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Abstract: We consider the inverse problem of discovering the location of a source
from very sparse point measurements in a bounded domain that contains impen-
etrable (and possibly unknown) obstacles. We present an adaptive algorithm for
determining the measurement locations, and ultimately, the source locations. Specif-
ically, we investigate source discovery for the Laplace operator, though the approach
can be applied to more general linear partial differential operators. We propose a
strategy for the case when the obstacles are unknown and the environment has to
be mapped out using a range sensor concurrently with source discovery.

1 Introduction

This work is motivated by robotic applications in which a robot, sent into an
unknown environment, is supposed to discover the location of a signal source
and place it under its line-of-sight in an efficient manner. The unknown envi-
ronment contains non-penetrable solid obstacles and should be avoided along
the robot’s path. The robot can gather measurements from two different sen-
sors: a range sensor that gives distance from the robot to the surrounding
obstacles, and a sensor that measures the signal strength that is being emit-
ted from the yet-to-be-located source. We will refer to the information from
the range sensor as the visibility of the robot and to the information from
the signal strength sensor as the signal. While measurements can be taken
anywhere, we are interested in having the robot take very few measurements
with its sensors. Our goal is to design an algorithm that determines how the
robot should navigate through the environment and where along its path it
should take measurements.

This problem is classified as an inverse problem, however, it differs greatly
from many typical inverse problems, which assume simple domains and dense
arrays of sensors at fixed locations. In [6], Ling et al explore such a situation
in which they recover the exact locations of multiple sources in a Poisson
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equation, given an initial guess for the locations and Dirichlet data collected
on the boundary of the domain. To accomplish this, they use the special form
of the free space Green’s function for the Laplacian. For inverse problems
related to the heat equations with sources, see [1, 2].

When the obstacles are unknown, the environment needs to be mapped out
as the robot moves so that attempts to take measurements inside the obstacles
are avoided and the robot’s path does not intersect obstacles. The previous
work of [3] on mapping of obstacles in unknown domains using visibility is
useful in this regard. In it the authors propose an algorithm to construct a
high-order accurate representation of the portions of the solid surfaces that
are visible from a vantage point and to generate the corresponding occlusion
volume. Also they propose an algorithm to construct a piecewise linear path
so that any point on the solid surfaces is seen by at least one vertex of the
path and an accurate representation of the solids is constructed from the point
clouds that are collected at the vertices of the path.

The [3] algorithm was motivated by the work of LaValle, Tovar et al.
[7, 5, 8]. In [8], a single robot (observer) must be able to navigate through
an unknown simply or multiply connected piecewise-analytic planar environ-
ment. The robot is equipped with a sensor that detects discontinuities in
depth information (called gaps) and their topological changes in time. As a
result of exploration, the region is characterized by the number of gaps and
their relative positions. No distance or angular information is accumulated.
In contrast, the [3] algorithm maps the obstacles in Cartesian coordinates as
the observer proceeds through the environment, and utilizes the recovered in-
formation for further path planning. At the termination of the path all the
obstacles’ boundaries are reconstructed. Thus a complete representation of
the environment is obtained.

From our experience, the discovery of signal sources may be very insensitive
to the presence of (or parts of) obstacles in sub-regions of the domain, possibly
due to the decay of the signal strength. This suggests that the visibility path
algorithm in [3] should be modified adaptively according to the previously
obtained measurements of the signal and estimations of the signal source
location.

To illustrate the main ideas in this paper, consider the following problem

△u(x) = δ(x− y) in DΩ ≡ D \Ω
u = 0 on Γ ,

(1)

where u denotes the signal strength, D denotes a bounded domain, Ω ( D

denotes the solid obstacles in the domain, Γ = ∂DΩ, and y denotes the (un-
known) source location. Furthermore, let ψ(·; z) : D 7→ R describe the visibil-
ity of the domain from an observing location z ∈ DΩ. We require that ψ(·; z)
be a signed distance function such that the set Wz := {x ∈ D : ψ(x; z) < 0}
corresponds to the region, including the interior of the solid obstacles, that
is occluded from the observing location z. This means that the line segment
connecting z and any point in Wz must intersect with the obstacles Ω. Such
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visibility functions can be computed efficiently using the algorithms described
in [10, 9, 4, 3].

A first, rather simple approach, would be to use gradient descent to deter-
mine the sample locations via the ordinary differential equation,

dX

ds
= −∇u, with X(0) = z0 . (2)

However, there are two drawbacks to this method. First, it only works in cases
where the Green’s function has a specific structure, such as in the case for the
Laplace operator. Second, even for the Laplace operator, one can come up with
a pathological configuration for the obstacles where the gradient vanishes at
points other then the source.

We continue with the method proposed in this paper. At an observing
location z1, we can measure the signal strength I1 = u(z1). We look at the
solution to the adjoint problem,

△v1 = δ(x− z1) in DΩ

v1 = 0 on Γ .
(3)

Now, for y 6= z1 we have

v1(y) =

∫

DΩ

δ(x− y)v1dx =

∫

DΩ

v1△udx (4)

u(z1) =

∫

DΩ

δ(x− z1)udx =

∫

DΩ

u△v1dx ,

and thus, by Green’s identity,

v1(y) = u(z1) = I1 . (5)

Therefore the source must lie on the I1 level set of v1,

y ∈ {x ∈ DΩ : v1(x) = I1} . (6)

Next, based on the visibility information, we select the next observing
location z2 from the region that is not occluded to z1, that is z2 ∈ D \
Wz1

. Denote the signal strength at z2 by I2 = u(z2). The function v2 can be
computed and we can narrow down the possible locations of y,

y ∈ {v1 = I1} ∩ {v2 = I2} . (7)

We can repeat this procedure for more measurements.
In the case when the obstacles Ω are unknown, the visibility functions

ψ(x; zk) provide a convenient over approximation of Ω, since Ω ⊆ Wzk
. This

can be used in conjunction with the maximum principle for Poisson’s equation
to estimate the location of y. We will discuss this in greater detain in later
sections.
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2 Mathematical Formulation

In the most general setting that we will consider, the inverse source problem
can be formulated as follows. Let u(x) satisfy,

Lu = αδ(x − y) in DΩ ≡ D \Ω
Bu = 0 on Γ ,

(8)

where D is a bounded domain, Ω are the (possibly unknown) obstacles, Γ =
∂DΩ, L is a linear partial differential operator, B is an operator specifying
the boundary conditions, and α > 0. We will assume that at a given point
z ∈ DΩ we can sample u and the domain. That is, at a given z we can measure
u(z) and its derivatives and the visibility function ψ(x; z). The inverse source
location problem is to recover the source location y and the source strength
α from a sequence of sample locations zk.

The main approach that we will use in this problem is to look at the
adjoint operator, L∗, with the appropriate boundary conditions B∗:

L∗v = Fz in DΩ

B∗v = 0 on Γ ,
(9)

for some distribution Fz with support {z}. Now, using the properties of the
adjoint and assuming that z 6= y,

(Lu, v) − (u, L∗v) = 0 , (10)

and hence,

αv(y) = Fz[u] . (11)

For example, if we use F = δ, we get

αv(y) = u(z) . (12)

Similary, for F = −∂x1
δ, we get

αv(y) = ∂x1
u(z) , (13)

and so on.
For unknown domains, we will use the methods developed in [3] to find

the visibility function and use it determine the sequence of sample locations
zk.

3 Poisson’s Equation

In this section we consider the case when L = △ in 2 dimensions with Dirichlet
boundary conditions:
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△u = αδ(x− y) in DΩ

u = 0 on Γ .
(14)

We note that this operator is self-adjoint and that the following standard
maximum principle holds:

Theorem 1. Let DΩ be bounded and w satisfy

△w = 0 in DΩ

w ≤ 0 on Γ ,
(15)

then

w ≤ 0 in DΩ . (16)

Now, supposed that we have an over-estimate for the obstacles Ω+, so that
Ω ⊆ Ω+ and let v and v+ satisfy (14) with obstacle sets Ω and Ω+ respec-
tively. Then, since the fundamental solution for the Laplacian for any domain
is non-positive, v ≤ 0 on Γ+ = ∂DΩ+ . Let w = v− v+, so that w satisfies the
conditions of Theorem 1 for DΩ+ . Thus, w = v − v+ ≤ 0 in DΩ+ . Further-
more, if we extend v+ to DΩ by 0, we have that v+ ≤ v in DΩ. This fact will
be used in the case of unknown obstacles.

3.1 Known Environment

At a sample location zk, equation (11) gives us

αvk(y) = u(zk)

αwk1(y) = ∂x1
u(zk) (17)

αwk2(y) = ∂x2
u(zk) ,

where vk, wk1 and wk2 satisfy (9) with F equal to δ(x − zk), −∂x1
δ(x − zk)

and −∂x2
δ(x− zk), respectively. Since vk is non-zero except at the boundary,

we can also form,

wk1(y)

vk(y)
=
∂x1

u(zk)

u(zk)
(18)

wk2(y)

vk(y)
=
∂x2

u(zk)

u(zk)
.

Thus, y is in the intersection of the u(zk) level set of v, the ∂x1
u(zk) level set

of w1 and so on. Note that in the last two equations, α does not appear. As
we take more and more measurements zk, the intersection of all of these sets
will be smaller and smaller. Furthermore, for a pair of measurements j and k,
we can form,

vk(y)

vl(y)
=
u(zk)

u(zl)
, (19)

and so on. Note that these are also independent of α.
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3.2 Unknown Environment

At a sample location zk, we have the visibility function ψ(x; zk). From this
function we can obtain an over-estimate of the obstacles, Ω+

k , such that Ω ⊆
Ω+

k . After K measurements, we let

Ω+ =

K
⋂

k=1

Ω+

k ,

and

△v+

k = δ(x− zk) in DΩ+ ≡ D \Ω+

v+

k = 0 on Γ+ ,
(20)

where Γ+ = ∂DΩ+ .
The results from section 3.1 apply and for the vk defined in that section,

we have

αvk(y) = u(zk) ,

but since we don’t know Ω, we cannot find vk. However, the maximum prin-
ciple gives us that

αv+

k (y) ≥ αvk(y) = u(zk) .

Thus,

y ∈

K
⋂

k=1

{x|αv+

k (x) ≥ u(zk)} .

In the case when α is unknown, we would like to find an α independent
set which includes y. From section 3.1, for a pair of samples k and l, we have

vk(y)

vl(y)
=
u(zk)

u(zl)
,

and thus,

v+

k (y)

vl(y)
≥
u(zk)

u(zl)
.

Now, let Ω− be an under-estimate of the obstacles, so that Ω− ⊆ Ω. A simple
choice for Ω− is the empty set (no obstacles). Also, let v− satisfy (20) for Ω−.
By the maximum principle, vl ≥ v−. Thus,

v+

k (y)

v−(y)
≥
u(zk)

u(zl)
,

which is independent of α as desired.
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3.3 Numerical Experiments and the Proposed Algorithm

We model the δ-source as Gaussian in simulations. To determine the location
of the source, we build a probability density as follows. For each measurement,
we let the probability density, pk(x), be constant in the possible region (it may
be a curve) and have Gaussian drop-off away from this region. After k different
measurements, we let the probability density be

p(x) =

(

∏k

j=1
pj(x)

)
1
k

∫

Ω

(

∏k

j=1
pj(x)

)
1
k

dx

. (21)

Known Strength, Known Environment

For this experiment, we assume that the source has strength α = 1 and use
Algorithm 1. We sample u(x) at 3 locations, which results in 9 level sets if we
use the level sets given by (17). The domain and results are given in Figure 1.

Algorithm 1 Source detection in known environment.

1: u(z): solution of equation (14) that can be measured for any z.
2: k = 1
3: zk: vantage point outside the occluding objects
4: compute vk: solution of Equation (14) and any of the wk1, . . . , that are availiable
5: compute p as in Equation (21)
6: while p is not localized do

7: k = k + 1
8: chose zk to be outside of the set {x : vk−1 > u(zk−1)}
9: compute vk: solution of Equation (14) and any of the wk1, . . . , that are avail-

iable
10: re-compute p as in Equation (21)
11: end while

Alternatively, we can use only vk along with all pairs (19). The results for
3 measurements (total of 6 level sets after the 3rd measurements) are shown
in Figure 2.

Unknown Strength, Known Environment

For this experiment, we assume that the strength α is unknown and we use
Algorith 1. We sample u(x) at 3 locations. Since the strength is unknown, we
use equaitons (19). After locating the source, its strength can be approximated
using,

α =
u(zk)

vk(y)
. (22)
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Fig. 1. Location of a source with known strength in a known environment for Pois-
son’s equation. Location based on 3 measurements with vk, wk1 and wk2. Figures: A)
The known environment, source and sample locations; B) p(x) after 1 measurement;
C) p(x) after 2 measurements; D) p(x) after 3 measurements.
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Fig. 2. Location of a source with known strength in a known environment for
Poisson’s equation. Location based on 3 measurements with vk and pairwise combi-
nations. Figures: A) The known environment, source and sample locations; B) p(x)
after 1 measurement; C) p(x) after 2 measurements; D) p(x) after 3 measurements.

The results are shown in Figure 3. The actual source location is (0.200, 0.400)
and its strength is α = 1.817547. The probability p after 3 measurements
has a maximum at (0.208, 0.400). The strength estimates (22) are 1.861106,
1.837540, 1.767651, and the average is 1.822099.
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Fig. 3. Location of a source with unknown strength in a known environment for Pois-
son’s equation. Location based on 3 measurements with vk pairwise combinations.
Figures: A) The known environment, source and sample locations; B) p(x) after
2 measurements; C) p(x) after 3 measurements. Actual parameters: source loca-
tion (0.200, 0.400) with strength 1.817547. Location results: (0.208, 0.400). Strength
estimates, 1) 1.861106, 2) 1.837540, 3) 1.767651. Averaged α = 1.822099.
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Known Strength, Unknown Environment

In order to detect a source of given strength in an unknown environment the
observer utilizes visibility information to proceed through the environment
and to narrow down the region of possible source locations. In particular,
let ψ(·, zk) be the visibility level set function corresponding to the vantage
point zk. Then, {ψ(·; zk) ≥ 0} is the visible portion of D and {ψ(·; zk) < 0}
is invisible. Let Ψk denote joint visibility along the path. In the level set
framework, Ψk = maxj=1,...,k{ψ(·, zj)}. The remaining occluded set {x ∈ D :
Ψk(x) < 0} may be used as an over-approximation of the obstacles Ω+

k . Note,
as the observer explores more of D, Ω+

k becomes a better approximation of
the obstacles Ω. Thus, the u(zk) level set of v+

k would pass closer to the source
location y.

Furthermore, let {qj}
M
j=1 be the filtered out visible points on the bound-

aries of the obstacles, collected along the observer’s path {z1, . . . , zk}. To
construct an under-approximation of the obstacles Ω−

k , we take the union of
all ǫ-balls Bǫ(qj), touching the visible points, such that Bǫ(qj) ⊆ {Ψk ≤ 0}.
Dirichlet boundary conditions are enforced at the union of the boundaries of
Bǫ(qj). Then, using the maximum principle, Theorem 1, we may “sandwich”
the location of the source y ∈ {x ∈ D : v−k (x) ≤ u(zk) ≤ v+

k (x)}.
As the observer proceeds through the environment, the next step along

the path is chosen in the currently visible region, so that the resulting path
is continuous and consists of a finite number of steps as in [3]. We adopt the
algorithm in [3] to navigate through the unknown environment, in which the
observer approaches one of the visible horizons, or edges on the piecewise-
smooth visibility map, defined in [3]. The next step zk+1 is obtained by over-
shooting the horizon location by the amount inversely proportional to the
curvature of the obstacle’s boundary near the horizon.

To optimize the search, we choose a direction so that zk+1 ∈ {Wk ≥ 0},
if the continuity of the path can be preserved. Otherwise, we simply proceed
towards the nearest horizon, as was proposed in [3]. The algorithm terminates
when the entire set {Wk ≥ 0} is visible from the vertices along the path. Note,
that in most cases the proposed location algorithm would terminate prior
to full mapping of the environment. However, if the environment has been
fully explored before the source was located, the algorithm for the known
environment may be applied.

Finally, we would like to remark that according to [3], the environment
is considered to be completely explored when all the horizons detected along
the path have been cleared. The observer may return to an earlier vantage
point along the path to see other horizons. Therefore, the resulting path may
branch out. The complete search strategy is described in Algorithm 2 below.

Note that v+

k and v−k are the level set functions. Then, for a given k, the
set {x ∈ D : v−k (x) ≤ u(zk) ≤ vk(x)+}, containing the source, is defined by
another level set function Wk, positive in the interior of the set and negative
outside. Numerically, Wk is defined in step 10 of the above algorithm. As the
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Algorithm 2 Source detection in unknown environment. Source strength is
known.
1: u(z): solution of equation (14) that can be measured for any z.
2: k = 1
3: zk: vantage point outside the occluding objects
4: ψ(·, zk): visibility with respect to zk

5: Ψk: joint visibility along the path
6: construct Ω+

k
: over-estimate of Ω with respect to zk

7: construct Ω−

k
: under-estimate of Ω with respect to zk

8: compute v+

k
: solution of Equation (14) with obstacles Ω+

9: compute v−
k

: solution of Equation (14) with obstacles Ω−

10: set Wk(x) := −(v+

k
(x) − u(zk))(v−

k
(x) − u(zk)), x ∈ D

11: while {Wk ≥ 0} * {Ψk ≥ 0} do

12: k = k+1
13: set Ψk = max{ψ(·, zk), Ψk−1}
14: construct Ω+

k
, Ω−

k

15: compute v+

k
, v−

k

16: set Wk(x) := min{−(v+

k
(x) − u(zk))(v−

k
(x) − u(zk)),Wk−1(x)}, x ∈ D

17: if {Wk ≥ 0} ∩ {ψ(·, zk) > 0} 6= ∅ then

18: choose zk ∈ {Wk ≥ 0} ∩ {ψ(·, zk) > 0}
19: else

20: choose zk ∈ {ψ(·, zk) > 0} according to the original exploration algorithm
in [3]

21: end if

22: end while

observer proceeds through the environment, we take the intersection of all such
sets corresponding to each observing location. In the level set framework, this
translates to minj=1,...,k{Wj}, computed in step 16. Similarly, joint visibility
along the path Ψk is computed as maxj=1,...,k{ψ(·, zj)} in step 13.

Figures 4, 5, and 6 demonstrate the performance of Algorithm 2. In all
these figures, the over-approximation of the obstacles Ω+, based on joint vis-
ibility, is depicted by the orange contour, and the under-approximation Ω−,
based on ǫ-balls around the visible boundary points, is depicted by the ma-
genta contour. The u(zk) level set of v+

k is shown in green and the u(zk) level
set of v−k is shown in blue. The blue region is the set {Wk ≥ 0}. The location
of the source is marked by the red star and the path is shown in black, with
circles indicating the discrete steps.

Figure 4 shows a simple environment with three disk-shaped obstacles.
The source is located at (0.75, 0.75). The observer may not see the source
from its initial position at (−0.82,−0.91). The blue region {W1 ≥ 0} almost
overlaps with the invisible set {ψ1 < 0}. The next vantage point is chosen to be
inside the blue region. One can see that after two steps the region {W2 ≥ 0},
containing the source, has shrunk significantly. Finally, after three steps, u(zk)
level sets of v+

k and v−k coincide, and the source is located somewhere on
the curve {W3 = 0}. Since this set is entirely visible from the observer’s
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Fig. 4. Unknown environment, known source strength. The source is located at
(0.75, 0.75). Orange contour is boundary of Ω+

k
and the magenta contour is the

boundary of Ω−

k
. The blue region is W , the green contour is the u(zk) level set of

v+

k
and the blue contour is the u(zk) level set of v−

k
.

position, the search is complete. Note that the environment has not been
entirely explored up to this point.

Figure 5 depicts a much more complex example. Here, the region is con-
structed from a slice of Grand Canyon elevation data1, which has a much more
complex geometrical structure comparing to the example with three circles.
We further increased the complexity of the Grand Canyon terrain by adding
two disk-shaped holes to the interior of the region. The source is concealed in a
small bay with coordinates (0.25,−0.55). At step 1 the blue region {W1 ≥ 0},
containing the source overlaps with the invisible set {ψ1 < 0}. Therefore the
observer simply approaches the nearest edge to arrive at z2. From now on
there is a preferable direction to approach. The next observing position z3
is chosen according to step 18 of the algorithm. Now there are two possible
directions to investigate. The observer chooses the nearest one to arrive at
z4. Since there are no new horizons at z4, the observer backtracks to z3 and

1 The terrain data were obtained from:
ftp://ftp.research.microsoft.com/users/hhoppe/data/gcanyon/
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Fig. 5. Unknown environment, known source strength. The source is located at
(0.25,−0.55). Orange contour is boundary of Ω+

k
and the magenta contour is the

boundary of Ω−

k
. The blue region is W , the green contour is the u(zk) level set of

v+

k
and the blue contour is the u(zk) level set of v−

k
.
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explores the second choice horizon. As the observer approaches the source, the
blue region shrinks. At z5 the observer chooses the nearest of three possible
horizons. Finally, the entire set of possible source locations is visible from z6
and, therefore, the algorithm terminates. We remark that the source has been
found long before the entire environment has been explored.

Finally, Figure 6 depicts the most complicated example. The source is
concealed in a small cave at (0.112, 0.876). Steps 1 through 12 are chosen
according to the original [3] exploration algorithm, since the sets {W2 ≥ 0}
and {Ψk ≥ 0} coincide for k = 1, . . . , 12. Finally, the observer backtracks to z2
to clear previously unexplored horizons. At z14 the set containing the source
becomes visible. In this example, the observer must explore almost the entire
region to finally locate the source.

4 Conclusion

In this paper, we have developed an algorithm that can locate a source of
unknown strength for a generic partial differential operator in a bounded
domain with obstacles. The algorithm relies on the solution of the adjoint
problem and the reciprocity that exists between the operator and its adjoint.
We have shown examples for the case of Poisson’s equation.

In the case of unknown obstacles, we have proposed a method for locat-
ing the source which is based on previous unknown environment exploration
methods and relies on the maximum principle to determine a set of possible
source locations. This algorithm also works in the case of unknown source
strength. Several examples for Poisson’s equation were shown.
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Fig. 6. Unknown environment, known source strength. The source is located at
(0.112, 0.876). Orange contour is boundary of Ω+

k
and the magenta contour is the

boundary of Ω−

k
. The blue region is W , the green contour is the u(zk) level set of

v+

k
and the blue contour is the u(zk) level set of v−

k
. Steps 2 through 11 are skipped

since no information regarding the source location is available.
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