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Abstract of the Dissertation

Fast Numerical Algorithms for

Total Variation Based Image Restoration

by

Mingqiang Zhu

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2008

Professor Tony F. Chan, Chair

Image restoration models based on total variation (TV) have been popular and

successful since their introduction by Rudin, Osher, and Fatemi (ROF) in 1992.

The nonsmooth TV seminorm allows them to preserve sharp discontinuities

(edges) in an image while removing noise and other unwanted fine scale detail.

On the other hand, the the TV term, which is the L1 norm of the gradient vector,

poses computational challenge in solving those models efficiently. Furthermore,

the global coupling of the gradient operator makes the problem extra harder than

other L1 minimization problems where the variables under the L1 norm are sepa-

rable. In this paper we propose several new algorithms to tackle these difficulties

from different perspectives. Numerical experiments show that they are competi-

tive with the existing popular methods and some of them are significantly faster

despite of their simplicity. The first algorithm we introduce is a primal-dual hy-

brid gradient descent method that alternates between the primal and the dual

updates. It utilizes the information from both the primal and dual variables and

therefore is able to converges faster than the pure primal or pure dual method in

the same category. We then proposed gradient projection (GP) methods to solve

xiii



the dual problem of the ROF model based on the special structure of the dual

constraints. We also test variants of GP algorithms with different step selection

strategies, including techniques based on the Barzilai-Borwein method. In this

same line, a block co-ordinate descent method is proposed for solving the dual

ROF problem. The subproblem at each single block can be solved exactly using

different techniques. We also propose a basic multilevel optimization framework

for the dual formulation, aiming to speedup our solution process for large scale

problems. Finally, we study the connections between some existing methods and

give an improvement to CGM method based on the primal-dual interior-point

algorithms.
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CHAPTER 1

Introduction

1.1 Total Variation Based Image Restoration Models

Image restoration is one of the fundamental problem in digital image processing.

Variational models have been extremely successful in a wide variety of image

restoration problems and remain one of the most active areas of research in

mathematical image processing and computer vision. The most fundamental

image restoration problem is perhaps denoising. It forms a significant preliminary

step in many machine vision tasks such as object detection and recognition.

Total variation (TV)-based image restoration models were first introduced by

Rudin, Osher, and Fatemi (ROF) in their pioneering work [60]. It was designed

with the explicit goal of preserving sharp discontinuities (edges) in an image

while removing noise and other unwanted fine-scale detail. ROF formulated the

following minimization problem:

min
u∈BV(Ω)

∫

Ω

|∇u| s.t. ‖u− f‖22 ≤ |Ω|σ
2. (1.1)

Where
∫

Ω
|∇u| is the total variation (TV) of u and will be denoted as TV[u].

Other notations in (1.1) are explained as follows:

• Ω is the image domain, which will be taken to be a bounded domain in R
n

with Lipschitz boundary. Usually Ω is simply a rectangle in R
2, modeling

the computer screen.
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• |Ω| is the area of the domain Ω.

• The function f : Ω→ R represents the given observed image. f ∈ L2(Ω).

• σ is an estimate of the standard deviation of the noise in the image f .

• The notation | · | represents the Euclidean (ℓ2) norm on R
2, i.e.

|∇u| =
∣

∣(ux; uy)
∣

∣ =
√

u2
x + u2

y

• The notation ‖ · ‖ represents the usual L2 norm on L2(Ω).

• BV(Ω) denotes the collection of all functions (images) in L1(Ω) with finite

total variations (bounded variations).

The total variation of u has a more formalized definition in mathematics:

TV[u] ≡ max
{

∫

Ω

−u∇ · w
∣

∣ w = (w1, w2) ∈ C1
c (Ω, R2), |w| ≤ 1

}

. (1.2)

This definition of TV is more general since it does not require u to be (almost

everywhere) differentiable. In fact, we only require u to be in the BV space

BV(Ω), whose definition uses the above definition of TV:

BV(Ω) ≡
{

u
∣

∣ u ∈ L1(Ω), TV[u] <∞
}

. (1.3)

It can be shown that W 1,1(Ω) ⊆ BV(Ω) ⊆ L1(Ω) and the definition of TV

in (1.2) is equivalent to the objective function of (1.1) when u ∈ W 1,1. More

theoretical properties of total variation and BV space can be seen in references

[5],[28], [42] and [52]. We also point out that, once we try to solve the problem

in the discrete case, all the above technical restriction on u becomes irrelevant.

It is clear that any discrete image u in R
2 has finite (discrete) total variations.

2



The results about existence and uniqueness for the solutions of problem (1.1)

can be seen in [17]. The same paper also shows that the constrained ROF model

(1.1) is equivalent to the following unconstrained model:

min
u∈BV

TV[u] +
λ

2
‖u− f‖22, (1.4)

for some suitable Lagrange multiplier λ.

In fact, both ROF and their subsequent researchers mostly focus on solving

the unconstrained model (1.4) rather than the original constrained model (1.1)

since unconstrained optimization is generally comparatively easier to solve.

The original ROF model was introduced to solve image denosing problems.

But the methodology can be naturally extended to restore blurred and noisy

image by including the known blurring kernal:

min
u∈BV

TV[u] +
λ

2
‖Ku− f‖22. (1.5)

Here K is a given linear blurring operator and every other term is defined the

same as in (1.4). In this model, f is formulated as the sum of a Gaussian noise

v and a blurry image Kū resulting from the linear blurring operator K acting on

the clean image ū, i.e., f = Kū + v.

Among all linear blurring operators, many are shift-invariant and can be ex-

pressed in the form of convolution:

(Ku)(x) = (h ∗ u)(x) =

∫

Ω

h(x− y) u(y) dy, (1.6)

where h is the given point spread function (PSF) associated with K.

Over the years, the ROF model has been extended to many other image

processing tasks, including inpaintings, blind-deconvolutions, cartoon-texture de-

compositions and vector valued images. (See [24] and the reference therein for

3



recent developments in TV based image processing.) It has also been modified in

a variety of ways to improve its performance by using iterative refinement with

Bregman distance [61] and the more general inverse scale methods [12] . In this

paper, we shall focus on solving the original ROF restoration problem, but we

point out that some of our ideas can be naturally extended to other relevant

models.

1.2 Duality

The discussion so far, based on the minimization models (1.1) and (1.4), can be

viewed as the primal approach to solving the TV denoising problem. In this

section, we shall discus about the dual formulations of the ROF models (1.4)

and (1.1) and some related analysis. While the dual formulation is not as well

developed as the primal one, it does have some inherent advantages and has been

receiving increasing interest recently (see e.g., [13, 25, 14]). It offers an alternative

formulation which can lead to effective computational algorithms.

First, we shall adopt the definition (1.2) for the TV semi-norm, which we

rewrite here

TV[u] ≡ max
w∈W

∫

Ω

−u∇ · w,

where W ≡
{

w
∣

∣ w = (w1, w2) ∈ C1
c (Ω, R2), |w| =

√

w2
1 + w2

2 ≤ 1
}

(1.7)

With this definition of TV, the ROF model (1.4) becomes

min
u

max
w∈C1

c (Ω), |w|≤1

∫

Ω

−u∇ · w +
λ

2
‖u− f‖22, (1.8)

where u and w are the primal and dual variables, respectively. The min-max

theorem (see e.g., Proposition 2.4 in [40])allows us to interchange the min and

4



max, to obtain

max
w∈C1

c (Ω), |w|≤1
min

u

∫

Ω

−u∇ · w +
λ

2
‖u− f‖22. (1.9)

The inner minimization problem can be solved exactly as follows:

u = f +
1

λ
∇ · w (1.10)

leading to the following dual formulation:

max
w∈C1

c (Ω), |w|≤1
D(w) :=

λ

2

[

‖f‖22 −

∥

∥

∥

∥

1

λ
∇ · w + f

∥

∥

∥

∥

2

2

]

, (1.11)

or, equivalently,

min
w∈C1

c (Ω), |w|≤1

1

2
‖∇ · w + λf‖22. (1.12)

For a primal-dual feasible pair (u, w), the duality gap G(u, w) is defined to be

the difference between the primal and the dual objectives:

G(u, w) = P (u)−D(w)

=

∫

Ω

|∇u|+
λ

2
||u− f ||22 −

λ

2

[

‖f‖22 −

∥

∥

∥

∥

1

λ
∇ · w + f

∥

∥

∥

∥

2

2

]

=

∫

Ω

(

|∇u| − ∇u · w
)

+
λ

2

∥

∥

∥

∥

1

λ
∇ · w + f − u

∥

∥

∥

∥

2

2

. (1.13)

The duality gap bounds the distance to optimality of the primal and dual

objectives. Specifically, if u and w are feasible for the primal (1.4) and dual

(1.11) problems, respectively, we have

0 ≤ P (u)−O∗ ≤ G(u, w), (1.14a)

0 ≤ O∗ −D(w) ≤ G(u, w), (1.14b)

where O∗ is the (common) primal-dual optimal objective value. We make use of

the duality gap in the termination criterion in our numerical experiments.

5



Optimization theory tells us G(u, w) ≥ 0, and moreover, (u, w) are optimal if

and only if G(u, w) = 0.

Notice here |w| ≤ 1 and it follows |∇u| − ∇u · w ≥ 0 ∀x ∈ Ω. Therefore

G(u, w) = 0 if and only if

|∇u|+∇u · w = 0 and
1

λ
∇ · w + f − u = 0.

It is also clear that |∇u| − ∇u · w = 0 is equivalent to |∇u|w −∇u = 0.

Hence, (u, w) is optimal if and only if the following system holds






|∇u|w −∇u = 0

∇ · w − λ(u− f) = 0
(1.15)

The above system (1.15) is referred as the primal-dual system.

We can derive the dual formulation of the constrained ROF model (1.1) in

exactly the same way. First of all, the constrained ROF model (1.1) can be

rewrite into the following min-max problem using the general definition of TV in

(1.7):

min
u∈U

max
w∈W

∫

Ω

−u∇ · w, (1.16)

where U ≡ {u ∈ BV(Ω) : ‖u− f‖22 ≤ |Ω|σ
2} and W is defined as in (1.7).

Again, the min-max theorem allows us to interchange the min and max in the

above problem and we obtain the equivalent

max
w∈W

min
u∈U

∫

Ω

−u∇ · w. (1.17)

Now the inner minimization problem in (1.17) can be solved exactly as

u = f +
√

|Ω| σ
∇ · w

‖∇ · w‖2
. (1.18)

Substituting the above result back to problem (1.17), we obtain the dual formu-

lation

max
w∈W

D[w] ≡ −
√

|Ω| σ‖∇ · w‖2 −

∫

Ω

f ∇ · w (1.19)

6



Similarly, the duality gap G(u, w) for any feasible primal-dual pair (u, w) is de-

fined as

G(u, w) ≡ P [u]−D[w]

=

∫

Ω

(

|∇u|+ f∇ · w
)

+
√

|Ω| σ‖∇ · w‖2

=

∫

Ω

(

|∇u| − ∇u · w
)

+

[

√

|Ω| σ‖∇ · w‖2 +

∫

Ω

(f − u)∇ · w

]

(1.20)

Setting G(u, w) = 0 gives the following optimality condition







|∇u|w −∇u = 0

∇ · w − ‖∇·w‖2

σ |Ω|
1
2

(u− f) = 0
(1.21)

Comparing (1.18) with (1.10) or comparing (1.21) with (1.15) we find the

suitable fidelity parameter λ that leads to equivalent models (1.4) and (1.1) are

given as

λ =
‖∇ · w∗‖2

σ |Ω|
1
2

, (1.22)

where w∗ is the dual optimizer of problem (1.19).

1.3 Challenges in Computing TV models

From the computational point of view, the primal and dual formulations pose

different challenges for computing their optimality solutions (see Table 1.1). The

total variation term in the primal formulation is non-smooth at where |∇u| =

0, which makes the derivative-based methods impossible without an artificial

smoothing parameter. The dual formulation imposes constraints which usually

require extra effort compared to unconstrained optimizations. Being quadratic,

the dual energy is less nonlinear than the primal energy, but the rank-deficient

operator ∇· makes the dual minimizers possibly non-unique. Finally, they share

7



the same problem of spatial stiffness due to the global couplings in their energy

functions, which presents a challenge to any algorithm in order to control the

computational complexity that scales reasonably bounded with the number of

pixels.

Primal Problem (1.4) Dual Problem (1.11)

· Nondifferentiable at |∇u| = 0 · Non-uniqueness due to rank-deficient ∇·

· Highly nonlinear · Extra constraints

· Spatial stiffness · Spatial stiffness

Table 1.1: Computational Challenges for Primal and Dual ROF

1.4 Discretization and Notations

Before describing the numerical algorithms, let us choose an appropriate way

to discretize the continuous ROF model and fix the main relevant notational

conventions.

Often in this paper we need to concatenate vectors and matrices, in both

column-wise or row-wise fashion. We follow the MATLAB convention of using

“,” for adjoining vectors and matrices in a row, and “;” for adjoining them in a

column. Thus, for any vectors x, y and z, the following are synonymous:











x

y

z











= (xT , yT , zT )T = (x; y; z)

For the sake of simplicity, we assume that the domain Ω is squares, and define

a regular n× n grid of pixels, indexed as (i, j), for i = 1, 2, . . . , n, j = 1, 2, . . . , n.

We represent images images as two-dimensional matrices of dimension n × n,

8



where ui,j represents the value of the function u at pixel (i, j). (Adaptation to

less regular domains is not difficult in principle.) To define the discrete total

variation, we introduce a discrete gradient operator, whose two components at

each pixel (i, j) are defined as follows:

(∇u)1
i,j =







ui+1,j − ui,j if i < n

0 if i = n
(1.23a)

(∇u)2
i,j =







ui,j+1 − ui,j if j < n

0 if j = n.
(1.23b)

(Thus ∇u ∈ R
n×n×2.) The discrete TV of u is then defined by

TV(u) =
∑

1≤i,j,≤n

|(∇u)i,j|,

where | · | is the Euclidean (ℓ2) norm in R
2. Note that this norm is not a smooth

function of its argument. It has the classic “ice-cream cone” shape, nondifferen-

tiable when its argument vector is zero.

The discrete divergence operator is defined, by analogy with the continuous

setting, as the negative adjoint of the gradient operator, that is, ∇· = −∇∗.

Defining the inner product of two objects in R
n×n as follows:

〈u, v〉 =
∑

1≤i,j≤n

ui,jvi,j ,

(and similarly for objects in R
n×n×2), we have from definition of the discrete

divergence operator that for any u ∈ R
n×n and w ∈ R

n×n×2, that 〈∇u, w〉 =

〈u,−∇ · w〉. It is easy to check that the divergence operator can be defined

explicitly as follows:

(∇ · w)i,j =



















w1
i,j − w1

i−1,j if 1 < i < n

w1
i,j if i = 1

−w1
i−1,j if i = n

+



















w2
i,j − w2

i,j−1 if 1 < j < n

w2
i,j if j = 1

−w2
i,j−1 if j = n.

(1.24)
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It is worth noticing that the values {w1
n,j : j = 1 · · · , n} and {w2

i,n : i = 1, · · · , n}

are not relevant in calculating the divergence ∇ · w in (1.24). Therefore, the

discrete dual problem only have essentially 2n(n − 1) instead of 2n2 unknowns.

Non-the-less, the boundary points are usually included in w (with values being

0) to make the discrete dual problem consistent in form with the primal problem.

To describe the problem in matrix algebra language, we reorder the image

matrix u (resp. f) in row-wise fashion into a vector y (resp. z), associating the

(i, j) element of the two-dimensional structure with the element (j − 1)n + i of

the vector structure, as follows:

y(j−1)n+i = ui,j, 1 ≤ i, j ≤ n.

We have y ∈ R
N , where N = n2. The (i, j) component of the gradient (1.23)

can thus be represented as a multiplication of the vector y ∈ R
N by a matrix

Al ∈ R
2×N , for l = 1, 2, . . . , N :

AT
l y =











































(yl+1 − yl; yl+n − yl) if l mod n 6= 0 and l + n ≤ N

(0; yl+n − yl) if l mod n = 0 and l + n ≤ N

(yl+1 − yl; 0) if l mod n 6= 0 and l + n > N

(0; 0) if l mod n = 0 and l + n > N .

(1.25)

Using this notation, the discrete version of the unconstrained primal ROF model

(1.4) can be written as follows:

min
y∈RN

N
∑

l=1

‖AT
l y‖+

λ

2
‖y − z‖2, (1.26)

where (and from now on) we use ‖ · ‖ do denote the Euclidean norm (ℓ2 norm)

in Euclidean space R
m with any finite dimension.

Similarly, we restructure the dual variable w row-wisely into a collection of
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vectors xl ∈ R
2, l = 1, 2, . . . , N , as follows:

x(j−1)n+i =





w1
i,j

w2
i,j



 , 1 ≤ i, j ≤ n.

The complete vector x ∈ R
2N of unknowns for the discretized dual problem is

then obtained by concatenating these subvectors:

x = (x1; x2; . . . ; xN).

We also form the matrix A by concatenating the matrices Al, l = 1, 2, . . . , N

defined in (1.25), that is,

A = (A1, . . . , AN) ∈ R
N×2N . (1.27)

In this notation, the divergence ∇ ·w is simply −Ax, so the discretization of the

dual ROF model (1.12) is

min
x∈X
‖Ax− λz‖2

where X = {x : x ∈ R
2N , ‖xl‖ ≤ 1 for l = 1, 2, · · · , N} (1.28)

Similarly, the duality gap in (1.13) has the following discrete form

G(y, x) =
N

∑

l=1

(

‖AT
l y‖ − xT

l AT
l y

)

+
λ

2

∥

∥

∥
y − z +

1

λ
Ax

∥

∥

∥

2

, (1.29)

and primal-dual optimality condition (1.15) has the discrete form







‖AT
l y‖ − xT

l AT
l y = 0 for l = 1, · · · , N

y − z + 1
λ
Ax = 0

(1.30)

By the same token, the constrained ROF model (1.1) has the following dis-

cretization for its primal formulation, dual formulation, primal-dual gap and

primal-dual optimality conditions:
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Primal problem:

min
y

N
∑

l=1

‖AT
l y‖

subject to y ∈ Y ≡ {y ∈ R
N : ‖y − z‖ ≤ nσ} (1.31)

Dual problem:

max
x
−nσ‖Ax‖ + zT Ax

subject to x ∈ X ≡ {x ∈ R
2N : ‖xl‖

2 ≤ 1, l = 1, 2, . . . , N}. (1.32)

Duality Gap:

G(y, x) =
N

∑

l=1

(

‖AT
l y‖ − xT

l AT
l y

)

+
(

nσ‖Ax‖ + (y − z)T Ax
)

, (1.33)

Primal-dual optimality conditions:







‖AT
l y‖ xl − AT

l y = 0 for l = 1, · · · , N

y − z + ‖Ax‖
nσ

Ax = 0
(1.34)

1.5 Organizations of This Paper

In this paper, we try to develop some efficient algorithms to solve the total vari-

ation based image restoration models. The paper is organized as follows:

Chapter 1 gives a short introduction to the total variation based image restora-

tion models and BV space. It covers the application of duality theory to

the ROF model and derives the dual problem. We then analyze the dif-

ferent computational challenges facing the primal and dual formulation of

ROF model and end the chapter by introduction necessary notations and

discretization for the study numerical algorithms.
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Chapter 2 offers a brief survey of some existing popular methods. At the end

of chapter 2, we also give remarks on exiting methods and motivations on

developing new algorithms.

Chapter 3 proposes a simple yet efficient primal-dual hybrid gradient descent

method for solving the ROF model. Results of numerical experiments to

demonstrate its fast convergence. Connections to projection type meth-

ods in solving variational inequalities and extensions to other models are

studied.

Chapter 4 introduces gradient projection methods to solve the dual formulation

of the ROF model. We test variants of GP with different step selection and

line search strategies, including techniques based on the Barzilai-Borwein

method. Global convergence can in most cases be proved by appealing to

existing theory. Numerical results are shown in demonstrating performance.

Chapter 5 proposes a block coordinate descent method to solve the dual for-

mulation of the ROF model. Global convergence of the algorithm are

proved and results of numerical experiments are shown. Dual formula-

tion of anisotropic ROF model are also studied for its simpler constraints

structure.

Chapter 6 tries to speedup the algorithm in solving the dual problem of the

ROF model by applying some basic multilevel optimization techniques.

Chapter 7 studies the connections between the CGM method and SOCP method

for solving the ROF model. An improvement of CGM algorithm based on

primal-dual interior-point method is aslo proposed.

Chapter 8 gives an comprehensive comparison of the newly developed methods

13



in this paper and some existing popular algorithms. It ends with some final

conclusions and remarks.
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CHAPTER 2

A Brief Survey of Existing Algorithms

2.1 Numerical Algorithms

2.1.1 Time Marching Schemes

If we replace |∇u| in (1.4) by |∇u|β =
√

|∇u|2 + β, we obtain the following

smoothed (β-regularized) ROF model

min
u

∫

Ω

|∇u|β +
λ

2
‖u− f‖22. (2.1)

The above problem has a convex differentiable objective function and hence its

optimality solution is given by the following Euler-Lagrange equation (first-order

condition)

∇ ·
( ∇u

|∇u|β

)

− λ(u− f) = 0. (2.2)

In their original paper [60], Rudin et al. proposed the use of artificial time

marching to solve the Euler-Lagrange equation (2.2) which is equivalent to the

steepest descent of the energy function. More precisely, consider the image as a

function of space and time and seek the steady state of the equation

∂u

∂t
= ∇ ·

(

∇u

|∇u|β

)

− λ(u− f) (2.3)

In numerical implementation, an explicit time marching scheme with time step ∆t

and space step ∆x(usually is 1) is used. Under this method, the objective value of
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the ROF model is guaranteed to be decreasing provided that the time step is small

enough and the solution will tend to the unique minimizer as time increases. The

method is (asymptotically) slow due to the CFL stability constraints Courant-

Friedrichs-Lewy (CFL) condition ∆t ≤ c|∇u|β(∆x)2 for some constant c > 0 (see

[59]), which puts a very tight bound on the time step when the solution develop

flat regions (where |∇u| ≈ 0). Hence, this scheme is useful in practice only when

low-accuracy solutions suffice. Sometimes even the cost of computing a visually

satisfactory image is too great.

To relax the CFL condition, Marquina and Osher use, in [59], a ”precondition-

ing” technique to cancel singularities due to the degenerate diffusion coefficient

1
|∇u|

:

∂u

∂t
= |∇u|

[

∇ ·
( ∇u

|∇u|β

)

− λ(u− f)

]

(2.4)

which can also be viewed as mean curvature motion with a forcing term−λ(u−f).

2.1.2 Fixed Point Iteration

To bypass the stability constraint in time marching schemes, Vogel and Oman

proposed in [66] a “lagged diffusivity” fixed point iteration scheme which solves

the stationary Euler-Lagrange equation directly. The main idea is to linearize the

Euler-Lagrange equation by lagging the diffusion coefficients 1
|∇u|β

at a previous

iteration. The k-th iterate is obtained by solving the sparse linear system (see

[66], [67])

∇ ·
( ∇uk

|∇uk−1|β

)

− λ(uk − f) = 0 (2.5)

The above linear system is block tri-diagonal and can be solved by various fast

direct/iterative solvers. While global convergence has been proven by different

authors(see e.g. [33], [17], [27], [39]), the outer iteration is only linearly conver-

gent and the convergence slows down as β decreases. Moreover, the inner linear
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system is difficult to solve efficiently because of the highly varying and possibly

degenerate coefficient 1
|∇u|β

, as well as spatial stiffness of the ellipticity of the

differential operator.

2.1.3 Primal-Dual Newton Method (CGM)

In order to obtain superlinear convergence, a Newton-type algorithm is needed.

However, naive exact Newton’s method is known to have a very small domain of

convergence for equation (2.2) and fails for modest β (see [32], [11]). In [32], Chan

et al tried to combine Newton’s method with a continuation method in the pa-

rameter β, which produced more robustness but still was not overall satisfactory.

Ng et al proposed in [56] an nonsmooth Newton’s method to solve the original

ROF model which does not require the smoothing parameter β. However, the

number of Newton iterations it required to achieve convergence is still considered

too large.

A much better alternative introduce by Chan, Golub and Mullet(CGM) in

[25] is to apply Newton’s method to the primal-dual system. By introducing

a new dual variable w := ∇u
|∇u|β

to equation (2.2), they obtained the following

equivalent system to (2.2)







w|∇u|β −∇u = 0

∇ · w − λ(u− f) = 0
(2.6)

It is now clear to us that the above system is a β-regularized version of the true

primal-dual system (1.15), which we rewrite here:







|∇u|w −∇u = 0

∇ · w − λ(u− f) = 0
(2.7)

System 2.1.3 and (1.15) are the same except the the norm |∇u| in is smoothed
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with β. When β ↓ 0, the solution of 2.1.3 will converge to the solution of (1.15),

i.e., the true optimality solution of the ROF model.

As discussed in [25] and [11], this primal-dual system is better suited for

Newton’s method than the primal Euler-Lagrange equation (2.2) since the (u, w)

system is intuitively more “linear” than the primal system in u only. Furthermore,

compared to fixed-point methods and time-marching methods that are at best

linearly convergent, the CGM method was shown in [25] to be empirically globally

convergent with a quadratic rate. Moreover, the convergent rate deteriorates

only moderately with decreasing β and in practice small values of β can be used

without too much loss in efficiency.

There is still a need to solve an elliptic linear system at every Newton iteration,

but through an elimination of the update on w, the Newton iteration can be

implemented by solving only one linear system involving the update for u

J(uk, wk) · δuk = −r(uk),

where J is positive definite and r is the steepest ascent direction of the primal

objective function(i.e. r is the LHS of equation (2.2). This ensures that the New-

ton update is a decent direction and makes the cost per iteration comparable to

that for the fixed point method. For applications where a high accuracy solution

is needed, eg. in an automated image processing setting without human inter-

vention, fast convergent methods such as CGM will have a significant advantage

over slower linearly convergent methods.

2.1.4 Duality-Based Gradient Descent Method

The main advantage of the dual formulation (1.11) or (1.12) is that the objective

function is nicely quadratic and hence there is no issue with non-differentiability,
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or the need for numerical regularization, as in the primal formulation. However,

this comes with the price of dealing with the constraints on the dual w. In fact,

there are as many constraints as there are number of pixels and one does not

know in advance where the constraints are active. There are several “standard”

numerical approaches to solving nonlinear constrained optimization (1.11), e.g.

penalty, barrier, augmented Lagrangian methods and interior-point methods(see

e.g. [53]). Carter did some early work in this direction in her thesis [13].

One advance in this direction was made by Chambolle in [14], in which he

obtained an explicit analytic formula for the Lagrange multipliers for the con-

straints. This idea is also extended to high order dual methods by Chan et. al.

in [23].

The optimality conditions(Karush-Kuhn-Tucker) for the discretized version

of (1.12) is (see [14])

−(∇(∇ · w − λf))i,j + αi,jwi,j = 0 (2.8a)

αi,j(|wi,j|
2 − 1) = 0 (2.8b)

αi,j ≥ 0 (2.8c)

where αi,j are the Lagrange multipliers.

Now Chambolle made the following original observation about Lagrange mul-

tipliers α. The complementarity conditions (2.8b) are satisfied as either of the

following two cases:

αi,j = 0 or |wi,j| = 1 (2.9)

Applying (5.15) back to (2.8a), we have

αi,j = 0 ⇒ |(∇(∇ · w − λf))i,j| = αi,j|wi,j| = 0 = αi,j (2.10)

|wi,j| = 1 ⇒ |(∇(∇ · w − λf))i,j| = αi,j.|wi,j| = αi,j (2.11)
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In either case, we have

α = |∇(∇ · w − λf)| , (2.12)

which yields the following nonlinear algebraic equation in w only:

−∇(∇ · w − λf) + |∇(∇ · w − λf)|w = 0 (2.13)

It is important to observe that while (2.13) still inherits the non-differentiability of

the primal objective, it is nonetheless “integrated once”, i.e. the nonsmoothness

is in a set of algebraic equations rather than inside the minimization problem.

He then proposed a semi-implicit gradient descent algorithm (notice the LHS

of (2.13) can be viewed as the gradient ascent direction):

wn+1 = wn − τ
(

−∇(∇ · wn − λf) +
∣

∣∇(∇ · wn − λf)
∣

∣wn+1
)

(2.14)

or,

wn+1 =
wn + τH(wn)

1 + τ |H(wn)|
, (2.15)

where H(w) = ∇(∇ · w − λf) and τ is a time step chosen suitably small for

convergence.

It is clear that the constraints |w| ≤ 1 are automatically handled in the

above algorithm, provided the initial guess satisfies so. Global convergence for

τ < 1
8

was also proved in [14]. However, since the linearization is through a

fixed point method, the convergent rate is at best linear. Also, since nothing

is applied to handle the spatial stiffness, the number of iterations will increase

with the number of pixels. In practice, a relatively large number of iterations is

still required. Of course, the main advantage is that sharp discontinuities can be

recovered without numerical regularization and the method is globally convergent

and easy to implement.
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2.1.5 Second-Order Cone Programming

Recently, Goldfarb and Yin proposed a new approach in [43] for various total

variation models based on second-order cone programming(SOCP). They model

problem (1.1) as a second-order cone program, which is then solved by modern

interior-point methods.

To reform the constrained ROF model

min
∑

1≤i,j≤n

‖(∇u)i,j‖

s.t. ‖u− f‖2 ≤ σ2 (2.16)

into a SOCP problem, the authors in [43] introduced new variables p, q, t, v as

follows.

They let v to be the noise variable: v = f − u and let (pi,j, qi,j) to be the

discrete ∇u by forward differentiation:

pi,j =







ui+1,j − ui,j if i < n

0 if i = n

qi,j =







ui,j+1 − ui,j if j < n

0 if j = n

They then introduce a new variable t as an upper bound of the gradient norm

|∇u|:

|(∇u)i,j| =
√

p2
i,j + q2

i,j ≤ ti,j

and this is where the “second-order cone” constraints come from.
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As a consequence, problem (7.6) is transformed to

min

n
∑

i,j=1

ti,j

s.t. ui,j + vi,j = fi,j for i, j = 1, · · · , n

−pi,j + ui+1,j − ui,j = 0 for i = 1, · · · , n− 1, j = 1, · · · , n

−qi,j + ui,j+1 − ui,j = 0 for i = 1, · · · , n, j = 1, · · · , n− 1

pn,j = 0 for j = 1, · · · , n,

qi,n = 0 for i = 1, · · · , n,

v0 = σ

(ti,j; pi,j ; qi,j) ∈ K
3 for i, j = 1, · · · , n,

(v0; v) ∈ Kn2+1 (2.17)

Eliminating u from formulation (7.7), we obtain the following standard form

SOCP:

min
∑

1≤i,j≤n ti,j

s.t. pi,j + vi+1,j − vi,j = fi+1,j − fi,j for 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n

qi,j + vi,j+1 − vi,j = fi,j+1 − fi,j for 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1

pn,j = 0 for 1 ≤ j ≤ n

qi,n = 0 for 1 ≤ i ≤ n

v0 = σ

(ti,j ; pi,j; qi,j) ∈ K
3 for 1 ≤ i, j ≤ n

(v0; v) ∈ Kn2+1

(2.18)

(7.8) is in standard form of SOCP and there are massive literature about how

to solve this class of problems (see e.g. [3]). The dual formulation can also be

transformed into SOCP (see [43]). SOCPs can be solved efficiently in practice

and, in theory, in polynomial time by interior-point methods. For example, path-

following interior-point methods generate a sequence of interior points that follow
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the so-called central path toward the optimality. At each iteration, a set of

primal-dual equations, which depend on current variable values and a duality gap

parameter, are solved by one step of Newton’s iteration to yield an improving

search direction. Like CGM, SOCP need to solve a linear system at each iteration

but can produce highly accurate solutions with low residuals or duality gaps.

In some sense, the SOCP framework bears many similarities with the earlier

primal-dual Newton method discussed in section 2.1.3 First of all, they all

apply Newton’s method to compute the update search direction at each iteration.

Secondly, they all use a dual variable and solve the primal-dual system. In the

SOCP formulation, we do not need a regularization parameter β. However, when

we apply interior-point method to solve SOCP, the primal-dual system that we

solve does depend on an artificial parameter that measures the duality gap. This

duality parameter is similar to β in CGM, and the only difference is that β is fixed

in CGM while the duality parameter dynamically decreases during the solution

process of SOCP. Another interesting point of view here is that SOCP minimize

t, an upper bound of |∇u| instead of minimizing |∇u| itself, to get rid of the

non-smoothness of the objective function, and this bears similarity to the early

idea of minimizing
√

|∇u|2 + β, which is also an upper bound of |∇u|.

2.1.6 Multigrid Methods

In order to obtain an efficient algorithm with scalable computational complexity,

some sort of multilevel methods seems necessary. Interested readers can refer to

the survey [19] for a more detailed account. One approach is to use multigrid

to solve the various linear systems that arise in the methods mentioned above.

One of the earliest attempts along this line can be seen in [2], [18], [68], [69] and

[64], where a linear multigrid method is used as a fast solver for the inner linear
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system (2.5) in the fixed point method. Here we rewrite down the system (2.5)

∇ ·
( ∇uk

|∇uk−1|β

)

− λ(uk − f) = 0 (2.19)

However, there are two main drawbacks of this approach. First, the linearized

system (2.19) has very “nasty” coefficients (especially when β is small), making

it difficult to derive efficient multigrid methods for its solution. Secondly, the

outer fixed point iterations is still only linear convergent.

Recently [63] and [41] considered using the nonlinear multigrid method to

solve the non-linear Euler-Lagrange equation (2.2). However, here one has to

take a relatively large β to achieve convergence.

Another approach introduced in [20, 21] is to apply multilevel algorithms

directly to the minimization problem (1.4), and it is generated in [34] to use

piecewise linear coarser level corrections. This approach uses coordinate descent

relaxation of the primal objective as a smoother. It either does not require the

regularization parameter β (in 1D) or works with an extremely small β (in 2D).

However, it is a well known fact that coordinate descent method is generally not

guaranteed to converge for nonseparable non-smooth optimizations. As shown in

[13] and [20, 21], primal relaxation usually gets stuck in a “local minimizer”(in

the sense of the algorithm) due to the non-smoothness of the TV term and thus

fails to converge to the true solution. Figure (2.1) illustrated how coordinate

descent method might get stuck at a wrong solution. The key point here is when

a flat region (non-smoothness) develops in an intermediate solution, changing

the value of any single pixel might not be sufficient to decrease the objective

function. However, the multilevel optimization method based on primal relax-

ation is somehow more robust because the coarse level correction can help the

solution moves away from the “local minimizer”. Nevertheless, the multilevel

method with standard coarsening can still fail in some circumstances. [20, 21]
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Figure 2.1: Illustration of how coordinate descent might get stuck at a wrong

solution.

proposed the multilevel method with a non-standard coarsening scheme based

on the “flat” patches of an image. Numerical experiments showed this scheme

has better robustness than the standard coarsening and works for most examples.

The above multilevel optimization technique has two other potential variants that

can handle the difficulty inherited from the non-differentiability. One way is to

avoid getting stuck at a wrong solution by using algebraic multigrid(AMG) to

automatically find a good coarsening scheme. The other way is to incorporate

some randomness in the relaxations to improve robustness, e.g. use simulated

annealing as a smoother.

All the existing multigrid methods aim to solve the primal formulations,

either the direct minimization problem(1.4) or the associated Euler-Lagrange

equation(2.2). One possible alternative is to apply multilevel optimization tech-

nique to the dual problem (1.12). The advantage of the dual multilevel method

is that the dual relaxation will not get stuck in a “local minimizer” as the for-

mulation is smooth. However, the real challenge here is how to deal with the

25



constraints. It is not clear that if we can reduce the number of the constraints in

a coarser level as we do to the unknowns. So for this technique to work, one has

to think creatively about the constraints, not only for our problem, but also for

general constrained optimizations.

2.1.7 Graph Cut Algorithm for Anisotropic ROF

Recently graph cut algorithms have been introduced as a fast and exact solver for

the discrete anisotropic TVL2/TVL1 models (see [37, 38, 16, 72, 50] and many

others).

If the anisotropic TV (
∫

Ω
|ux| + |uy|) is used to replace the isotropic TV

(
∫

Ω
|∇u|) and the argument u is restricted to have discrete values, we have the

following discrete integer programming problem for the anisotropic ROF model:

min
u∈{0,1,··· ,L−1}

E(u) =

∫

Ω

(|ux|+ |uy|) dxdy +
λ

2
‖u− f‖2, (2.20)

where L = 28 for 8-bit images and L = 216 for 16-bit images.

The practical use of graph cut algorithm to solve (2.20) relies on the decom-

position of an image into its level sets and hence mapping the original problem

(2.20) into optimizations of independent binary problems. Using the discrete co-

area formula (see e.g., [37]), the objective function E in (2.20) can be decomposed

into a sum of independent functions Et which only depends on the sublevel set

of u:

E(u) =

L−2
∑

t=0

Et(ut) + C.

Here, ut is the characteristic functions on the sublevel set: ut = 1u≤t and C is a

constant independent of u.

To minimize E(·) one can minimize all binary problem Et(·) independently.

Thus we get a family {ūt} which are respectively minimizers of Et(·). Clearly
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the summation will be minimized and thus we have a minimizer of provided this

family {ūt} is monotone:

ūt ≤ ūs ∀ t < s. (2.21)

If property (2.21) holds then the optimal solution ū is given by the recon-

struction formula from sublevel sets: ū(x) = min{t : ūt(x) = 1} . If property

(2.21) does not hold, then the family {ūt} is not a function.

Property (2.21) is proved to be true by various authors ([37, 16, 48]). Hence

the above optimization strategy is valid. Now note that each Et(ut) is a binary

MRF with an Ising prior model and be solved efficiently using graph cut algo-

rithms. In [15], the author also did some comparison experiments regarding the

efficiency of the discrete graph cuts algorithm and some of methods we discussed

in this section.

2.2 Remarks

1. Recently, many variants and extensions to the original ROF model (1.4)

have been developed, which include TV and Elastica inpainting ([29], [26]),

blind deconvolution ([30]), multi-channel TV ([10]), L1 fidelity ([57], [22]),

multiscale texture decomposition ([52], [65]) and iterative regularization us-

ing Bregman distance function. Although the algorithms we listed in this

paper are all designed to solve the original ROF model (1.4), it can be

naturally adapted to other recently developed models we mentioned above

where the main computational challenge is still due to the total variation

term.

2. While each of the above methods might have its own comparative advan-
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tage in certain situations, some benchmark rules still apply. Independent

of the mutigrid technique, there are two general categories: those that need

solve a linear system at each iteration and those that need not. To obtain a

visually satisfactory solution, the methods in the latter class are preferred

for their simplicity and fast initial convergence rate. Out of this category,

Chambolle’s method becomes very popular because of its simplicity, robust-

ness, no need to use numerical regularization and relative fast convergence.

On the other hand, if our goal is to obtain a state-of-art highly accurate

solution with low residual/duality gap, the locally superlinear Newton type

methods will win eventually even though they have to solve a linear system

at every iteration. In this category, The CGM method and SOCP are most

widely used for their robustness and fast asymptotic convergence. Finally,

if the problem is of very large scale, we need to apply multilevel schemes to

reduce complexity.

2.3 Motivations for Developing New Methods

As we have seen, most existing numerical algorithms to solve ROF models

(1.4) or (1.12) can be loosely divided into two categories: those that need to

solve a linear system of equations at each iteration (implicit) and those that

require only a matrix-vector multiplication in the discrete setting (explicit).

Generally speaking, the implicit methods (e.g. CGM, HS, and SOCP)

have fast asymptotic convergence rates and can provide highly accurate

benchmark solutions. However, explicit methods are preferred in many

situations for their simplicity and their convergence with relatively little

computational effort to medium-accurate and visually satisfactory results.

Their low memory requirements make them even more attractive for large-
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scale problems. To illustrate the high memory requirements of implicit

schemes, we note that an image of size 512 × 512 is close to the limit of

what the SOCP solver MOSEK can handle on a workstation with 2GB of

memory.

In this chapter, we shall develop some simple yet efficient algorithms. They

are explicit so the memory requirement is low and each iteration only takes

O(N) operations. They converge very fast to visually satisfactory solutions

and also have much improved asymptotical convergence rate compared with

existing explicit methods. In all of our proposed algorithms, we try to ex-

ploit the use of the dual variable since a pure primal formulation usually

requires some numerical smoothing parameter that would prevent the re-

sulting algorithm from converging to the true optimizer. In other words,

our algorithm is either a primal-dual type algorithm or simply a duality

based algorithm.
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CHAPTER 3

Primal-Dual Hybrid Gradient Descent Method

In this chapter, we propose a simple yet very efficient algorithm for total varia-

tion (TV) minimizations with applications in the image processing realm. This

descent-type algorithm alternates between the primal and dual formulations and

exploit the information from both the primal and dual variables. Therefore, it

is able to converge significantly faster than either pure primal/dual gradient de-

scent methods and some other popular existing methods as demonstrated in the

numerical experiments. Finally, we show that this idea works for other optimiza-

tion problems whose objective also involves the non-smooth L1 norm as in the

TV term.

3.1 The Proposed Algorithm

Previous developed gradient descent type methods are the primal time marching

method in [60] and Chambolle’s duality based semi-implicit gradient descent type

method in [14]. In this chapter, we refer to these two methods as the primal

gradient descent algorithm and dual gradient descent algorithm. They are showed

briefly as follows.

Primal ROF:

min
y∈RN

N
∑

l=1

‖AT
l y‖+

λ

2
‖y − z‖2, (3.1)
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Dual ROF:

max
x∈X
‖Ax− λz‖2

where X = {x : x ∈ R
2N , ‖xl‖ ≤ 1 for l = 1, 2, · · · , N} (3.2)

Primal gradient descent algorithm (smoothed with β):

yk+1 = yk − θk

(1

λ

N
∑

l=1

AlA
T
l yk

√

‖AT
l yk‖2 + β

+ yk − z
)

, (3.3)

Primal gradient descent algorithm (unsmoothed subgradient):

yk+1 = yk − θk

(1

λ

N
∑

l=1

Alx
k
l + yk − z

)

, (3.4)

where

xk
l =







Aly
k
l

‖Aly
k
l
‖
, if Aly

k
l 6= 0

any element in the unit ball B(0, 1) ⊂ R
2, else

(3.5)

Dual gradient descent algorithm (Chmbolle):

xk+1
l =

xk
l − τkA

T
l (Axk − λz)

1 + τk‖AT
l (Axk − λz)‖

. (3.6)

We notice that the primal gradient algorithm (3.3) or (3.4) works exclusively

on the primal formulation while the dual gradient algorithm focus exclusively on

the dual formulation. There is no cross communications between the primal vari-

able and dual variable. Our approach, on the other hand, work on the primal-dual

formulation and try to exploit the information of the primal and dual variables

simultaneously. We hope the use of both primal and dual information will speed

up the gradient descent algorithm.

Our approach can be most effectively illustrated under the setting of the

primal-dual formulation (1.8), which has the following discrete form:

min
y∈RN

max
x∈X

Φ(y, x) := yTAx +
λ

2
‖y − z‖2 (3.7)

31



where

X =
{

x = (x1; · · · ; xN) : xl ∈ R
2, ‖xl‖ ≤ 1 for l = 1, · · · , N

}

Given any intermediatesolution (yk, xk) at iteration step k, the proposed al-

gorithm updates the solution as follows.

1. Apply one step of (projected) gradient ascent method to the maximization

problem

max
x∈X

Φ(yk, x). (3.8)

The ascent direction ∇xΦ(yk, xk) = AT yk, so we update x as

xk+1 = PX

(

xk + τkλAT yk
)

, (3.9)

where τk is the (dual) stepsize and PX denotes the projection onto the

set X which can be simply computed in our case (see later remarks). The

factor λ is used here so that the stepsize τk is sensitive to different problems

or different scales of gray levels, which also explains the same situation in

(3.11).

2. Apply one step of gradient descent method to the minimization problem

min
y∈RN

Φ(y, xk+1). (3.10)

The ascent direction is ∇yΦ(yk, xk+1) = Axk+1 + λ(yk − z) and therefore

the update is

yk+1 = yk − θk(
1

λ
Axk+1 + yk − z), (3.11)

where θk is the (primal) stepsize.

Put them all together, we have the following algorithm.

Algorithm PDHGD
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Step 0. Initialization. Pick y0 and a feasible x0 ∈ X, set k ← 0.

Step 1. Choose stepize τk and θk.

Step 2. Updating.

xk+1 = PX

(

xk + τkλAT yk
)

(3.12a)

yk+1 = (1− θk)y
k + θk(z −

1

λ
Axk+1) (3.12b)

Step 3. Terminate if a stopping criterion is satisfied;

otherwise set k ← k + 1 and return to step 1.

3.2 Remarks

1. The hybrid descent algorithm can also be developed as a (primal-dual)

proximal method:

xk+1 = arg max
x∈X

Φ(yk, x)−
1

2λτk

‖x− xk‖2 (3.13a)

yk+1 = arg min
y∈RN

Φ(y, xk+1) +
λ(1− θk)

2θk

‖y − yk‖2 (3.13b)

2. The projection PX in (3.13a) can be computed in the following straightfor-

ward way:
(

PX(x)
)

l
=

xl

max{‖xl‖, 1}
, l = 1, 2, . . . , N. (3.14)

Here, since X is a Cartesian product of unit Euclidean balls, the above

operation (4.11) actually projects each 2× 1 subvector of x separately onto

the unit ball in R
2.
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3. Both problem (3.8) and (3.10) can be solved exactly, which would yield the

following updating formula (taking τk =∞ and θk = 1 in (3.23)):

xk+1
l =

AT
l yk

‖AT
l yk‖

, for l = 1, · · · , N (3.15a)

yk+1 = z −
1

λ
Axk+1. (3.15b)

However, we choose not to do so since the above algorithm does not con-

verge.

As a special case, if we only solve subproblem (3.8) exactly (taking τk =∞

in (3.23) ), the resulting algorithm would be

yk+1 = yk − θk

(1

λ

∑ AlA
T
l yk

‖AT
l yk‖

+ yk − z
)

, (3.16)

The above algorithm is exactly a subgradient descent method for the primal

formulation (4.1).

Another special case is that we solve subproblem (3.10) exactly (taking

θk = 1 in (3.23)) and still apply gradient ascent method to (3.8). The

resulting algorithm is as follows

PX

(

xk − τkA
T (Axk − λz)

)

, (3.17)

which is a (projected) gradient descent method for dual problem (3.2).

Hence, the primal subgradient descent method and the dual projected gradi-

ent descent method are two special cases of our algorithm, which correspond

to taking special stepsizes τk =∞ and θk = 1 respectively in (3.23).

4. The convergence of the PDHGD algorithm is (empirically) observed for

a variety of suitable stepsize pairs (τ, θ). Moreover, the choice of stepsizes

are insensitive to different problems or scales of gray levels. In some range,

the stability constraint on the stepsizes seems more relevant to the product
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τθ rather than to τ or θ individually. For example, our experiments show

that convergence can be obtained for the stepsize pair (2, 0.2) as well as for

(4, 0.1). Finally, the numerical results also reveal that a pair of relatively

small τ and large θ gives faster initial convergence rate and the opposite

choice gives faster asymptotic convergence. Therefor, we can optimize the

performance of the algorithm through some strategy of choosing (τk, θk),

although simple fixed stepsizes might already give satisfactory results.

3.3 Extensions

Our algorithm can be naturally extended to other TV image restoration models

without any major modifications.

Constrained ROF Model

The original constrained primal ROF model (1.1) has the following discrete

form

(P) min
y∈Y

N
∑

l=1

‖AT
l y‖, (3.18)

where Y ≡ {y ∈ R
N : ‖y − z‖ ≤ nσ}.

The above problem (3.18) has the following primal-dual and dual formulations

(PD) min
y∈Y

max
x∈X

yTAx (3.19)

(D) max
x∈X

−nσ‖Ax‖ + zT Ax (3.20)

Both the primal problem (3.18) and dual problem (3.20) are difficult to solve

since their objectives are non-smooth. However, our proposed approach based on
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the primal-dual formulation (3.19) are simply

xk+1 = PX

(

xk +
τk

σ
AT yk

)

(3.21a)

yk+1 = PY

(

yk + σθkAxk+1
)

, (3.21b)

where the projection PY is given by

PY (y) = z +
y − z

max
{

‖y − z‖/(nσ), 1
} (3.22)

The full primal-dual hybrid gradient descent method for constrained ROF

model is shown as follows:

Algorithm PDHGDC

Step 0. Initialization. Pick y0 and a feasible x0 ∈ X, set k ← 0.

Step 1. Choose stepize τk and θk.

Step 2. Updating.

xk+1 = PX

(

xk +
τk

σ
AT yk

)

(3.23a)

yk+1 = PY

(

yk + σθkAxk+1
)

, (3.23b)

Step 3. Terminate if a stopping criterion is satisfied; otherwise set k ← k + 1

and return to step 1.

TV Debluring Model

The total variation based image restoration model (1.4) can be extended to
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recover blurry and noisy image f by solving the following problem:

(P) min
u

∫

Ω

|∇u| +
λ

2
‖Ku− f‖22 (3.24)

where K is a given linear blurring operator and every other term is defined the

same as in (1.4). In this model, f is formulated as the sum of a Gaussian noise

v and a blurry image Ku resulting from the linear blurring operator K acting on

the clean image ū, i.e., f = Ku + v.

Among all linear blurring operators, many are shift-invariant and can be ex-

pressed in the form of convolution:

(Ku)(x) = (h ∗ u)(x) =

∫

Ω

h(x− y) u(y) dy, (3.25)

where h is the given point spread function (PSF) associated with K.

The discrete form of model (3.24) is

min
y∈RN

N
∑

l=1

‖AT
l y‖+

λ

2
‖By − z‖2, (3.26)

where B is the discretization of the blurring operator K.

The primal-dual and dual formulation of (3.26) can be obtained as follows

(PD) min
y∈RN

max
x∈X

yT Ax +
λ

2
‖By − z‖2 (3.27)

(D) max
x∈X

−
1

2λ
‖B−1Ax− λz‖+

λ

2
‖z‖2. (3.28)

However, the blurring matrix B is highly ill-posed (non-invertible in some

cases), making it difficult if not impossible to compute the inverse B−1. Therefore

the dual formulation (3.28) is of little use in practice and sometimes may not even

exist. On the other hand, our primal-dual hybrid gradient descent algorithm

based on formulation (3.27) still works well. The core part of the algorithm are
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given as follows

xk+1 = PX

(

xk + τkλAT yk
)

(3.29a)

yk+1 = yk − θk

(1

λ
Axk+1 + BT (Byk − z)

)

. (3.29b)

The full primal-dual hybrid gradient descent method for TV debluring is:

Algorithm PDHGD Deblur

Step 0. Initialization. Pick y0 and a feasible x0 ∈ X, set k ← 0.

Step 1. Choose stepize τk and θk.

Step 2. Updating.

xk+1 = PX

(

xk + τkλAT yk
)

(3.30a)

yk+1 = yk − θk

(1

λ
Axk+1 + BT (Byk − z)

)

. (3.30b)

Step 3. Terminate if a stopping criterion is satisfied;

otherwise set k ← k + 1 and return to step 1.

3.4 Theoretical Connections

Our method is related to projection type methods existing in the literature for

finding saddle points and, more generally, solutions to variational inequalities.

In this section, we shall discuss very briefly about the framework of projection

methods for solving variational inequalities and point out the connections and
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difference between our method and previous work. We refer interested readers to

the survey papers [45] and [71] for the background of this area.

Let H be a real Hilbert space (in our case, R
n), whose inner product and

norm are denoted by 〈·〉, and ‖ ·‖ respectively. Let K be a closed convex set in H

and F be a mapping from H into itself. We now consider the problem of finding

v∗ ∈ K such that

〈v − v∗, F (v∗)〉 ≥ 0, ∀ v ∈ K. (3.31)

The above problem is called a variational inequality problem with v∗ being one

of its solution. We denote the above variational inequality problem by VI(K, F ).

In most real applications, K is convex and F satisfy some monotonicity and

Lipschitz continuity properties, which we defined as follows:

Definition 1. F is said to be

(i) monotone if 〈u− v, F (u)− F (v)〉 ≥ 0 ∀u, v ∈ H.

(ii) strongly monotone if

∃ ν > 0 s.t. 〈u− v, F (u)− F (v)〉 ≥ ν‖u− v‖2 ∀u, v ∈ H.

(iii) pseudomonotone if 〈u− v, F (v)〉 > 0 ⇒ 〈u− v, F (u)〉 ≥ 0 ∀u, v ∈ H.

(iv) Lipschitz continuous if ∃L > 0 s.t. ‖F (u)− F (v)‖ ≤ L‖u− v‖ ∀u, v ∈ H.

Finding a saddle point (y∗, x∗) to the min-max problem

min
y∈Y

max
x∈X

Φ(y, x)

can be written as a special case of the variational inequality problem:

find v∗ ∈ K s.t. 〈v − v∗, F (v∗)〉 ≥ 0 ∀ v ∈ K, (3.32)

where

v =





y

x



 F (v) =





Φy(x, y)

−Φx(x, y)



 and K = Y ×X.
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In particular Our ROF problem (3.19) and (3.7) can both be transformed

into a variational inequality problem VI(K, F ) in (3.32) with F and K defined

as follows.

For unconstrained ROF (3.19):

F (v) =





Ax + λ(y − z)

−AT y



 and K = R
N ×X.

For constrained ROF (3.7):

F (v) =





Ax

−AT y



 and K = Y ×X.

Variational inequality problem is closely related to the fixed-point problem.

The fixed-point theory has played an important role in the development of various

algorithms for solving variational inequalities. In fact we have the following well-

known result (see, e.g. [8, pp. 267]):

Lemma 1. v∗ is a solution of VI(K, F ) if and only if

v∗ = PK

(

v∗ − αF (v∗)
)

for any α > 0.

The fixed-point formulation in the above lemma suggests the simple iterative

algorithm of solving for u∗.

VI Algorithm 1.

vk+1 = PK

(

vk − αkF (vk)
)

. (3.33)

The convergence of the above algorithm requires F to be strongly monotone

and Lipschitz continuous, which is too restrictive in many cases. An alternative

approach is to consider the following ‘implicit’ iterative scheme
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VI Algorithm 2.

vk+1 = PK

(

vk − αkF (vk+1)
)

. (3.34)

The convergence of this new algorithm only requires monotonicity of F but

it is often difficulty to solve the implicit update at each iteration, making it less

practical.

To overcome the drawbacks of the projection methods defined in (3.33) and

(3.34), Korpelevich [51] first proposed a modified method called extragradient

algorithm. It consists two projections at each iteration: a predictor step and a

corrector step.

VI Algorithm 3.

v̄k = PK

(

vk − αkF (vk)
)

(3.35a)

vk+1 = PK

(

vk − αkF (v̄k)
)

(3.35b)

Global convergence is proved for the above algorithm if F is pseudomonotone

or Lipschitz continuous or the problem satisfy some local error bound (see [71]),

provided the step size αk is small enough to satisfy

αk‖F (vk)− F (v̄k)‖ ≤ µ‖vk − v̄k‖ for some fixed µ ∈ (0, 1),

which can be obtained by simple Armijo type line search.

There are many other variants of the original extragradient algorithm with

different predictor search rule and corrector step size aiming to improve perfor-

mance (see [58] and [71]). New related developments in this direction can also

be found in [54] and [58], where the final solution is obtained by averaging along

the solution path.

Our ROF problem (3.19) and (3.7) can both be transformed into a variational

inequality problem VI(K, F ) with a monotone and Lipschitz continuous mapping
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F . Some of the existing algorithms can be applied directly with proved global

convergence. However, numerical experiments show that none of these existing

methods has comparable performance to our algorithm. There are many possi-

ble explanations for this. First of all, in the variational inequality setting the

variables y and x are combined as one variable u and have to be updated in one

step with same steplength; while in our approach the primal y and dual x are

updated alternatively in a Gauss-seidal type of way with freedom to choose their

own step sizes. More importantly, all the existing algorithms are developed to

solve variational inequalities as a general class; while our method exploits the par-

ticular information of the problem, including the bilinear function F and special

structure of the set K, which allow us to choose optimal step size to improve the

performance. On the other hand, our approach is lacking of a global convergence

proof which would be useful to provide some benchmark rules and can help us

better understand how the algorithm works.

3.5 Implementation Details and Numerical Experiments

We report on computational experiments for three test problems in image de-

noising. All the programs are run in an IBM T60 Notebook PC with 1.83 GHz

Intel Core Duo CPU and 1G RAM. All methods are coded in MATLAB. It is

expected that the performance can be improved by recoding in C or C++, but

we believe that improvements would be fairly uniform across all the algorithms.

We test three problems on image denoising. The original clean images and the

input noisy images are shown in Figure 7.1. The size of the two test problems are

256× 256, 512× 512 and 512× 512 respectively. The noisy images are generated

by adding Gaussian noises with standard deviation σ = 20 to the original clean

images.
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The parameter λ in the unconstrained ROF model (3.1) is inverse related to

the noise level σ and usually need to be tuned for each individual image. In our

case, λ is chosen in the following way. We first compute the constrained ROF

model by algorithm PDHGDC for the optimality solution (y∗, x∗). Then the

particular λ that will make the unconstrained ROF model (3.1) equivalent to the

constrained model (3.18) is given by

λ =
‖Ax∗‖

nσ
. (3.36)

For our test problems, the parameters λ obtained in the above way are 0.053, 0.037

and 0.049 respectively.

We tested the following algorithms for denoising problems:

• Chambolle’s semi-implicit gradient descent method [14];

• Primal-dual hybrid descent methods proposed in Section 3.1;

• The CGM method of [25].

Although suitable constant stepsizes will give good convergence results, the

power of our proposed algorithm shall be most exploit with some optimal strategy

of choosing stepsizes (τk, θk). Throughout the experiments, we use the following

stepsize strategy:

Algorithm PDHGD τk = 0.2 + 0.08k, θk = (0.5− 5
15+k

)/τk;

Algorithm PDHGDC τk = 0.2 + 0.08k θk = 0.5/τk.

In Chambolle’s method, we take the time step to be 0.248 for its near optimal

performance. In the CGM implementation, we used a direct solver for the linear

system at each iteration (the conjugate gradient iterative solver was slower on
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these examples). The smooth parameter β is dynamically updated based on

duality gap rather than fixed. In particular we take β(0) = 100 and let β(k) =

β(k−1) ·
(

G(k)

G(k−1)

)2
. We noticed that this simple strategy of updating β borrowed

from interior-point methods outperforms the classical CGM measured by the

decrease of duality gap.

The decision about when an approximate solution is of sufficiently high quality

to terminate the algorithm can be difficult for general constrained optimization

problems. Often, we wish the approximate solution x to be close to a global

minimizer x∗ and/or the function value F (x) be close to F (x∗). In the denoising

case, the duality gap provides a reliable and easily calculated stopping criterion.

We terminate our program whenever the relative duality gap G(yk ,xk)
D(xk)

reaches a

pre-specified tolerance threshold tol.

Tables 6.1 and 6.2 report numbers of iterations and CPU times required by

two PDHD algorithms as well as by Chambolle’s algorithm and CGM method

for the relative duality gap to achieve certain threshold. In all codes, we used the

same starting point (y0, x0) = (z, 0). (Convergence does not depend on initial

conditions though.) We vary the threshold tol from 10−2 to 10−6, producing

results of increasingly high accuracy as tol is decreased.

The results in the tables demonstrates that our proposed approaches is very

competitive to existing methods. They are the winners for all tests with different

stopping criterions tol = 10−2, 10−4, 10−6. It is significantly faster than Cham-

bolle’s method to obtain medium-high accurate solutions and significantly faster

than CGM method to obtain low-medium accurate solutions.

Figure 3.2 shows the denoised images obtained at different values of tol.

Note that visually there is little difference between the results obtained with two

tolerance values 10−2 and 10−4. Smaller values of tol do not produce further
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visual differences.

Figure 7.2 plots the relative duality gap against the number of iterations

for Chambolle’s method as well as for the PDHGD algorithm. It shows that

the PDHGD converges much faster than Chambolle’s method, especially when

a medium-high accurate solution is required.

3.6 Conclusion

We have proposed a primal-dual hybrid gradient descent method to solve the total

variation based image restoration model of Rudin, Osher and Fatemin (ROF) [60].

The algorithm tries to improve performance by alternating between the primal

and dual variable and exploit information from both variables. We compare

our method with two popular existing approaches proposed by Chambolle [14]

and Chan, Golub, and Mulet [25] and show our method is consistently faster

than earlier approaches in all experiments with different stopping criterions. The

complexity of our method is O(N) at each iteration, in fact its cost is basically the

same as Chamboll’s method at each iteration; while the cost of the CGM method

at each iteration is O(N
3
2 ) for solving the block tri-diagonal linear system.

Our algorithm can be applied to solve both the unconstrained ROF and con-

strained ROF model and, in theory, it can be applied to solve other TV min-

imization model or L1 minimization problem by transforming it to a min-max

form. We also pointed out that our algorithm is related to existing projection

type methods for solving variational inequalities.
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Figure 3.1: Denoising test problems. Left: original clean image. Right:

noisy image with Gaussian noise (σ = 20). First row: test problem 1,

256× 256 cameraman. Middle row: test problem 2, 512× 512 barbara. Bottom

row: test problem 3, 512× 512 boat
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Table 3.1: Number of iterations and CPU times (in seconds) for problem 1.

tol = 10−2 tol = 10−4 tol = 10−6

Algorithms Iter CPU (s) Iter CPU (s) Iter CPU (s)

Chambolle 45 1.77 1213 61.3 22597 1159

PDHD 14 0.45 73 2.28 328 10.4

PDHDC 14 0.46 70 2.27 308 9.98

CGM 6 20.3 14 49.8 19 68.0

Table 3.2: Number of iterations and CPU times (in seconds) for problem 2.

tol = 10−2 tol = 10−4 tol = 10−6

Algorithms Iter CPU (s) Iter CPU (s) Iter CPU (s)

Chambolle 141 26.5 3083 578 47935 8988

PDHD 25 3.66 117 23.7 541 110

PDHDC 24 3.66 113 22.9 519 108

CGM 7 191 15 417 23 642

Table 3.3: Number of iterations and CPU times (in seconds) for problem 3.

tol = 10−2 tol = 10−4 tol = 10−6

Algorithms Iter CPU (s) Iter CPU (s) Iter CPU (s)

Chambolle 61 11.4 1218 228 22235 4168

PDHD 16 2.36 72 10.6 320 47.2

PDHDC 16 2.38 71 10.7 316 47.5

CGM 7 189 14 382 20 547
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Figure 3.2: The denoised images with different level of termination criterions.

left column: tol = 10−2, right column: tol = 10−4.
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Figure 3.3: Plot of relative duality gap P (yk)−D(xk)
D(xk)

v.s. Iterations. Top left: test

problem 1. Top right: test problem2. Bottom: test problem 3.
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CHAPTER 4

Duality Based Gradient Projection Method

The discrete primal and dual formulations of the unconstrained ROF model is

given as

(P) min
y

N
∑

l=1

‖AT
l y‖2 +

λ

2
‖y − z‖22 (4.1)

(D) min
x∈X

1

2
‖Ax− λz‖2

where X ≡
{

x = (x1; · · · ; xN) : xl ∈ R
2, ‖xl‖ ≤ 1 for l = 1, · · · , N

}

, (4.2)

In this chapter, we report on the development, implementation, and testing

of some simple but fast explicit algorithms. These algorithms are based on the

following dual formulation (4.2) so they do not require any numerical smoothing

parameters that would prevent them from converging to the true optimizer.

4.1 A Fundamental Convergence Result

Before we discuss about the proposed algorithm we make several remarks on the

discretized problems (4.1), (4.2) and prove a general convergence result that will

be useful later. It is easy to verify that both problems can be obtained from the

function ℓ : R
N ×X → R defined as follows:

ℓ(y, x) := xT AT v +
λ

2
‖y − z‖22. (4.3)
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The primal problem (4.1) is simply

min
v∈RN

max
x∈X

ℓ(y, x),

while the dual problem (4.2) is equivalent to

max
x∈X

min
v∈RN

ℓ(y, x).

It is easy to verify that the conditions (H1), (H2), (H3), and (H4) of [47, pp. 333-

334] are satisfied by this setting. Thus, it follows from [47, Chapter VII, Theo-

rem 4.3.1] that ℓ has a nonempty convex set of saddle points (ȳ, x̄) ∈ R
N × X.

Moreover, from [47, Chapter IV, Theorem 4.2.5] and compactness of X, the point

(ȳ, x̄) ∈ R
N ×X is a saddle point if and only if ȳ solves (4.1) and x̄ solves (4.2).

Note that by strict convexity of the objective in (4.1), the solution ȳ of (4.1) is

in fact uniquely defined. For any saddle point (ȳ, x̄), we have that ℓ(ȳ, x̄) ≤ ℓ(y, x̄)

for all v ∈ R
N , that is, ȳ is a minimizer of ℓ(·, x̄). Thus, from optimality conditions

for ℓ(·, x̄), the following relationship is satisfied for the unique solution ȳ of (4.1)

and for any solution x̄ of (4.2):

Ax̄ + λ(ȳ − z) = 0. (4.4)

By uniqueness of ȳ, it follows that Ax̄ is constant for all solutions x̄ of (4.2).

The following general convergence result will be useful in our analysis of al-

gorithms in Section 4.2.

Proposition 1. Let {xk} be any sequence with xk ∈ X for all k = 1, 2, . . . such

that all accumulation points of {xk} are stationary points of (4.2). Then the

sequence {vk} defined by

vk = g −
1

λ
Axk (4.5)

converges to the unique solution ȳ of (4.1).
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Proof. Note first that all stationary points of (4.2) are in fact (global) solutions

of (4.2), by convexity.

Suppose for contradiction that vk 6→ ȳ. Then we can choose ǫ > 0 and a

subsequence S such that ‖vk − ȳ‖2 ≥ ǫ for all k ∈ S. Since all xk belong to

the bounded set X, the sequence {xk} is bounded, so {vk} is bounded also. In

particular, the subsequence {vk}k∈S must have an accumulation point v̂, which

must satisfy ‖v̂ − ȳ‖2 ≥ ǫ > 0. By restricting S if necessary, we can assume that

limk∈S vk = v̂. By boundedness of {xk}, we can further restrict S to identify a

point x̂ ∈ X such that limk∈S xk = x̂. By (4.5), we thus have

Ax̂ + λ(v̂ − z) = 0 = lim
k∈S

Axk + λ(vk − z) = 0, (4.6)

Since x̂ is an accumulation point of the whole sequence, we have by assumption

that x̂ is a stationary point and hence a solution of (4.2). By our observation

following (4.4), we thus have that Ax̂+λ(ȳ−z) = 0, where ȳ is the unique solution

of (4.1). By comparing this expression with (4.6), we obtain the contradiction

v̂ = ȳ, proving the result.

4.2 Gradient Projection Algorithms

4.2.1 Introduction

Our proposed approaches are essentially gradient projection algorithms applied

to (4.2), in which the search path from each iterate is obtained by projecting

negative-gradient (steepest descent) directions onto the feasible set. Various en-

hancements involving different step-length rules and different line-search strate-

gies are important in making the method efficient.

For the general problem of optimizing a smooth function over a closed convex
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set, that is,

min
x∈X

F (x) (4.7)

(where F : R
m → R is smooth and X is a closed convex subset of R

m), gradient

projection methods set

xk+1 = xk + γk(x
k(αk)− xk), (4.8)

for some parameter γk ∈ [0, 1], where

xk(αk) := PX(xk − αk∇F (xk)), (4.9)

for some αk > 0. Here, PX denotes the projection onto the set X. Since X is

closed and convex, the operator PX is uniquely defined, but in order for the gradi-

ent projection approach to make practical sense, this operator must also be easy

to compute. For this reason, gradient projection approaches have been applied

most often to problems with separable constraints, where X can be expressed

as a Cartesian product of low-dimensional sets. In our case (4.2), X is a cross

product of unit balls in R
2, so computation of PX requires only O(N) operations.

Bertsekas [7] gives extensive background on gradient projection algorithms.

From now on, we will focus on the solution of problem (4.2), which we restate

here:

min
x∈X

F (x) :=
1

2
‖Ax− λg‖22, (4.10)

where the compact set X ⊂ R
2N is defined in (4.2). In this section, we discuss

GP techniques for solving this problem. Our approaches move from iterate xk to

the next iterate xk+1 using the scheme (4.8)-(4.9).

Projection PX on the set X, a Cartesian product of unit Euclidean balls, can

be computed straightforwardly as follows.

(

PX(x)
)

l
=

xl

max{‖xl‖, 1}
, l = 1, 2, . . . , N. (4.11)
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This operation projects each 2 × 1 subvector of x separately onto the unit ball

in R
2. It is worth pointing out here that this structure of the dual constraints,

which makes the gradient projection approach practical, also enables Chambolle

to develop an analytical formula for the Lagrange multipliers in [14].

Our approaches below differ in their rules for choosing the step parameters

αk and γk in (4.8) and (4.9).

4.2.2 Three Frameworks

We next consider three gradient projection frameworks that encompass our gra-

dient projection algorithms, and present convergence results for methods in these

frameworks.

Framework GP-NoLS chooses αk in some predetermined range and

sets γk ≡ 1.

Framework GP-NoLS

Step 0. Initialization. Choose parameters αmin, αmax with 0 < αmin < αmax.

Choose x0 and set k ← 0.

Step 1. Choose steplength αk ∈ [αmin, αmax].

Step 2. Set xk+1 = xk(αk).

Step 3. Terminate if a stopping criterion is satisfied; otherwise set k ← k + 1

and go to Step 1.
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Framework GP-ProjArc also sets γk ≡ 1, but chooses αk by a backtracking

line search to satisfy an Armijo criterion, which enforces monotonic decrease of

F . This approach is referred to by Bertsekas [7, p. 236] as Armijo Rule Along

the Projection Arc.

Framework GP-ProjArc

Step 0. Initialization. Choose parameters αmin, αmax with 0 < αmin < αmax,

and choose ρ ∈ (0, 1) and µ ∈ (0, 1
2
). Choose x0 and set k ← 0.

Step 1. Choose initial steplength ᾱk ∈ [αmin, αmax].

Step 2. Backtracking Line Search. Choose m to be the smallest nonneg-

ative integer such that

F (xk(ρmᾱk)) ≤ F (xk)− µ∇F (xk)T (xk − xk(ρmᾱk)),

where xk(α) is defined as in (4.9);

Set αk = ρmᾱk and xk+1 = xk(αk).

Step 3. Terminate if a stopping criterion is satisfied; otherwise set k ← k + 1

and go to Step 1.

Framework GP-LimMin fixes αk at the start of each iteration (possibly using

information gathered on previous steps), but then performs a “limited minimiza-

tion” procedure to find γk, again ensuring decrease of F at every step.

Framework GP-LimMin
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Step 0. Initialization. Choose parameters αmin, αmax with 0 < αmin < αmax.

Choose x0 and set k ← 0.

Step 1. Choose steplength αk ∈ [αmin, αmax]. Compute xk(αk) and set δk :=

(xk(αk)− xk).

Step 2. Limited Minimizing Line Search. Set xk+1 = xk + γkδ
k, with

γk = mid(0, γk,opt, 1) and

γk,opt = arg min F (xk + γδk) =
−(δk)T∇F (xk)

‖Aδk‖22
(4.12)

Step 3. Terminate if a stopping criterion is satisfied; otherwise set k ← k + 1

and go to Step 1.

The first algorithm we consider — Algorithm GPCL — is obtained from

Framework GP-NoLS by setting αk equal to the fixed value α > 0 at every step.

Convergence is obtained for all α sufficiently small, as we now show.

Theorem 1. Let {xk} be a sequence generated by Algorithm GPCL. Then if

0 < α < .25, the sequence vk obtained from (4.5) converges to the unique solution

ȳ of (4.1).

Proof. Given any two vectors x′ and x′′ we have that

∇F (x′)−∇F (x′′) = AT A(x′ − x′′),

so the Lipschitz constant for ∇F is ‖AT A‖2, which is bounded by 8 (see [14,

p. 92]). It follows immediately from [7, Proposition 2.3.2] that every accumulation

point of {xk} is stationary for (4.10) provided that 0 < α < .25. The result now

follows immediately from Proposition 1.
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The upper bound of .25 in Theorem 1 is tight; we observe in practice that the

method is unstable evn for τ = .251.

We consider other algorithms in Framework GP-NoLS below, in which αk

takes on different values at each iteration that may violate the bound of .25. These

methods may be non-monotone (the function F may increase on some iterations)

and convergence results cannot be proven in general without the addition of step

acceptance criteria, such as the requiring a significant improvement over the worst

function value at the last M points visited for some positive integer M ; see [9].

Strategies are also required for modifying steps that fail these criteria.

For algorithms in Framework GP-ProjArc , we have the following convergence

result.

Theorem 2. Let {xk} be a sequence generated by an algorithm in Framework

GP-ProjArc . Then the sequence vk obtained from (4.5) converges to the unique

solution ȳ of (4.1).

Proof. Proposition 2.3.3 of Bertsekas [7], with minor modifications for the vari-

able choice of ᾱk within the range [αmin, αmax], shows that all limit points of {xk}

are stationary. The result then follows from Proposition 1.

An identical result holds for algorithms in Framework GP-LimMin .

Theorem 3. Let {xk} be a sequence generated by an algorithm in Framework

GP-LimMin . Then the sequence vk obtained from (4.5) converges to the unique

solution ȳ of (4.1).

Proof. Proposition 2.3.1 of Bertsekas [7], with minor modifications for the vari-

able choice of ᾱk within the range [αmin, αmax], shows that all limit points of {xk}

are stationary. The result then follows from Proposition 1.
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4.2.3 Barzilai-Borwein Strategies

We discuss strategies that choose αk using approaches first proposed by Barzilai

and Borwein [6] (BB) and subsequently elaborated by other authors. For the

problem minx∈R2N F (x), the basic BB strategy sets xk+1 ← xk − αk∇F (xk),

where αk is chosen so that α−1
k I mimics the behavior of the Hessian ∇2F over

the previous step. By Taylor’s theorem, we have

∇2F (xk)∆xk−1 ≈ ∆gk−1, ∆xk−1 ≈ (∇2F (xk))−1∆gk−1,

where

∆xk−1 := xk − xk−1, ∆gk−1 := ∇F (xk)−∇F (xk−1),

so our desired property on α is that α−1∆xk−1 ≈ ∆gk−1. Note that for the F we

consider here (4.10), we have ∆gk−1 = AT A∆xk−1.

One formula for α is obtained by performing a least-squares fit in one variable,

as follows:

αk,1 =

[

arg min
τ∈R

‖τ∆xk−1 −∆gk−1‖22

]−1

,

which yields

αk,1 =
‖∆xk−1‖22

〈∆xk−1, ∆gk−1〉
=
‖∆xk−1‖22
‖A∆xk−1‖22

. (4.13)

An alternative formula is obtained similarly, by doing a least-squares fit to α

rather than α−1, to obtain

αk,2 = arg min
α∈R

‖∆xk−1 − α∆gk−1‖22 =
〈∆xk−1, ∆gk−1〉

‖∆gk−1‖22
=
‖A∆xk−1‖22
‖AT A∆xk−1‖22

. (4.14)

These step lengths were shown in [6] to be effective on simple problems; a par-

tial analysis explaining the behavior was given. Numerous variants have been

proposed recently, and subject to with theoretical and computational evaluation.

The BB stepsize rules have also been extended to constrained optimization, par-

ticularly to bound-constrained quadratic programming; see, for example [36] and

[62]. The same formulae (4.13) and (4.14) can be used in these cases.
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Other variants of Barzilai-Borwein schemes have been proposed by other au-

thors in other contexts. The cyclic Barzilai-Borwein (CBB) method proves to

have better performance than the standard BB in many cases (see for example

[35] and the references therein). In this approach, we recalculate the BB stepsize

from one of the formulae (4.13) or (4.14) at only every mth iteration, for some

integer m. At intervening steps, we simply use the last calculated value of αk.

There are alternating Barzilai-Borwein (ABB) schemes that switch between the

definitions (4.13) and (4.14), either adaptively or by following a fixed schedule.

4.2.4 Implemented Variants of Gradient Projection

We discuss here the variants of gradient projection that were implemented in our

computational testing.

Algorithm GPLS. This algorithm falls into GP-PA, where we choose the ini-

tial steplength ᾱk at each iteration by predicting what the steplength would be

if no new constraints were to become active on this step. Specifically, we define

the vector gk by

gk
i =











(∇F (xk))l, if ‖xk
l ‖2 < 1 or (∇F (xk))T

l xk
l > 0,

[

I − xk
l (x

k
l )

T
]

(∇F (xk))l, otherwise.

We then choose the initial guess to be

ᾱk = arg min
α

F (xk − αgk),

which can be computed explicitly as

ᾱk =
(gk)T∇F (xk)

‖Agk‖22
=
‖gk‖22
‖Agk‖22

.

In practice, we find that using 1
2
ᾱk as the initial value gives better performance,

and backtracking is not necessary in any of our numerical experiments.
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Algorithm GPBB-NM. This is a nonmonotone Barzilai-Borwein method in

GP-NoLS, in which we obtain the step αk via the formula (4.13), projected if

necessary onto the interval [αmin, αmax].

Algorithm GPBB-M. A monotone Barzilai-Borwein method in GP-LM, in

which αk is obtained as in Algorithm GPBB-NM.

Algorithm GPCBB-m. A monotone cyclic Barzilai-Borwein algorithm in

GP-LM, in which αk is recalculated from (4.13) at every mth iteration. For-

mally, we set

αml+i = αBB
ml+1 for l = 0, 1, 2, . . . and i = 1, 2, . . . , m− 1,

where αBB
ml+1 is obtained from (4.13) with k = ml + 1, restricted to the interval

[αmin, αmax].

Algorithm GPABB. A monotonic alternating Barzilai-Borwein method in

GP-LM, in which the technique of Serafini, Zanghirati, and Zanni [62, Sec-

tion 2.2], is used to switch between the rules (4.13) and (4.14). This technique

makes use of two positive integer parameters nmin and nmax with 0 < nmin ≤ nmax.

Let nα be the number of consecutive iterations that use the same steplength se-

lection rule, (4.13) or (4.14). We switch from one rule to the other at the next

iteration k+1 if either (i) nα ≥ nmax or (ii) nα ≥ nmin and αk is either a separat-

ing steplength or a bad descent generator. The current step αk is a separating

steplength if it lies between the values generated by the two rules at the next

iteration, that is, αk+1,2 < αk < αk+1,1. Given two constants γl and γu with

0 < γl ≤ 1 ≤ γu, we say that αk is a bad descent generator if one of the following

conditions holds:
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(a) γk,opt < γl and αk = αk,1; or

(b) γk,opt > γu and αk = αk,2.

where γk,opt is obtained from the limited minimization rule (4.12). We refer

interested readers to [62] for the rationale of the criterion. In any case, the

chosen αk is adjusted to ensure that it lies in the interval [αmin, αmax].

4.3 A Sequential Quadratic Programming Algorithm

We describe here a variation on the techniques of the previous section in which

the curvature of the boundary of the constraint set X is accounted for in com-

puting the search direction. The method can be viewed as a sequential quadratic

programming (SQP) method applied to the dual formulation (4.10). The KKT

optimality conditions for this formulation can be written as follows:

AT
l (Ax− λg) + 2zlxl = 0, l = 1, 2, . . . , N,

0 ≤ zl ⊥ ‖xl‖
2 − 1 ≤ 0, l = 1, 2, . . . , N,

where the scalars zl are Lagrange multipliers for the constraints ‖xl‖
2
2 ≤ 1, l =

1, 2, . . . , N , and the operator ⊥ indicates that at least one of its two operands

must be zero. At iteration k, we compute an estimate of the active set Ak ⊂

{1, 2, . . . , N}, which are those indices for which we believe that ‖xl‖
2
2 = 1 at the

solution. In our implementation, we choose this set as follows:

Ak = {l | ‖xk
l ‖2 = 1 and (xk

l )
T [∇F (xk)]l ≤ 0}

= {l | ‖xk
l ‖2 = 1 and (xk

l )
T AT

l (Axk − λg) ≤ 0}. (4.15)
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The SQP step is a Newton-like step for the following system of nonlinear equa-

tions, from the current estimates xk and zk
l , l = 1, 2, . . . , N :

AT
l (Ax− λg) + 2xlzl = 0, l = 1, 2, . . . , N, (4.16a)

‖xl‖
2
2 − 1 = 0, l ∈ Ak, (4.16b)

zl = 0, l /∈ Ak. (4.16c)

Using z̃k+1
l to denote the values of zl at the next iterate, and d̃k to denote the step

in xk, a “second-order” step can be obtained from (4.16) by solving the following

system for d̃k and z̃k+1
l , l = 1, 2, . . . , N :

AT
l Ad̃k + 2z̃k+1

l d̃k
l = −AT

l [Axk − λg]− 2xk
l z̃

k+1
l , l = 1, 2, . . . , N, (4.17a)

2(xk
l )

T d̃k
l = 0, l ∈ Ak, (4.17b)

z̃k+1
l = 0, l /∈ Ak. (4.17c)

We now define Newton-like steps dk in x, and new iterates zk+1 in z, by replacing

AT A by α−1
k I in (4.17a) and solving the following linear system:

α−1
k dk

l + 2zk+1
l dk

l = −AT
l [Axk − λg]− 2xk

l z
k+1
l , l = 1, 2, . . . , N, (4.18a)

2(xk
l )

T dk
l = 0, l ∈ Ak, (4.18b)

zk+1
l = 0, l /∈ Ak. (4.18c)

Considering indices l ∈ Ak, we take the inner product of (4.18a) with xk
l and use

(4.18b) and (4.15) to obtain:

zk+1
l = −(1/2)(xk

l )
T AT

l (Axk − λg), l ∈ Ak.

We obtain the steps dk
l for these indices by substituting this expression in (4.18a):

dk
l = −(α−1

k + 2zk+1
l )−1

[

AT
l (Axk − λg) + 2xk

l z
k+1
l

]

, l ∈ Ak.
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In fact, because of (4.18c), this same formula holds for l /∈ Ak, when it reduces

to the usual negative-gradient step

dk
l = −αkA

T
l (Axk − λg), l /∈ Ak.

We define the (nonmonotone) Algorithm SQPBB-NM by making an initial

choice of αk at each iteration according to the formula (4.13), and calculating

xk+1 = xk + dk and zk+1 as described above. In the monotone variant of this

method, known as SQPBB-M, we successively decrease αk by a factor of ρ ∈ (0, 1),

as in Framework GP-ProjArc , and recalculate xk+1 and zk+1 as above, until a

decrease in the objective function is obtained.

We also tried versions of these methods in which αk was recalculated only on

every mth iteration; these are referred to as SQPBB-NM(m) and SQPBB-M(m),

respectively.

4.4 Computational Experiments

We report on computational experiments for three test problems in image de-

noising. The original clean images and the input noisy images are shown in

Figures 5.2 and 5.3, respectively. The sizes of the discretizations for the three

test problems are 128 × 128, 256 × 256, and 512 × 512, respectively. The noisy

images are generated by adding Gaussian noise to the clean images using the

MATLAB function imnoise, with variance parameter set to 0.01. The fidelity

parameter λ is taken to be 0.045 throughout the experiments. This parameter

is inversely related to the noise level σ and usually needs to be tuned for each

individual image to get an optimal visual result.

We tested the following algorithms:

63



• Chambolle’s semi-implicit gradient descent method [14];

• many variants of gradient projection proposed in Section 4.2;

• the SQP method of Section 4.3;

• the CGM method of [25].

We report on a subset of these tests here, including the gradient projection vari-

ants that gave consistently good results across the three test problems.

In Chambolle’s method, we take the step to be 0.248 for near optimal perfor-

mance, although global convergence is proved in [14] only for steps in the range

(0, .125). We use the same value αk = 0.248 in Algorithm GPCL, as it appears

to be near optimal in this case as well.

For all gradient projection variants, we set αmin = 10−5 and αmax = 105.

(Performances are insensitive to these choices, as long as αmin is sufficiently small

and αmax sufficiently large.) In Algorithm GPLS, we used ρ = 0.5 and µ = 10−4.

In Algorithm GPABB, we set γl = 0.1 and γu = 5.

We also tried variants of the GPBB methods in which the initial choice of

αk was scaled by a factor of 0.5 at every iteration. We found that this variant

often enhanced performance. This fact is not too surprising, as we can see from

Section 4.3 that the curvature of the boundary of constraint set X suggests that

it is appropriate to add positive diagonal elements to the Hessian approximation,

which corresponds to decreasing the value of αk.

In the CGM implementation, we used a direct solver for the linear system

at each iteration, as the conjugate gradient iterative solver (which is an option

in the CGM code) was slower on these examples. The smooth parameter β

is dynamically updated based on duality gap from iteration to iteration. In

64



particular, we take β0 = 100 and let βk = βk−1 (Gk/Gk−1)
2, where Gk and Gk−1

are the duality gaps for the past two iterations. This simple strategy for updating

β, which is borrowed from interior-point methods, outperforms the classical CGM

approach, producing faster decrease in the duality gap.

All methods are coded in MATLAB. It is likely the performance can be im-

proved by recoding in C or C++, but we believe that improvements would be

fairly uniform across all the algorithms.

Tables 6.1, 6.2, and 6.3 report number of iterations and average CPU times

over ten runs, where each run adds a different random noise vector to the true

image. In all codes, we used the starting point x(0) = 0 in each algorithm and

the relative duality gap stopping criterion. We vary the threshold tol from 10−2

to 10−6, producing results of increasingly high accuracy as tol is decreased.

Figure 5.4 shows the denoised images obtained at different values of tol.

Note that visually there is little difference between the results obtained with two

tolerance values 10−2 and 10−4. Smaller values of tol do not produce further

visual differences.

The tables show that on all problems, the proposed gradient projection al-

gorithms are competitive to Chambolle’s method, and that some variants are

significantly faster, especially when moderate accuracy is required for the solu-

tions. Two variants stood out as good performers: the GPBB-NM variant and

the GPBB-M(3) variant in which the initial choice of αk was scaled by 0.5 at

each iteration. For all tests with tol = 10−2, tol = 10−3, and tol = 10−4, the

winner was one of the gradient-projection Barzilai-Borwein strategies.

For these low-to-moderate accuracy requirements, CGM is generally slower

than the gradient-based methods, particularly on the larger problems. The pic-

ture changes considerably, however, when high accuracy (tol = 10−6) is required.
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Figure 4.1: The original clean images for our test problems. Left: 128 × 128

“shape”; middle: 256× 256 “cameraman”; right: 512× 512 “Barbara”.

Figure 4.2: The input noisy images for our test problems. Gaussian noise is

added using MATLAB function imnoise with variance 0.01.

The rapid asymptotic convergence of CGM is seen to advantage in this situation,

and it outperforms the gradient-based methods in all cases. This result is ob-

served again in figure 4.4, which plots the duality gap again the CPU time cost for

Chambolle’s method, CGM method and the GPBB-NM variant of the gradient

projection algorithm.
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Figure 4.3: The denoised images with different level of termination criterions.

left column: tol = 10−2, right column: tol = 10−4.
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Table 4.1: Number of iterations and CPU times (in seconds) for problem 1. ∗ =

initial αk scaled by 0.5 at each iteration.

tol = 10−2 tol = 10−3 tol = 10−4 tol = 10−6

Algorithms Iter Time Iter Time Iter Time Iter Time

Chambolle 18 0.12 169 1.15 1082 7.23 23884 154

GPCL 39 0.25 136 0.90 736 4.71 16196 110

GPLS 23 0.33 181 2.66 845 12.8 17056 260

GPBB-M 12 0.16 152 1.82 836 10.1 17464 167

GPBB-M (2) 18 0.17 187 1.80 941 9.00 21146 193

GPBB-M(3) 13 0.11 92 0.78 287 2.44 3749 32.2

GPBB-M(3)∗ 11 0.09 49 0.41 190 1.60 2298 19.7

GPBB-NM 10 0.09 48 0.46 217 2.10 3857 32.3

GPABB 13 0.16 58 0.66 245 2.80 2355 24.0

SQPBB-M 13 0.17 47 0.66 196 2.81 3983 61.0

CGM 6 4.05 9 5.90 12 8.00 18 12.1
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Table 4.2: Number of iterations and CPU times (in seconds) for problem 2. ∗ =

initial αk scaled by 0.5 at each iteration.

tol = 10−2 tol = 10−3 tol = 10−4 tol = 10−6

Algorithms Iter Time Iter Time Iter Time Iter Time

Chambolle 27 1.05 164 6.40 815 31.80 15911 628

GPCL 32 1.26 112 4.31 540 21.0 11434 452

GPLS 20 1.85 132 14.8 575 66 12892 1531

GPBB-M 20 1.14 124 7.01 576 32.7 11776 674

GPBB-M (2) 20 1.12 72 4.05 245 13.9 4377 251

GPBB-M(3) 20 1.12 77 4.33 345 19.5 3522 200

GPBB-M(3) fudge 17 0.95 47 2.65 162 9.17 1766 100

GPBB-NM 16 0.85 48 2.53 178 9.52 2802 150

GPABB 16 1.06 47 3.16 168 11.4 1865 127

SQPBB-M 14 1.10 41 3.44 152 13.5 2653 245

CGM 6 22.30 10 37.5 13 48.8 19 71.0
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Table 4.3: Number of iterations and CPU times (in seconds) for problem 3. ∗ =

initial αk scaled by 0.5 at each iteration.

tol = 10−2 tol = 10−3 tol = 10−4 tol = 10−6

Algorithms Iter Time Iter Time Iter Time Iter Time

Chambolle 27 5.46 131 28.3 534 112 8314 1781

GPCL 24 4.65 80 17.2 328 69.1 5650 1212

GPLS 34 10.9 86 32.5 322 128 5473 2258

GPBB-M 20 5.50 84 24.9 332 98.2 5312 1576

GPBB-M (2) 20 5.40 56 16.3 160 46.6 4408 1290

GPBB-M(3) 20 5.38 67 19.5 174 50.5 2533 738

GPBB-M(3) fudge 17 4.58 41 11.9 131 38.0 1104 321

GPBB-NM 15 3.92 40 11.3 115 32.4 1371 388

GPABB 14 4.57 35 12.3 122 42.8 1118 394

SQPBB-M 14 4.91 40 15.8 109 44.6 1556 646

CGM 7 168 10 216 14 302 21 441
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Figure 4.4: Plots of duality gap vs. CPU time cost. Problem 1-3 are shown in

the order of top to bottom.
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CHAPTER 5

Block Coordinate Descent (BCD) Method

5.1 Framework

In this section, we shall apply block coordinate descent (BCD) or block nonlinear

Gauss-Seidal method to solve the dual ROF problem (1.12).

Consider a general optimization problem

minimize F (x)

subject to x ∈ X = X1 ×X2 × · · · ×Xn ∈ R
m, (5.1)

where f : R
m → R is a continuously differentiable function and the feasible set

X is the Cartesian product of closed, nonempty and convex subsets Xi ∈ Rmi ,

for i = 1, · · · , n with
∑n

i=1 mi = m.

If the vector x ∈ Rm is partitioned into n component vectors xi ∈ Rmi , then

the minimization version of the block coordinate descent method for the solution

of (5.1) is defined by

xk+1
i = arg min

yi∈Xi

F (xk+1
1 , · · · , xk+1

i−1 , yi, xk
i+1, · · · , x

k
n), (5.2)

which update cyclicly for each component of x, starting from a given initial point

x0 ∈ X and generates a sequence of {xk} with xk = (xk
1 · · · , x

k
n).
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The discrete dual formulation for TV restoration is

min φ(w) = ‖∇ · w + z‖2

subject to |wi,j|
2 ≤ 1 for i, j = 1 · · · , n, (5.3)

where z = λf, w = (wi,j) ∈ R
2×n×n with each component wi,j ∈ R

2 , i.e.

wi,j =





w1
i,j

w2
i,j



 , 1 ≤ i, j ≤ n. (5.4)

The discrete divergence operator ∇· is defined in ( 1.24) which we rewrite it here:

(∇ · w)i,j =



















w1
i,j − w1

i−1,j if 1 < i < n

w1
i,j if i = 1

−w1
i−1,j if i = n

+



















w2
i,j − w2

i,j−1 if 1 < j < n

w2
i,j if j = 1

−w2
i,j−1 if j = n.

(5.5)

Following the idea of the block coordinate descent method (5.2), we fix w at

all other pixels except at some interior point (i, j) (i, j 6= 1 or n) , which lead to

a local minimization problem in R
2:

min
‖wi,j‖≤1

φ(wi,j) = [w1
i,j + w2

i,j − (w1
i−1,j + w2

i,j−1 − zi,j)]
2

+ [w1
i,j − (w1

i+1,j + w2
i+1,j − w2

i+1,j−1 + zi+1,j)]
2 (5.6)

+ [w2
i,j − (w2

i,j+1 + w1
i,j+1 − w1

i−1,j+1 + zi,j+1)]
2

+ other terms not dependent on wi,j

The local minimization problems on the boundary points can be modified ac-

cordingly as in the definition of the divergence operator (5.5). We shall describe

them briefly here.

The dual ROF model (5.3) has separable simple Euclidean ball constraints

which makes each sub minimization problem (5.6) fairly easy to solve at each
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’coordinate’. This simple trait of the constraints that makes the BCD algorithm

practical here is also the reason that makes gradient projection practical and

enables Chambolle to derive the analytical formula for the Lagrange multipliers.

When i = 1 :

min
‖wi,j‖≤1

φ(wi,j) = [w1
i,j + w2

i,j − (w2
i,j−1 − zi,j)]

2

+ [w1
i,j − (w1

i+1,j + w2
i+1,j − w2

i+1,j−1 + zi+1,j)]
2 (5.7)

+ [w2
i,j − (w2

i,j+1 + w1
i,j+1 + zi,j+1)]

2

+ other terms not dependent on wi,j

When j = 1 :

min
‖wi,j‖≤1

φ(wi,j) = [w1
i,j + w2

i,j − (w1
i−1,j − zi,j)]

2

+ [w1
i,j − (w1

i+1,j + w2
i+1,j + zi+1,j)]

2 (5.8)

+ [w2
i,j − (w2

i,j+1 + w1
i,j+1 − w1

i−1,j+1 + zi,j+1)]
2

+ other terms not dependent on wi,j

Following (5.5), the boundary values {w1
n,j : j = 1 · · · , n} and {w2

i,n : i =

1, · · · , n} are not relevant in our problem and we simply set them to be 0. Hence

the sub minimization problems on boundary i = n or j = n degenerate to the

following 1-D problems.

When i = n :

min
|w2

i,j |≤1
φ(wi,j) = [w2

i,j − (w2
i,j−1 + w1

i−1,j − zi,j)]
2

+ [w2
i,j − (w2

i,j+1 − w1
i−1,j+1 + zi,j+1)]

2 (5.9)

+ other terms not dependent on wi,j
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When j = n :

min
|w1

i,j |≤1
φ(wi,j) = [w1

i,j − (w1
i−1,j + w2

i,j−1 − zi,j)]
2

+ [w1
i,j − (w1

i+1,j − w2
i+1,j−1 + zi+1,j)]

2 (5.10)

+ other terms not dependent on wi,j

5.2 Implementation

The sub optimization problems (5.6)- (5.10) generated by BCD algorithm are

ball constrained quadratic minimization problems with at most two unknowns.

We shall now give a generic algorithm to solve each of these subproblems. We

shall solve subproblem (5.6- 5.8) in details in the following discussion using (5.6)

as an example. The subproblems (5.9) and (5.10) are scalar minimizations and

can be solved very easily.

Problem (5.9):

v =
1

2
(w2

i,j−1 + w2
i,j+1 + w1

i−1,j − w1
i−1,j+1 + zi,j+1 − zi,j)

w2
i,j = min

{

max{−1, v}, 1
}

.

Problem (5.10):

v =
1

2
(w1

i−1,j + w1
i+1,j + w2

i,j−1 − w2
i+1,j−1 + zi+1,j − zi+1,j)

w1
i,j = min

{

max{−1, v}, 1
}

.

Problem (5.6- 5.8): First problem (5.6) can be rewritten as

min
p2+q2≤1

φ(p, q) = (p− a)2 + (q − b)2 + (p + q − c)2 (5.11)
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where wi,j = (p, q) and

a = w1
i+1,j + w2

i+1,j − w2
i+1,j−1 + zi+1,j

b = w2
i,j+1 + w1

i,j+1 − w1
i−1,j+1 + zi,j+1

c = w1
i−1,j + w2

i,j−1 − zi,j

To solve problem (5.11), we first solve its unconstrained problem and obtain

by first-order conditions

p =
1

3
(2a− b + c) (5.12)

q =
1

3
(2b− a + c) (5.13)

The above (p, q) is the solution to (5.11) if p2 + q2 ≤ 1. Otherwise the constraint

is active and we solve the equality-constrained problem by the KKT conditions

(λ + 2)p + q = a + c

p + (λ + 2)q = b + c

p2 + q2 = 1

λ > 0 ,

where λ is the Lagrange multiplier. The first two equations in KKT system yield

p + q =
a + b + 2c

λ + 3

p− q =
a− b

λ + 1
(5.14)

Substituting the above equations to (p+q)2+(p−q)2 = 2 we obtain the following

equation for the Lagrange multiplier

f(λ) =
A

(λ + 3)2
+

B

(λ + 1)2
− 1 = 0 (5.15)

76



where A = 1
2
(a + b + 2c)2 and B = 1

2
(a− b)2.

Equation (5.15) yields an a fourth-order polynomial which can be solved ana-

lytically. However, it is more effective to solve it numerically by Newton’s method.

Newton’s method is convergent for solving 5.15 with initial condition λ0 = 0.

Instead of giving a rigorous proof, we shall illustrate our argument with the fol-

lowing figure (5.1). First, there exists a λ∗ > 0 with f(λ∗) = 0. Then it follows

that f(0) > 0 by the monotonicity of function f(λ) on (−1,∞). The plot of

f(λ) looks like the one in figure (5.1). Then it is straightforward to see that the

iterates λk converges to λ∗ with monotonically decreasing |λk − λ∗|. In practice

it only take couple of steps to obtain an approximate λ∗.

0 0.5 1 1.5
−0.5

0

0.5

1

1.5

λ

f(
λ)

Figure 5.1: Convergence of Newton’s method

Substituting the obtained solution of (5.15) λ∗ to system (5.14) then gives the
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optimal wi,j.

The full BCD algorithm are given as follows

Algorithm BCD

Step 0. Initialization. Pick initial feasible w(0), set k ← 0.

Step 1. Updating. For i, j = 1, · · · , n, update w
(k+1)
i,j as

w
(k+1)
i,j = arg min

‖wi,j‖≤1

∥

∥

∥
∇ ·

(

w
(k+1)
1,1 , · · · , wi,j, · · ·w

(k)
n,n

)

− z
∥

∥

∥

2

by the method described earlier in section (5.2).

Step 2. Terminate if a stopping criterion is satisfied;

otherwise set k ← k + 1 and return to step 1.

5.3 BCD for Anisotropic TV

The discrete dual formulation for the anisotropic TV denoising model is

min D[w] = ‖∇ · w + z‖

subject to |w1
i,j| ≤ 1 and |w2

i,j| ≤ 1 for i, j = 1 · · · , n, (5.16)

where w and the ∇ · w are the same as defined in (5.4) and (5.5).

The constraints in problem (5.16) are separable in the scalar level, which

makes the subproblem (5.2) of the BCD algorithm even easier to solve. In fact,

the algorithm is simply just coordinate descent method. We shall briefly describe

the coordinate descent algorithm for the anisotropic dual ROF model as follows.
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Suppose (i, j) is not on the boundary. Fix any other arguments except w1
i,j,

we have the following sub minimization problem

min
|w1

i,j |≤1
[w1

i,j − (w1
i−1,j − w2

i,j + w2
i,j−1 − zi,j)]

2

+ [w1
i,j − (w1

i+1,j + w2
i+1,j − w2

i+1,j−1 + zi+1,j)]
2 (5.17)

+ other terms not dependent on w1
i,j,

which can be easily solved as

v =
1

2
(w1

i−1,j + w1
i+1,j − w2

i,j + w2
i,j−1 + w2

i+1,j − w2
i+1,j−1 + zi+1,j − zi+1,j)

w1
i,j = min

{

max{−1, v}, 1
}

. (5.18)

Similarly, fixing any other arguments except w1
i,j gives

min
|w2

i,j
|≤1

[w2
i,j − (w2

i,j−1 + w1
i−1,j − w1

i,j − zi,j)]
2

+ [w2
i,j − (w2

i,j+1 + w1
i,j+1 − w1

i−1,j+1 + zi,j+1)]
2 (5.19)

+ other terms not dependent on w1
i,j,

which can be solved as

v =
1

2
(w2

i,j−1 + w2
i,j+1 + w1

i,j+1 − w1
i,j + w1

i−1,j − w1
i−1,j+1 + zi,j+1 − zi,j)

w2
i,j = min

{

max{−1, v}, 1
}

. (5.20)

The boundary points can be treated the same way as in the isotropic case.

We can also unify all the points into one framework by setting w1
0,j, w

1
n,j, w

2
i,0, w

2
i,n

to be 0 for i, j = 1, · · ·n − 1 and iterates through i = 1, · · · , n − 1; j = 1, · · · , n

for w1
i,j and iterates through i = 1, · · · , n; j = 1, · · · , n− 1 for w2

i,j.

The full BCDaniso algorithm is given as follows. We here eliminate the iter-

ation supscript k and use one w to describe the algorithm.

Algorithm BCDaniso
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Step 0. Initialization. Pick initial feasible w. Set the boundary points

w1
0,j, w1

n,j, w2
i,0 and w2

i,n to be 0 for i, j = 1, · · ·n− 1.

Step 1. Updating. For i = 1, · · · , n− 1 and j = 1, · · · , n, set

v =
1

2
(w1

i−1,j + w1
i+1,j − w2

i,j + w2
i,j−1 + w2

i+1,j − w2
i+1,j−1 + zi+1,j − zi+1,j)

w1
i,j = min

{

max{−1, v}, 1
}

. (5.21)

For i = 1, · · · , n and j = 1, · · · , n− 1, set

v =
1

2
(w2

i,j−1 + w2
i,j+1 + w1

i,j+1 − w1
i,j + w1

i−1,j − w1
i−1,j+1 + zi,j+1 − zi,j)

w2
i,j = min

{

max{−1, v}, 1
}

. (5.22)

Step 2. Terminate if w satisfies the stopping criterion;

otherwise return to step 1.

5.4 Convergence Theory

The convergence of the block coordinate descent method follows directly from

[44] or sec 2.7 of [7]. We quote the relevant results from [44] as follows.

Definition 2. Following the convention in (5.1) and let i ∈ {1, 2, · · · , n}; we say

that f is strictly quasiconvex with respect to xi ∈ Xi on X if for every x ∈ X and

yi ∈ Xi with yi 6= xi we have

f(x1, · · · , txi + (1− t)yi, · · · , xn) < max{f(x), f(x1, · · · , yi, · · · , xn)}

for all t ∈ (0, 1).
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Proposition 2. Suppose that the function f is strictly quasiconvex with respect

to xi on X for each i = 1, 2, · · · , n− 2 in the sense of Definition 2 and that the

sequence {xk} generated by the BCD method (5.2) has limit points. Then every

limit point x̄ of {xk} is a critical point of Problem (5.1).

Theorem 4. The BCD and BCDaniso algorithms described in the above sections

are global convergent.

Proof. The proof follows directly from Proposition 2. First of all, it is easy to

check that the energy function of the dual ROF model is strictly quasi-convex with

respect to each corresponding ‘coordinate’ for both the isotropic and anisotropic

case. Hence, Proposition 2 applies. Secondly, X is compact for both cases.

Hence every sequence of iterates {w(k)} has a limit point w̄. It follows from

Proposition 2 that the limit point w̄ is a stationary point and hence a global

minimizer of the given convex problem. Finally, by monotonicity of the algorithm:

F (w(k+1)) ≤ F (w(k)), we have that F (w(k)) ↓ F ∗ = global minimum energy.

5.5 Numerical Experiments

We report on computational experiments for three test problems in image denois-

ing. All the programs are run in an IBM T60 Notebook PC with 1.83 GHz Intel

Core Duo CPU and 1G RAM. All methods are coded in MATLAB. The original

clean images and the input noisy images are shown in Figures 5.2 and 5.3, respec-

tively. The sizes of the discretizations for the three test problems are 128× 128,

256×256, and 512×512, respectively. The noisy images are generated by adding

Gaussian noise to the clean images using the MATLAB function imnoise, with

variance parameter set to 0.01. The fidelity parameter λ is taken to be 0.045 for

the isotropic ROF model and 0.05 for the anisotropic ROF model throughout the
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experiments. This parameter is inversely related to the noise level σ and usually

needs to be tuned for each individual image to get an optimal visual result. For

the BCD algorithm for isotropic ROF model, the subproblem at each coordinate

block are solved by the approach described in section 5.2. The inner Newton’

method to compute λ∗ at each coordinate block is stopped when |f ′(λ)| < 10−12.

We tested the following algorithms:

• Chambolle’s semi-implicit gradient descent method [14] for isotropic ROF

model;

• BCD algorithm for isotropic ROF model as described in section 5.2;

• Chambolle’s semi-implicit gradient descent method [14] for anisotropic ROF

model;

• BCD algorithm for anisotropic ROF model as described in section 5.3.

Figure 5.4 shows the denoised images obtained by different models: the

isotropic ROF model and the anisotropic ROF model.

Tables 6.1, 6.2, and 6.3 report number of iterations and average CPU times

over ten runs, where each run adds a different random noise vector to the true

image. In all codes, we used the starting point w(0) = 0 in each algorithm and

the relative duality gap stopping criterion. We vary the threshold tol from 10−2

to 10−4, producing results of increasingly high accuracy as tol is decreased.

The tables show that on all problems, the proposed Block Coordinate Descent

algorithms are competitive to Chambolle’s method, and that they are consistently

faster in most situations. The tables also show that the advantage of BCD al-

gorithm over Chambolle’s algorithm is more profound for anisotropic TV due to

the simpler constraints.
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Figure 5.2: The original clean images for our test problems. Left: 128 × 128

“shape”; middle: 256× 256 “cameraman”; right: 512× 512 “Barbara”.

Figure 5.3: The input noisy images for our test problems. Gaussian noise is

added using MATLAB function imnoise with variance 0.01.
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Figure 5.4: The denoised images with TV terms. left column: isotropic TV, right

column: anisotropic TV.
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Table 5.1: Iterations & CPU costs, isotropic TV, problem 1.

tol = 10−2 tol = 10−3 tol = 10−4

Algorithms Iter CPU (s) Iter CPU (s) Iter CPU (s)

Chambolle 35 0.23 323 2.19 1779 11.7

BCD 11 0.22 81 1.83 403 9.50

Table 5.2: Iterations & CPU costs, isotropic TV, problem 2.

tol = 10−2 tol = 10−3 tol = 10−4

Algorithms Iter CPU (s) Iter CPU (s) Iter CPU (s)

Chambolle 47 2.02 276 11.0 1285 50.2

BCD 14 1.59 66 7.47 278 32.3

Table 5.3: Iterations & CPU costs, isotropic TV, problem 3.

tol = 10−2
tol = 10−3

tol = 10−4

Algorithms Iter CPU (s) Iter CPU (s) Iter CPU (s)

Chambolle 44 11.1 202 49.6 814 200

BCD 12 6.38 45 24.3 166 92.3
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Table 5.4: Iterations & CPU costs, anisotropic TV, problem 1.

tol = 10−2 tol = 10−3 tol = 10−4

Algorithms Iter CPU (s) Iter CPU (s) Iter CPU (s)

Chambolle 48 0.39 430 4.41 2042 20.6

BCD 7 0.06 49 0.39 247 1.97

Table 5.5: Iterations & CPU costs, anisotropic TV, problem 2.

tol = 10−2 tol = 10−3 tol = 10−4

Algorithms Iter CPU (s) Iter CPU (s) Iter CPU (s)

Chambolle 63 2.70 345 15.1 1279 54.0

BCD 8 0.38 41 1.75 150 6.59

Table 5.6: Iterations & CPU costs, anisotropic TV, problem 3.

tol = 10−2
tol = 10−3

tol = 10−4

Algorithms Iter CPU (s) Iter CPU (s) Iter CPU (s)

Chambolle 61 12.8 252 51.2 805 164

BCD 8 1.70 32 6.67 99 19.6
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CHAPTER 6

Multilevel Optimizations

As we have seen in section 2.1.6, various multigrid (multilevel) methods have been

developed, trying to solve the total variation denoising problem efficiently with

scalable computational complexity. Most existing multilevel methods are based

on the primal formulation (1.4) and/or its associated Euler-Lagrange equation.

The non-differentiability of the primal energy usually makes it difficult to develop

efficient multigrid algorithms. In most of the times, finding a good smoother for

the primal problem is already challenging enough.

In this chapter, we shall derive the multilevel optimization algorithms based

on the dual formulation of the ROF model (1.12). We shall see that in this case

the main challenge in developing efficient multilevel methods is the nonlinear

constraints. In other words, we need to find a correct way to interpolate the

constraints in coarser level such that the coarser level correction will not violate

the finer level constraints.

6.1 Multilevel Optimization for 1D Dual TV Model

As a starting point, we shall describe the multilevel optimization algorithm ap-

plied on dual formulation of the one dimensional total variation based signal
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denoising model, which is (z = λf) :

min φ(w) = ‖∇ · w + z‖2

subject to Lj ≤ wj ≤ Rj for j = 1, 2, · · ·n, (6.1)

where Lj = −1, Rj = 1 and the one dimensional divergence operator ∇· is

(∇ · w)j =



















w1, if i = 1

wj − wj−1 if 2 ≤ j ≤ n

−wn if j = n + 1

(6.2)

We shall now apply multilevel technique to solve the above problem (6.1).

Let k be the level of our multilevel algorithm with k = 1 being the finest level

and k = logn
2 + 1 being the coarsest level. At level k, the uniform block size is

b = 2k−1 and number of blocks is τk = n/b.

Suppose w is an intermediate solution (at the finest level) and its modification

at the next coarser level is given by δw = P n
m c = [c1, c1, c2, c2, · · · · · · , cm, cm],

where m = n
2
, c = [c1, c2, · · · , cm] is the unknowns on the coarser level and P is

the (piecewise constant) prolongation operator from coarser level to finer level.
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The objective function with the coarser level correction is then given as

φ(w + Pc)

= ‖∇ · (w + Pc)− z‖2

= (w1 + c1 + z1)
2 + [(w2 + c1)− (w1 + c1) + z2]

2

+ [(w3 + c2)− (w2 + c1) + z3]
2 + [(w4 + c2)− (w3 + c2) + z4]

2

+ · · · · · · · · · · · · · · ·

+ [(wn−1 + cm)− (wn−2 + cm−1)]
2 + [(wn + cm)− (wn−1 + cm)]2

+ [−(wn + cτk
) + zn+1]

2

= (c1 + w1 + z1)
2

+ (c2 − c1 + w3 − w2 + z3)
2

+ · · · · · ·

+ (cm − cm−1 + wn−1 − wn−2 + zn−1)
2

+ (−cm − wn + zn+1)
2

+ other terms independent of c

= ‖∇ · c + z̃‖2 + other terms independent of c,

where z̃ is given by

z̃1 = w1 + z1

z̃j+1 = w2j+1 − w2j + z2j+1 for j = 1, · · · , m− 1

z̃m+1 = −wn + zn+1,

which is equivalent to z̃ = R (∇ ·w + z). Here R is the restriction operator from

finer level to coarser level, i.e.,

R (x1, x2, x3, · · · , x2l+1) = x(1 : 2 : 2l + 1) = (x1, x3, x5 · · · , x2l+1).

The finer level constraints −1 ≤ (w + Pc)j ≤ 1 can be expressed as
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L2j−1 ≤ cj + w2j−1 ≤ R2j−1

L2j ≤ cj + w2j ≤ R2j

for j = 1, · · · , m.

The above constraints is equivalent to the following coarser level constraints

L̃j ≤ cj ≤ R̃j for j = 1, · · · , m, (6.3)

where

L̃j = max(L2j−1 − w2j−1, L2j − w2j)

R̃j = min(R2j−1 − w2j−1, R2j − w2j).
(6.4)

Put the above information all together, the problem of solving for the coarser

level correction is the following minimization:

min φ̃(c) = ‖∇ · c + z̃‖2

subject to L̃j ≤ cj ≤ R̃j for j = 1, · · · , m. (6.5)

Now, problem (6.5) has the exact same form as the original problem (6.1)

except it is on a coarser level. Hence we can apply the same smoother to get an

approximate solution of (6.5) and then pass to the even coarser grid for correc-

tions. We can adopt the same technique recursively until we get to the coarsest

level and then we add the correction back level by level until reach the finest level.

Each cycle of getting from finest level to coarsest level and then back to finest

level is called a V-Cycle in multigird jargon. The complexity for each V-Cycle is

O(n).

The full multilevel algorithm ML1D using the recursive V-Cycle is shown

below. Here we use

w = Smoother(w0, z, L, R, iter)
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to denote an approximate intermediate solution of (6.1) that we obtained by apply

a specified smoother(relaxation) iter times with initial guess w0. The actual level

of the problem is implied by the context.

We then use the recursive function

w = Vcycle(w0, z, L, R)

to denote outcome of applying one V-cycle to solve the original problem (6.1).

The recursive function can be defined as follows:

function w = Vcycle(w0, z, L, R)

n = length(w0);

if n == 1

w1 = 1
2
(z2 − z1);

return;

else

w = Smoother(w0, z, L, R, iter1);

m = n
2
;

for j = 1 : m

L̃j = max(L2j−1 − w2j−1, L2j − w2j);

R̃j = min(R2j−1 − w2j−1, R2j − w2j);

end

z̃ = R(∇ · w + z);

c = Vcycle(0, z̃, L̃, R̃);

w = w + Pc;

w = Smoother(w, z, L, R, iter2);

return;

end
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The full multilevel algorithm ML1D is shown as below.

Algorithm ML1D

Step 0. Initialization. Set z = λf, Lj = −1, Rj = 1, for j = 1, · · ·n.

Pick initial feasible w0. Set k = 0.

Step 1. Updating Using V-Cycle.

wk+1 = Vcycle(wk, z, L, R).

Step 2. Terminate if wk+1 satisfies the stopping criterion;

otherwise set k ← k + 1 and return to step 1.

6.2 Multilevel Optimization for 2D Dual TV Model

We now generalize the idea of multilevel optimization to 2D TV models.

The discrete dual formulation for TV restoration is

min φ(w) = ‖∇ · w + z‖2

subject to ‖wi,j‖ ≤ 1 for i, j = 1 · · · , n, (6.6)

where z = λf, w = (wi,j) ∈ R
2×n×n with each component wi,j ∈ R

2 , i.e.

wi,j =





w1
i,j

w2
i,j



 , 1 ≤ i, j ≤ n. (6.7)

The discrete divergence operator ∇· is defined in ( 1.24) which we rewrite it here:
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(∇ · w)i,j =



















w1
i,j − w1

i−1,j if 1 < i < n

w1
i,j if i = 1

−w1
i−1,j if i = n

+



















w2
i,j − w2

i,j−1 if 1 < j < n

w2
i,j if j = 1

−w2
i,j−1 if j = n.

(6.8)

The multilevel formulation for the 2D problem is more complicated and te-

dious than the 1D problem. First let us fixed some conventions. We set the size

of matrices w1, w2 and z to be n × (n + 1), (n + 1) × n and (n + 1) × (n + 1)

respectively with n being a power of 2. Let m = n
2
.

We follow the same setup in the 1D case and let w1, w2 be the intermediate

solution on the finest level. We then use c1, c2 to denote the corrections in the

next coarser level. We again use the piecewise constant interpolation to map P

the coarser level correction to the finer level, i.e.

C =











c1,1 c1,2 . . .

c2,1 c2,2 . . .
...

...
. . .











⇒ PC =























c1,1 c1,1 c1,2 c1,2 . . .

c1,1 c1,1 c1,2 c1,2 . . .

c2,1 c2,1 c2,2 c2,2 . . .

c2,1 c2,1 c2,2 c2,2 . . .
...

...
...

...
. . .























The objective function with the coarser level correction is

φ(w + Pc) = ‖∇ · (w + Pc) + z‖2 (6.9)

To rearrange the above objective function, we realized that the indices (2i, 2j), (2i−

1, 2j), (2i, 2j−1) and (2i−1, 2j−1) should be treated differently. If we work our
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every detail, we will obtain the following formulation for energy function (6.9):

φ(w + Pc) = ‖∇ · c + z̃‖2

+

m
∑

j=1

‖∇ · c1(:, j)F (:, j)‖2

+
m

∑

i=1

‖∇ · c2(i, :) + G(i, :)‖2

+ other terms independent of c. (6.10)

In (6.10) and later equations, We use the same notation ∇· for both the 2D

divergence operator defined in (6.8) and 1D divergence operator defined in (6.2).

It is easily to figure out their real meaning in the context. Here, the first is for

2D and the rest are for 1D.

In (6.10), c1 and G are m × (m + 1) matrices, c2 and F are (m + 1) × m

matrices and z̃ has dimension (m+1)× (m+1). F, G and z̃ are given as follows.

S = ∇ · w + z

z̃ = S(1 : 2 : n + 1, 1 : 2 : n + 1)

F = S(1 : 2 : n + 1, 2 : 2 : n)

G = S(2 : 2 : n, 1 : 2 : n + 1)

(6.11)

Motivated by equation (6.10), we rewrite the original dual ROF model (6.6) to

facilitate the recursive multigrid V-cycle algorithm as follows.

min φ(w) = ‖∇ · w + z‖2

+γ

n
∑

j=1

‖∇ · w1(:, j) + X(:, j)‖2

+ γ
n

∑

i=1

‖∇ · w2(i, :) + Y (i, :)‖2. (6.12)

subject to ‖wi,j‖ ≤ Ri,j for i, j = 1 · · · , n,

where initially in the finest level γ = 0, X, Y are (n + 1)×n and n× (n + 1) zero

matrices and R is a (n + 1)× (n + 1) matrix with all ones.
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Then the objective function with coarser level corrections can be written as

φ(w + Pc) = ‖∇ · c + z̃‖2

+

m
∑

j=1

‖∇ · c1(:, j) + F (:, j)‖2

+
m

∑

i=1

‖∇ · c2(i, :) + G(i, :)‖2

+ 2γ

m
∑

j=1

‖∇ · c1(:, j) + Q(:, j)‖2

+ 2γ
m

∑

i=1

‖∇ · c2(i, :) + T (i, :)‖2

+ other terms independent of c. (6.13)

or

φ(w + Pc) = ‖∇ · c + z̃‖2

+ γ̃

m
∑

j=1

‖∇ · c1(:, j) + X̃(:, j)‖2

+ γ̃
m

∑

i=1

‖∇ · c2(i, :) + Ỹ (i, :)‖2

+ other terms independent of c. (6.14)

where F, G and z̃ are given in (6.11), and Q, T, X̃, Ỹ and γ̃ are given as follows:

γ̃ = 1 + 2γ

Q = 1
2

[

U(1 : 2 : n + 1, 1 : 2 : n− 1) + U(1 : 2 : n + 1, 2 : 2 : n)
]

T = 1
2

[

V (1 : 2 : n− 1, 1 : 2 : n + 1) + V (2 : 2 : n, 1 : 2 : n + 1)
]

X̃ = (F + 2γQ)/γ̃

Ỹ = (G + 2γT )/γ̃

(6.15)

The objective function (6.14) is exactly in the same form with the original energy

in (6.12) except it is on the coarser level.
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The constraints on the coarser level variable c are given as

‖ci,j + w2i−1,2j−1‖ ≤ R2i−1,2j−1

‖ci,j + w2i−1,2j‖ ≤ R2i−1,2j

‖ci,j + w2i,2j−1‖ ≤ R2i,2j−1

‖ci,j + w2i,2j‖ ≤ R2i,2j

for 1 ≤ i, j ≤ m (6.16)

Now we shall tried to simplify the above constraints on the coarser level so that

we can reduce the overall complexity of the problem by a factor of 2 × 2. Un-

fortunately, there is no simple way to achieve that as we have done for the 1D

problem in (6.3). It is easily to see from 6.16 that the feasible set for each ci,j

is the intersection of 4 unit disks, which in general cannot be expressed using a

single equation.

There are several plausible approaches for this problem. For example, in stead

of trying to simply the constraints (6.16) to an equivalent single constraint, i.e.

the old constraints (6.16) are satisfied iff. the new constraint is satisfied, we can

relax this equivalence to a sufficient but not necessary new constraint as follows:

‖ci,j‖ ≤ R̃i,j (6.17)

where R̃i,j = min
{

Rk,l − ‖wk,l‖ : 2i− 1 ≤ k ≤ 2i, 2j − 1 ≤ l ≤ 2j
}

.

If we choose the new constraints on the coarser level as above, then the opti-

mization problem of finding coarser level correction is exactly in the same form as

the original problem in the finest level. We can apply some smoother (e.g. BCD

algorithm in Chapter 5) several iterations to solve an intermediate solution on the

coarser level and pass it to the next even coarser level recursively. However, the

problem is that the constraints (6.17) may be too restrictive for the algorithm

to make any useful corrections on the coarser level. An extreme case is when

R̃i,j = 0 and no correction will be allowed on that block.
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We notice that the anisotropic TV model does not have this problem and

therefore is more suitable for applying our multilevel optimization algorithm in

this sense. The dual formulation of the anisotropic ROF model has the exact

same objective function with the isotropic ROF model (6.12) but its constraints

are simple bound constraints. The dual anisotropic ROF model is shown as

follows

min φ(w) = ‖∇ · w + z‖2

+γ
n

∑

j=1

‖∇ · w1(:, j) + X(:, j)‖2

+ γ

n
∑

i=1

‖∇ · w2(i, :) + Y (i, :)‖2. (6.18)

subject to
L1

i,j ≤ w1
i,j ≤ R1

i,j for 1 ≤ i ≤ n, 1 ≤ j ≤ n + 1

L2
i,j ≤ w2

i,j ≤ R2
i,j for 1 ≤ i ≤ n + 1, 1 ≤ j ≤ n

where X, Y and γ are the same as in (6.12). L1, L2 are matrices with all entries

being −1 and R1, R2 are matrices with all entries being 1.

From the above analysis, it is not hard to obtain that the problem of finding

coarser level correction c is the following minimization problem.

min ‖∇ · c + z̃‖2

+ γ̃
m

∑

j=1

‖∇ · c1(:, j) + X̃(:, j)‖2

+ γ̃

m
∑

i=1

‖∇ · c2(i, :) + Ỹ (i, :)‖2 (6.19)

subject to
L̃1

i,j ≤ c1
i,j ≤ R̃1

i,j for 1 ≤ i ≤ m, 1 ≤ j ≤ m + 1

L̃2
i,j ≤ c2

i,j ≤ R̃2
i,j for 1 ≤ i ≤ m + 1, 1 ≤ j ≤ m
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where X̃, Ỹ , γ̃ are the same as in (6.15) and L̃, R̃ are given as follows:

L̃1
i,j = max

{

L1
k,l − w1

k,l : 2i− 1 ≤ k ≤ 2i, 2j − 1 ≤ l ≤ 2j
}

;

L̃2
i,j = max

{

l2k,l − w2
k,l : 2i− 1 ≤ k ≤ 2i, 2j − 1 ≤ l ≤ 2j

}

;

R̃1
i,j = min

{

R1
k,l − w1

k,l : 2i− 1 ≤ k ≤ 2i, 2j − 1 ≤ l ≤ 2j
}

;

R̃2
i,j = min

{

R2
k,l − w2

k,l : 2i− 1 ≤ k ≤ 2i, 2j − 1 ≤ l ≤ 2j
}

;

Now coarser level correction problem (6.19) has the exact same formulation

with the original problem (6.18). So we can apply the same strategy recursively

and obtain the multilevel V-cycle algorithm as in the 1D problem.

6.3 Numerical Experiments and Comments

We test our multilevel (ML) optimization algorithm on the anisotropic ROF

model using the block coordinate descent (BCD) method developed in Chapter 5

as the smoother. We also compared the performance of the ML algorithm and the

uni-level BCD algorithm. The test problems and parameters are exactly the same

as those in Chapter 5. At each level of the V-cycle inside the ML algorithm, we

apply 3 relaxations before pass to the coarser level and apply 2 more relaxations

after adding the coarser level corrections.

Tables 6.1, 6.2, and 6.3 report number of iterations and average CPU times

over ten runs, where each run adds a different random noise vector to the true

image. In all codes, we used the starting point x(0) = 0 in each algorithm and

the relative duality gap stopping criterion. We vary the threshold tol from 10−2

to 10−4, producing results of increasingly high accuracy as tol is decreased.

These tables show that the improvement over the BCD algorithm by adopt-

ing the multilevel optimization framework is not significant. This might due to
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Table 6.1: Iterations & CPU costs, anisotropic TV, problem 1.

tol = 10−2 tol = 10−3 tol = 10−4

Algorithms Iter CPU (s) Iter CPU (s) Iter CPU (s)

ML BCD 2 0.06 11 0.30 50 1.42

BCD 7 0.06 49 0.39 247 1.97

Table 6.2: Iterations & CPU costs, anisotropic TV, problem 2.

tol = 10−2 tol = 10−3 tol = 10−4

Algorithms Iter CPU (s) Iter CPU (s) Iter CPU (s)

ML BCD 2 0.31 8 1.22 29 4.13

BCD 8 0.38 41 1.75 150 6.59

Table 6.3: Iterations & CPU costs, anisotropic TV, problem 3.

tol = 10−2 tol = 10−3 tol = 10−4

Algorithms Iter CPU (s) Iter CPU (s) Iter CPU (s)

ML BCD 2 1.47 6 4.35 19 13.4

BCD 8 1.70 32 6.67 99 19.6

the characteristics of this particular problem. In particular, the solution and

residuals are not smooth with any available relaxation algorithms because of the

constraints. For future work, some more intelligent coarsening and interpolation

schemes must be adopted to fully exploit the advantage of multigrid algorithms.
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CHAPTER 7

Connections and Improvements of Some

Existing Methods

7.1 Connections between CGM and SOCP

In Chapter 2, we give a survey of some existing algorithms for solving the total

variation based image restoration models, which includes the CGM method and

SOCP approach. We also point out that SOCP and CGM bear many similarities.

Both methods apply Newton’s method to some primal-dual system to compute

the update at each iteration. In this section, we shall investigate the connections

between these two methods in more details.

Preliminaries of SOCP

We remind the reader that we follow the MATLAB convention of using “ , ”

for adjoining vectors and matrices in a row, and “ ; ” for adjoining them in a

column. Thus, for any vectors x, y and z, the following are synonymous:

(x; y; z) = (xT , yT , zT )T =











x

y

z










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We also use ⊕ denote joining matrices diagonally, that is, for two matrices A and

B,

A⊕ B =





A 0

0 B





Now we use the notation Kn to denote the Lorenz cone (ice cream cone) in

R
n, i.e.

Kn ≡ {x = (x0; x̄) ∈ R
n : ‖x̄‖ ≤ x0}

Second-Order Cone Programming (SOCP) problem has the following standard

form

Primal

min cT x

s. t. Ax = b,

x ∈ K.

Dual

min bT y

s. t. AT y + c = z,

z ∈ K.

(7.1)

where

x = (x1; · · · ; xr) with xi ∈ R
ni

c = (c1; · · · ; cr) with ci ∈ R
ni

z = (z1; · · · ; zr) with zi ∈ R
ni

A = (A1, · · · , Ar) with Ai ∈ R
m×ni

y, b ∈ R
m

and K is the Cartesian product of several cones:

K = Kn1 ×Kn2 × · · · × Knr .

Associated with each vector x = (x0; x̄) ∈ R
n there is an arrow-shaped matrix

Arw(x) defined as:

Arx(x) ≡





x0 x̄T

x̄ x0I




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Observe that x ∈ K (x ∈ intK) iff. Arw(x) is positive semidefinite (positive

definite).

We also use Arw(·) in the block sense; that is if x = (x1; · · · ; xr) such that

xi ∈ R
ni for i = 1, · · · , r, then

Arw(x) = Arw(x1)⊕ · · · ⊕ Arw(xr).

There is a particular algebra associated with second-order cones, the under-

standing of which sheds light on all aspects of the SOCP problem, from duality

and complementarity properties, to conditions of non-degeneracy and ultimately

to the design and analysis of interior-point algorithms. This algebra is well-known

and is a special case of a so-called Euclidean Jordan algebra. (see for a complete

study.) Here we only borrow some notations and definitions to facilitate our

explanations.

For now we assume that all vectors consist of a single block x = (x0; x̄). For

two vectors x and y define the following multiplication

x ◦ y ≡ (xT y; x0ȳ + y0x̄) =

















xT y

x0y1 + y0x1

...

x0yn + y0xn

















Let e = (1; 0; · · · 0). We define the inverse of x, x−1 by

y ≡ x−1 iff. x ◦ y = y ◦ x = e,

and define the determinant of x, det(x) by

det(x) = x2
0 − ‖x̄‖

2.

It is clear that

x−1 =
1

det(x)
(x0; −x̄).
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SOCP problems are usually solved by primal-dual path following interior-

point methods. Note that for x ∈ int K the function -ln(det(x)) is a convex

barrier function for K. if we replaced the second-order cone constraints by xi ∈

int Kni and add the logarithm barrier term −µ
∑

ln(det(xi)) to the objective

function in the primal problem we get

(Pµ) min
r

∑

i=1

cT
i xi − µ

r
∑

i=1

ln(det(xi))

s.t.

r
∑

i=1

Aixi = b,

xi ∈ int Kni for i = 1, · · · , r. (7.2)

The Karush-Kuhn-Tucker (KKT) optimality conditions for

(7.2) are:

r
∑

i=1

Aixi = b,

ci −AT
i y − 2µx−1

i = 0, for i = 1, · · · , r,

xi ∈ int Kni for i = 1, · · · , r. (7.3)

If we set zi = ci −AT
i y, the any solution of problem Pµ satisfies:

r
∑

i=1

Aixi = b,

AT
i y + zi = ci, for i = 1, · · · , r,

xi ◦ zi = 2µe, for i = 1, · · · , r,

xi, zi ∈ int Kni for i = 1, · · · , r. (7.4)

For every µ > 0 we can show that the above system (7.4) has a unique solution

(xµ, yµ, zµ). The trajectory points (xµ, yµ, zµ) satisfying (7.4) is defined as the
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primal-dual central path or simply the central path associated with the SOCP

problem (7.1).

Generally speaking the strategy of path-following primal-dual interior-point

method can be sketched as follows. We start with a point near or on the central

path. First, we apply Newton’s method to the system (7.4) to get a direction

(∆x, ∆y, ∆y) that reduces the duality gap, and then take a step in this direction

making sure that the new point is still feasible and in the interior of K. Then we

reduce µ by some factor and repeat the process. With judicious choices of initial

point, step length and reduction schedule for µ we are able to show convergence

in a polynomial number of iterations.

Applying Newton’ method to (7.4) will result a linear system for the update

direction (∆x, ∆y, ∆y):











A 0 0

0 AT I

Arw(x) 0 Arw(x)





















∆x

∆y

∆z











=











b− Ax

c− AT y − z

2µe− x ◦ z











(7.5)

SOCP for ROF and Connections with CGM

To reform the constrained ROF model

min
∑

1≤i,j≤n

‖(∇u)i,j‖

s.t. ‖u− f‖2 ≤ σ2 (7.6)

into a SOCP problem, the authors in [43] introduced new variables p, q, t, v as

follows.

They let v to be the noise variable: v = f − u and let (pi,j, qi,j) to be the
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discrete ∇u by forward differentiation:

pi,j =







ui+1,j − ui,j if i < n

0 if i = n

qi,j =







ui,j+1 − ui,j if j < n

0 if j = n

They then impose the second-order cone constraints
√

p2
i,j + q2

i,j ≤ ti,j .

As a consequence, problem (7.6) is transformed to

min
n

∑

i,j=1

ti,j

s.t. ui,j + vi,j = fi,j for i, j = 1, · · · , n

−pi,j + ui+1,j − ui,j = 0 for i = 1, · · · , n− 1, j = 1, · · · , n

−qi,j + ui,j+1 − ui,j = 0 for i = 1, · · · , n, j = 1, · · · , n− 1

pn,j = 0 for j = 1, · · · , n,

qi,n = 0 for i = 1, · · · , n,

v0 = σ

(ti,j; pi,j ; qi,j) ∈ K
3 for i, j = 1, · · · , n,

(v0; v) ∈ Kn2+1 (7.7)

Eliminating u from formulation (7.7), we obtain the following standard form
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SOCP:

min
∑

1≤i,j≤n ti,j

s.t. pi,j + vi+1,j − vi,j = fi+1,j − fi,j for 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n

qi,j + vi,j+1 − vi,j = fi,j+1 − fi,j for 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1

pn,j = 0 for 1 ≤ j ≤ n

qi,n = 0 for 1 ≤ i ≤ n

v0 = σ

(ti,j; pi,j; qi,j) ∈ K
3 for 1 ≤ i, j ≤ n

(v0; v) ∈ Kn2+1

(7.8)

Problem 7.8 is in the standard form of a SOCP problem (7.1). To see that,

we introduce the following notations and variables.

n× n : Image size

N + 1 : Number of cones n2 + 1, (N = n2)

M : Number of equality constraints (number of rows in Ā), M = 2N + 1

k : Index of blocks, k ≡ k(i, j) = (j − 1)n + i
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xk = (ti,j ; pi,j ; qi,j), for k = 1, 2, · · · , N.

ck = (1; 0; 0), for k = 1, · · · , N.

xN+1 = (v0; v) ∈ R
N+1.

cN+1 = (0; · · · ; 0) ∈ R
N+1.

Āk =





























0 0 0
...

...
...

0 1 0

0 0 1
...

...
...

0 0 0





























∈ R
M×3, i.e., Āk(2k − 1 : 2k, 2 : 3) = I2, for k = 1, · · · , N.

ĀN+1 =





0 AT

1 0



 , where A is defined in Chapter 1 in (1.25) and (1.27).

Ā = (Ā1, Ā2, · · · , ĀN+1)

x = (x1; x2; · · · ; xN+1)

c = (c1; · · · ; cN+1).

b = (AT f ; σ).

K = K3 × · · · × K3 ×KN+1.

Using the above notation and variables, we can rewrite problem (7.8) into the

following standard form of SOCP:

min cT x

subject to Āx = b,

x ∈ K.

We now follow the general procedure of the primal-dual path following interior-
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point methods to solve 7.8. We shall show the KKT system of (7.8) that we solve

at each iteration of the interior-point method are equivalent to the CGM system

developed in [25].

First, the constraints that ‖v‖ ≤ σ is always active at optimality in practice

and therefor we can replace it by equality constraints ‖v‖ = σ in (7.8). Replacing

the second-order cone constraints p2
i,j + q2

i,j ≤ t2i,j by p2
i,j + q2

i,j < t2i,j and adding

the logarithm barrier term −µ

2

∑

ln(t2i,j − (p2
i,j + q2

i,j)) to the objective function

in the problem (7.8) we get a problem (Pµ) as in (7.2):

min
∑

1≤i,j≤n

ti,j − µ
∑

1≤i,j≤n

ln(t2i,j − p2
i,j − q2

i,j) (7.9a)

s.t. pi,j + vi+1,j − vi,j = fi+1,j − fi,j for 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n (7.9b)

qi,j + vi,j+1 − vi,j = fi,j+1 − fi,j for 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1 (7.9c)
∑

v2
i,j − σ2 = 0 (7.9d)

(ti,j ; pi,j; qi,j) ∈ intK3 for 1 ≤ i, j ≤ n (7.9e)

The KKT system for problem (7.9) is

1−
2µti,j

t2i,j − (p2
i,j + q2

i,j)
= 0 (7.10a)

−αi,j +
2µpi,j

t2i,j − (p2
i,j + q2

i,j)
= 0 (7.10b)

−γi,j +
2µqi,j

t2i,j − (p2
i,j + q2

i,j)
= 0 (7.10c)

(αi,j − αi−1,j) + (γi,j − γi,j−1) + λvi,j = 0 (7.10d)

pi,j + vi+1,j − vi,j − fi+1,j + fi,j = 0 (7.10e)

qi,j + vi,j+1 − vi,j − fi,j+1 + fi,j = 0 (7.10f)
∑

v2
i,j − σ2 = 0 (7.10g)

where α, γ and λ are Lagrange multipliers for the constraints (7.9b), (7.9c) and
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(7.9d) respectively. Note in both (7.9) and (7.10), we omit the special case for the

points on the boundary of the image domain (i = n or j = n) only for simplicity.

Equation (7.10a) is same as

t2i,j − 2µti,j − (p2
i,j + q2

i,j) = 0,

which is equivalent to

ti,j =
√

p2
i,j + q2

i,j + µ2 + µ

since ti,j ≥ 0.

Hence, The first three equations in the above KKT system, equations (7.10a-

7.10c) are equivalent to

ti,j =
√

p2
i,j + q2

i,j + µ2 + µ

ti,j αi,j − pi,j = 0

ti,j γi,j − qi,j = 0

If we eliminate v by v = f − u, replace (pi,j, qi,j) by (∇u)i,j and introduce w as

wi,j = (αi,j, γi,j), equations (7.10a-7.10c) are equivalent to

√

|(∇u)i,j|2 + β wi,j − (∇u)i,j = 0,

and equation (7.10d) simply becomes

(∇ · w)i,j − λ(ui,j − fi,j) = 0.

Hence system (7.10) can be reformed to the following equivalent system:

(

√

|(∇u)i,j|2 + µ2 + µ

)

wi,j − (∇u)i,j = 0

(∇ · w)i,j − λ(ui,j − fi,j) = 0 (7.11)
∑

|ui,j − fi,j|
2 − σ2 = 0
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From [25], we have the CGM system for the constraint ROF model is

√

|(∇u)i,j|2 + β wi,j − (∇u)i,j = 0

(∇ · w)i,j − λ(ui,j − fi,j) = 0 (7.12)
∑

|ui,j − fi,j |
2 − σ2 = 0

Note system (7.11) is exactly the same as (7.12) except
√

|∇u|2 + µ2 + µ is

replaced by
√

|∇u|2 + β. In other words, the SOCP problem and CGM method

actually solve the similar system at each iteration. The difference is the bar-

rier parameter µ in SOCP KKT system decreases to 0 following some reduction

schedule while the smoothing parameter β in CGM is a fixed small number.

7.2 An improvement of CGM Method

The primal-dual optimality condition for the unconstrained ROF model is

‖AT
i y‖ xi − AT

i y = 0, i = 1, . . . , N. (feaibility condition) (7.13a)

Ax + λy − λy0 = 0. (complimentary condition) (7.13b)

In CGM method [25], the feasibility condition is modified with a parameter

β > 0
√

‖AT
i y‖2 + β2 xi − AT

i y = 0, i = 1, . . . , N,

so that the system become smooth and the point x will be enforced to stay inside

the interior of the feasible set

X =
{

x = (x1; · · · ; xN) : ‖xi‖ ≤ 1 for i = 1, · · · , N
}

.

CGM method [25] then solves the following primal-dual system using New-
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ton’s method.

√

‖AT
i y‖2 + β2 xi − AT

i y = 0, i = 1, . . . , N. (7.14a)

Ax + λy − λy0 = 0. (7.14b)

In [25] the parameter β is fixed, preventing the solution of the above system

from converging to the true optimizer, which is a solution of system (7.13). More-

over, if we pick a very small β > 0 to reduce this effect, the convergence of the

method can become slow.

To overcome this drawback of CGM, we propose a method that dynamically

reduces β during the solution process. In such a scheme, β can decrease to a very

small number to make the solution arbitrary close to the true optimality solution.

Furthermore, the warm start of β from a relative large number will improve the

convergence over picking a very small β initially.

Remember the parameter β in CGM is similar to the barrier parameter µ in

the KKT system for the SOCP formulation. However, the primal-dual interior-

point method adopted to solve SOCP has a reduction schedule for µ to decrease

to 0. Hence, in reducing β to 0 in CGM, we are just borrowing the same idea

from the primal-dual interior-point method.

Analogically to SOCP, we can define the central path as the trajectory of

points

C = {(xβ , yβ) | β > 0},

where (xβ, yβ) solves the equations (7.14) for each β > 0. As β → 0, (xβ , yβ) will

converge to the optimality solution. Different from [25], where β is a constant,

the β in our algorithm is a measure of the duality gap and updated accordingly

at each iteration.
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Let us define the following notations:

ρβ
i =

√

‖AT
i y‖2 + β2 ; (7.15)

Eβ = Diag(ρβ
i I2), Fβ = Diag(I2 −

1

ρβ
i

xiy
T Ai) . (7.16)

Then the feasibility and complementary condition (7.14) can be written as





Ax + λy − λy0

Eβ x− AT y



 = 0 (7.17)

Applying Newton’s method to the above equations gives the following linear

system for the updates (∆x, ∆y):





A λIN

Eβ −FβAT









∆x

∆y



 =





rd

rc



 , (7.18)

where

rd = λ(y0 − y)− Ax and rc = AT y − Eβ x. (7.19)

The system can be solved as follows:

Gβ ∆y = −AE−1
β AT y − λ(y − y0) ; (7.20)

∆x = E−1
β AT y + E−1

β FβAT ∆y − x , (7.21)

where Gβ = AE−1
β FβAT + λIN .

We choose different steplength rule to update the primal y and the dual x.

For the dual, to ensure strict feasibility (i.e. ‖xi‖ < 1 for i = 1, . . . , N), we define

the updating rule as

x̃ = x + min(1, 0.99αmax)∆x (7.22)

where αmax = max{α : ‖xi + α∆xi‖ ≤ 1, i = 1, . . . , N}
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Predictor-Corrector Enhancement We now discuss how to adapt Mehro-

tra’s predictor-corrector method to our problem. One motivation of this method

is to estimate the centering parameter β by the performance of the predictor

step (i.e. affine scaling step in LP). The other important idea is to take into ac-

count the second-order terms in the corrector step as to compensate for some of

the nonlinearity in the system. A key point is that both predictor and corrector

share the same matrix factorization, so the extra work in the corrector step is

little. We refer to [70] for an excellent discussion of Mehrotra’s method.

Let ỹ and x̃ be the primal and dual variables updated in the predictor step.

As a natural generalization of Mehrotra’s method in LP, a heuristic value of the

centering parameter β to be used in the corrector step can be defined by

β̃ = σ
gap(x, y)

N
, σ =

(gap(x̃, ỹ)

gap(x, y)

)3

, (7.23)

where

gap(x, y) =
N

∑

i=1

(

‖AT
i y‖ − xT

i (AT
i y)

)

(7.24)

To compute the second-order correction, we replace x and y in the centering

condition (??) by x + ∆x and y + ∆y respectively and obtain, for i = 1, . . . , N ,

√

‖AT
i (y + ∆y)‖2 + β̃2 (xi + ∆xi)−AT

i (y + ∆y) = 0,

i.e.,

ρβ̃
i

√

1 + 2
yTAiAT

i ∆y

(ρβ̃
i )2

+
‖AT

i ∆y‖2

(ρβ̃
i )2

(xi + ∆xi)− (AT
i y + AT

i ∆y) = 0

Apply Taylor series and neglecting higher order terms gives

ρβ̃
i

(

1+
yT AiA

T
i ∆y

(ρβ̃
i )2

+
‖AT

i ∆y‖2

2(ρβ̃
i )2

−
(yTAiA

T
i ∆y)2

2(ρβ̃
i )4

)

(xi +∆xi)−(AT
i y+AT

i ∆y) = 0
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Rearranging terms, we obtain

Eβ̃∆x− Fβ̃AT ∆y = (r̃c)i + h
(1)
i , (7.25)

where r̃c = AT y − Eβ̃ x and

h
(1)
i = −

yT AiA
T
i ∆y

ρβ̃
i

∆xi −
‖AT

i ∆y‖2

2ρβ̃
i

xi +
(yTAiA

T
i ∆y)2

2(ρβ̃
i )3

xi. (7.26)

It is not practical to solve (7.25) directly with β̃ on the left-hand side, since the

factorization of Gβ has already been computed in the predictor step using the

previous value β. Alternatively, we modify (7.25) to be

Eβ∆x− FβAT ∆y = (r̃c)i + h
(1)
i + h

(2)
i , (7.27)

with extra corrector term

h
(2)
i = (ρβ

i − ρβ̃
i )∆xi +

(

1

ρβ
i

−
1

ρβ̃
i

)

(yT
i AiA

T
i yi)xi. (7.28)

There is no correction for the feasibility updating equation

A∆x + λ∆y = rd (7.29)

Combining (7.27) and (7.29), we have the corrector system





A λIN

Eβ −FβAT









∆x

∆y



 =





rd

rc
c



 , (7.30)

where

rc
c = (r̃c)i + h

(1)
i + h

(2)
i . (7.31)

It gives the corrector step as

Gβ ∆y = −A(E−1
β rc

c + x)− λ(y − y0) ; (7.32)

∆x = E−1
β (FβAT ∆y + rc

c). (7.33)
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7.2.1 Numerical Experiments

We test our prima-dual interior point algorithm on two image denoising prob-

lem. We also compared the performance of the interior point method with CGM

method. The original clean images and the input noisy images are shown in Fig-

ure 7.1. The size of the two test problems are 128×128 and 512×512 respectively.

The noisy images are generated by adding Gaussian noise to the clean images

using the MATLAB function imnoise, with variance parameter set to 0.01. The

fidelity parameter λ is taken to be 0.045 throughout the experiments.

Figure 7.2 plots the relative duality gap against the number of iterations for

CGM method as well as for the primal-dual interior point method.
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Figure 7.1: The original clean images and noisy images for our test problems.

Left: 128× 128 “shape”; right: 256× 256 “cameraman”.
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Figure 7.2: Plot of relative duality gap v.s. Iterations. Top : test problem 1,

Bottom: test problem 2.
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CHAPTER 8

Conclusions and Discussions

We have proposed some new algorithms to solve the total variation based image

restoration models, including primal-dual hybrid gradient descent method, duality

based gradient projection method and the dual block coordinate descent method.

All of them are very efficient and competitive to the existing popular methods.

These proposed methods are either based on the dual formulation or the primal-

dual formulation so they do not need any smoothing parameter for the total

variation term which will prevent any algorithm from converging to the true

optimality solution. They are explicit first-order methods, which are simple to

implement, only take a few sweeps at each iteration, do not require a huge amount

of memory and hence are very suitable for solving large-scale image restoration

problems.

Of all the methods we proposed, the primal-dual hybrid gradient method

are the most efficient in all situations. It costs roughly 20 times less CPU time

to compute an visually-satisfactory medium-accuracy solution compared with

Chambolle’s semi-implicit gradient-descent method. This advantage get more

profound when higher-accuracy solution are required. In fact, this method re-

mains competitive in computing high-accuracy solutions even compared with

high-order methods like CGM.

We proposed a basic multilevel optimization framework for the dual formula-

tion of the anisotropic ROF model. The improvement of the multilevel scheme
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over the uni-levlel scheme is limited, implies that more sophisticated coarsen-

ing and interpolation schemes are needed to exploit the advantage of multigrid

algorithms.

We also studied the connection between CGM method and the SOCP ap-

proach for solving ROF model and proposed an improvement of the CGM algo-

rithm based on the primal-dual interior-point methods.
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