ convergence is the following:
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Theorem B.6. Let (uh) ⊂ BV (Ω). Then (uh) weakly∗ converges to u in BV (Ω) if and only
if (uh) is bounded in BV (Ω) and converges to u in L1(Ω).

Further we have the following compactness theorem:
Theorem B.7. (Compactness for BV (Ω))
• Let Ω be a bounded domain with compact Lipschitz boundary. Every sequence (uh) ⊂
BVloc(Ω) satisfying

sup

{∫
A

|uh| dx+ |Duh| (A) : h ∈ N
}
<∞ ∀A ⊂⊂ Ω open,

admits a subsequence (uhk
) converging in L1

loc(Ω) to u ∈ BVloc(Ω). If the sequence is
further bounded in BV (Ω) then u ∈ BV (Ω) and a subsequence converges weakly∗ to u.

• Let Ω be a bounded domain in Rd with Lipschitz boundary. Then, every uniformly bounded
sequence (uk)k≥0 in BV (Ω) is relatively compact in Lr(Ω) for 1 ≤ r < d

d−1 , d ≥ 1.
Moreover, there exists a subsequence ukj and u in BV (Ω) such that ukj ⇀ u weakly∗ in
BV (Ω). In particular for d = 2 this compact embedding holds for 1 ≤ r < 2.

Let u ∈ L1(Ω). We introduce the mean value uΩ of u as

uΩ :=
1
|Ω|

∫
Ω

u(x) dx.

A generalization of the Poincare inequality gives the so called Poincare-Wirtinger inequality for
functions in BV (Ω).

Theorem B.8. (Poincare-Wirtinger inequality) If Ω ⊂ R2 is a bounded, open and connected
domain with compact Lipschitz boundary, we have

‖u− uΩ‖Lp(Ω) ≤ C |Du| (Ω) ∀u ∈ BV (Ω), 1 ≤ p ≤ 2

for some constant C depending only on Ω.

Appendix C. Theorems. The following definitions and results can be found in [20].
We introduce the notion of the subdifferential of a function.
Definition C.1. Let X be a locally convex space, X∗ its dual, 〈., .〉 the bilinear pairing over

X ×X∗ and F a mapping of X into R. The subdifferential of F at u ∈ X is defined as

∂F (u) = {p ∈ X∗| 〈v − u, p〉 ≤ F (v)− F (u),∀v ∈ X} .

Every normed vector space is a locally convex space and therefore the theory of subdifferentials
applies to our framework (with X = BV (Ω)).

In addition we recall the Poincare inequality and the Rellich-Kondrachov Compactness theo-
rem (cf. [2], Theorem 8.7, p. 243).

Theorem C.2. (Poincare’s inequality). Assume that 1 ≤ p ≤ ∞ and that Ω is precompact
open subset of n-dimensional Euclidean space Rn having Lipschitz boundary (i.e., Ω is an open,
bounded Lipschitz domain). Then there exists a constant C, depending only on Ω and p, such that,
for every function u in the Sobolev space Hp(Ω),

‖u− uΩ‖Lp(Ω) ≤ C‖∇u‖Lp(Ω),

where uΩ = 1
|Ω|
∫
Ω
u(y) dy is the average value of u over Ω, with |Ω| denoting the Lebesgue measure

of the domain Ω.
Theorem C.3. (Rellich-Kondrachov Compactness Theorem) Assume Ω is a bounded and

open subset of Rd with Lipschitz boundary. Suppose 1 ≤ r < d. Then

W 1,r(Ω) ↪→↪→ Lq(Ω),

for each 1 ≤ q < dr
d−r .
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