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Analyzing the data and performing computation effectively on surfaces with com-

plicated geometry is an important research topic, especially in Human Brain

Mapping. In this work, we are interested in computing the conformal structure

of the Riemann surface and applying it to Human Brain Mapping. In order to

analyze the brain data efficiently, the complicated brain cortical surface is usually

parameterized to a simple parameter domain such as the sphere or 2D rectan-

gles. This allows us to transform the 3D problems into 2D problems. In order to

compare data more effectively, the parameterization has to preserve the geometry

of the brain structure while aligning the important anatomical features consis-

tently. Conformal parameterization, that preserves the local geometry, is often

used. In our work, we propose algorithms to compute the optimized conformal

parameterization of the brain surface which aligns the anatomical features con-

sistently while preserving the conformality of the parameterization as much as

possible. With the conformal parameterization, we can solve variational problems

and partial differential equations on the surface easily by solving the correspond-

ing equations on the 2D parameter domain. The computation is simple because
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of the simple Riemannian metric of the conformal map. Finally, we develop an

automatic landmark tracking algorithm to detect the sulcal landmarks on the

brain cortical surface, which involves solving variational problems on the brain

surface.
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CHAPTER 1

Introduction

Rapid development of computer technology has accelerated the acquisition and

databasing of brain data. Analyzing the data and performing computation effec-

tively on the brain surface with complicated geometry has become an important

research topic in the Human Brain Mapping research. An effective way to do so is

to parameterize them into a canonical space while retaining the original geometric

information as far as possible. In this dissertation, we are interested in computing

the conformal structure (or conformal parametrization) of the Riemann surface

and applying it to brain mapping research.

Generally speaking, every Riemann surface (metric surface) admits a confor-

mal structure. A conformal structure is a natural geometric structure on the

Riemann surface, which governs many physical phenomena and embeds many

geometric information of the surface. Specifically, a conformal structure is an

”angle preserving” atlas of the surface, such that angles among tangent vectors

can be coherently defined on different local coordinate systems. Consequently, a

conformal parameterization of a surface preserves the local geometry of the sur-

face. It is the main reason why conformal mapping is often used in the Human

Brain Mapping research. With the conformal structure, concepts in complex

analysis can be defined on the surface and it makes computation possible and

easier on the surface. It is important in medical research such as solving varia-

tional problems or PDEs on brain cortical surfaces to analyze brain data. In this
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dissertation, we focus on the discussion of how we can compute the optimized

conformal parameterization that aligns the landmark features while preserving

the conformality as much as possible , and also how the conformal parameteriza-

tion can be applied such as solving PDEs on brain surfaces, automatic detection

of anatomical features and so on.

The organization of the dissertation is as follow. In Chapter 2, we briefly

describe the mathematical background related to our work. These includes the

basic mathematical definition from the conformal geometry, different approaches

to compute the conformal structure of the Riemann surface, definition of geomet-

ric variants and so on.

In Chapter 3, we describe a variational method to compute the optimized

conformal parameterizations of cortical surfaces which improve the alignment of

the important anatomical features (landmarks) while preserving the conformality

as much as possible. Here, we assume the landmarks are already labeled and

the correspondence between landmarks on different cortical surfaces are known.

This is done by minimizing a compounded energy which consists of the harmonic

energy and the landmark mismatch energy.

In Chapter 4, we describe an explicit method to solve variational problems on

general Riemann surfaces, using the conformal parameterization and covariant

derivatives defined on the surface. This is done by mapping the surface confor-

mally to the two dimensional rectangular domains, by computing the holomorphic

1-form on the surface. The conformal parameterization has a simple Riemannian

metric. As a result, any PDEs or variational problems on the surface can be

formulated to a 2D problem with a simple formula and can be efficiently solved

by well developed numerical scheme on the 2D domain.

In Chapter 5, we present an algorithm to automatically detect sulcal land-
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mark curves on cortical surfaces . This is done by two steps. First, we obtain a

hypothesized landmark region using the Chan-Vese segmentation method, which

solves a Partial Differential Equation (PDE) on a manifold with global confor-

mal parameterization. Second, we propose an automatic landmark curve tracing

method based on the principal directions of the local Weingarten matrix.

In Chapter 6, we describe an algorithm to find parametrizations of the cortical

surfaces that are close to conformal and also give a shape-based correspondence

between embedded landmark curves. Here, we assume the sulcal landmarks are

labeled but the correspondence between landmarks on different cortical surfaces

are not known. We propose a variational approach by minimizing an energy

that measures the harmonic energy of the parameterizations, and the shape dis-

similarity between mapped points on the landmark curves. The parameteriza-

tions computed are guaranteed to give a shape-based diffeomorphism between

the landmark curves. We formulate our problem as a variational energy defined

on a search space of diffeomorphisms generated as integral flows of smooth vector

fields. The vector fields are restricted only to those that do not flow across the

landmark curves, so as to enforce the exact landmark matching.
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CHAPTER 2

Mathematical Background

In this chapter, we describe briefly the basic mathematical background related

to our work in this dissertation.

2.1 Basic Definitions in Conformal Geometry

A surface with a conformal structure is called a Riemann surface. All metric

surfaces are Riemann surfaces. Mathematically, a Riemann surface (S, g) (with

Riemannian metric g) is a real differentiable two dimensional manifold S in which

each tangent space is equipped with an inner product g in a manner which varies

smoothly from point to point. This allows one to define various notions such as

angles, lengths of curves, areas (or volumes), curvature, gradients of functions and

divergence of vector fields [2][3][4]. Specifically, a Riemannian metric g = {gp}p∈S

on S is a family of inner products:

gp : TpS × TpS → R, p ∈ S (2.1)

such that, for all differentiable vector field X,Y , the application p 7→ gp(X(p), Y (p))

is differentiable. Let {( ∂
∂xi

)p}i be a basis of tangent vectors over p ∈ S. Then,

the coefficients

gij(p) :=< (
∂

∂xi

)p, (
∂

∂xj

)p >p (2.2)
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induces a metric tensor, which is called the first fundamental form:

g :=
∑
ij

gijdxi ∧ dxj (2.3)

Every Riemann surface admits a conformal structure. A conformal structure

is a special atlas of the surface, such that angles among tangent vectors can be

coherently defined on different local coordinate systems.

An atlas of a Riemann surface S is a family of charts {Uα, φα} for which Uα

constitutes an open covering of S. As shown in Figure 2.1, suppose {Uα, φα} and

{Uβ, φβ} are two charts on the surface S, Uα ∩ Uβ 6= ∅, then the chart transition

function, φαβ is defined as:

φαβ = φβ ◦ φ−1
α : φα(Uα ∩ Uβ) → φβ(Uα ∩ Uβ) (2.4)

Figure 2.1: The structure of a manifold. An atlas is a family of charts that jointly
form an open covering of the manifold

An atlas {Uα, φα} on a surface is called conformal if all chart transition func-
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tion are holomorphic. A chart {Uα, φα} is compatible with an atlas A if the union

A ∪ {Uα, φα} is still a conformal atlas. Two conformal atlases are compatible if

their union is still a conformal atlas. Each conformal compatible equivalence

class is a conformal structure. Strictly speaking, a two-manifold with a confor-

mal structure is called a Riemann surface. It has been proven that all metric

orientable surfaces are Riemann surfaces and admit conformal structures [5][6].

With the notion of conformal structure, holomorphic and meromorphic func-

tions and differential forms can be generalized to Riemann surfaces. A holo-

morphic 1-form ω is a complex differential form, such that in each local frame

< uα, vα >, zα = uα + ivα, where i =
√−1, the parametric representation is

ω = f(zα)dzα and f(zα) is a holomorphic function. On a different chart {Uβ, φβ},
with another local frame (uβ, vβ), zβ = uβ + ivβ, where i =

√−1,

ω = fβ(zβ)dzβ = fβ(zβ(zα))
dzβ

dzα

dzα (2.5)

then fβ(
dzβ

dzα
) is still a holomorphic function. For a genus g closed surface, all

holomorphic 1-forms form a 2g real dimensional linear space [7].

At a zero point p ∈ M of a holomorphic 1-form ω, any local parametric

representation has

ω = f(zα)dzα, f |p = 0. (2.6)

According to the Riemann-Roch theorem, in general there are 2g− 2 zero points

for a holomorphic 1-form defined on a closed surface of genus g, where g > 1.

A holomorphic 1-form induces a special system of curves on a surface, the so-

called conformal net [8]. Horizontal trajectories are the curves that are mapped

to iso-v lines in the parameter domain. Similarly, vertical trajectories are the

curves that are mapped to iso-u lines in the parameter domain. The horizontal
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Figure 2.2: (A). Conformal net and critical graph of a closed 3-hole torus surface.
There are 4 zero points, the critical horizontal trajectories partition the surface
to 4 topological cylinders, color encoded in the 3rd frame. Each cylinder is
conformally mapped to a planar rectangle. (B). Conformal net and critical graph
of a open boundary 4-hole annulus on the plane. There are 3 zero points; the
critical horizontal trajectories partition the surface to 6 topological disks. (C).
Each segment is conformally mapped to a rectangle. The trajectories and the
boundaries are color encoded and the corners are labelled.

and vertical trajectories form a web on the surface. The trajectories that connect

zero points, or a zero point with the boundary are called critical trajectories. The

critical horizontal trajectories form a graph, which is called the critical graph. In

general, the behavior of a trajectory may be very complicated, it may have infinite

length and may be dense on the surface. If the critical graph is finite, then all

the horizontal trajectories are finite.

The critical graph partitions the surface into a set of non-overlapping patches

that jointly cover the surface, and each patch is either a topological disk or a
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topological cylinder [9]. Each patch Ω ⊂ M can be mapped to the complex plane

by the integration of holomorphic 1-form on it. The structure of the critical

graph and the parameterizations of the patches are determined by the conformal

structure of the surface. If two surfaces are topologically homeomorphic to each

other and have similar geometrical structure, they can support consistent critical

graphs and segmentations (i.e., surface partitions), and their parameterizations

are consistent as well (a possible metric to evaluate how similar two surfaces’

geometrical structures are is proposed as Edist in [10]). Therefore, by matching

their parameter domains, the entire surfaces can be directly matched in 3D. This

generalizes prior work in medical imaging that has matched surfaces by computing

a smooth bijection to a single canonical surface, such as a sphere or disk.

Figure 2.2 (A) and (B) show the conformal net and critical graph on closed sur-

face and open boundary surface, respectively. The surface segmentation results

are also shown. Figure 2.2 (C) illustrates how a segment in (B) is conformally

mapped to a rectangle. In (C), conformal nets are labeled with different colors.

In the parameter domain, we can also find the right angles between the conformal

net curves are well preserved. The zero point on the left is mapped to two points

on the opposite edges.

We call the process of finding the critical graph and segmentation as holomor-

phic flow segmentation, a process that is completely determined by the geometry

of the surface and the choice of the holomorphic 1-form. Note that this differs

from the typical meaning of segmentation in medical imaging, and is concerned

with the segmentation, or partitioning, of a general surface. Computing holomor-

phic 1-forms is equivalent to solving elliptic differential equations on the surfaces,

and in general, elliptic differential operators are stable (their solutions tend to be

smooth functions and the boundary conditions of the Dirichlet problem can be
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Figure 2.3: Illustration of the conformal parameterizations of different surfaces.
The parameterizations are computed by integrating the holomorphic differential
one form defined on the surfaces. (A), (B), (C) and (D) show the conformal
parameterizations of a 2-torus, a human face, a lateral ventricular surface and a
human brain cortical surface [1] respectively.

fulfilled). Therefore the resulting surface segmentations and parameterizations

are intrinsic and stable, and are applicable for matching (potentially noisy) sur-

faces that are derived from medical images and topologically homeomorphic to

each other [1]. Because the behavior of horizontal trajectory is solely determined

by the conformal structure and the cohomology class of the holomorphic 1-form.

In surface matching application, we guarantee that the cohomology classes are

consistent on two surfaces and the two surfaces are with similar conformal struc-

tures, therefore, the corresponding trajectories will behave in the similar way.

2.2 Conformal Parameterization of the Riemann Surface

In this section, we talk about the conformal parameterization of the Riemann

surface.
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All Riemann surfaces are locally Euclidean. Given two Riemann surfaces M

and N . We can represent them locally as φM(x1, x2) : R2 → M ⊆ R3 and

φN(x1, x2) : R2 → N ⊆ R3 respectively, where (x1, x2) are their coordinates.

The inner product of the tangent vectors at each point of the surface can be

represented by its first fundamental form. The first fundamental form on M

can be written as ds2
M =

∑
i,j gijdxidxj, where gij = ∂φM

∂xi · ∂φM

∂xj and i, j = 1, 2.

Similarly, the first fundamental form on N can be written as ds2
N =

∑
i,j g̃ijdxidxj

where gij = ∂φN

∂xi · ∂φN

∂xj and i, j = 1, 2. Given a map f : M → N between the

M and N . With the local parameterization, f can be represented locally by its

coordinates as f : R2 → R2, f(x1, x2) = (f1(x1, x2), f2(x1, x2)). Every tangent

vectors ~v on M can be mapped (push forward) by f to a tangent vectors f∗(~v)

on N . The inner product of the vectors f∗(~v1) and f∗(~v2)), where ~v1 and ~v2 are

tangent vectors on M , is:

f ∗(ds2
N)(v1, v2) := < f∗(v1), f∗(v2) >

=
∑
i,j

g̃ijf∗(vi) · f∗(vj)

=
∑
i,j

(
∑
m,n

g̃mn
∂fi

∂xm

∂fj

∂xn
)vivj)

(2.7)

Therefore, a new Riemannian metric f ∗(ds2
N) on M is induced by f and ds2

N ,

called the pull back metric. We say that the map f is conformal if it preserves

the first fundamental form up to a scaling factor. Mathematically, it means:

f ∗(ds2
N) = λ(x1, x2)ds2

M (2.8)

The scaling factor λ is called the conformal factor.

A parameterization ϕ : R2 → M is a conformal parameterization if ϕ is a
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conformal map.

Intuitively, a map is conformal if it preserves the inner product of the tangent

vectors up to a scaling factor, called the conformal factor λ. An immediate

consequence is that every conformal map preserves angles.

Figure 2.3 shows several examples of conformal parameterization examples.

Figure 2.3(A), 2.3(B), 2.3(C) and 2.3(D) show the conformal parameterizations of

a 2-torus, a human face, a lateral ventricular surface and a brain cortical surface

respectively [1].

As an illustration of how conformal maps are angle-preserving, Figure 2.4(A)

shows the texture mapping of a human brain. The brain is conformally mapped

to a sphere. The sphere is mapped to the plane by sterographic projection. The

planar coordinates are used as the texture coordinates. This texture parameter is

mapped to the brain surface through the conformal mapping between the sphere

and the brain surface. Note that all the right angles in the texture are preserved

on the brain surface. Figure 2.4(B)shows the texture mapping of the human face.

The face is conformally mapped to a 2D rectangle. The right angle is also well

preserved under the conformal map.

Several research groups have reported work on brain surface conformal map-

ping. Brain surface parameterization has been studied intensively. Schwartz et

al. [11], and Timsari and Leahy [12] compute quasi-isometric flat maps of the

cerebral cortex. Drury et al. [13] present a multiresolution flattening method for

mapping the cerebral cortex to a 2D plane [14]. Hurdal and Stephenson [15][16]

reported a discrete mapping approach that uses circle packing to produce “flat-

tened” images of cortical surfaces on the sphere, the Euclidean plane, or the

hyperbolic plane. They obtained maps that are quasi-conformal approximations

to classical conformal maps. Haker et al. [17][18] implemented a finite element

11



Figure 2.4: (A) shows the conformal texture mapping of the human brain. The
brain is mapped conformally to a sphere. (A) left shows the texture mapping
of the sphere. (B) shows the texture mapping of the brain. Note that the right
angle is well-preserved, meaning that conformal mapping is angle-preserving. (B)
shows the texture mapping of the human face. The face is conformally mapped
to a 2D rectangle. The right angle is also well preserved under the conformal
map.
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approximation for parameterizing brain surfaces via conformal mappings. They

represented the Laplace-Beltrami operator as a linear system and solved it for

parameterizing brain surfaces via conformal mapping. Gu et al. [19] proposed a

method to find a unique conformal mapping between any two genus zero man-

ifolds by minimizing the harmonic energy of the map. They demonstrated this

method by conformally mapping the cortical surface to a sphere. For general

surfaces, Wang et al. [20][1][21] proposed a method to compute the conformal

structures of high genus surfaces using the holomorphic 1-forms. They illustrated

this ideas by computing conformal structures for several types of anatomical sur-

faces in MRI scans of the brain, including the cortex, hippocampus, and lateral

ventricles. Based on the Riemann surface structure, they then canonically par-

titioned the surface into patches and each of these patches can be conformally

mapped to a parallelogram. Ju et al. [22] present a least squares conformal map-

ping method for cortical surface flattening. Joshi et al. [23] propose a scheme

to parameterize the surface of the cerebral cortex by minimizing an energy func-

tional in the pth norm. Recently, Ju et al. [24] report the results of a quantitative

comparison of FreeSurfer [25], CirclePack [15], and least squares conformal map-

ping (LSCM) [22] with respect to geometric distortion and computational speed.

In our work, we apply the global conformal parameterization algorithms to

parameterize the genus zero Riemann surface to a sphere and parameterize higher

genus surface to the 2D rectangles [1][26][27]. The algorithms are described as

below.
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2.2.1 Computation of Conformal Parameterization of Genus Zero sur-

face

For a diffeomorphism f : S1 → S2 between two genus zero surfaces, a map is

conformal if it minimizes the harmonic energy, Eharmonic(f) [28]. Let g1 and

g2 are the metric on S1 and S2 respectively. The harmonic energy Eharmonic is

defined as:

Eharmonic(f) =
1

2

∫

S1

|∇g1f |2g2
dS1 (2.9)

where ∇g is the gradient operator with respect to the metric g and | · |g2 is the

norm in the image space with respect to the metric g2. (In coordinates, we have

|∇g1f |2g2
= tr(t∂f∂f), where ∂f is the matrix of partial derivatives expressed in

bases orthonormal with respect to g1 and g2.

Based on this fact, we can compute the conformal mapping by a variational

approach, which minimizes the harmonic energy. The Euler-Lagrange equation

of the harmonic energy is:
d

dt
f t = ∆g1f (2.10)

where ∆g1f is the Laplacian operator with respect to the metric g1 and is a

tangent vector on S2.

In this section,we will formulate the basic mathematical theory in a rigorous

way. The harmonic energy and its derivative will be defined. Since we are working

on a triangulated mesh, their discretized version will be discussed.

Let K and H represent the simplicial realization (triangulation) of the Rie-

mann surface S1 and S2 respectively, u, v dentote the vertices, and [u, v] denote

the edge spanned by u, v. Now, we use CPL(K) to denote the vector space of all

piecewise linear functions defined on K. Suppose a set of string ku,v are assigned
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to each edge [u, v]. An inner product can be defined on CPL(K) as follow:

< f, h >=
1

2

∑

[u,v]∈K

ku,v(f(u)− f(v))(h(u)− h(v)) (2.11)

The string energy is defined as:

E(f) =< f, f >=
1

2

∑

[u,v]∈K

ku,v(f(u)− f(v))2 (2.12)

Suppose edge [v1, v2] has two adjacent faces Tα, Tβ, with Tα = {v1, v2, v3},
Tβ = {v1, w3, v2}. Define the parameters on Tα

aα
v1,v2

=
(v1 − v3) · (v2 − v3)

2|(v1 − v3)× (v2 − v3)| (2.13)

aα
v2,v3

=
(v2 − v1) · (v3 − v1)

2|(v2 − v1)× (v3 − v1)| (2.14)

aα
v3,v1

=
(v3 − v2) · (v1 − v2)

2|(v3 − v2)× (v1 − v2)| (2.15)

Parameters on Tβ are defined similarly. Let kv1,v2 := 1
2
(cotα + cotβ) = aα

v1,v2
+

aβ
v1,v2

. The string energy obtained is the harmonic energy Eharmonic(f).

For a map
−→
f ∈ CPL,

−→
f = (f0, f1, f2), we define the harmonic energy as:

Eharmnoic(
−→
f ) =

2∑
i=0

Eharmonic(fi) (2.16)

For a map between two genus zero surfaces, the map is conformal if the map is

the minimizer of the harmonic energy Eharmnonic. The harmonic energy is always

a quadratic form and is positive definite. This will guarantee the convergence of

the steepest descent method.
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Figure 2.5: Discrete Laplace-Beltrami operator. Edge {v1, v2} has two corners
against it α, β The edge weight is defined as the summation of the cotangents of
these corner angles.

To minimize the harmonic energy by the steepest descent method, we define

the piecewise Laplacian. The piecewise Laplacian is the linear operator 4PL(f) :

CPL → CPL on the space of piecewise linear functions on K, defined on the

formula

4PL(f) =
∑

[u,v]∈K

ku,v(f(u)− f(v)) (2.17)

For a map ~f = (f0, f1, f2), the piecewise Laplacian of ~f is defined as:

4PL(~f) = (4PL(f0),4PL(f1),4PL(f2)) (2.18)

A map ~f is harmonic if and only if ∆PL only has a normal component, and its

tangential component is zero. That is:

∆PL(~f) = (∆PL
~f)⊥ (2.19)
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We can now minimize the harmonic energy by steepest descent algorithm:

d~f(t)

dt
= D~f t (2.20)

where D~f t is the absolute derivative that is defined as:

D~f t = ∆PL
~f t − (∆PL

~f t)⊥ (2.21)

Using the algorithm, we can easily parameterize a genus zero surface conformally

onto a unit sphere S2.

In order to get a unique solution, we add the zero center of mass constraint

to the minimization problem. Mathematically, the map ~f : S1 → S2 satisfies the

zero center of mass constraint if and only if

∫

S1

~fdS1 = 0 (2.22)

In particular, all conformal maps from a surface S1 to the sphere S2 satisfying

the zero center of mass constraint are unique up to the Euclidean rotation group.

To summarize, the computer algorithm for computing the conformal param-

eterization of the genus zero surface onto the sphere is as follow:

Algorithm 2.2.2.1 : Genus zero surface

Input : (mesh K of genus 0, step length δt, energy difference threshold δE),

Output :(f : C2 → S2), which minimizes E.

1. Given a Gauss map I : C2 → S2. Let f = I, compute E0 = Enew(I)

2. For each vertex v ∈ K, compute D~f(v)
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3. Update f(v) by δf(v) = −D~f(v)δt

4. Compute energy Enew

5. If Enew−E0 < δE, return f . Otherwise, assign E to E0. Repeat steps 2 to

5.

Figure 2.6 shows the conformal parameterizations of two different brain cor-

tical surfaces onto the spheres. They are colored based on the mean curva-

ture. Note that the geometry of the sulci are well preserved on the spherical

domain, meaning that the conformal parameterization can preserve the local ge-

ometry effectively. After the brain is parameterized onto the sphere, spherical

harmonic analysis can be done on the surface easily to study medical disease

[29][30][31][32][33][34]

2.2.2 Computation of Conformal Parameterization of Higher Genus

surface

Sometimes it is of great interest to parameterize a compact surface onto 2D rect-

angular domains. To parameterize a compact surface onto 2D rectangles, one

intuitive technique is to cut it open along some suitable cutting boundaries. For

example, a torus of genus one can be cut open and mapped to a rectangle along

two cutting boundaries. Similarly, a torus of genus two can also be mapped to

two rectangles by introducing suitable cut (See Figure 2.8 ). If the cut is suitably

chosen, the parameterization could be conformal. In the algorithm that we use

to parameterize the surface, we search for the suitable cutting boundaries on the

surface in order to get a conformal map. This is done by computing the holomor-

phic one form on the surface. The holomorphic 1-form ω is a complex analytic

differential form. A conformal parameterization from the surface onto the 2D
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Figure 2.6: The top and bottom show the global conformal parameterization of
Brain 1 and Brain 2 onto the spheres respectively. They are colored based on the
mean curvature. Note that the geometry of the sulci are well preserved on the
spherical domain, meaning that the conformal parameterization can preserve the
local geometry effectively.
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domain can be obtained by integrating the holomorphic one form [21][35][26][20].

To compute the holomorphic 1-form, we start by computing a harmonic 1-

form ω on the surface. Similar to complex analysis, we can compute a harmonic

conjugate ∗ω of ω, which is called the Hodge star conjugate, such that W :=

ω + i ∗ ω is a holomorphic (analytic) 1-form.

The basis of harmonic 1-form can be computed from the dual basis of the

homology basis. All curves on a surface form a homology group. The homology

basis is a set of non-constant closed curves (up to homotopic) on the surface

that can be deformed to any closed curves on the surface by operations including

replicating, merging and splitting. A surface can be cut along a homology basis

(a cut graph) to a topological disk, which is called a fundamental domain. For

example, Figure 2.7 shows the homology basis on different surfaces. (A) shows

the homology basis {e1, e2}on a genus one torus. (B) shows the homology basis

of a genus two surface, which consists of 4 cutting boundaries. (C) shows the

homology basis of a genus four surface, which consists of 8 cutting boundaries.

As we cut along the suitable cutting boundaries of the surface, we can map the

surface onto the 2D rectangles.

We firstly explain the concept of homology and cohomology in a rigorous way.

Let K be a simplicial complex whose topological realiation |K| is homeomorphic

to a compact 2-dimensional manifold. Suppose there is a piecewise linear embed-

ding, F : |K| → R3. The pair (K, F ) is called a triangular mesh and we denote it

as M . Let [v0, v1, ..., vp] be the p-cells of K. The p− chain is defined as a linear

combination of q − simplies,

∑

[v0,v1,...,vp]∈K

c[v0,v1,...,vp][v0, v1, ..., vp] (2.23)
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Denote the set of all p-chains by CpK. We can define the boundary operator

∂ : CpK → Cp−1K by:

∂[v0, v1, ..., vp] =

p∑
i=0

[v0, ..., vi−1, vi+1, ..., vp] (2.24)

We can define chain complex as C∗K = {CpK, ∂p}p≥0 and cochain complex as

C∗K = {CpK, δp}p≥0, where CpK = Hom(CpK; R) and δpωσ = ω∂p+1σ, ω ∈
CpK and σ ∈ Cp+1K. Now, the p-th homology group is defined as:

HpK = ZpK/BpK (2.25)

where ZpK is the kernel of ∂p and Bp is the image of ∂p+1. Similarly, the p-th

cohomology group can be defined as:

HpK = ZpK/BpK (2.26)

where ZpK is the kernel of δp and Bp is the image of δp+1.

Given a homology basis {e1, ..., e2g} on the surface, we can compute a set

(basis) of the harmonic 1-forms {ω1, ..., ω2g} (cohomology). According to Hodge

theory, given 2g real numbers c1, c2, ..., c2g, there is a unique real gradient field ω

which satisfies the following system of equations:





dω =
∑3

i=1 ω([uj−1, uj]) = 0,∀[u0, u1, u2] ∈ M, u0 = u3 (closedness);

4ω =
∑

[u,v]∈M ω([u, v]) = 0∀[u, v] ∈ M (harmonicity);
∫

ei
ω =

∑ni

i=1 ω([ui
j−1, u

i
j]) = δij∀ei =

∑ni

j=1[u
i
j−1, u

i
j], u

i
0 = ui

ni
(conjugacy).

(2.27)

where [u0, u1, u2] represents a face on M ; [u, v] represents an edge on M ; kuv =

1
2
(cotα + cotβ) in which α, β are the angles against the edge [u, v].
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The equation dω = 0 indicates ω is closed, where d is the exterior differential

operator. The equation ∆ω = 0 represents the harmonicity of ω, where ∆ is the

Laplacian-Beltrami operator. The equation
∫

ei
ω = ci, i = 1, 2, ..., 2g restricts

the cohomology class of ω by the values of the integration along the homology

basis ei’s. In order to get a basis of the conformal gradient fields, we choose 2g

sets of {ci}, where the jth set is {δi
j}. It can be shown that the linear system of

equations is of full rank.

After we have computed ω, we can compute the ∗ω by using the discrete

Hodge star operator. Intuitively, the Hodge star operator ∗ω can be obtained by

rotating ω about the normal ~n on the tangent plane at each point of the surface.

Suppose {ω1, ω2, ..., ω2g} are a set of basis of all the solution of the system 2.27.

Therefore, we can represent ∗ω as a linear combination of ωi’s:

∗ω =

2g∑
i=1

λiωi (2.28)

We can solve for λi through a linear system by considering the relationship be-

tween the wedge product ∧ and star wedge product ∗∧.

Given two 1-forms ω and τ , the wedge product on smooth surface S is defined

as the following integration:

∫

S

ω ∧ τ =

∫

S

ω × τ · ~ndS (2.29)

where ~n is the normal field on S. Suppose {d0, d1, d2} are the oriented edges of a

triangle T , their lengths are {l0, l1, l2}, and the area of T is s, then the discrete
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wedge product ∧ is defined as:

∫

T

ω ∧ τ =
1

6

∣∣∣∣∣∣∣∣∣

ω(d0) ω(d1) ω(d2)

τ(d0) τ(d1) τ(d2)

1 1 1

∣∣∣∣∣∣∣∣∣
(2.30)

The star wedge product ∗∧ of ω and τ on smooth surface S is defined as follows:

∫

S

ω ∗ ∧τ =

∫

S

ω ∧ ∗τ =

∫

S

ω × ∗τ · ~n (2.31)

The discrete star wedge product on mesh T is defined as

∫

T

ω ∗ ∧τ = UMV T , (2.32)

where

M =
1

24s




−4l20 l20 + l21 − l22 l20 + l22 − l21

l21 + l20 − l22 −4l21 l21 + l22 − l20

l22 + l20 − l21 l22 + l21 − l20 −4l22


 (2.33)

and vectors U, V are

U = (ω(d0), ω(d1), ω(d2)); V = (τ(d0), τ(d1), τ(d2)) (2.34)

Based on the formula:

∫

S

ωi ∧ ∗ω =

∫

S

ωi ∗ ∧ω, i = 1, 2, ..., 2g, (2.35)

we can expand each term with the discrete wedge product and discrete star wedge
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product to get the following linear system:

WΛ = B (2.36)

where W has entries wij =
∑

T∈S

∫
T

ωi ∧ ωj, Λ has entries λi and B has entries

bi =
∑

T∈S

∫
T

ωi ∗ ∧ω.

After we get the holomorphic 1-form, we can compute the conformal param-

eterization φ by integrating the one form: φ(p) =
∫

γ
ω =

∫
γ
f(zα)dzα, where γ is

any path joining p to a fixed point c on the surface and ω = f(zα)dzα.

Double covering techniques are applied to surfaces with boundaries to con-

vert them to closed symmetric surfaces. Suppose surface S has boundaries, we

construct a copy of S denoted as S ′. We reverse the orientation of S ′ by changing

the order of vertices of each face from [u, v, w] to [v, u, w]. We then glue S and S ′

together along their boundaries. The resulting mesh is denoted as S, and called

the double covering of S. The double covering is closed and so we can apply the

holomorphic segmentation algorithm to compute the conformal parameterization.

To summarize, the algorithm for computing the conformal parameterization

of higher genus surfaces are as follow:

Algorithm 2.2.2.2 : Higher genus surface

1. Given a high genus surface, find the homology basis {ξ1, ..., ξ2g} of its ho-

mology group.

2. Given the homology basis {ξ1, ..., ξ2g}, compute its dual basis {w1, ..., w2g}
which is called the cohomology basis.

3. Diffuse the cohomology basis elements to harmonic 1-forms. This can be

done by solving the following simultaneous equations: (1) dw = 0 (closedness)
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Figure 2.7: Homology basis (cutting boundaries) on different surfaces. (A) shows
the homology basis {e1, e2}on a genus one torus. (B) shows the homology basis
of a genus two surface, which consists of 4 cutting boundaries. (C) shows the
homology basis of a genus four surface, which consists of 8 cutting boundaries.

(2) ∆w = 0 (harmonity) (3)
∫

ξi
wj = δij (duality). The existence of

solution is guaranteed by Hodge theory.

4. Compute the Hodge star conjugate {∗w1, ...,
∗ w2g} of {w1, ..., w2g}

5. Integrate the holomorphic 1-form and get the conformal mapping: f(x) =
∫

γ
w + i∗w, where w = Σλiwi

This method for parameterizing surfaces onto 2D rectangular domains has

been effectively used in medical research for disease analysis [36][37][38][39][1]

2.3 Geometric invariants on the Riemann Surface

Geometric invariants are quantities defined on the Riemann surface. They de-

scribe the geometric properties of the surface and are useful for distinguishing

different surfaces. They are also useful for determining a surface. For exam-
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Figure 2.8: Illustration of how the conformal parameterization can be computed
by introducing suitable cutting boundaries. The top shows how a genus one
surface can be mapped to a 2D rectangles by cutting along the suitable cutting
boundaries. The bottom shows how a genus two surface (2-torus) can be mapped
to two rectangles.

ple, the mean curvature and surface normal can be used to reconstruct a surface

uniquely up to a rigid motion. In this section, we describe the definition of sev-

eral important geometric variants such as mean curvature, gaussian curvature,

principal curvature, conformal factor and so on. We also describe briefly how

these geometric variants can be computed.

An important geometric variant is the curvature. There are different types of

curvature including principal curvatures, mean curvature and gaussian curvature.

Intuitively, curvature is the amount by which a geometric object deviates from

being flat.

For space curve, curvature is a value that measures how curved is the curve

at a point on a curve. At any point P on the curve, there is a circle of right size,

called the osculating circle, that touches P and fits the most. The flatter the curve

at P, the larger is its osculating circle. The sharper the curve at P , the smaller

is its osculating circle. Thus, we can define the value of curvature as 1/r, where

r is the radius of the osculating circle. When the osculating circle is large, the
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curvature 1/r is small. Mathematically, let γ(s) be a regular parametric curve,

where s is the arc length, or natural parameter. It determines the unit tangent

vector T , the unit normal vector N , the curvature κ(s), the signed curvature k(s)

and the radius of curvature r at each point:

T (s) = γ′(s), T ′(s) = k(s)N(s), κ(s) = |γ′′(s)| = |k(s)|, r(s) =
1

κ(s)
(2.37)

The curvature of a straight line is identically zero. The curvature of a circle

of radius R is constant, i.e. it does not depend on the point and is equal to the

reciprocal of the radius:

κ =
1

R
(2.38)

For a Riemann surface, consider the intersection of the surface with a plane

containing the normal vector and one of the tangent vectors at a particular point.

The intersection is a plane curve and has a curvature. This is the normal cur-

vature, and it varies with the choice of the tangent vector. The maximum and

minimum values of the normal curvature at a point are called the principal cur-

vatures, k1 and k2, and the directions of the corresponding tangent vectors are

called principal directions. The gaussian curvature K is defined as the product

of the principal curvatures K = k1k2. The mean curvature H is defined as the

average of the principal curvatures H = k1+k2

2
.

Mathematically, the curvatures can be computed from the second fundamental

form. Consider the tangent plane TpM of the surface M for each point p ∈ M .

We have the surface normal n(p), which varies smoothly with p. Then we have a

map n : M → S2. It is called the normal map or Gauss map.

The second fundamental form is the tensor field II on M defined by IIp(ξ, η) =

−〈Dnp(ξ), η, ξ, η ∈ TpM where 〈, 〉 is the dot product of R3, and we consider the
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Figure 2.9: Illustration of how the normal curvature is defined. Consider the
intersection of the surface with a plane containing the normal vector and one of
the tangent vectors at a particular point. The intersection is a plane curve and
has a curvature. This is the normal curvature, and it varies with the choice of
the tangent vector.

tangent planes of surfaces in R3 to be subspaces of R3.

The linear transformation Dnp is in reality the tangent mapping Dnp : TpM →
Tn(p)S

2, but since Tn(p)S
2 = TpM by the definition of n, we prefer to think of

Dnp as Dnp : TpM → TpM .

The tangent map Dn, is often called the Weingarten map.

We can compute the matrix representation W , called the Weingarten matrix,

for −Dn in u, v-coordinates. Now, the normal curvature κn of a Riemann surface

in a given direction is the reciprocal of the radius of the circle that best approx-

imates a normal slice of the surface in that direction, which varies in different

directions. The Weingarten matrix satisfies:

κn = vT Wv = vT


 e f

f g


v (2.39)

for any tangent vector v. Its eigenvalues and eigenvectors are called principal

curvatures and principal directions respectively. The mean of the eigenvalues is
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the mean curvature. A point on the Riemann surface at which the Weingarten

matrix has the same eigenvalues is called an umbilic point.

The mean curvature and gaussian curvature can be computed from the con-

formal factor [40][41]. Given the conformal parameterization of the surface, we

can obtain a conformal factor function λ. By definition, the conformal parame-

terization has a simple Riemannian metric, namely,

gij =





λ if i = j;

0 if i 6= j.

In other words, the four metric coefficients are reduced to one coefficient

metric λ, called the conformal factor. With this property, surface differential op-

erators can be expressed within the conformal coordinates with simple formulae.

The expressions are similar to the usual Euclidean differential operators, except

for a scalar multiplication of the conformal factor. The conformal factor at a

point p on the surface S can be determined by computing the scaling factor of

a small area around p under the parameterization φ : R2 → S. Mathematically,

λ(p) = Area(Bε(p))
Area(φ−1(Bε(p)))

, where Bε(p) is an open ball around p of radius p. After

we have computed the conformal factor, we can compute the mean curvature and

gaussian curvature easily. This can be described by the following theorems.

Lemma 2.3.1 :

K = −[(Γ2
12)u − (Γ2

11)v + Γ1
12Γ

2
11 + Γ2

12Γ
2
12 − Γ2

11Γ
2
22 − Γ1

11Γ
2
12]/E (2.40)
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Lemma 2.3.2 :

Suppose φ is orthogonal (F = 0). The gaussian curvature K can be computed

by:

K = − 1

2
√

EG
[(

Ev√
EG

)v + (
Gu√
EG

)u] (2.41)

Proof :

With F = 0, Γ2
12 = Gu

2G
; Γ2

11 = −Ev

2G
; Γ1

12 = Ev

2E
; Γ1

11 = Eu

2E
; Γ2

11 = −Eu

2E
; Γ2

22 = Eu

2E
.

Putting them into equation 2.40, we have:

K = −[(
Gu

2G
)u + (

Ev

2G
)v − E2

v

4EG
+

G2
u

4G2
+

EvGv

4G2
− EuGu

4EG
]/E

= −[(
Guu

2G
− G2

u

2G2
) + (

Evv

2G
− EvGv

2G2
)− E2

v

4EG
+

G2
u

4G2
+

EvGv

4G2
− EuGu

4EG
]/E

= −[
Guu

2EG
+

Evv

2EG
− E2

vv

4E2G
− G2

u

4EG2
)− EvGv

4EG2
− EuGu

4E2G
]

= − 1

2
√

EG
[(

Ev√
EG

)v + (
Gu√
EG

)u]

(2.42)

Theorem 2.3.1 :

Suppose φ is conformal with E = G = λ and F = 0, where λ is the conformal

factor. The gaussian curvature K can be computed by:

K = − 1

2λ
∆log λ (2.43)

Proof :

Suppose φ is conformal and λ = λ(u, v) is the conformal factor with respect to
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φ. Put E = G = λ into equation 2.41, we have:

K = − 1

2
√

λ2
[(

λv√
λ2

)v + (
λu√
λ2

)u]

= − 1

2λ
[(

λv

λ
)v + (

λu

λ
)u]

= − 1

2λ
∆log λ

(2.44)

Theorem 2.3.2 :

Suppose φ is conformal with E = G = λ and F = 0, where λ is the conformal

factor. The mean curvature H can be computed by:

H =
1

2λ
sign(φ)|∆φ| = ± 1

2λ
|φuu + φvv| (2.45)

where ~N is the (unit) surface normal, sign(φ) = <∆φ, ~N>
|∆φ| = ±1.

Proof :

Suppose φ is conformal and λ = λ(u, v) is the conformal factor with respect to

φ.

We have < φu, φu >=< φv, φv >= λ and < φu, φv >= 0. By differentiation, we

have:

< φuu, φu >=< φvu, φv >= − < φu, φvv >

We get: < φuu + φvv, φu >= 0. And similarly we get: < φuu + φvv, φv >= 0.

Therefore, ∆φ is parallel to ~N and sign(φ) = <∆φ, ~N>
|∆φ| = ±1.

Now,

H =
1

2

Eg − 2fF + Ge

EG− F 2
=

1

2

g + e

λ
=

1

2

< φuu + φvv, ~N >

λ
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So,

H =
1

2

< ∆φ, ~N >

λ
=

1

2

< ∆φ, ~N >

|∆φ|λ |∆φ| = 1

2λ
sign(φ)|∆φ|

Q.E.D.

Another important geometric variant on the surface is the geodesic curve.

Let M be a Riemann surface with Levi-Civita connection ∇. The solution to the

equation ∇γ̇ γ̇ = 0 defined in the interval [0, a], is called a geodesic or a geodesic

curve. When M is compact, the curve γ is the shortest possible curve between the

points γ(0) and γ(a), and is often referred to as a minimizing geodesic between

these points. Conversely, any curve which minimizes the distance between two

arbitrary points in a manifold, is a geodesic. Therefore, on a compact Riemann

surface M , we can regard a geodesic between two points to be the shortest path

joining the two points.

We can compute a smooth approximation of the geodesic on the spline (smooth)

mesh using the conformal parameterization. This can be described by the follow-

ing theorem.

Theorem 2.3.3 :

Let S be a Riemann surface. Suppose φ is the conformal parameterization of S

with conformal factor λ. Then the geodesic between φ(p) and φ(q) on S can be

computed on the 2D parameter domain by minimizing the following energy:

E(~c(t)) =

∫ 1

0

λ(~c(t))||~c′(t)||2dt (2.46)

where ~c(0) = p and ~c(0) = q.

The geodesic on S will be φ(~c(t)).
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The energy can be minimized iteratively by:

~cn+1(t)− ~cn(t)

dt
= β(t)[−||~c′n(t)||2∇λ(~cn(t)) + (λ(~cn(t))~c′n(t))′] (2.47)

where β(t) = e2e
− 1

||t− 1
2 |−

1
2 | . The multiplication of β(t) is to make sure that the

curve is evolved with the end points fixed.

Proof :

Let ~α : [0, 1] → S be any curve on S. By Cauchy-Schwartz inequality,

L(~α)2 = (

∫ 1

0

|~α′(t)|dt)2

= (

∫ 1

0

1 · |~α′(t)|dt)2

≤ (

∫ 1

0

1dt)2(

∫ 1

0

|~α′(t)|2dt) := ES(~α)

So, L(~α)2 ≤ ES(~α).

Let ~γ : [0, 1] → D be the projection of a minimizing geodesic curve on S onto

D. We have:
D~γ′

dt
= 0 ⇒< ~γ′′, ~γ′ >= 0

Thus, < ~γ′, ~γ′ >= k for some constant k.

Now, L(~γ)2 = (
∫ 1

0
|~α′(t)|dt)2 = k = E(~γ) and so E(~γ) = L(~γ)2 ≤ L(~α)2 ≤

E(~α).

As a result, let ~c : [0, 1] → D be any curve on the parameter domain D

and ~Υ : [0, 1] → D be the projection of ~γ onto the parameter domain, we have:

E(~c) = ES(φ(~c)) ≤ ES(φ(~Υ)) = ES(~Υ).
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Now, let ~w(t) = β(t)[−||~c′(t)||2∇λ(~c(t)) + (λ(~c(t))~c′(t))′]. Consider:

d

ds
|s=0E(~c(t) + s~w(t)) =

d

ds
|s=0

∫ 1

0

λ(~c(t) + s~w(t))||~c′(t) + s~w′(t)||2dt

=

∫ 1

0

||~c′(t)||2∇λ(~c(t)) · ~w(t) + (λ(~c(t))~c′(t)) · ~w′(t)dt

=

∫ 1

0

[||~c′(t)||2∇λ(~c(t))− (λ(~c(t))~c′(t))′] · ~w(t)dt

= −
∫ 1

0

|| ||~c′(t)||2∇λ(~c(t))− (λ(~c(t))~c′(t))′||2dt < 0

Thus, the energy can be minimized iteratively by:

~cn+1(t)− ~cn(t)

dt
= β(t)[−||~c′n(t)||2∇λ(~cn(t)) + (λ(~cn(t))~c′n(t))′] (2.48)

where β(t) = e2e
− 1

||t− 1
2 |−

1
2 | .

Q.E.D.
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CHAPTER 3

Optimized Brain Conformal Parameterization

and Its Application to Human Brain Mapping

3.1 Introduction

Rapid development of computer technology has accelerated the acquisition and

databasing of brain data. An effective way to analyze and compare brain data

from multiple subjects is to map them into a canonical space while retaining the

original geometric information as far as possible. Surface-based approaches often

map cortical surface data to a parameter domain such as a sphere, providing a

common coordinate system for data integration [28, 42]. One method to do this

is to conformally map cortical surfaces to the sphere. It is well known that any

genus zero Riemann surface can be mapped conformally to a sphere. Cortical

surface is a genus zero surface. Therefore, conformal mapping offers a convenient

method to parameterize cortical surfaces without angular distortion, generating

an orthogonal grid on the cortex that locally preserves the metric. Although

conformal mapping preserves the local geometry well, the important anatomical

features, such as the sulci landmarks, are usually not aligned consistently. To

compare cortical surfaces more effectively, it is advantageous to adjust the con-

formal parameterizations to match consistent anatomical features across subjects

[43][44]. Here we refer to these anatomical features as landmarks. Some exam-
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ples of landmarks are shown in Figure 3.1. This matching of cortical patterns

improves the alignment of data across subjects, although it is more challenging

to create a consistent conformal (orthogonal) parameterization of anatomy across

subjects when landmarks are constrained to lie at specific locations in the spher-

ical parameter space. Here we describe and compare two methods to accomplish

the task. The first approach is based on pursuing an optimal Möbius transforma-

tion to minimize the landmark mismatch error. The second approach is based on

a new energy functional, to optimize the conformal parameterization of cortical

surfaces by using landmarks. Experimental results on a dataset of 40 brain hemi-

spheres showed that the landmark mismatch energy can be significantly reduced

while effectively preserving conformality. The key advantage of these conformal

parameterization approaches is that any local adjustments of the mapping to

match landmarks do not affect the conformality of the mapping significantly. A

detailed comparison between the two approaches will be discussed. The first ap-

proach can generate a map which is exactly conformal, although the landmark

mismatch error is not reduced as effective as the second approach. The second

approach can generate a map which significantly reduces the landmark mismatch

error, but some conformality will be lost [45][46][47].

Figure 3.1: Manually labeled landmarks on the brain surface. The original surface
is on the left. Its conformal mapping result to a sphere is on the right.
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3.2 Previous works

Optimization of surface diffeomorphisms by landmark matching has been stud-

ied intensively. Joan et al. [48] proposed to generate large deformation diffeo-

morphisms of the sphere onto itself, given the displacements of a finite set of

template landmarks. The diffeomorphism obtained can match the geometric fea-

tures significantly but it is, in general, not a conformal mapping. Leow et al. [49]

proposed a level set based approach for matching different types of features,

including points and 2D or 3D curves represented as implicit functions. Corti-

cal surfaces were flattened to the unit square. Nine sulcal curves were chosen

and were represented by the intersection of two level set functions, and used to

constrain the warp of one cortical surface onto another. The resulting transfor-

mation was interpolated using a large deformation momentum formulation in the

cortical parameter space, generalizing an elastic approach for cortical matching

developed in Thompson et al. [50]. Duygu et al. [51] proposed a more auto-

mated mapping technique that results in good sulcal alignment across subjects,

by combining parametric relaxation, iterated closest point registration and in-

verse stereographic projection. Gu et al. [19] proposed to optimize the conformal

parametrization by composing an optimal Möbius transformation so that it min-

imizes the landmark mismatch energy. The resulting parameterization remains

conformal. In this chapter, we are going to compare this method with a varia-

tional approach that gives an optimized brain conformal parameterization.

3.3 Optimization of Brain Conformal Parametrization

In this section, we describe two methods to adjust conformal parameterizations

of the cortical surface so that they match consistent anatomical features across
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subjects. This matching of cortical patterns improves the alignment of data

across subjects, e.g., when integrating functional imaging data across subjects,

measuring brain changes, or making statistical comparisons in cortical anatomy

[52].

3.3.1 Optimal Möbius Transformation

In this approach, the brain conformal parametrization is improved by compositing

it with an optimal Möbius transformation which reduces the landmark mismatch

error.

By definition, a Möbius transformation is a bijective conformal map of the

extended complex plane Ĉ = C ∪∞ (i.e. the complex plane augmented by the

point at infinity) of the form:

f(z) =
az + b

cz + d
(3.1)

where z, a, b, c, d are complex numbers satisfying ad− bc 6= 0. It can be usefully

expressed as a matrix H:

H =


 a b

c d


 (3.2)

The condition ad− bc 6= 0 is equivalent to the condition that the determinant

of above matrix be nonzero (i.e. the matrix should be non-singular). Note that

multiplying H by any complex number λ gives rise to the same transformation.

Such matrix representations are called projective representations. It is often con-

venient to normalize H so that its determinant is equal to 1. The matrix H is

then unique up to sign. To preserve the orientation, we can assume ad− bc = 1.

The set of all Möbius transformation forms a group, called the Möbius trans-
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formation group. The Möbius transformation can be regarded as a bijective

conformal diffeomorphism of the sphere S2 using the sterographic transforma-

tion. A sterographic projection ς : S2 → Ĉ is a bijective map between the

sphere S2 and the extended complex plane Ĉ. Therefore, a Möbius transformation

f : Ĉ → Ĉcan be regarded as a bijective conformal diffeomorphism f̃ : S2 → S2

of the sphere S2 by the following:

f̃ = ς−1 ◦ f ◦ ς (3.3)

We define an energy to measure the quality of the parameterization. Suppose

two brain surfaces S1, S2 are given, conformal parameterizations are denoted as

f1 : S2 → S1 and f2 : S2 → S2, we can define the matching energy as:

E(f1, f2) =

∫

S2
||f1(u, v)− f2(u, v)||2dudv (3.4)

We can compose an optimal Möbius transformation τ with f2 which minimizes

the landmark matching energy. That is,

E(f1, f2 ◦ τ) = minζ∈ΩE(f1, f2 ◦ ζ)) (3.5)

In order to match the important geometric features on the brains, landmarks

are commonly used. Suppose the landmarks are represented as discrete point

sets and denoted as {pi ∈ S1} and {qi ∈ S2}, pi matches qi, i = 1, 2, ..., n. The

landmark mismatch functionl for u ∈ Ω is as follow:

E(u) =
n∑

i=1

||f−1
1 (pi)− u(f−1

2 (qi))||2, u ∈ Ω, pi ∈ S1, qi ∈ S2 (3.6)
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We next convert the nonlinear variational problem into a least square problem.

We project the sphere to the complex plane, then the Möbius transformation is

represented as a complex linear rational formula. If we assume u maps infinity

to infinity, then u can be represented in a linear form as u = az + b. Then E(u)

can be simplified as:

E(u) =
n∑

i=1

g(zi)|azi + b− τi|2 (3.7)

where zi is the stereographic projection of qi, τi is the projection of pi, g the

conformal factor from the plane to the sphere which can be simplified as:

g(z) = 4/(1 + |z|2) (3.8)

The problem becomes a least squares problem. The solution (a, b) ∈ C2 of u can

be solved easily by the following linear system:




∑n
i=1 g(zi)z

2
i

∑n
i=1 g(zi)zi

∑n
i=1 g(zi)zi

∑n
i=1 g(zi)





 a

b


 =




∑n
i=1 g(zi)ziτi

∑n
i=1 g(zi)τi


 (3.9)

This algorithm allows us to produce an optimal map that preserves exactly the

conformality. However, since this method minimizes the energy with respect to

the six degree of freedom of the Möbius transformation group, the minimization

of the landmark mismatch error is not as effective as our second approach, the

variational approach, which will be discussed in the next section.

3.3.2 Variational approach

The second method, which is based on a new energy functional, optimizes the

conformal parameterization of cortical surfaces by using landmarks. This is done

by minimizing the compound energy functional Enew = Eharmonic + λElandmark,
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where Eharmonic is the harmonic energy of the parameterization and Elandmark

is the landmark mismatch energy. We prove theoretically that our proposed

Enew is guaranteed to be decreasing and studied the rate of changes of Eharmonic

and Elandmark. Experimental results show that our algorithm can considerably

reduce the landmark mismatch energy while effectively retaining the conformality

property. Based on these findings, we argue that the conformal mapping provides

an attractive framework to help analyze anatomical shape, and to statistically

combine or compare 3D anatomical models across subjects.

The proposed algorithm is a variational approach that optimizes the confor-

mal parameterization using discrete landmarks. This algorithm optimizes the

landmark mismatch energy over all degrees of freedom in the reparameteriza-

tion group. The map obtained can considerably reduce the landmark mismatch

energy while retaining conformality as far as possible.

Suppose C1 and C2 are two cortical surfaces we want to compare. We let

f1 : C1 → S2 be the conformal parameterization of C1 mapping it onto S2. We

manually label the landmarks on the two cortical surfaces as discrete point sets, as

shown in Figure 3.1. We denote them as {pi ∈ C1}, {qi ∈ C2}, with pi matching qi.

We proceed to compute a map f2 : C2 → S2 from C2 to S2, which minimizes the

harmonic energy as well as minimizing the so-called landmark mismatch energy.

The landmark mismatch energy measures the Euclidean distance between the

corresponding landmarks. Note that it makes sense to use Euclidean distance

instead of geodesic distance. On S2, all the geodesic curves move along the

great circle. As the Euclidean distance decreases, the geodesic distance will also

decrease. In other words, the computed map should effectively preserve the

conformal property and match the geometric features on the original structures

as far as possible.
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Let h : C2 → S2 be any homeomorphism from C2 onto S2. We define the

landmark mismatch energy of h as, Elandmark(h) = 1/2
∑n

i=1 ||h(qi)) − f1(pi)||2.
where the norm represents distance on the sphere. By minimizing this energy

functional, the Euclidean distance between the corresponding landmarks on the

sphere is minimized.

To optimize the conformal parameterization, we propose to find f2 : C2 → S2

which minimizes the following new energy functional (instead of the harmonic en-

ergy functional), Enew(f2) = Eharmonic(f2)+λElandmark(f2), where λ is a weighting

factor (Lagrange multiplier) that balances the two penalty functionals. It con-

trols how much landmark mismatch we want to tolerate. When λ = 0, the new

energy functional is just the harmonic energy. When λ is large, the landmark

mismatch energy can be significantly reduced. But more conformality will be lost

(here we regard deviations from conformality to be quantified by the harmonic

energy).

Now, let K represent the simplicial realization (triangulation) of the brain

surface C2, let u, v denote the vertices, and [u, v] denote the edge spanned by

u, v. Our new energy functional can be written as:

Enew(f2) =
1

2

∑

[u,v]∈K

ku,v||f2(u)− f2(v)||2 +
λ

2

n∑
i=1

||f2(qi)− f1(pi)||2

=
1

2

∑

[u,v]∈K

ku,v||f2(u)− f2(v)||2 +
λ

2

∑
u∈K

||f2(u)− L(u))||2χM(u)

where M = {q1, ..., qn} ; L(qi) = pi if u = qi ∈ M and L(u) = (1, 0, 0) otherwise.

The first part of the energy functional is defined as in [?]. Note that by minimizing

this energy, we may give up some conformality but the landmark mismatch energy

is progressively reduced.

42



Figure 3.2: Möbius transformation to minimize the landmark mismatch error.
The blue curve represented the important landmarks. Note that the alignment
of sulci landmarks is quite consistent.
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3.3.3 Optimization of Combined Energy

We next formulate a technique to optimize our energy functional. Suppose we

would like to compute a mapping f2 that minimizes the energy Enew(f2). This

can be solved easily by steepest descent.

Definition 3.2.3.1 : Suppose f ∈ CPL, where CPL represent a vector space

consists of all piecewise linear functions defined on K. We define the Laplacian

as follows: ∆f(u) =
∑

[u,v]∈K ku,v(f(u)− f(v)) + λ
∑

u∈K(f2(u)− L(u))χM(u).

Definition 3.2.3.2 : Suppose
−→
f ∈ CPL,

−→
f = (f0, f1, f2), where the fi are

piecewise linear. Define the Laplacian of
−→
f as ∆

−→
f = (∆f0(u), ∆f1(u), ∆f2(u)).

Now, we know that f2 = (f20, f21, f22) minimizes Enew(f2) if and only if the

tangential component of ∆f2(u)= (∆f20(u), ∆f21(u), ∆f22(u)) vanishes. That is

∆(f2) = ∆(f2)
⊥.

In other words, we should have P−→n ∆f2(u) = ∆f2(u) − (∆f2(u) · −→n )−→n = 0.

We use a steepest descent algorithm to compute f2 : C2 → S2: df2

dt
= −P−→n ∆f2(t).

Algorithm to Optimize the Combined Energy Enew

Input : (mesh K, step length δt, energy difference threshold δE),

Output :(f2 : C2 → S2), which minimizes E.

1. Given a Gauss map I : C2 → S2. Let f2 = I, compute E0 = Enew(I)

2. For each vertex v ∈ K, compute P−→n ∆f2(v)

3. Update f2(v) by δf2(v) = −P−→n ∆f2(v)δt

4. Compute energy Enew

5. If Enew − E0 < δE, return f2. Otherwise, assign E to E0. Repeat steps 2

to 5.
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Figure 3.3: In (a), the cortical surface C1 (the control) is mapped conformally
(λ = 0) to the sphere. In (d), another cortical surface C2 is mapped conformally
to the sphere. Note that the sulcal landmarks appear very different from those in
(a) (see landmarks in the green square). In (g), the cortical surface C2 is mapped
to the sphere using our algorithm (with λ = 3). Note that the landmarks now
closely resemble those in (a) (see landmarks in the green square). (b) and (c)
shows the same cortical surface (the control) as in (a). In (e) and (f), two other
cortical surfaces are mapped to the spheres. The landmarks again appears very
differently. In (h) and (i), the cortical surfaces are mapped to the spheres using
our algorithm. The landmarks now closely resemble those of the control.
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Figure 3.4: Histogram (a) shows the statistics of the angle difference using the
conformal mapping. Histogram (b) shows the statistic of the angle difference us-
ing our algorithm (λ = 3). It is observed that the angle is significantly preserved.

Figure 3.5: Diagram that shows how the harmonic energy and landmark mis-
match energy change at each iteration. The left shows how the landmark mis-
match energy changes. The right shows how the harmonic energy changes.
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Figure 3.6: The average map of the optimized conformal parametrization using
the variational approach. 40 landmarks are manually labelled. Observed that
the important sulci landmarks are clearly shown. It means that the landmarks
are consistently aligned

Figure 3.7: The average map of the optimized conformal parametrization by the
two different approaches.
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Figure 3.8: Histogram showing the percentage change in the conformal factor
with different algorithm. The left shows the percentage change in the conformal
factor using the variational approach with λ = 3. The right shows the percentage
change in the conformal factor using the variational approach with λ = 6. Note
that the conformality is well preserved. However, more conformality will be lost
with larger λ.

3.4 Experimental Results

In our experiment, we tested our algorithm on a set of left hemisphere corti-

cal surfaces generated from brain MRI scans of 40 healthy adult subjects, aged

27.5+/-7.4SD years (16 males, 24 females), scanned at 1.5 T (on a GE Signa

scanner). Data and cortical surface landmarks were those generated in a prior

paper, Thompson et al. [52] where the extraction and sulcal landmarking proce-

dures are fully detailed. Using this set of 40 hemispheric surfaces, we mapped

all surfaces conformally to the sphere and optimized the conformal map by the

two approaches. In our first approach, we optimized the conformal map by com-

posing it with an optimal Möbius transformation, which reduced the landmark

mismatch error. Note that the optimized maps we get remains exactly conformal.

Figure 3.2 shows some of our experimental result. Note that the alignment of

sulci landmarks are quite consistent after optimizing the map with the optimal
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Möbius transformation.

In our second approach, we mapped the cortical surfaces conformally to the

sphere and minimized the compound energy matching all subjects to a randomly

selected individual subject (alternatively, the surfaces could have been aligned to

an average template of curves on the sphere). An important advantage of this

approach is that the local adjustments of the mapping to match landmarks do

not greatly affect the conformality of the mapping. In Figure 3.3(a), the cortical

surface C1 (a control subject) is mapped conformally (λ = 0) to the sphere. In

(b), another cortical surface C2 is mapped conformally to the sphere. Note that

the sulcal landmarks appear very different from those in (a) (see landmarks in the

green square). This means that the geometric features are not well aligned on the

sphere unless a further feature-based deformation is applied. In Figure 3.3(c), we

map the cortical surface C2 to the sphere with our algorithm, while minimizing

the compound energy. This time, the landmarks closely resemble those in (a)

(see landmarks in the green square).

In Figure 3.4, statistics of the angle difference are illustrated. Note that under

a conformal mapping, angles between edges on the initial cortical surface should

be preserved when these edges are mapped to the sphere. Any differences in

angles can be evaluated to determine departures from conformality. Figure 3.4(a)

shows the histogram of the angle difference using the conformal mapping, i.e.

after running the algorithm using the conformal energy term only. Figure 3.3(b)

shows the histogram of the angle difference using the compound functional that

also penalizes landmark mismatch. Despite the fact that inclusion of landmarks

requires more complex mappings, the angular relationships between edges on the

source surface and their images on the sphere are clearly well preserved even after

landmark constraints are enforced.
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In Figure 3.8, statistic of the percentage change in the conformal factor are

illustrated. The left shows the percentage change in the conformal factor using

the variational approach with λ = 3. The right shows the percentage change in

the conformal factor using the variational approach with λ = 6. Note that the

conformality is well preserved. However, more percentage change in conformality

is observed with larger λ.

λ = 3 λ = 6 λ = 10

Eharmonic of the initial
(conformal) parameterization: 100.6 100.6 100.6

λElandmark of the initial (conformal)
parameterization: 81.2 162.4 270.7

Initial compound energy
(Eharmonic + λElandmark) : 181.8 263.0 371.3

Final Eharmonic 109.1 (↗ 8.45%) 111.9 (↗ 11.2%) 123.0 (↗ 22.2%)

Final λElandmark 11.2 (↘ 86.2%) 13.7 (↘ 91.6%) 15.6(↘ 95.8%)

Final compound energy
(Eharmonic + λElandmark) 120.3 (↘ 33.8%) 125.6(↘ 52.2%) 138.6 ( ↘ 62.7%)

Table 3.1: Numerical data from our experiment. The landmark mismatch en-
ergy is significantly reduced while the harmonic energy is only slightly increased.
The table also illustrates how the results differ with different values of λ. The
landmark mismatch error can be reduced by increasing λ, but conformality will
increasingly be lost.

We also tested with other parameter λ with different values. Table 3.1 shows

numerical data from the experiment. From the Table, we observe that the land-

mark mismatch energy is significantly reduced while the harmonic energy is only

slightly increased. The table also illustrates how the results differ with different

values of λ. We observe that the landmark mismatch error can be reduced by

increasing λ, but conformality is increasingly lost. Figure 3.5 shows how the

harmonic energy and landmark energy change in each iterations with different

values of λ. Again, more landmark mismatch error can be reduced with larger λ,

but more harmonic energy (the conformality) is lost.
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To visualize how well the alignment of the important sulci landmarks is, we

took average of the 15 optimized maps using the variational method. Figure 3.6

shows average maps at different angles. In (b) and (c), sulci landmarks are clearly

preserved inside the green circle where landmarks are manually labelled. In (d),

the sulci landmarks are averaged out inside the green circle where no landmarks

are manually labelled. It means that our algorithm can significantly improve the

alignment of the anatomical features.

Note that our first algorithm is different from the second one in that the

first method can generate an optimized map which remains exactly conformal,

although the reduction in the landmark mismatch error is not as effective as the

second approach. Table 3.2 shows the numerical data of our experiment. From

the Table, we observe that the variational method can reduce the landmark mis-

match error more effectively than the optimal Möbius transformation approach.

It is also observed that more landmark mismatch can be reduced by larger value

of λ. Figure 3.7 shows the average maps of the optimized conformal maps we got

by the two different approaches. Figure 3.7(a) shows the average maps of the

optimal Möbius transformation approach. Figure 3.7 (b) shows the average map

of the variational approach. Note that the sulci landmarks are better preserved

using the variational approach.

3.5 Conclusion

In conclusion, we have described two algorithms to compute a map from the

cortical surface of the brain to a sphere, which can effectively retain the original

geometry by minimizing the landmark mismatch error across different subjects.

The first method, which is based on the optimal Möbius transformation, can

generate an optimal map that is exactly conformal. However, the landmark mis-
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Möbius Transformation Variational λ = 3 Variational λ = 6

Elandmark of the initial
(conformal) parameterization: 160.33 160.33 160.33

Elandmark of the final (optimized)
parameterization: 73.75 19.24 9.62

Table 3.2: Numerical data from our experiment of the two different approaches.
Although the Möbius transformation approach generate a map which is confor-
mal, the landmark mismatch energy is not reduced as effective as the variational
approach. The landmark mismatch energy is significantly reduced with the vari-
ational approach. The table also illustrates how the results differ with different
values of λ. The landmark mismatch error can be reduced by increasing λ, but
conformality will increasingly be lost.

match error is not reduced as significant as the second approach. Our second

method is a variational approach which minimizes a compound energy. The de-

velopment of adjustable landmark weights may be beneficial in computational

anatomy. In some applications, such as tracking brain change in an individual

over time, in serial images, it makes most sense to place a high priority on land-

mark correspondence. In other applications, such as the integration of functional

brain imaging data across subjects, functional anatomy is not so tightly linked to

sulcal landmarks, so it may help to trade landmark error to increase the regularity

of the mappings.

3.6 Appendix

Monotonic decrease of energy

Claim : With our algorithm, the energy is strictly decreasing.

Proof : Our energy (in continuous form) can be written as: E(u) = 1/2
∫ ||∇u||2+

λ
∫

δE||(u− v)||2 where v is the conformal mapping from the control cortical sur-
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Figure 3.9: This figure shows how the harmonic energy and landmark energy
change, as the number of iterations increases, using our steepest descent algo-
rithm. Initially, the rate of change of the harmonic energy is small while the rate
of change of landmark energy is comparatively large. Note that a Lagrange mul-
tiplier governs the weighting of the two energies, so a compromise can be achieved
between errors in landmark correspondence and deviations from conformality.

face to the sphere. Now,

d
dt
|t=0E(u + tw) =

∫ ∇u · ∇w + λ
∫

δE(u− v) · w =
∫

∆uw + λ
∫

δE(u− v) · w
In our algorithm, the direction w is taken as: w = −∆u − λδE(u − v). Sub-

stituting this into the above equation, we have d
dt
|t=0E(u + tw) = − ∫

(∇u)2 −
(λ)2

∫
δE||u − v||2 < 0. Therefore, the overall energy of the mapping is strictly

decreasing, as the iterations proceed.

Rate of changes in Eharmonic and Elandmark

To explain why our algorithm can effectively preserve conformalilty while greatly

reducing the landmark mismatch energy, we can look at the rate of change of

Eharmonic and Elandmark. Note that the initial map u we get is almost conformal.

Thus, initially ∆u is very small.
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Claim : With our algorithm, the rate of change of Eharmonic(u) is O(||∆u||∞) and

the rate of change of Elandmark is λ2Elandmark(u) +O(||∆u||∞). Here the norm is

the supremum norm over the surface.

Proof : Recall that in our algorithm, the direction w is taken as: w = −∆u −
λδE(u− v). Now, the rate of changes are

Eharmonic = | d
dt
|t=0Eharmonic(u + tw)| = |

∫
∇u · ∇w| = |

∫
∆u · w|

= |
∫
||∆u||2 +

∫
δE∆u · (u− v)|

≤ ||∆u||2∞ + 8λπ||∆u||∞ = O(||∆u||∞)

Elandmark = | d
dt
|t=0Elandmark(u + tw)|

= |
∫

(λδE)2(u− v) · w +

∫
δE(u− v) ·∆u|

≤ λ2Elandmark(u) + 8π||∆u||∞ = λ2Elandmark(u) +O(||∆u||∞)

Since initially the map is almost conformal and ∆u is very small, the change

in harmonic energy is very small. Conversely, initially the landmark energy is

comparatively large. Since the rate of change of Elandmark is λ2Elandmark(u) +

O(||∆u||∞), the change in landmark energy is more significant (see Figure 3.9 for

an illustration).
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CHAPTER 4

Solving Variational Problems on Riemann

Surfaces with Conformal Parameterization

4.1 Introduction

Solving variational problem is an important topic in mathematics. A lot of daily

life problems can be solved by formulating them as variational problems that

minimize certain kind of energy functionals. This type of problem has a very

long history and has found various applications in different research areas such

as physics, control theory, statistics as well as image processing. For example, a

lot of partial differential equations (PDEs) in physics are derived from the Euler-

Lagrange equations of the variational problems. In computer vision research,

many problems, such as image denoising and image segmentation, can also be

solved by variational approaches [53][54][55][56][57].

Solving variational problems in the usual Euclidean domain has been studied

extensively [58]. Recently, researchers have been more and more interested in

solving variational problems on general surfaces or manifolds. Applications exist

in different areas of research, such as computer vision, computer graphics, image

processing on the surface, geometry modeling, medical imaging as well as mathe-

matical physics. In medical imaging research, variational methods are often used

for surface registration, feature extraction, surface parameterization and so on
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[19][45][46]. Besides, a lot of 2D image processing techniques can be extended

to the surface by variational methods on the manifolds [59], such as image de-

noising, image inpainting on the surface, brain mapping, etc [60][61][62][63][36].

Geometry modeling can also be done via variational methods. Examples include

surface smoothing, filling missing holes on the surface, etc [64]. In fluid dynamic,

researchers are interested in simulating the fluid flow and solidification on the

surface, via solving different flow models [65][66].Some other applications in-

clude texture synthesis [67][68], vector field visualization [69], weathering [70],

interpolation process [71][72] and inverse problem [73]. Therefore, it is of great

interest to develop a general and efficient method to solve variational problems

on the surface.

In this chapter, we describe an explicit method to solve variational problems

on general Riemann surfaces, using the conformal parameterization of the surface

[63]. In general, variational problem is usually solved by computing its Euler-

Lagrange equation, which is essentially a partial differential equation. Therefore,

it is important to understand how to do calculus on general manifolds. On

Riemann surfaces, differential operations are done through covariant derivatives

[74][2][75]. Essentially, they are a set of coordinate invariant operators for taking

directional derivatives of the functions or vector fields defined on the surface.

Covariant derivatives are defined locally through the local parameterization of

the manifold [2]. With arbitrary parameterization, the formulae for the covariant

derivatives are generally very complicated. It results in computational difficul-

ties and numerical inaccuracies. Here, we propose to parameterize the surface

conformally with the minimum number of coordinates patches. The Riemannian

metric of the conformal parameterization is simple, which is just the scalar multi-

plication of the conformal factor, λ. The covariant derivatives on the surface can

be computed on the 2D domain with simple formula. The corresponding formula
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for the covariant derivatives on R2 are similar to the usual Euclidean differential

operators, except for a scaling factor λ. Therefore, with the conformal param-

eterization, the variational problems on general surfaces can be transformed to

the 2D problems with much simpler equations. The problem can then be solved

by using some well-known numerical schemes.

The key advantages of this method are as follow:

• Firstly, by mapping the surface to the 2D domain, the problem on the

surface are transformed into the 2D problem. It can then be solved by

efficient 2D numerical methods, instead of solving it on the complicated

surface.

• Secondly, the simple Riemannian metric of the conformal parameterization

allows us to have a simple formula for the covariant derivatives on the 2D

domain. It makes computation much easier and reduces numerical inaccu-

racy.

• Thirdly, in our algorithm, covariant derivatives are computed via conformal

parameterization without the orthogonal projection of the normal. It is

different from some other methods, in which orthogonal projection is needed

to ensure the approximated covariant derivatives are tangent to the surface.

In our algorithm, the surface is identified with the 2D parameter domain

with a specific Riemannian metric. Every tangent vector of the surface is

represented by a 2D vector in the parameter domain and thus orthogonal

projection is unnecessary. It simplifies the problem and avoids possible

error arising from the inaccurate approximation of the normal.

• Fourthly, our algorithm allows us to compute the conformal parameteriza-

tion of the surface with the minimum number of coordinate patches. For
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most of the classical parameterization methods, the surface is segmented

into many portions and each portion is mapped to the 2D parameter do-

main. In our algorithm, we parameterize the surface with the minimum

number of coordinate patches and the parameterization results are con-

sistent along the patch boundaries because of its global parameterization

nature. Specifically, the number of coordinate patches is 2g − 2, where g

is the genus of the surface. The parameterization is intrinsic and depends

on the holomorphic 1-form, which is in a finite dimensional linear space.

Since our segmentation is based on the holomorphic 1-form, the segmenta-

tion result is finite and purely determined by holomorphic 1-form selection.

Thus we could always select the segmentation that is the most appropriate

to solve the PDEs.

• Finally, the conformal metric on the 2D parameter domain is induced by

the actual metric of the original surface. As a result, by computing the

derivatives on the 2D domain with respect to the conformal factor, we are

computing the actual covariant derivatives on the surface.

4.2 Previous Works

Solving variational problems or PDEs on surfaces has been studied extensively. A

popular method to solve the PDEs on surfaces is to discretize the problem on the

surface triangulation [60][76][66][77]. In this approach, the covariant differential

operators on the surface are approximated by finite element methods on the

triangulation grids.

Another common approach is to solve the PDE on the implicit manifold, which

is based on the level set method [78][79][80][81][82][83][84]. In this approach, the
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surface is the zero set of level set function defined in R3, in which the surface is

embedded in. The PDE on the surface is extended to be defined on a narrow

band of the surface. Recently, Ratz et al. [85] proposed to solve the PDEs on the

surface implicitly by reformulating the problem on a larger domain in one higher

dimension and introduce a diffuse interface region of a phase-field variable, which

is defined in the whole domain. The surface of interest is now only implicitly

given by the 1
2
-level set of this phase-field variable.

Variational problems or PDEs on surfaces can also be solved by parameterizing

the surface onto the 2D parameter domain [86][65][63]. Differential operators on

the surface are expressed within the coordinates system. The complexity of the

differential operators’ expression depends mainly on the parameterization, which

may result in more derivative terms and non-constant coefficients. To improve

this method, our group have recently reported briefly about using conformal

mapping to parameterize the surface. The formula of the covariant derivative

under conformal parameterization are comparatively simple [63]. To test the

method, we have also reported application of the algorithm to feature extraction

in the brain mapping research [46][1].

We have summarized the three common parameterization methods in Table

4.1.

4.3 Theoretical Background

4.3.1 Differential operators on general manifolds

The calculus of variation has found various important applications. Differentia-

tion and integration are the basic tools for solving this kind of problem. In order

to extend the calculus of variation on the 2D domain to 3D Riemann surface,
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Table 4.1: The list of three common methods that solve variational prob-
lems/PDEs on general surfaces.

Method Principle Comments

Discretization on sur-
face triangulation [60],
[76], [66]

Covariant differential operators on
the surface are approximated by fi-
nite element methods on the trian-
gulation grids.

Orthogonal projection is needed in
some cases to ensure the approx-
imated covariant derivatives to be
tangent to the surface.

Level set approach [80],
[81]

The surface is represented by the
zero set of a level set function and
the PDE on the surface is extended
to a PDE that is defined on a nar-
row band of the surface.

Equations can be solved by Carte-
sian grid methods on the narrow
band.

Surface parameteriza-
tion [86], [65], [63]

The surface is parameterized to a
simple domain such as the 2D rect-
angle. Differential operators on the
surface are expressed within the co-
ordinates system.

The complexity of the differen-
tial operators’ expression depends
mainly on the parameterization,
which may result in more deriva-
tive terms and non-constant coef-
ficients.

we need to define differential operators on functions and vector fields that are

coordinate invariant.

In Euclidean space, we conventionally differentiate the vector field (x1(t),...,

xn(t)) on a curve pointwisely to get (x′1(t), ..., x
′
n(t)). However, pointwise differen-

tiation does not work for general manifolds because it is not coordinate invariant.

For example, consider the parameterized circle in the plane given in Euclidean co-

ordinate (x(t), y(t)) = (cos t, sin t). Its acceleration at time t is (−cos t,−sin t).

However, in polar coordinates, the same curve is described as (r(t), θ(t)) = (1, t)

and the acceleration is (0, 0).

The problem is this: In order to differentiate a vector field
−→
V (t) along a curve,

we have to write a difference quotient involving
−→
V (t) and

−→
V (t0) which live on two

different tangent spaces. Therefore, it doesn’t make sense to subtract. Secondly,

even if we can differentiate the vector field pointwisely, it is not guaranteed that

the ’derivative’ is a tangent vector on the manifold.

We therefore need to define a differential operator on the vector field, which is
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coordinate invariant. This can be done by covariant differentiation ∇XY , where

X is called the direction of the differentiation. To do so, we need to develop a

way to compare tangent vectors at different points. On R2, we usually parallel

translating the vectors and subtract. But on general manifolds, we do not have

the concept of parallel translation. So, what is parallel translation on a surface

M ⊂ R3? We say that a vector field
−→
V (γ(t)) along a curve γ(t) is parallel if:

Dt
−→
V (γ(t)) = projection of d

dt

−→
V (γ(t)) onto the tangent space = 0. We have the

following important fact:

Parallel Translation : Given a curve γ : I → M and a vector
−→
V 0 ∈ Tγ(t0)M ,

there exists a unique parallel vector field
−→
V along γ with

−→
V (t0) = V0.

With the parallel translation along a curve γ, we can define an operator:

P γ
t0t1 : Tγ(t0)M → Tγ(t1)M by setting Pt0t1(

−→
V 0) = V (t1) where V is the parallel

vector field along γ with
−→
V (0) =

−→
V 0. This is clearly an linear isomorphism.

Now, we can define: ∇XY |p as follow: Let γ : [0, 1] → M be a curve such

that γ(0) = p and γ′(0) = Y |p. We define:

∇XY |p = limt→0
P γ −1

0t Y (γ(t))− Y (p)

t
(4.1)

It is called the covariant derivatives. Essentially, they are a coordinate invari-

ant set of operators for taking directional derivatives of the functions or vector

fields defined on the surface S.

Generally, the covariant derivative ∇XF , where X is a tangent vector on S, F

is either a function or a vector field defined on S, satisfies the following properties:

(I) ∇XF is linear in X over C∞(S): ∇fX1+gX2F = f∇X1F + g∇X2F .

(II) ∇XF is linear over R in F : ∇X(aF1 + bF2) = a∇XF1 + b∇XF2.

(III) ∇ satisfies the product rule: ∇X(fF ) = f∇XF + X(f)F
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(Here, we define X(f) = d
dt
|t=0f(α(t)) where α : (−1, 1) → S is a curve on S

such that α′(0) = X.)

This basically defines the covariant derivatives. ∇XF is called the covariant

derivative of F in the direction X.

Let ϕ : R2 → S be a parameterization of S (not necessarily conformal). Define

g = (gij)i,j=1,2 where gij = ϕxi
· ϕxj

are the Riemannian metric coefficients. Let

F = F1ϕx1 + F2ϕx2 and X = X1ϕx1 + X2ϕx2 be a vector field and a tangent

vector on S respectively. Let f : S → R be a function defined on S. Then:

∇Xf =
2∑

i,j,k=1

(gij∂if)Xkgjk

∇XF =
2∑

i,j,k=1

(XFk + XiFjΓ
k
ij)ϕxk

(4.2)

where Γk
ij = Σ2

l=1
1
2
gkl(∂igjl + ∂jgil − ∂lgij) and (gij)i,j=1,2 is the inverse of g.

Note that the complexity of the covariant derivative depends solely on the

complexity of the Riemannian metric g. An arbitrary parameterization might

have a very complicated g. It is thus important for us to look for a parameter-

ization that gives simple Riemannian metric g. It turns out that the conformal

mapping is such a map that has simple Rimannian metric.

With covariant derivative, we can define other useful differential operators on

S, which are analogous to those on R2. We are going to list several of them

below.

Firstly, the gradient of the function f , ∇Sf , is characterized by the fact that:

X(f) =< ∇Sf, X >S (4.3)

62



Figure 4.1: The plot of the conformal factor λ of a human face verses u and
v of the parameter domain. The conformal factor is a smooth function which
describe the stretching effect under the conformal parameterization. Observe
that the approximation of the conformal factor function is reasonably smooth.

By simple checking, we get that ∇f has the following coordinate expression:

∇Sf =
2∑

i,j=1

gij∂ifϕxj (4.4)

Secondly, we can define divergence on S as follow:

∇S · F :=
1√

det(g)

2∑
i=1

∂i(
√

det(g)Fi) (4.5)

With the definition of the gradient and the divergence, we can define the

Laplacian operator on S as follow:

4Sf := ∇S · (∇Sf) = ∇S · (
2∑

i,j=1

gij∂if)

=
1√

det(g)

2∑
i=1

∂i(
√

det(g)
2∑

j=1

gji∂jf)

(4.6)

A more complete development of various differential operators on the surface

can be found at [1].
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Figure 4.2: (A) shows the conformal coordinates grid on the dog surface in-
troduced using the conformal parameterization. (B) shows the histogram of
g12 = g21 of a Riemann surface under the conformal parameterization. Observe
that g12 = g21 are very close to zero at most vertex. It means the Riemannian
metric is a diagonal matrix, which results in simple expression for the covariant
derivatives.

4.4 Solving variational problems on Riemann surface with

the conformal parameterization

In section III(B), we have described how differential operators are defined on the

surface with the given parameterization. With the concept of differentiation and

integration on the surface, we can use calculus of variation to solve variational

problems on surfaces. In this section, we will describe how covariant derivatives

can be easily computed using the conformal parameterization and how it can be

applied to solve variational problems.
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Figure 4.3: This figure demonstrates the importance of including the conformal
factor in computing the differential operators on the manifold. (A) shows a unit
sphere (minus a hole near the south pole) with noise introduced near the south
pole. The surface is parameterized conformally to the 2D parameter domain with
large stretching near the south pole. (B) shows the graph of the Eulcidean TV
norm of the noise: TVeucl.(g) = |∇g|. (C) shows the manifold version of the TV
norm (with conformal factor included): TVmanifold(g) = 1

λ
|∇g|. (D) shows the

denoising result which minimize the Eulcidean TV energy. The noise cannot be
removed. (D) shows the denoising result which minimizes the manifold TV norm.
The noise is successfully removed.
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4.4.1 Computation of convariant derivatives using conformal param-

eterization

Given a parameterization of the surface S, we can express the surface differential

operators within its coordinates. In section III(B), we have discussed how covari-

ant derivatives can be computed with the various formulae defined on R2. The

formulae consists of the Riemannian metric coefficients gij, which are functions

defined on S. With an arbitrary parameterization, the Riemannian metric can

be complicated. As a result, the equation of the surface differential operators can

become substantially complex when written in the coordinate system, involving

non-constant coefficients and more derivative terms. Therefore, it is important

to look for a parameterization with simple Riemanninan metric.

As described in section III(A), the conformal parameterization has a simple

Riemannian metric, namely, gij =





λ if i = j;

0 if i 6= j.
In other words, the four metric

coefficients are reduced to one coefficient metric λ, called the conformal factor.

With this property, surface differential operators can be expressed within the con-

formal coordinates with simple formulae. The expressions are similar to the usual

Euclidean differential operators, except for a scalar multiplication of the confor-

mal factor. The conformal factor at a point p on the surface S can be determined

by computing the scaling factor of a small area around p under the parameteriza-

tion φ : R2 → S. Mathematically, λ(p) = Area(Bε(p))
Area(φ−1(Bε(p)))

, where Bε(p) is an open

ball around p of radius p. Figure 4.1 shows the plot of conformal factor λ verses u

and v of the parameter domain. The conformal factor is a smooth function which

describe the stretching effect under the conformal parameterization. Observe that

the approximation of the conformal factor function is reasonably smooth. Figure

4.2(B) shows the histogram of g12 of the Riemann surface under the conformal
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Table 4.2: Illustrates a list of formulas for some standard differential operators
on a general manifold.

1. ∇Mf =
∑

i,j gij∂jf∂i, where (gij) is the inverse of the

Riemannian metric (gij). With the conformal parametrization φ,
the conformal factor λ,

∇Mf = Dxf i + Dyf j,

where (i, j) = ( ∂
∂x

/
√

< ∂
∂x

, ∂
∂x

>, ∂
∂y

/
√

< ∂
∂y

, ∂
∂y

>)

= 1√
λ
( ∂

∂x
, ∂

∂y
).

2. Suppose h : M → R is a smooth function,
Length of h−1(0) =

∫
M

δ(h)
√

< ∇Mh,∇Mh >dS

=
∫

M

√
< ∇MH(h),∇MH(h) >dS

=
∫
C δ(h ◦ φ)

√
λ ||∇h ◦ φ||dxdy

=
∫
C
√

λ ||∇H(h ◦ φ)||dxdy
where H is the Heaviside function.

3. For a differential operator on vector field, the covariant derivative
satisfies the following properties:
(P1) ∇fX1+gX2Y = f∇X1Y + g∇X2Y for f, g ∈ C∞(M);
(P2) ∇X(aY1 + bY2) = a∇XY1 + b∇XY2, a, b ∈ R;
(P3) ∇X(fY ) = f∇XY + (Xf)Y for f ∈ C∞(M).
Suppose {∂i} is the coordinate basis of the vector field, then

< ∇∂i
∂j, ∂l >= 1/2(∂igjl + ∂jgli − ∂lgij),

∇∂i
∂j = Γm

ij ∂m,
where Γm

ij = 1
2λ

(∂igjm + ∂jgmi − ∂mgij).
4. For the divergence and Laplacian, we have

divM(Σ2
i=1Xi

∂
∂xi

) =
∑2

i=1
1
λ
∂i(Xiλ),

4Mf =
∑2

j=1(1/λ) ∂j∂jf .

5. Suppose C is a curve represented by the zero level set of
φ : M → R,

Geodesic curvature of C = divM( ∇Mφ
||∇Mφ||).

parameterization. Note that by definition, g12 = g21 = φu ·φv, where φ(u, v) is the

conformal parameterization of the surface. Observe that g12(= g21) are very close

to zero at most vertex. It means the Riemannian metric is a diagonal matrix,

which results in simple formulae for the covariant derivatives. It turns out that

the manifold differential operators expressed on the conformal parameter domain

is very similar to the 2D Euclidean version 4.3.
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Table 4.3: Comparison between 2D Euclidean differential operators and manifold
differential operators under conformal parameterization.

2D Euclidean Manifold

Gradient ∇f = (∂f
∂u , ∂f

∂v ) ∇Sf = ( 1
λ

∂f
∂u , 1

λ
∂f
∂v )

Laplacian ∆f = ∂2f
∂u2 + ∂2f

∂v2 ∆Sf = 1
λ

∂2f
∂u2 + 1

λ
∂2f
∂v2

Divergence ∇ · (X,Y ) = ∂X
∂u + ∂Y

∂v ∇S · (X, Y ) = 1
λ

∂(λX)
∂u + 1

λ
∂(λY )

∂v

We will now express some of the most important surface differential operators

under the conformal parameterization φ of the surface. From section III(B),

we have discussed the expression of ∇Sf , 4Sf , Γk
ij and ∇XY under general

parameterization of the surface, where f : S → R, X, Y are vector fields defined

on S. Substituting g11 = g22 = λ; g12 = g21 = 0 into the equations (3)(4)(5), we

obtained simple formulae for these important surface differential operators within

the conformal parameter domain:

∇Sf = Dxf~i + Dyf~j

divS
~X =

1

λ

∂

∂x
(λX1) +

1

λ

∂

∂y
(λX2)

4Sf =
1

λ

∂2

∂x2
(f ◦ φ) +

1

λ

∂2

∂y2
(f ◦ φ)

(4.7)

where Dxf = 1√
λ

∂
∂x

f ◦ φ;Dyf = 1√
λ

∂
∂y

f ◦ φ;

(~i,~j) = ( ∂
∂x

/
√

< ∂
∂x

, ∂
∂x

>S, ∂
∂y

/
√

< ∂
∂y

, ∂
∂y

>S); ∂
∂x

:= ∂φ
∂x

and ∂
∂y

:= ∂φ
∂y

are the

projected tangent vectors of e1 = (1, 0) and e2 = (0, 1) onto the surface under

the conformal parameterization φ respectively; ~X = (X1, X2) = X1
∂
∂x

+ X2
∂
∂y

;

f : S → R is a smooth function on S.

As shown above, the expressions for the surface differential operators are

very similar to the usual Euclidean differential operators, except for a scalar
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multiplication of the conformal factor λ. It means the conformal parameterization

provides a natural coordinates grid on the surface. Intuitively, the conformal

parameterization preserves the inner product up to a scaling factor and so the

local geometry is preserved up to a scaling of λ. As a result, the differentials on

S are well-preserved, except for a multiplication of
√

λ, to adjust for the length

stretching and λ for area distortion. With this conformal grid on the surface,

we can consider Dxf and Dyf as the analogous partial derivatives on S. For

example,

Dxf = lim
4x→0

f ◦ φ(x +4x, y)− f ◦ φ(x, y)

dist(φ(x +4x), φ(x))

= lim
4x→0

f ◦ φ(x +4x, y)− f ◦ φ(x, y)√
λ4x

=
1√
λ

∂f ◦ φ

∂x

Several important equations that are useful for the calculus of variation on

R2 are also valid on general surfaces. For example, we have the integration by

part formula on surface:

∫

S

(u4Sv − v4Su)dV =

∫

∂S

(u∇Sv · −→N − v∇Su · −→N )dṼ (4.8)

The analogous Green’s formula on the surface is:

∫

S

< ∇Su, ~X >S dV = −
∫

S

udivM
~SdV +

∫

∂S

u < ~X, ~N > dṼ (4.9)

where ~N is the unit normal vector.

Furthermore, given a smooth function h : S → R, the length L of the zero
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level set h−1(0) of h, which is a curve on the surface, can be computed similarly

as in R2:

L =

∫

S

δ(h)
√

< ∇Sh,∇Sh >dA

=

∫

S

√
< ∇SH(h),∇SH(h) >dA

=

∫

R2

δ(h ◦ φ)
√

λ ||∇h ◦ φ||dxdy

=

∫

R2

√
λ ||∇H(h ◦ φ)||dxdy

(4.10)

where H is the Heaviside function.

Proof :

Recall that the Co-area formula reads:

∫

Ω⊂R2

f(x, y)|∇u|dxdy =

∫

R

∫

{u(x,y)=r}
f(x, y)dHdr (4.11)

where H is the Hausdorff measure.

Let φ be the conformal parametrization of the surface M and ζ = u◦φ. Then,
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∫

M

|∇MH(u)|MdS =

∫

R2

δ(ζ)|∇ζ|)
√

λdxdy

=

∫

R

∫

{ζ(x,y)=r}

√
λδ(ζ)dsdr

=

∫

{ζ(x,y)=0}
ds

=

∫ 1

0

√
λ|c′(t)|dt

=

∫ 1

0

√
λ|φ ◦ c′(t)|dt

= length of {u = 0}

where c(t) is the parametrization of ζ(x, y) = 0

Q.E.D.

The geodesic curvature G of h−1(0) can also be computed as:

G = divS(
∇Sh

||∇Sh||) (4.12)

similar to the case in R2.

Proof :

Recall that the geodesic curvature of of a curve:
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~γ =

√
< Dt~̇γ, Dt~̇γ >

< ~̇γ, ~̇γ >
− < Dt~̇γ, ~̇γ >

< ~̇γ, ~̇γ >3/2
=

< ~̇γ, Dt~̇γ
⊥ >

< ~̇γ, ~̇γ >3/2

=

√
< Dt~̇γ, Dt~̇γ >

< ~̇γ, ~̇γ >
− < Dt~̇γ, ~̇γ >

< ~̇γ, ~̇γ >3/2
=

< ~̇γ, Dt~̇γ
⊥ >

< ~̇γ, ~̇γ >3/2

=

√
< Dt~̇γ, Dt~̇γ >

< ~̇γ, ~̇γ >
− < Dt~̇γ, ~̇γ >

< ~̇γ, ~̇γ >3/2
=

< ~̇γ, Dt~̇γ
⊥ >

< ~̇γ, ~̇γ >3/2

=

√
< Dt~̇γ, Dt~̇γ >

< ~̇γ, ~̇γ >
− < Dt~̇γ, ~̇γ >

< ~̇γ, ~̇γ >3/2
=

< ~̇γ, Dt~̇γ
⊥ >

< ~̇γ, ~̇γ >3/2

(4.13)

Let the parametrization of the zero level set of φ be ~γ = (X(t), Y (t)). Then

φ(X(t), Y (t)) = 0.

This implies (1):

< ∇Mφ, ~̇γ >= 0 (4.14)

and (2):

< Dt(∇Mφ), ~̇γ > + < Dt~̇γ,∇Mφ >= 0 (4.15)

Now, Dt
~V (t) =

∑2
i=1(V̇k + Γk

ijγiVj)∂k

Thus, for conformal parametrization we have (3):

Dt~̇γ = (Ẍ + (
1

2λ

∂λ

∂x
)(Ẋ2 − Ẏ 2)− (

1

λ

∂λ

∂y
ẊẎ ) ,

Ÿ − (
1

2λ

∂λ

∂y
)(Ẋ2 − Ẏ 2)− (

1

λ

∂λ

∂x
)ẊẎ )
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and (4):

Dt(∇Mφ) = (φ̇x + (
1

2λ

∂λ

∂x
)(φx

2 − φy
2)− (

1

λ

∂λ

∂y
φxφy) ,

φ̇y − (
1

2λ

∂λ

∂y
)(φx

2 − φy
2)− (

1

λ

∂λ

∂x
)φxφy )

Dt(∇Mφ) = (φ̇x + (
1

2λ

∂λ

∂x
)(φx

2 − φy
2)− (

1

λ

∂λ

∂y
φxφy) ,

φ̇y − (
1

2λ

∂λ

∂y
)(φx

2 − φy
2)−

(
1

λ

∂λ

∂x
)φxφy )

Combining (1), (2), (3), (4), we have: Ẋ2 + Ẏ 2 = (1 + (φx/φy)
2)Ẋ2 and

< Dt~̇γ
⊥, ~̇γ >

< ~̇γ, ~̇γ >3/2
= λ(ẊŸ − Ẏ Ẍ)

= − λ

φy

[φxxẊ
2 + 2φxyẊẎ + φyyẎ

2]Ẋ − Ẋ(Ẋ2 + Ẏ 2)(
1

2λ

∂λ

∂y
)

+ Ẏ (Ẋ2 + Ẏ 2)(
1

2λ

∂λ

∂x
)
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So,

κ =
< ~̇γ, Dt~̇γ

⊥ >

< ~̇γ, ~̇γ >3/2
=

λ(ẊŸ − Ẏ Ẍ)

λ3/2(Ẋ2 + Ẏ 2)3/2

=
1√
λ

(
φxxφ

2
y − 2φxyφxφy + φyyφ

2
x

(φ2
x + φ2

y)
3/2

) +
1

2λ3/2
(φx

∂λ

∂x
+ φy

∂λ

∂x
)

=
1√
λ

(
φxxφ

2
y − 2φxyφxφy + φyyφ

2
x

(φ2
x + φ2

y)
3/2

) +
1

2λ3/2
(φx

∂λ

∂x
+ φy

∂λ

∂x
)

=
1√
λ
∇ · ( ∇φ

|∇φ|) +
1

λ3/2
∇φ · ∇λ

=
1

λ
∇ · (λ(

1/λ∇φ√
λ|∇φ|2 ))

=
1

λ
∇ · (λ(

∇Mφ√
< ∇Mφ,∇Mφ >

))

= divM(
∇Mφ√

< ∇Mφ,∇Mφ >
)

Q.E.D.

4.4.2 Examples

Since the important equations useful for the calculus of variation on R2 can be

extended to general surfaces, we can solve the variational problems on the surface

easily using the differential operators defined in III(B). In this section, we will

demonstrate the theoretical concept by considering two examples.

Example 1 : (Harmonic Energy)

Suppose S is a Riemann surface with boundary ∂S. Let φ : R2 → S be its

conformal parameterization. We are interested in looking for a smooth function

f : S → R that minimizes: E(f) =
∫

S
||∇Sf ||2SdS and f = 0 on ∂S.
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Consider:

d

dt
|t=0E(f + tg) =

∫

S

||∇S(f + tg)||2SdS

=

∫

S

< (∇Sf + t∇Sg), (∇Sf + t∇Sg) >S dS

= 2

∫

S

< ∇Sf,∇Sg >S dS

= 2

∫

S

(4Sf)gdS.

(4.16)

So, the Euler-Lagrange equation is:

df t

dt
= −24Sf t or

df t ◦ φ

dt
= − 2√

λ
4f t ◦ φ (4.17)

on the parameter domain.

It is observed that the Euler Lagrange equation of the harmonic energy on

the surface is the same as its 2D version, except that the differential operators in

the equation have to be replaced by the manifold operators. The corresponding

equation on the parameter domain is similar to its 2D version on R2, except for a

scaler multiplication of the conformal factor. When λ = 1, the Riemann surface

is flat and so it becomes identical to its 2D version.

Example 2 : (Total Variation)

Suppose now we are interested in looking for a minimizer f : S → R of E(f) =
∫

S
||∇Sf ||SdS where f = 0 on ∂S. Consider:
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d

dt
|t=0E(f + tg) =

∫

S

||∇S(f + tg)||SdS

=

∫

S

√
< (∇Sf + t∇Sg), (∇Sf + t∇Sg) >SdS

= 2

∫

S

<
∇Sf

||∇Sf ||S ,∇Sg >S dS

= 2

∫

S

divS(
∇Sf

||∇Sf ||S )gdS.

(4.18)

So, the Euler Lagrange equation becomes:

df t

dt
= −2divS(

∇Sf t

||∇Sf t||S ) or
df t ◦ φ

dt
= −2

λ
divS(

∇Sf t ◦ φ

||∇Sf t ◦ φ||S ) (4.19)

on the parameter domain.

Again, the Euler Lagrange equation of the Total Variation energy is the same

as its 2D version, except for the replacement of the 2D differential operators by

the manifold differential operators. The corresponding equation on the parameter

domain is also similar to its 2D version on R2, except for the scaling of the

conformal factor.

In general, the Euler Lagrange equation can be obtained easily from its 2D

version by replacing the 2D differential operators by the manifold differential

operators. The corresponding equation on the 2D parameter domain is similar

to its 2D version, except for a scaling of the conformal factor.

4.4.3 The meaning of including the conformal factor

Intuitively, the meaning of scaling the differential operators by the conformal

factor λ is to adjust the length and area distortion. With the angle preserving
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property of the conformal parameterization φ, a natural coordinates grid can be

introduced on the surface by mapping a regular grid on R2 onto the surface (See

Figure 4.2(A)). However, the grid sizes are different at different points because of

the stretching effect of the parameterization. The conformal factor λ is defined as

the stretching factor of the inner product on the tangent plane of the surface under

φ. We can therefore adjust the length and area distortion by
√

λ or λ. Specifically,

the stretching factors of the length and area under φ are
√

λ and λ respectively. In

order to have a more accurate approximation of the surface differential operators,

we need to scale the usual Euclidean differential operators by λ. For example,

the partial derivative Dxf on the surface at the point φ(p) is: Dxf(φ(p)) =

lim∆x→0
∆f◦φ√

λ∆x
= 1√

λ

∂f◦φ
∂x

(p). Here, the grid size ∆x is scaled by
√

λ to adjust the

length distortion. Similarly, ∆Sf(φ(p)) = lim∆x,∆y→0
∆x(∆xf◦φ)

λ∆x2 + ∆y(∆yf◦φ)

λ∆y2 .

Also, the surface area differential dS is equal to λdxdy, so as to adjust for the

area distortion.

To demonstrate the importance of including the conformal factor in the for-

mula of the covariant derivatives, we consider a simple example on the unit sphere.

4.3(A) shows a unit sphere (minus a hole near the south pole) with noise intro-

duced near the south pole. It is conformally parameterized onto the 2D param-

eter domain, with large stretching near the south pole. 4.3(B) shows the graph

of the Eulcidean TV norm of the noise: TVeucl.(g) = |∇g|. Observe that it does

not reflect the noise on the surface due to the stretching effect near the south

pole. 4.3(C) shows the manifold version of the TV norm (with conformal factor

included): TVmanifold(g) = 1
λ
|∇g|. It effectively reflects the noise on the sur-

face. (D) shows the denoising result which minimize the Eulcidean TV energy:

Eeucl.(g) =
∫

TVeucl.(g). The noise cannot be removed. (D) shows the denoising

result which minimizes the manifold TV norm: Emanifold(g) =
∫

TVeucl.(g). The
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noise is successfully removed. This example illustrates the importance of the

conformal factor for adjusting the length and area distortion introduced through

the conformal parameterization.

4.4.4 Numerical Analysis

An important question one may ask is the numerical accuracy of the algorithm.

Since the conformal parameterization is only an approximation, it is of interest to

examine how the numerical accuracy of the algorithm will be affected by the con-

formality of the parameterization. The accuracy in apprroximating the solution

of the variational problem depends on the accuracy of the approximated covari-

ant derivatives. Generally speaking, the accuracy of the approximated covariant

derivatives depends on two factors:

(1) Given a Riemann surface M , the accuracy in the approximation of the con-

formal parameterizaton φ̃ : R2 → M .

(2) The accuracy in the approximation of the partial derivatives in R2.

In this section, we will examine the accuracy in the approximation of several

important covariant derivatives with respect to the above two factors. This can

be summarized by the following three theorems.

THEOREM 4.4.4.1 :

Given a compact Riemann surface M and its approximated conformal parame-

terization φ̃ : D ⊆ R2 → M . Let (g̃ij) be its approximated inverse Riemannian

metric of φ̃, where g̃11 = g̃22 = λinv and g̃12 = g̃21 = 0. Let (gij) be its actual

inverse Riemannian metric. Assume that |g̃ij − gij| are bounded by the error

ε. Given f : M → R. Suppose that the error in approximating the partial
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derivatives of f ◦ φ̃ are bounded by h. We have:

||∇appro.
M f −∇real

M f ||M ≤ (
4C

√
2(λ + 2ε)

λ(λ− 2ε)
)ε +

√
2(λ + 2ε)

h

λ

where C is some real constant. ∇appro.
M f and∇real

M f are the approximated gradient

and the actual gradient of f respectively.

PROOF :

The actual gradient of f is given by:

∇real
M f = ((

g22

D
)
∂f

∂x
− (

g21

D
)
∂f

∂y
)

∂

∂x
+ ((

g11

D
)
∂f

∂y
− (

g12

D
)
∂f

∂x
)

∂

∂y
(4.20)

where D = g11g22 − g12g21 is the determinant of the Riemannian metric. The

approximated gradient of f is given by:

∇appro.
M f = (

1

λ

∂̃f

∂x
)

∂

∂x
+ (

1

λ

∂̃f

∂y
)

∂

∂y
(4.21)

where ∂̃f
∂x

and ∂̃f
∂y

are the approximation of ∂f◦φ̃
∂x

and ∂f◦φ̃
∂x

respectively. So,

||∇appro.
M f −∇real

M f ||M

≤ ||∇appro.
M f − (

1

λ

∂f

∂x
)

∂

∂x
+ (

1

λ

∂f

∂y
)

∂

∂y
||M + ||( 1

λ

∂̃f

∂x
)

∂

∂x
+ (

1

λ

∂̃f

∂y
)

∂

∂y
−∇real

M f ||M

≤
√

2(λ + ε)(
4Cε

λ(λ− 2ε)
)2 + 2ε(

4Cε

λ(λ− 2ε)
)2 +

√
2
h2

λ2
(λ + ε) + 2

h2

λ2
ε

= (
4C

√
2(λ + 2ε)

λ(λ− 2ε)
)ε +

√
2(λ + 2ε)

h

λ

since D ≥ (λ − ε)2 − ε2. Here, C is the upper bound of ∂̃f
∂x

and ∂̃f
∂y

. Also, M is
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compact and so the function | 1
λ
| is bounded. Q.E.D.

Therefore, the accuracy in the approximation of the surface gradient depends

on the accuracy in the computation of the conformal parameterization and also

the accuracy in the approximation of the partial derivatives. Specifically, it de-

pends on how accurate the partial derivatives on R2 are approximated and how

closely the conformal factor λ could approximate the Riemannian metric (gij).

Suppose the surface is a compact surface, the function | 1
λ
| is bounded. So if the

errors in both approximations are small, the error in approximating the surface

gradient will also be small.

THEOREM 4.4.4.2 :

Let D = g11g22 − g12g21. Assume that |g̃ij − gij|, | ∂
∂x

(
gij√
D

)| and | ∂
∂y

(
gij√
D

)| are all

bounded by ε. Given f : M → R. Suppose that the error in approximating the

partial derivatives of f ◦ φ̃ are bounded by h. We have:

|∆appro.
M f −∆real

M f | ≤ 4C(
1√

λ(λ− 2ε)
+

2

λ(λ− 2ε)
)ε +

h

λ
(4.22)

where C is some real constant. ∆appro.
M f and ∆real

M f are the approximated Lapla-

cian and the actual Laplacian of f , respectively.

PROOF :

The actual Laplacian of f is given by: ∆real
M f = 1√

D
∂
∂x

( g22√
D

)∂f
∂x
− 1√

D
∂
∂x

( g12√
D

)∂f
∂y
−

1√
D

∂
∂y

( g21√
D

)∂f
∂x

+ 1√
D

∂
∂y

( g11√
D

)∂f
∂y

+ g22

D
∂2f
∂x2 − 2g12

D
∂2f
∂x∂y

+ g11

D
∂2f
∂y2 . The approximated

Laplacian of f is given by: ∆appro.
M f = 1

λ
∂2f
∂x2 + 1

λ
∂2f
∂y2 . So,
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|∆appro.
M f −∆real

M f |

≤ |∆real
M f − (

1

λ

∂2f

∂x2
+

1

λ

∂2f

∂y2
)|+ |( 1

λ

∂2f

∂x2
+

1

λ

∂2f

∂y2
)−∆appro.

M f |

≤ (C|g11

D
− 1

λ
|+ C|g22

D
− 1

λ
|+ 2Cε

D
+

4Cε√
D

) +
2h

λ

≤ 2C
λ(λ + ε)− λ(λ− 2ε)

λ2(λ− 2ε)
+

2Cε

λ(λ− 2ε)
+

4Cε√
λ(λ− ε)

+
2h

λ

≤ C(
4√

λ(λ− 2ε)
+

8

λ(λ− 2ε)
)ε +

h

λ

= 4C(
1√

λ(λ− 2ε)
+

2

λ(λ− 2ε)
)ε +

h

λ

since D ≥ (λ− ε)2 − ε2.

Here, C is the upper bound of ∂̃f
∂x

, ∂̃f
∂y

, ∂̃2f
∂x2 and ∂̃2f

∂y2 . Q.E.D.

We see that the accuracy in the approximation of the Laplacian depends on

the accuracy in the computation of the conformal parameterization and the upper

bound of the partial derivatives of
gij√
D

. These conditions are well satisfied if the

approximation of the conformal parameterization is accurate enough.
gij√
D

is close

to 1 when i = j and is close to 0 if i 6= j. The conformal parameterization is

computed as the integral of the holomorphic one form ω + iω∗ that preserves the

harmonicity. Therefore,
gij√
D

are smooth and its partial derivatives are close to 0.

In general, one can easily show that the approximated covariant derivatives

converges to the actual ones when the approximation of the conformal parame-

terization and the approximation of the partial derivatives are accurate enough.

It can be explained by the following claim:
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THEOREM 4.4.4.3 :

Let X = X1
∂
∂x

+ X2
∂
∂y

and Y = Y1
∂
∂x

+ Y2
∂
∂y

be two vector fields on the surface

M . Suppose that Xi and Yi are bounded by C. Suppose that the errors in

approximating the partial derivatives of Xi ◦ φ̃ and Yi ◦ φ̃ are bounded by h. We

have:

||∇appro.
X Y −∇real

X Y ||M ≤ [8C2A
√

2(λ + 2ε)]ε + 2C
√

2(λ + 2ε)h

where A is a real constant. ∇appro.
X Y and ∇real

X Y are the approximated covariant

derivative and the actual covariant derivative of Y in the direction X respectively.

PROOF :

The actual covariant derivative is: ∇real
X Y = (X1

∂Y1

∂x
+ X2

∂Y1

∂y
+ X1Y1Γ

1
11 +

X1Y2Γ
1
12+X2Y1Γ

1
21+X2Y2Γ

1
22)

∂
∂x

+(X1
∂Y2

∂x
+X2

∂Y2

∂y
+X1Y1Γ

2
11+X1Y2Γ

2
12+X2Y1Γ

2
21+

X2Y2Γ
2
22)

∂
∂y

. We write he approximated covariant derivative as: ∇appro.
X Y =

(X1
∂̃Y1

∂x
+ X2

∂̃Y1

∂y
+ X1Y1Γ̃11

1
+ X1Y2Γ̃12

1
+ X2Y1Γ̃21

1
+ X2Y2Γ̃

1
22)

∂
∂x

+ (X1
∂̃Y2

∂x
+

X2
∂̃Y2

∂y
+ X1Y1Γ̃

2
11 + X1Y2Γ̃

2
12 + X2Y1Γ̃

2
21 + X2Y2Γ̃

2
22)

∂
∂y

, where Γ̃k
ij and ∂̃Yi

∂xi
are the

approximations of Γk
ij and ∂Yi

∂xi
. It can be shown easily that |Γ̃k

ij − Γk
ij| < Aε for
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some fixed positive constant A. Therefore,

||∇appro.
X Y −∇real

X Y ||M

≤ ||∇real
X Y − (X1

∂Y1

∂x
+ X2

∂̃Y1

∂y
+ X1Y1Γ11

1 + X1Y2Γ12
1

+ X2Y1Γ21
1 + X2Y2Γ

1
22)

∂

∂x

− (X1
∂̃Y2

∂x
+ X2

∂̃Y2

∂y
+ X1Y1Γ

2
11 + X1Y2Γ

2
12 + X2Y1Γ

2
21 + X2Y2Γ

2
22)

∂

∂y
||M

+ ||(X1
∂̃Y1

∂x
+ X2

∂̃Y1

∂y
+ X1Y1Γ11

1 + X1Y2Γ12
1 + X2Y1Γ21

1 + X2Y2Γ
1
22)

∂

∂x

+ (X1
∂̃Y2

∂x
+ X2

∂̃Y2

∂y
+ X1Y1Γ

2
11 + X1Y2Γ

2
12 + X2Y1Γ

2
21

+ X2Y2Γ
2
22)

∂

∂y
−∇appro.

X Y ||M

≤ ||(X1(
∂̃Y1

∂x
− ∂Y1

∂x
) + X2(

∂̃Y1

∂y
− ∂Y1

∂y
))

∂

∂x

+ (X1(
∂̃Y2

∂x
− ∂Y2

∂x
) + X2(

∂̃Y2

∂y
− ∂Y2

∂y
))

∂

∂y
||M

+ ||(X1Y1(Γ̃11

1 − Γ11
1) + X1Y2(Γ̃12

1 − Γ12
1)

+ X2Y1(Γ̃21

1 − Γ21
1) + X2Y2((Γ̃22

1 − Γ22
1)))

∂

∂x

+ (X1Y1(Γ̃11

2 − Γ11
2) + X1Y2(Γ̃12

2 − Γ12
2)

+ X2Y1(Γ̃21

2 − Γ21
2) + X2Y2((Γ̃22

2 − Γ22
2)))

∂

∂y
||M

≤ [8C2A
√

2(λ + 2ε)]ε + 2C
√

2(λ + 2ε)h

Here, C is the upper bound of Xi and Yi. Q.E.D.

Again, the numerical accuracy of the covariant derivatives in general depends

on the accuracy in the computation of the conformal parameterization and also

the accuracy in the approximation of the partial derivatives. For detailed proof

of the theorems, please refer to [87].
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4.5 Experimental Examples

4.5.1 Image denoising on the surface

With the advance of the 3D acquisition systems, images on the surface can be

effectively captured and stored as digital data. Nevertheless, noise is inevitably

introduced during the transmission process. Therefore, it is of interest to look

for an efficient algorithm to denoise the digital image defined on the surface. It

has also been widely studied by different research groups [88][89][90][91]. On R2,

total variation (TV) denoising has been extensively used for image restoration

that well-preserves edges [55]. It is then natural to extend the 2D TV denoising

model to surfaces. With the conformal parameterization, the TV image denoising

model can be easily extended.

On R2, the TV model reads:

ETV (u) =

∫

D

[|∇u|+ (u− f)2]dxdy, (4.23)

where f : D ⊆ R2 → R is the noisy gray-level image in R2. We will look for

a minimizer u : D → R of ETV to approximate the original clean image. The

Euler-Lagrange equation of it is:

du

dt
= div(

∇u

|∇u|)− 2(u− f). (4.24)

The TV model can also be modified to denoise the color image on R2 [56]:

ETV color(~u) =

∫

D

[

√√√√
3∑

i=1

|∇ui|2 + |~u− ~f |2]dxdy (4.25)
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where ~f = (f1, f2, f3) : D → R2 is the noisy color image; ~u = (u1, u2, u3) : D →
R2 is the approximation of the original clean color image. The minimizer of

ETV color can be found via its Euler-Lagrange equation:

dui

dt
= div(

∇ui√∑3
i=1 |∇ui|2

)− 2(ui − fi) for i = 1, 2, 3. (4.26)

These two models can be extended easily to the surfaces. On the surface, the

gray-level TV image denoising model reads:

ES
TV (u) =

∫

S

[||∇Su||S + |u− f |2]dS, (4.27)

where f : S → R is a gray-level image defined on the surface. Replacing the

Eulcidean differential operators by the modified differential operators in (20), we

get the Euler-Lagrange equation of ES
TV :

du

dt
= divS(

∇Su

||∇Su||S )− 2(u− f) or

du ◦ φ

dt
=

1

λ
div(

√
λ
∇u

|∇u|)− 2(u ◦ φ− f) on the parameter domain,

(4.28)

where φ is the conformal parameterization of S.

The color TV image denoising model can also be extended to the surface:

ES
TV color =

∫

S

[

√√√√
3∑

i=1

||∇Sui||2S + ||~u− ~f ||2S]dS (4.29)

where ~f = (f1, f2, f3) : S → R is a color image defined on the surface. By

replacing the Euclidean differential operator by the manifold differential operator,
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we get the Euler-Lagrange equation of ES
TV color:

dui

dt
= divS(

∇Sui√∑3
i=1 ||∇Sui||2S

)− 2(ui − fi) for i = 1, 2, 3 or

dui ◦ φ

dt
=

1

λ
div(

√
λ

∇ui ◦ φ√∑3
i=1 |∇ui ◦ φ|2

)− 2λ(ui ◦ φ− fi ◦ φ) for i = 1, 2, 3.

(4.30)

on the parameter domain.

The two energy functions of the denoising models can be minimized by steep-

est descent algorithm. Notice that the corresponding Euler-Lagrange equation

on the parameter domain is very similar to the 2D version, except for a scaler

multiplication of the conformal factor. These two denoising models can effectively

denoise the gray-level and color image defined on the surface, which well-preserves

the edges. Figure 4.4 illustrates the TV color image denoising on a dog surface.

The top shows the noisy color image on the dog surface. The denoised color im-

age is shown at the bottom. As shown in the figure, the noise are mostly removed

and the reconstructed surface is significantly improved.

4.5.2 Denoising/Smoothing of Riemann surface

Riemann surfaces are usually obtained by laser scanning or other medical image

generation methods such as MRI devices, CT and so on. The surfaces are usually

represented as triangular meshes. During the construction process, geometric

noise is inevitably introduced. Therefore, surface denoising/smoothing, which

adjusts the vertices positions so that a smoother surface can be obtained, has

become a very important research topic.

Here, we applied the TV denoising technique on the Riemann surface to de-
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Figure 4.4: Illustration of the TV image denoising on a dog surface. With co-
variant derivatives, the 2D TV color image denoising model is extended to the
3D Riemann surface. (A) shows the noisy image on the dog surface. (B) shows
the denoised image on the surface. As shown in the figure, the noise are mostly
removed and the reconstructed surface is significantly improved.

noise the noisy surface S. Given a conformal parameterization φ : R2 → S.

Let
−→
φ (x, y) = (X(x, y), Y (x, y), Z(x, y)). The functions X, Y and Z can be

regarded as functions defined on the surface S. If S is a smooth surface, X, Y

and Z are also smooth. By extending the TV denoising technique to the 3D

Riemann surface, we can smooth the surface by minimizing the following energy

functionals:

E(
−→
Ψ) =

∫

S

||∇S
−→
Ψ ||SdS + µ|−→Ψ −−→φ |2
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Figure 4.5: Illustration of the TV surface denoising on a human face. With co-
variant derivatives, the 2D TV image denoising model is extended to 3D Riemann
surfaces. (A) shows the original surface of a human face. In (B), the random
gaussian noise is added to the face. (C) shows the denoised/smoothed surface.
As shown in (C), the reconstructed surface approximates the original surface very
well, except for a little bit smoothing.

Or equivalently, we are minimizing the following three energy functionals:

E(X̃) =

∫

S

||∇SX̃||SdS + µ(X̃ −X)2;

E(Ỹ ) =

∫

S

||∇SỸ ||SdS + µ(Ỹ − Y )2;

E(Z̃) =

∫

S

||∇SZ̃||SdS + µ(Z̃ − Z)2

The Euler Lagrange equations of them are:

∂X̃

∂t
= ∇S · ( ∇SX̃

||∇SX̃||S
) + 2µ(X̃ −X);

∂Ỹ

∂t
= ∇S · ( ∇SỸ

||∇SỸ ||S
) + 2µ(Ỹ − Y );

∂Z̃

∂t
= ∇S · ( ∇SZ̃

||∇SZ̃||S
) + 2µ(Z̃ − Z)
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With the conformal parameterization φ, we can solve these partial differential

equations on the 2D domain with the following three equations:

∂X̃ ◦ φ

∂t
=

1

λ
∇ · (

√
λ

∇X̃ ◦ φ

||∇X̃ ◦ φ + ε||
) + 2µ(X̃ ◦ φ−X ◦ φ);

∂Ỹ ◦ φ

∂t
=

1

λ
∇ · (

√
λ

∇Ỹ ◦ φ

||∇Ỹ ◦ φ + ε||
) + 2µ(Ỹ ◦ φ− Y ◦ φ);

∂Z̃ ◦ φ

∂t
=

1

λ
∇ · (

√
λ

∇Z̃ ◦ φ

||∇Z̃ ◦ φ + ε||
) + 2µ(Z̃ ◦ φ− Z ◦ φ)

where λ is the conformal factor of φ. ε is a small regularization constant to

handle with the case when ||∇X ◦ φ|| = 0, ||∇Y ◦ φ|| = 0 or ||∇Z ◦ φ|| = 0. In

practice, we usually take ε = 0.01. We note that the Euler Lagrange equations

are very similar to well-known 2D TV denoising equation, except for the scalar

multiplication of the conformal factor λ. Therefore, we can solve the problem by

simple modification of the existing 2D TV denoising solver.

Figure 4.5 illustrates the idea of surface denoising/smoothing on a human

face with our method. Figure 4.5(A) shows the original human face surface. In

Figure 4.5(B), the random gaussian noise is added to the surface of the human

face. In Figure 4.5(C), we applied the method we described to denoise the surface.

The parameter chosen are: µ = 5, ε = 0.01 and the number of iterations is 50.

Note that the denoised surface approximates the original surface well, except for

a little bit smoothing.

The intuitive meaning of including the conformal factor λ into the TV model

is that it fixes the distortion caused by the stretching. Basically, the TV model

denoises the data by smoothing out the high frequency (rapid jump) region. Due

the the stretching of the conformal parameterization, the low frequency regions

might become the high frequency region in the parameter domain, whereas the
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high frequency regions become the low frequency region in the parameter domain.

As a result, the low frequency regions will be smoothed out and a wrong denoising

result will be obtained.

4.5.3 Texture extraction on the surface

The extraction of features on surfaces has been studied widely [92] and has found

various applications in different areas of research. For example, texture extrac-

tion is an important process in texture synthesis to transfer textures from one

surface to another. In human brain mapping, the feature extraction technique

is used to detect important anatomical features on the brain surface to study

brain diseases. In this section, we will describe an effective variational method

for feature extraction, using the Chan-Vese segmentation model on the surface.

The algorithm consists of two steps. Firstly, we compute the feature intensity

on the surface, which encodes the feature information. The feature intensity

If : S → R is a function on S defined as:

If (φ(p)) = |φ(p)− φsmooth(p)|2, (4.31)

where φsmooth : R2 → S represents the smoothed surface of S, using the TV

surface smoothing algorithm introduced in VI(B). Specifically, φsmooth is obtained

iteratively using the gradient descent algorithm to minimize the energy functional

in the TV surface smoothing model (See equation ). The feature intensity If

effectively represents the feature information on the surface.

After computing the feature intensity If , the second step is to extract the

feature with the Chan-Vese segmentation model on the surface, using If as the

intensity. We proceed to look for ψ : S → R that minimizes the following energy
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functional:

F (c1, c2, ψ) =

∫

S

(If − c1)
2H(ψ)dS +

∫

S

(If − c2)
2(1−H(ψ))dS + ν

∫

S

|∇SH(ψ)|dS

(4.32)

The Euler Lagrange equation is:

∂ψ

∂t
= λδ(ψ)[ νdivS(

∇Sψ

||∇Sψ||S )− (If − c1)
2 − (If − c2)

2] or

∂ψ ◦ φ

∂t
= λδ(ψ ◦ φ)[ν

1

λ
div(

√
λ
∇ψ ◦ φ

|∇ψ ◦ φ|)− (If ◦ φ− c1)
2 − (If ◦ φ− c2)

2],

(4.33)

on the parameter domain, where:

c1 =

∫
D

If ◦ φ(x, y)H(ψ ◦ φ(x, y))λ(x, y)dxdy∫
D

H(ψ ◦ φ(x, y))λ(x, y)dxdy

c1 =

∫
D

If ◦ φ(x, y)(1−H(ψ ◦ φ(x, y)))λ(x, y)dxdy∫
D
(1−H(ψ ◦ φ(x, y)))λ(x, y)dxdy

(4.34)

The zero level set of the minimizer ψ : S → R encloses the boundary of the

feature on the surface effectively. To illustrate the idea, we apply the algorithm

to extract the Chinese character on the cylinder. Figure 4.6(left) shows the a

surface with some texture (chinese character) on it. In Figure 4.6(right), we

applied our proposed algorithm to extract the feature. The intensity is defined

as the distance between the original surface and the smoothed out surface. As

shown in the figure, the initial contour (green) evolves to the final contour (blue)

that encloses the texture in few iterations.
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Figure 4.6: Illustration of the extraction of texture on the surface. With covari-
ant derivatives, the 2D Chan Vese (CV) segmentation model is extended to 3D
Riemann surfaces. The left shows the a bird surface with some texture (chinese
character) on it. On the right, we applied the CV segmentation model to extract
the texture. The intensity is defined as the distance between the original surface
and the smoothed out surface. As shown in the figure, the initial contour (green)
evolves to the final contour (blue) that encloses the texture in few iterations.

4.5.4 Inpainting surface holes

3D surface model are usually obtained from range scanners. Very often, surfaces

obtained from range scanner have holes and so resulting in incomplete surface

meshes. This may be due to low reflectance, occlusion, scanner placement, inade-

quate coverage of the object and so on. Recently, reseachers have been interested

in inpainting surface holes to reconstruct the incomplete surface and it has become

an important research topic [64][93]. In this section, we present an algorithm to

solve this problem which involves solving PDEs on the surface. Inpainting can

be regarded as a process of interpolating data on the occluded region from the

known data on its neighborhood. Our algorithm is an extension of 2D image

inpainting. To inpaint an occlude 2D digital image, we can fill in the missing
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Figure 4.7: A simple example that illustrates image inpainting on the bird surface.
We extend the 2D image inpainting model to 3D surface (A) shows some simple
textures on the bird surface with occlusion. We applied the image inpainting
model to inpaint the image. The black region is the inpainting domain. (B)
shows the inpainted result.

Figure 4.8: ”I am not ugly! Please remove the bad words on my body.” Illustra-
tion of image inpainting on the dog surface. We extend the 2D image inpainting
model to 3D surface to remove unwanted words on the dog surface. (A) shows a
dog surface with some unwanted words on it. We applied the image inpainting
model to inpaint the image. (B) shows the inpainted result. As shown in the
figure, the words are successfully removed.
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region by solving the Perona-Malik diffusion model that reads:





∂u
∂t

= div(g(|∇u|)∇u) on D;

u0 = v on Dc.

where D is the occluded region; v : Dc → R is the original image with occlusion;

u is the approximated (inpainted) image; g : R → R is an increasing function

such that g(0) = 0 and g(∞) = ∞. Note that if we replace g by 1
∇u

, we get

the familiar TV smoothing model. The TV smoothing model is well-known to

be preserving edges. The major drawback of it is that it does not restore well a

single object when its disconnected remaining parts are separated far apart by

the inpainting domain. In order to solve this problem, we add the function g

into the diffusion model which enhances the diffusion across the boundary of the

inpainting domain. Sometimes, it may be more beneficial to let g depend on the

curvature κ = div( ∇u
|∇u|) and so the model depends on the geometry of the image.

Here in our application to inpaint surface holes, we have found that letting g

depend on the isophote |∇u| is already good enough to get a reasonably good

result.

The 2D inpainting model can be easily extended to surfaces by using our algo-

rithm. Figure 4.7 shows a simple example that illustrates image inpainting on the

bird surface. We extend the 2D image inpainting model to 3D surface (A) shows

some simple textures on the bird surface with occlusion. We applied the image

inpainting model to inpaint the image. The black region is the inpainting domain.

(B) shows the inpainted result. Figure 4.8 shows the image inpainiting result on

the dog surface. To inpaint surface holes, we apply the image inpainting model

on the surface S. Again, we can regard X : S → R, Y : S → R and Z : S → R

as three smooth functions defined on S. Given the conformal parameterization
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Figure 4.9: Illustration of the algorithm for inpainting surface holes. We extend
the 2D image inpainting model to 3D surface to fill in surface holes. (A) shows
a human face with several holes on it. We applied the surface holes inpainting
model to inpaint the occlusion region on the surface. (B) shows the inpainted
result. As shown in the figure, the occlusion can be filled reasonably well, which
results in a smooth surface.
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φ : R2 → S of S, we can have the following surface holes inpainting model:





∂Xt

∂t
= divS(g(||∇X||S)∇SX) on DS;

∂Y t

∂t
= divS(g(||∇Y ||S)∇SY ) on DS;

∂Zt

∂t
= divS(g(||∇Z||S)∇SZ) on DS;

X0 = Xv on Dc
S;

Y 0 = Yv on Dc
S;

Z0 = Zv on Dc
S;

where DS is the occluded region on the surface; Xv, Yv, Zv are the X, Y, Z coor-

dinates of the original surface mesh with occlusion. We can solve this system of

partial differential equations iteratively on the parameter domain:





∂Xt◦φ
∂t

= 1
λ
div(g(

√
λ|∇X ◦ φ|)∇X ◦ φ) on φ−1(DS);

∂Y t◦φ
∂t

= 1
λ
div(g(

√
λ|∇Y ◦ φ|)∇Y ◦ φ) on φ−1(DS);

∂Zt◦φ
∂t

= 1
λ
div(g(

√
λ|∇Z ◦ φ|)∇Z ◦ φ) on φ−1(DS);

X0 ◦ φ = Xv ◦ φ on φ−1(Dc
S);

Y 0 ◦ φ = Yv ◦ φ on φ−1(Dc
S);

Z0 ◦ φ = Zv ◦ φ on φ−1(Dc
S);

To illustrate the idea, we test our algorithm to fill in the holes on a human

face. Figure 4.9(A) shows a human face with several holes on it. We applied

the surface holes inpainting model to inpaint the occlusion region on the surface.

Figure 4.9(B) shows the inpainted result. As shown in the figure, the occlusion

can be filled reasonably well, which results in a smooth surface.
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4.5.5 Fluid Flow on Surfaces

In this subsection, we illustrate how we can apply the algorithm to simulate

fluid flow on surfaces with arbitrary topologies. This is done by projecting the

Navier-Stokes equation on the surface onto the 2D parameter domain using the

conformal parameterization. We then use the stable fluid solver [65, ?] on the

2-D domain to solve the problem.

On R2, fluid flow is governed by the Navier-Stokes equation. For incompress-

ible fluid flow, we have the following (*):

∂u

∂t
= −(u · 5)u + v∇2u + f (4.35)

and

∇ · u = 0 (imcompressibility) (4.36)

where u = (u1, u2) is the fluid’s velocity, v is the viscosity and f = (f 1, f 2) are

external forces.

We can simulate the fluid flow as follow: we first use the stable fluid solver

to solve (*). Then update the position of the fluid by xnew = xold + udt, where

xnew = updated position of the fluid particle and xold= previous position of the

fluid particle.

To simulate fluid flow on the Riemann surface, we have to modify the 2D

Navier-Stokes equation by the manifold version of gradient and lapacian. Replac-

ing the gradient and laplacian by the manifold version of gradient and laplacian,

we get the corresponding Navier-Stokes equation for the Riemann surface S:

∂u

∂t
= −(u · ∇S)u + v4Su + f (4.37)
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where u is the velocity field which is a vector field on S.

Let φ be the conformal parametrization of S and w = u ◦ φ. We have:

∂w

∂t
= −1

λ
(w · 5)w +

1

λ
v4w + f (4.38)

We can next use the Stable Fluid Solver introduced by Stam to solve the

Navier-Stokes equation. We describe the algorithm as follow:

Step 1 : (Adding force) We solve: ∂w1

∂t
= f . The iterative scheme is: w1 =

w0 + dtf

Step 2 : (Diffusion equation) We solve: ∂w2

∂t
= 1

λ
v4w1. We use a simple

implicit solver to get the iterative scheme: (I − dt 1
λ
v4)w2 = w1.

Step 3 : (Advection equation) We solve: ∂w3

∂t
= − 1

λ
(w2 · 5)w3. We use a

semi-Lagrangian to get an iterative scheme: w3 = w2(x− dt 1
λ
w2(x))

Step 4 : (Projection) We project w onto its imcompressible (divergence free)

component. For this, we first solve the Poisson equation

4ϕ = ∇ ·w3 (4.39)

We then update: w4 = w3 − 1
λ
∇ϕ. Update w = w4.

Step 5 : (Update fluid position) Update x by xnew = xold + w · ( ∂
∂x

, ∂
∂y

)dt

As an example, we simulate the snow flowing down the surface based on the

Navier-Stokes equation in Figure 4.10. Figure 4.11(A) shows a simulation of

fluid flow on a bunny surface by solving Navier-Stoker’s equation at different

iterations. A circular force field is applied on the surface. Figure 4.11(B) shows

another example of fluid flow on a bird surface. Figure 4.11(C) shows how solving

surface fluid flow by Navier-Stoke’s equation can be applied for surface decoration
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Figure 4.10: Illustration of Navier-Stokes equation on the surface. This example
simulates the snow flowing down the bird surface. The external force used is the
downward gravitational force projected to the tangent space of the surface.
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Figure 4.11: (A) shows a simulation of fluid flow on a bunny surface by solving
Navier-Stoker’s equation at different iterations. A circular force field is applied
on the surface. (B) shows another example of fluid flow on a bird surface. (C)
shows how solving surface fluid flow by Navier-Stoke’s equation can be applied
for surface decoration to generate texture on surfaces.
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to generate texture on surfaces., we simulate fluid flow on a bunny surface by

adding a S-shaped force.

4.6 Conclusion

In conclusion, we describe a method in this paper to solve variational problems

on general surfaces with arbitrary topologies using the global conformal param-

eterization. With the conformal parameterization of the surface, the problems

can be greatly simplified and are transformed into 2D problems on the param-

eter domain. The conformal parameterization has a simple metric (gij) = λId.

Under the conformal parameterization, the surface differential operators can be

computed easily on the 2D parameter domain with simple formulae. The formu-

lae are very similar to the formulae for the 2D Euclidean differential operators,

except for the scalar multiplication of the conformal factor λ. Therefore, using

the conformal parameterization to transform the variational problems on general

surfaces to the 2D problems on the parameter domain has much easier equations

than using other arbitrary parameterizations. The problem can then be solved

easily by other well-known numerical schemes.

We have tested our algorithm on solving different image processing and surface

processing problems on different surfaces, which require solving different varia-

tional problems. The experimental results show that our proposed algorithm can

effectively solve the variational problems on the surface. Numerical analysis on

the proposed algorithm has also been done to determine how the accuracy of

the algorithm is affected by the accuracy in the approximation of the conformal

parameterization.
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CHAPTER 5

Automatic Brain Anatomical Feature Detection

with Conformal Parameterization

5.1 Introduction

One important problem in human brain mapping research is to locate the im-

portant anatomical features. Anatomical features on the cortical surface are

usually represented by landmark curves, called sulci/gyri curves. These land-

mark curves are important information for neuroscientists to study brain disease

and to match different cortical surfaces [94][95][96]. Manual labelling of these

landmark curves is time-consuming, especially when large sets of data have to

be analyzed. Therefore, an automatic or semi-automatic way to detect these

feature curves is necessary.In this paper, we present algorithms to automatically

detect and match landmark curves on cortical surfaces to get an optimized brain

conformal parametrization [97][39][38]. We trace the landmark curves on the cor-

tical surfaces automatically based on the principal directions. Using geometric

variants to detect features has been commonly used [98][99][100][101]. Suppose

we are given the global conformal parametrization of the cortical surface. Fixing

two endpoints, called the anchor points, we trace the landmark curve iteratively

on the spherical/rectangular parameter domain along one of the two principal

directions. Consequently, the landmark curves can be mapped onto the cortical
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surface. To speed up the iterative scheme, a good initial guess of the landmark

curve is necessary. Therefore, we propose a method to get a good initialization

by extracting the high curvature region on the cortical surface using Chan-Vese

segmentation [54]. This involves solving a PDE (Euler-Lagrange equation) on

the manifold using the global conformal parametrization as described in Chapter

4. As an application, we used these automatic labeled landmark curves to get

an optimized brain conformal mapping, which can match important anatomical

features across subjects. Similar to Chapter 3, this is done by minimizing a com-

bined energy Enew = Eharmonic +λElandmark, which produces a close to conformal

parameterization of the cortical surface while matching the important anatomical

features as much as possible.

5.2 Previous works

Automatic detection of sulcal landmarks on the brain has been widely studied

by different research groups. Prince et al. [102] has proposed a method for auto-

mated segmentation of major cortical sulci on the outer brain boundary. This is

based on a statistical shape model, which includes a network of deformable curves

on the unit sphere, seeks geometric features such as high curvature regions, and

labels such features via a deformation process that is confined within a spherical

map of the outer brain boundary. Lohmann et al. [103] has proposed an algorithm

that automatically detects and attributes neuroanatomical names to the cortical

folds using image analysis methods applied to magnetic resonance data of human

brains. The sulci basins are segmented using a region growing approach. Zeng et

al. [104] has proposed a method to automate intrasulcal ribbon finding, by using

the cortex segmentation with coupled surfaces via a level set methods, where

the outer cortical surface is embedded as the zero level set of a high-dimensional
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distance function. Recently, Kao et al. [105] presented a sequence of geomet-

ric algorithms to automatically extract the sulcal fundi and represent them as

smooth polylines lying on the cortical surface. Based on geodesic depth informa-

tion, their algorithm extracts sulcal regions by checking the connectivity above

some depth threshold. After extracting endpoints of the fundi and then thinning

each connected region with fixed endpoints, the curves are then smoothed using

weighted splines on surfaces.

5.3 Sulci/Gyri on brain cortical surfaces

The human brain cerebrum is a convoluted surface with very complicated ge-

ometry. There are bumps and grooves on the cerebrum, called sulci and gyri

respectively. Each hemisphere of the cerebral cortex is divided into four lobes by

various sulci and gyri. In neuroanatomy, a sulcus is a depression in the surface of

the brain that surrounds the gyri. The sulci and gyri on the cerebrum create the

characteristic appearance of the brain in humans. Generally speaking, the sulci

are the grooves and the gyri are the ”bumps” that can be seen on the surface of

the brain. Large furrows (sulci) that divide the brain into lobes are often called

fissures. For example, the large furrow that divide the two hemispheres is called

the interhemispheric fissure. The folding of the cerebral cortex produced by these

bumps and grooves increases the amount of cerebral cortex that can fit in the

skull. They are usually considered as important landmark features that provide

useful anatomical information. The most common sulcus and gyrus include cen-

tral sulcus, postcentral sulcus and precentral sulcus. The central sulcus is the

most well-known of these landmarks. It protrudes into the brain at the central

location from the top down, separating the parietal lobe from the frontal lobe

and the primary motor cortex from the primary somatosensory cortex. The post-
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Figure 5.1: This figure shows some of the most important sulci on a human
brain cortical surface. A, B, C and D represents the central sulcus, precentral
sulcus, postcentral sulcus and intraparietal sulcus respectively on the human
brain surface. They are projected onto a sphere through a conformal map for
easier visualization. They are labelled as A’, B’, C’ and D’ respectively.

central sulcus lies immediately posterior to the central sulcus, and the precentral

sulcus lies immediately anterior to the central sulcus. While most people share

the same patterns of gyri and sulci on the cerebral cortex, the precise pattern

can vary considerably from person to person. Figure 5.1 shows some of the most

important sulci on a human brain cortical surface. On the left, A, B, C and D

represents the central sulcus, precentral sulcus, postcentral sulcus and intrapari-

etal sulcus respectively on the human brain surface. They are projected onto a

sphere through a conformal map for easier visualization on the right. They are

labelled as A’, B’, C’ and D’ respectively.

5.4 Basic Mathematical Theory

The brain surface is a convoluted surface with very complicated geometry. It is

difficult to do calculation directly on the brain surface. In order to simplify the
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calculation, we parameterize the brain surface onto the 2D rectangle through a

conformal map and solve everything on the 2D domain. Recall that a diffeomor-

phism φ : M → N is a conformal mapping if it preserves the first fundamental

form up to a scaling factor (the conformal factor). Mathematically, this means

that ds2
M = λφ∗(ds2

N), where ds2
M and ds2

N are the first fundamental form on

surfaces M and N , respectively and λ is the conformal factor. Consequently,

the conformal parameterization of the brain surface preserves angles and thus

preserves the local geometry. Also, the Jacobian of the conformal map is just

the conformal factor. This is beneficial when conformal map is used to solve

equations on the brain surface (See Chapter 4).

In order to detect the anatomical features, we need to have some shape de-

scriptors defined on the brain surface which can delineate the sulci or gyri. In

our project, we have found that the mean curvature and principal directions are

good shape descriptors that well describe the sulci or gyri. The mean curvature

and principal directions can all be computed from the Weingarten matrix. Recall

that the normal curvature κn of a Riemann surface in a given direction is the

reciprocal of the radius of the circle that best approximates a normal slice of the

surface in that direction, which varies in different directions. It follows that:

κn = vT IIv = vT


 e f

f g


v (5.1)

for any tangent vector v.

II is called the Weingarten matrix and is symmetric. Its eigenvalues and

eigenvectors are called principal curvatures and principal directions respectively.

The mean of the eigenvalues is the mean curvature. A point on the Riemann

surface at which the Weingarten matrix has the same eigenvalues is called an
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Figure 5.2: Left: Global conformal parametrization of the entire cortical surface
onto the 2D rectangle. By introducing cutting boundaries on the cortical surface,
the genus of the surface is increased. Holomorphic 1-form and the conformal
parametrization can be found. The boundaries of the rectangle corresponds to
the cutting boundaries on the surface. Right: A single face (triangle) of the
triangulated mesh.

umbilic point. The detailed algorithm for computing the Weingarten matrix is

described in Section.

5.5 Solving PDEs on surfaces using the global conformal

parameterization

Our automatic landmark tracking algorithm involves solving partial differential

equations on the surface. Solving equations directly on the brain surface is very

difficult because of its complicated geometry. We propose to solve PDEs on the

brain surface by using the global conformal parametrization. The main idea is
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to map the surface conformally to the 2D rectangles with the minimum number

of coordinates patches. The problem can then be solved by solving a modified

PDE on the 2D parameter domain. To do this, we have to use a set of differential

operators on the manifold, namely, the covariant derivative. With the conformal

parametrization, the covariant derivative can be formulated easily with simple

formulas on the paramter domains. Once the PDE on the 3D surface is refor-

mulated to the corresponding PDE on the 2D domain, we can solve the PDE on

2D by using some well-known numerical schemes. Since the Jacobian of the con-

formal mapping is simply a multiplication of the conformal factor, the modified

PDE on the parameter domain will be very simple and easy to solve. For detail,

please refer to Chapter.

5.6 Algorithm for automatic landmark tracking

In this section, we discuss our algorithm for automatic landmark tracking.

5.6.1 Computation of principal direction fields from the global con-

formal parametrization

In order to detect the anatomical features, we need to have some shape descriptors

defined on the brain surface which can delineate the sulci or gyri. In this project,

we use mean curvature and principal directions as the shape descriptor. They

can all computed from the Weingarten matrix. We firstly describe how we can

compute the Weingarten matrix.

Denote the cortical surface by C. Let φ : D → C be the global conformal

parametrization of C where D is a rectangular parameter domain. Let λ be the

conformal factor of φ. Similar to Rusinkiewicz’s work [106], we can compute the
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principal directions, and represent them on the parameter domain D. This is

based on the following three steps:

Step 1 : Per− Face Curvature Computation

Let u =




1√
λ

0


 and v =


 0

1√
λ


 be the directions of an orthonormal

coordinate system for the tangent plane (represented in the parameter domain

D). We can approximate the Weingarten matrix II for each face (triangle). For

a triangle with three well-defined directions (edges) together with the differences

in normals in those directions (Refer to Figure 5.2 right), we have a set of linear

constraints on the elements of the Weingarten matrix, which can be determined

using the least square method.

Step 2 : Coordinate system Transformation

After we have computed the Weingarten matrix on each face in the (uf , vf )

coordinate system, we can average it with contribution from adjacent triangles.

Suppose that each vertex p has its own orthonormal coordinate system (up, vp).

We have to transform the Weingarten matrix tensor into the vertex coordinates

frame. The first component of II, expressed in the (up, vp) coordinate system,

can be found as:

ep = uT
p IIup = (1, 0)


 ep fp

fp gp


 (1, 0)T

Thus,

ep = (up · uf , up · vf )II(up · uf , up · vf )
T

We can find fp and gp similarly.

Step3 : Weighting
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The question about how much of the face curvature should be accumulated at

each vertex is very important because different meshes have different resolution

at different position. Thus, an aprropriate weighting function can help to reduce

the error in the curvature approximation significantly. For each face f which is

adjacent to the vertex p, we take the weighting wf,p to be the area of f divided by

the squares of the lengths of the two edges that touch the vertex p. The weighting

function we use can take care of the different resolution at different location of the

mesh and effectively produce more accurate estimation of the curvature, normal

and so on.

5.6.2 Extraction of Sulcal Region by Chan-Vese Segmentation

In order to speed up the landmark tracking algorithm, we begin with extracting

the sulcal regions on the brain surface. This is done by extracting the high mean

curvature regions on the cortical surface using the Chan-Vese (CV) segmenta-

tion method [107][105], based on the Mumford-Shah functional for segmentation

[108][54][97]. After the sulcal region is extracted, we pick an arbitrary curve lying

within the sulcal region as an initial guess of the sulcal landmark.

CV segmentation is a well known segmentation method on the 2D domain. We

can extend the CV segmentation on R2 to the brain cortical surface M through

conformal parameterization.

Let φ : R2 → M be the conformal parametrization of the surface M . We

propose to minimize the following energy functional:
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F (c1, c2, ψ) =

∫

M

(u0 − c1)
2H(ψ)dS

+

∫

M

(u0 − c2)
2(1−H(ψ))dS

+ ν

∫

M

|∇MH(ψ)|MdS

where ψ : M → R is the level set function and | · |M =
√

< ·, · > and u0 is

the mean curvature function on the cortical surface.

With the conformal parametrization, we have:

F (c1, c2, ψ) =

∫

R2

λ(u0 ◦ φ− c1)
2H(ψ ◦ φ)dxdy

+

∫

R2

λ(u0 ◦ φ− c2)
2(1−H(ψ ◦ φ))dxdy

+ ν

∫

R2

√
λ|∇H(ψ ◦ φ)|dxdy

For simplicity, we let ζ = ψ ◦ φ and w0 = u0 ◦ φ. Fixing ζ, we must have:

c1(t) =

∫
Ω

w0H(ζ(t, x, y))λdxdy∫
Ω

H(ζ(t, x, y))λdxdy
;

c2(t) =

∫
Ω

w0(1−H(ζ(t, x, y))λdxdy∫
Ω
(1−H(ζ(t, x, y)))λdxdy

Fixing c1, c2, the Euler-Lagrange equation becomes:

∂ζ

∂t
= λδ(ζ)[ ν

1

λ
5 ·(

√
λ
∇ζ

||∇ζ||)− (w0 − c1)
2 + (w0 − c2)

2]
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Now, the sulcal landmarks on the cortical surface lie at locations with rela-

tively high mean curvature. As shown in Figure, the brain surface is mapped to

a 2D parameter domain with the conformal parameterization. It is colored with

the mean curvature information. Note that the sulcal region has darker color,

meaning that the sulcal region has higher mean curvature. To formulate the CV

segmentation to extract the sulcal region, we can consider the intensity term as

being defined by the mean curvature. Sulcal locations can then be circumscribed

by first extracting out the high curvature regions. Fixing two anchor points in-

side the extracted region, we can get a good initialization of the landmark curve

by looking for a shortest path inside the region that joins the two points. We

select two umbilic points as the anchor points. By definition, an umbilic point

on a manifold is a location at which the two principal curvatures are the same.

Therefore, the umbilic points are the ’singularities’ of the surface. Also, the um-

bilic points are the positions where the principal directions are not well-defined.

In other words, Eprincipal is not well defined at these points. If there are multiple

umbilic points are found in one region, we select the two that are furthest apart.

5.6.3 Variational Method for Landmark Tracking

After the sulcal region is extracted, we can get an initial guess of the sulcal

landmark by choosing an arbitrary curve joining the two feature points (umbilic

points). This initial guess may not be the most accurate approximation of the

sulcus and may not lie on the deepest region. We can iteratively improve the

curve such that it moves to the deepest valley of the sulcal region. This is done

by a variational approach to get a minimizing curve that follows the principal

curvature as much as possible. We have found that the principal directions can

effectively be used to trace the sulci and gyri. As shown in Figure 5.3, the red
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Figure 5.3: Top : The value of Eprincipal at each iteration is shown. Energy
reached its steady state with 30 iterations, meaning that our algorithm is effi-
cient using the CV model as the initialization. Bottom : Numerical comparison
between automatic labeled landmarks and manually labeled landmarks by com-
puting the Euclidean distance Edifference (on the parameter domain) between
the automatically and manually labeled landmark curves, which are unit-speed
parametrized. These manually-labeled sulcal landmarks are manually labeled
directly on the brain surface by neuroscientists.
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arrow represents the principal direction field with smaller eigenvalues at each

points on the brain surface. They follow the direction of the sulci. (B) shows the

principal directions with larger eigenvalues at each points on the brain surface.

They follow the direction of the gyri.

The principal direction field
−→
V (t) with smaller eigenvalues on the cortical

surface C can be computed as described in Section. With
−→
V (t), we propose

a variational method to trace the sulcal landmark curve iteratively, after fixing

two anchor points (a & b) on the sulci. Let φ : D → C be the conformal

parametrization of C, < ·, · > to be its Riemannian metric and λ to be its

conformal factor. We propose to locate a curve −→c : [0, 1] → C with endpoints a

and b, that minimizes the following energy functional:

Eprincipal(
−→c ) =

∫ 1

0

|
−→c ′

√
< −→c ′,−→c ′ >M

−−→V ◦ −→c |2Mdt =

∫ 1

0

|
−→γ ′

|−→γ ′| −
−→
G(−→γ )|2dt

where −→γ = −→c ◦ φ−1 : [0, 1] → D is the corresponding iteratively defined curve

on the parameter domain;
−→
G(−→γ ) =

√
λ(−→γ )

−→
V (−→γ ); | · |2M =< ·, · >M and | · |

is the (usual) length defined on D. By minimizing the energy E, we minimize

the difference between the tangent vector field along the curve and the principal

direction field
−→
V . The resulting minimizing curve is the curve that is closest to

the curve traced along the principal direction (See Figure 5.4).

Let:

−→
G = (G1, G2, G3);

−→
K = (K1, K2, K3) =

−→γ ′
|−→γ ′| −

−→
G(−→γ )

−→
L 1 = (1,0,0)

|−→γ ′| −
γ′1
−→γ

|−→γ ′|3 ;
−→
L 2 = (0,1,0)

|−→γ ′| −
γ′2
−→γ

|−→γ ′|3 ;
−→
L 3 = (0,0,1)

|−→γ ′| −
γ′3
−→γ

|−→γ ′|3

Based on the Euler-Lagrange equation, we can locate the landmark curve

iteratively using the steepest descent algorithm:
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Figure 5.4: The figure demonstrates the meaning of Eprincipal. It measures the
difference between the tangent vector field along the curve and the principal
direction field ~V . The resulting minimizing curve is the curve that is closest to
the curve traced along the principal direction.

d−→γ
dt

= Σ3
i=1[Ki

−→
L i]

′ + Ki∇Gi

With this iterative scheme, the energy Eprincipal is actually decreasing.

Proof :

dEprincipal

ds
|s=0(

−→γ + s−→u )

=
∫ 1

0
d
ds
|s=0|

−→γ ′+s−→u ′
|−→γ ′+s−→u ′| −

−→
G(−→γ + s−→u )|2dt

=
∫ 1

0
(
−→γ ′
|−→γ ′ −

−→
G(−→γ )) · [ −→u ′|−→γ ′| −

−→γ ′(−→γ ′·−→u ′)
|−→γ ′|3 −−→G ′(−→γ ) · −→u ]dt

=
∫ 1

0
(
−→γ ′
|−→γ ′ −

−→
G(−→γ )) · [ −→u ′|−→γ ′| −

−→γ ′(−→γ ′·−→u ′)
|−→γ ′|3 −−→G ′(−→γ ) · −→u ]dt

= − ∫ 1

0
Σ3

i=1{[Ki
−→
L i]

′ + Ki∇Gi} · −→u < 0

if we let −→u = Σ3
i=1{[Ki

−→
L i]

′ + Ki∇Gi}.

(Here, Gi, Ki, Li are defined as in Section 4.3)

Thus, the energy Eprincipal is decreasing. QED

Our automatic landmark tracking algorithm is summarized in Figure 5.5
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Figure 5.5: The figure summarizes the five steps of our automatic landmark
tracking algorithm.
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5.7 Optimization of brain conformal parametrization

In brain mapping research, cortical surface data are often mapped conformally

to a parameter domain such as a sphere, providing a common coordinate sys-

tem for data integration. As an application of our automatic landmark tracking

algorithm, we use the automatically labeled landmark curves to generate an op-

timized conformal mapping on the surface, in the sense that homologous features

across subjects are caused to lie at the same parameter locations in a confor-

mal grid. This matching of cortical patterns improves the alignment of data

across subjects. We apply the algorithm introduced in Chapter 3 to get the

optimized brain conformal parameterization which minimizes the compound en-

ergy functional Enew = Eharmonic + λElandmark, where Eharmonic is the harmonic

energy of the parameterization and Elandmark is the landmark mismatch energy.

Here, instead of using the manually labeled discrete landmark points, automati-

cally traced landmark (continuous) curves are used. Also, in our previous work,

correspondences between discrete landmark points have to be manually speci-

fied. Here, the correspondence are obtained automatically using the unit speed

reparametrization.

Suppose C1 and C2 are two cortical surfaces we want to compare. We let

φ1 : C1 → S2 be the conformal parameterization of C1 mapping it onto S2.

Let {pi : [0, 1] → S2} and {qi : [0, 1] → S2} be the automatic labeled landmark

curves, represented on the parameter domain S2 with unit speed parametrization,

for C1 and C2 respectively. Let h : C2 → S2 be any homeomorphism from C2

onto S2. We define the landmark mismatch energy of h as: Elandmark(h) =

1/2
∑n

i=1

∫ 1

0
||h(qi(t))− φ1(pi(t))||2dt, where the norm represents distance on the

sphere. By minimizing this energy functional, the Euclidean distance between

the corresponding landmarks on the sphere is minimized.
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5.8 Experimental Results

In one experiment, we tested our automatic landmark tracking algorithm on a set

of 40 left hemisphere cortical surfaces extracted from brain MRI scans, acquired

from normal subjects at 1.5 T (on a GE Signa scanner). In our experiments,

10 major sulcal landmarks (central/precentral) were automatically located on

cotical surfaces.

Figure 5.6 shows how we can effectively locate the initial landmark guess

areas on the cortical surface using the Chan-Vese segmentation. We consider the

intensity term as being defined by the mean curvature. Sulcal locations can then

be circumscribed by first extracting out the high curvature regions. (A) shows

the result of extraction using a circular initial contour. Notice that the contour

evolved to the deep sulcal region. (B) shows the result of extration using a larger

initial circular contour. More sulcal regions can be extracted.

In Figure 5.7, we locate the umbilic points in each sulcal region, which are

chosen as the anchor points.

Our variational method to locate landmark curves is illustrated in Figure 5.8.

With the initial guess given by the Chan-Vese model (we choose the two extreme

points in the located area as the anchor points), we trace the landmark curves

iteratively based on the principal direction field. In Figure 5.8 (left), we trace the

landmark curves on the parameter domain along the edges whose directions are

closest to the principal direction field. The corresponding landmark curves on the

cortical surface is shown. Figure 5.8 (left) shows how the curve evolves to a deeper

sulcal region with our iterative scheme. In Figure 5.8 (right), ten sulcal landmarks

are located using our algorithm. Our algorithm is quite efficient with the good

initial guess using the CV-model. (See Fig 5.9 Top) To compare our automatic

118



Figure 5.6: Sulcal region extraction on the cortical surface by Chan-Vese segmen-
tation. We consider the intensity term as being defined by the mean curvature.
Sulcal locations can then be circumscribed by first extracting out the high cur-
vature regions. (A) shows the result of extraction using a circular initial contour.
(B) shows the result of extration using a larger initial circular contour. More
sulcal regions can be extracted
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Figure 5.7: Detection of end points of the landmark curve. Umbilic points are
located on each sulci region, which are chosen as the end points of the landmark
curves.

landmark tracking results with the manually labeled landmarks, we measured the

Euclidean distance Edifference (on the parameter domain) between the automati-

cally and manually labeled landmark curves. Figure 5.9(Bottom) shows the value

of the Euclidean distance Edifference =
∫ 1

0
||−→c principal(t)−−→c manual(t)||2dt between

the automatically and manually labeled landmark curves at different iterations for

different landmark curves. The two landmark curves are unit-speed parametrized,

denoted by −→c principal(t) and −→c manual(t) respectively. The manually-labeled sulcal

landmarks are manually labeled directly on the brain surface by neuroscientists.

Note that the value becomes smaller as the iterations proceed. This means that

the automatically labeled landmark curves more closely resemble those defined

manually as the iterations continues. Figure 5.10 illustrates the application of

our automatic landmark tracking algorithm. We illustrated our idea of the opti-

mization of conformal mapping using the automatically traced landmark curves.

Figure 5.10 (A) and (B) show two different cortical surfaces being mapped con-
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Figure 5.8: Automatic landmark tracking using a variational approach. Top :
With the global conformal parameterization of the entire cortical surface, we
trace the landmark curves on the parameter domain along the edges whose di-
rections are closest to the principal direction field. It gives a good initial guess
of the landmark curve (blue curve). The landmark curve is then evolved to a
deeper region (green curve) using our variational approach. Bottom : Ten sulcal
landmarks are automatically traced using our algorithm.
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Figure 5.9: Top : The value of Eprincipal at each iteration is shown. Energy
reached its steady state with 30 iterations, meaning that our algorithm is effi-
cient using the CV model as the initialization. Bottom : Numerical comparison
between automatic labeled landmarks and manually labeled landmarks by com-
puting the Euclidean distance Edifference (on the parameter domain) between
the automatically and manually labeled landmark curves, which are unit-speed
parametrized. These manually-labeled sulcal landmarks are manually labeled
directly on the brain surface by neuroscientists.
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Figure 5.10: Optimization of brain conformal mapping using automatic landmark
tracking. In (A) and (B), two different cortical surfaces are mapped conformally
to the sphere. The corresponding landmark curves are aligned inconsistently on
the spherical parameter domain. In (C), we map the same cortical surface of (B)
to the sphere using our algorithm. Note that the alignment of the landmark curves
is much more consistent with the those in (A). (D), (E), (F) shows the average
surface (for N=15 subjects) based on the optimized conformal re-parametrization
using the variational approach. Except in (F), where no landmarks were defined
automatically, the major sulcal landmarks are remarkably well defined, even in
this multi-subject average.
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formally to the sphere. Notice that the alignment of the sulci landmark curves

are not consistent. In Figure 5.10 (C), the same cortical surface in (B) is mapped

to the sphere using our method. Notice that the landmark curves closely resem-

ble to those in (A), meaning that the alignment of the landmark curves is more

consistent with our algorithm. To visualize how well our algorithm can improve

the alignment of the important sulcal landmarks is, we took average surface of

the 15 cortical surfaces by using the optimized conformal parametrization algo-

rithm [109]. Figure 5.10(D), (E) and (F) shows the average surface (for N=15

subjects) based on the optimized conformal re-parametrization using the varia-

tional approach. Except in (F), where no landmarks were defined automatically,

the major sulcal landmarks are remarkably well defined, even in this multi-subject

average. As sown in (D) and (E), sulcal landmarks are clearly preserved inside

the green circle where landmarks were defined automatically. In (F), the sul-

cal landmarks are averaged out inside the green circle where no landmarks were

defined. This suggests that our algorithm can help by improving the alignment

of major anatomical features in the cortex. Further validation work, of course,

would be necessary to assess whether this results in greater detection sensitivity

in computational anatomy studies of the cortex, but the greater reinforcement of

features suggests that landmark alignment error is substantially reduced, and this

is one major factor influencing signal detection in multi-subject cortical studies.

5.9 Conclusion

In this paper, we propose a variational method to automatically trace landmark

curves on cortical surfaces, based on the principal directions. To accelerate the

iterative scheme, we initialize the curves by extracting high curvature regions

using Chan-Vese segmentation. This involves solving a PDE on the cortical man-
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ifold. The landmark curves detected by our algorithm closely resembled those

labeled manually. Finally, we use the automatically labeled landmark curves to

create an optimized brain conformal mapping, which matches important anatom-

ical features across subjects. Surface averages from multiple subjects show that

our computed maps can consistently align key anatomic landmarks.
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CHAPTER 6

Shape Based Landmark Matching

Diffeomorphism between Cortical Surfaces

6.1 Introduction

As it was mentioned in earlier chapters, finding meaningful parametrization of

the cortical surface is a key problem in brain mapping research. Applications

include the registration of functional activation data across subjects, statistical

shape analysis, morphometry, and processing of signals on brain surfaces (e.g.,

denoising or filtering). Applications that compare surface data often make use

of surface diffeomorphisms that result from parameterization. For the above

diffeomorphisms to map data consistently across surfaces, parametrizations are

required to preserve the original surface geometry as much as possible. Parame-

terizations should also be chosen so that the resulting diffeomorphisms between

surfaces align key anatomical features consistently. This kind of parameteriza-

tions with good anatomical features alignment is particularly important for brain

disease analysis such as building the average brain shape. This is advantageous

as the surface average of many subjects would retain features that consistently

occur on sulci, while uniform speed parameterizations may cause these features

to cancel out. Figure 6.2 gives an illustration of features can be canceled out with

poor correspondece between landmarks when computing the surface average.
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Conformal mapping [17][19] is particularly convenient for genus-zero corti-

cal surface models since it gives a parameterization without angular distortions,

and comes with computational advantages when solving PDEs on surfaces using

grid-based and metric-based computations [63]. However, the above parameter-

ization is not guaranteed to map anatomical features, such as sulcal landmarks,

consistently from subject to subject [20][19].

Landmark-based diffeomorphisms [20][19][48][49][51][110] are often used to

compute, or adjust, cortical surface parameterizations. Similarly to the above

works, given two cortical surfaces with anatomical landmarks (sulci curves), we

propose a method to find close to conformal parameterizations for the surfaces

driven by shape based correspondences (registration) between the curves. Our

work has three main contributions; first, the surface diffeomorphism resulting

from our parameterization maps the sulcal curves exactly ; second, the correspon-

dence is shape based, i.e., maps similarly-shaped segments of sulcal curves to

each other; finally, the conformality of the surface parameterizations is preserved

to the greatest possible extent [37].

6.2 Previous works

Optimization of surface diffeomorphisms by landmark matching has been studied

intensively. As described in Chapter 2, Gu et al. [19] proposed to optimize the

conformal parametrization by composing an optimal Möbius transformation so

that it minimizes a landmark mismatch energy. The resulting parameterization

remains conformal. Glaunes et al.[48] proposed to generate large deformation

diffeomorphisms of the sphere onto itself, given the displacements of a finite set of

template landmarks. The diffeomorphism obtained can match landmark features

well, but it is, in general, not a conformal mapping, which can be advantageous
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for solving PDEs on the resulting grids. Leow et al.[49] proposed a level-set based

approach for matching different types of features, including points and 2D or 3D

curves represented as implicit functions.

Tosun et al. [51] proposed a more automated mapping technique that results

in good sulcal alignment across subjects, by combining parametric relaxation, it-

erative closest point registration and inverse stereographic projection. In Chapter

3, we [20] proposed an energy that computes maps that are close to conformal and

also driven by a landmark matching term that measures the Euclidean distance

between the specified landmarks. We proposed to use discrete landmark points

in Chapter 2, where correspondence between landmarks are labelled manually.

In Chapter 5, we proposed to use landmark curves which are automatically de-

tected. The correspondence between landmark curves are obtained automatically

through unit speed reparameterization. It has a drawback because the correspon-

dence between landmark curves does not follow any shape information and thus

affecting the quality of the optimized conformal map (See Figure 6.1 and Fig-

ure 6.2). (A) and (B) shows two different surfaces. The correspondence between

landmark curves are labeled with yellow dots. Note that the correspondence does

not follow any shape information (corners are not mapped to corners). The ideal

correspondence based on the shape information of the curve is shown in (C).

Many of the above methods e.g. [20][48] require corresponding landmark

points on the surfaces to be labeled in advance. Secondly, the landmark match

measures used above are based on Euclidean distance, or overlap of level set

functions representing the landmarks, and do not use shape information to guide

correspondences of features within curves. So, the resulting correspondences

would be unreliable in the case of landmark curves that differ by non-rigid de-

formations. Finally, constraining the surface diffeomorphism to exactly align the
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landmark curves during minimization is difficult, e.g. [20][51].

To resolve the above issues, we propose a method to optimize the confor-

mal parameterization of the surfaces while non-rigidly registering the landmark

curves. Specifically, we formulate our problem as a variational energy defined on

a search space of diffeomorphisms generated as flows of smooth vector fields. The

vector fields are restricted only to those that do not flow across the landmark

curves (to enforce exact landmark correspondence). Our energy has 2 terms:

(1) a shape term to map similar shaped segments of the landmark curves to

each other, and (2) a harmonic energy term to optimize the conformality of the

parametrization maps.

6.3 Basic Mathematical Background: Integral Flow on

Surfaces

In this section, we introduce briefly the concept of integral flow of a vector field

on a Riemann surface.

Let ~V be a smooth vector field on a Riemann surface M , which associates a

tangent vector to every point on S. Given the vector field ~V , we can try to define

curves γon S such that for each t in an interval I

γ′(t) = V (γ(t)); γ(0) = p (6.1)

If V is Lipschitz continuous we can find a unique C1-curve γx for each point x in

S so that:

γ′x(t) = V (γx(t)) (t ∈ (−ε, +ε) ⊂ R); γx(0) = x (6.2)
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On a compact Riemann surface S, any smooth vector field ~V is complete

meaning that every integral curve is defined for aa t ∈ R. We can define a map,

called the integral flow of ~V , φ(t, x) : R× S → S as follow:

φ(t, x) = γx(t) (6.3)

Fixing t, φt(x)φ(t, x) is a diffeomorphism of the surface S. Therefore, we can

regards the integral flow as a collection of diffeomorphisms of S. Interestingly,

the integral flow follows the group law meaning that φt ◦ φs(x) = φs+t(x).

In this work, we consider the search space of diffeomorphisms as the integral of

smooth vector fields. By looking for a smooth vector field which satisfies certain

energy functional, we can ensure that the map obtained is a diffeomporphism

which matches landmarks based on the shape information.

6.4 Model

Given two cortical surfaces M1 and M2, with sulcal landmark curves Ĉ1 and Ĉ2 la-

beled on them. The curves Ĉi have the same topology relative to Mi. These land-

marks curves can be detected automatically by the automatic landmark tracking

technique as described in Chapter 5 [97]. Here, we want to find a diffeomorphism

F : M1 → M2 between M1 and M2 such that F maps similarly shaped segment

of Ĉ1 and Ĉ2 to each others. In particular, we want to find parameterizations

f̂1 : Ω ⊂ <2 → M1, f̂2 : Ω → M2 of M1 and M2 onto the 2D parameter domain

Ω such that the diffeomorphism F = f̂2 o f̂−1
1 | is a shape based diffeomorphism

that maps Ĉ1 exactly onto Ĉ2. Also we want f̂i to be as conformal as possible.

To simplify our computations, Mi are firstly conformally parameterized onto

the conformal parameter domain Di by gi : Mi → Di. Assume that Ĉi are
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mapped to Ci on the parameter domain Di. Thus, we can reduce our problem to

the 2D problem of finding diffeomorphism f̃i : Ω → Di such that f̃2 o f̃−1
1 |C1 = C2

is a shape-based diffeomorphism onto C2. The shaped based landmark matching

diffeomorphism between M1 and M2, that is close to conformal, can be obtained

from the composition of maps F = g−1
2 ◦ f̃2 ◦ f̃−1

1 ◦ g1.

We propose our problem as the minimization of a variational energy with

respect to diffeomorphisms f̃i : Ω → Di, subject to the correspondence constraint

f̃2 o f̃−1
1 (C1) = C2. The energy consists of two terms. The first term measures

the harmonic energy of the maps f̃i, and the second term measures the shape

dissimilarity between C1 and f̃2 o f̃−1
1 (C1).

To handle the above correspondence constraint, we move all our computations

to the parameter domain Ω using initial diffeomorphisms f0,i : Ω → Di. Let

C ⊂ Ω be a topological representative of Ci, the common representation of Ci

on Ω. We assume the initial map satisfies f0,i(C) = Ci (See Figure 6.3). With

the above framework, the energy is formulated over Ω, and the search space of

diffeomorphisms f̃i : Ω → Di, subject to f̃2 o f̃−1
1 (C1) = C2, can be constructed as

time-1 flows of smooth vector fields on Ω that do not flow across C. For the shape

term, we measure the shape dissimilarity between the corresponding landmarks

which minimizes the difference in geodesic curvatures on the corresponding pairs

of points on C1 and C2. We discuss the details in the following sections.

6.4.1 Formulation

The initial diffeomorphisms f0,i give us a convenient way to perform our compu-

tations on the domain Ω. Diffeomorphisms f̃i : Ω → Di with f̃2 o f̃−1
1 (C1) = C2

can be realized through unique diffeomorphisms fi : Ω → Ω with fi(C) = C,

satisfying f̃i = f0,i o fi (Fig. 6.3(left)). Thus we formulate our problem as the

131



Figure 6.1: The figure shows the correspondece between landmark curves ob-
tained through unit speed reparameterization. (A) and (B) shows two different
surfaces. The correspondence between landmark curves are labeled with yellow
dots. Note that the correspondence does not follow any shape information (cor-
ners are not mapped to corners). The ideal correspondence based on the shape
information of the curve is shown in (C).

Figure 6.2: (A) and (B) shows two surfaces. (C) shows the averaging result of the two
surface with arc-length correspondence between landmarks curves. Note that the shape
of the landmarks is averaged out and cannot be preserved. (D) shows the averaging
result with shape correspondence between landmark curves. Note that the shape of
the landmark curve is well preserved.
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Figure 6.3: The figure show the framework of our algorithm.

Figure 6.4: The figure shows the level set representation for C (Brown open curve),
C = {φ = 0} ∩A. A is the shaded region, {φ = 0} is the circle.
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Figure 6.5: Illustration of how exact matching of landmark curves can be ensured
by the projection of vector field. As shown in (A), the exact matching of landmark
curves can be guranteed by restricting the vector field on C is parallel to the
tangential direction of C. This requirement is satisfied by projecting the vector
field along C to the horizontal component.

minimization of the following energy over diffeomorphisms fi : Ω → Ω with

fi(C) = C. Denote f̃i = f0,i o fi, F = [f̃1, f̃2],

E[f1, f2] =
∫

Ω
|∇f̃1|2 + |∇f̃2|2 dx + λ

∫

C

(
κ1(f̃1)− κ2(f̃2)

)2 |Fx ∧ Fy| ds (6.4)

The first term is the harmonic energy of f̃i. The second term is a symmetric

shape term defined as an arc length integral over F (C), similar to Thiruvenkadam

et al. [111]. Here, the shape measure κi(pi) is determined by the geodesic curva-

ture of Mi corresponding to the point pi. Defining the symmetric shape measure

over F (C) makes the term independent of the choice of the initial maps f0,i, and

also avoids local minima problems that occur while matching flat curve segments.

In the above energy, using a search space of diffeomorphisms fi : Ω → Ω, and

then imposing fi(C) = C as a constraint during minimization is difficult. Hence

we propose a method to directly consider a reduced search space of diffeomor-
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phisms fi : Ω → Ω that satisfy fi(C) = C.

6.4.2 Level Set Representation for C

Since we are dealing with the sulcal curves as our landmarks, we assume that

C = ∪N
k=1Γk, a union of open curves Γk ⊂ Ω. We represent C implicitly in level

set form to be able to write the second integral in energy (6.4) with respect to

x. Being the union of open curves, C can be represented as the intersection of

the 0-level set of a signed distance function φ, and a region A (Fig. 6.3(right)).

Then the arc length integral of C becomes

∫

C
ds =

∫

Ω
χA |∇H(φ)| dx,

where H(t) is a regularized version of the Heaviside function.

6.4.3 Modelling the Search Space for fi

To construct an appropriate search space for fi, we consider smooth vector fields,

~Xi = ai
∂
∂x

+ bi
∂
∂y

, where ai, bi : Ω → < are C1 functions with compact support.

Then the flow of ~Xi, Φ
~Xi(x, t) is given by the differential equation,

∂Φ

∂t

~Xi

(x, t) = ~Xi(Φ
~Xi(x, t)),

Φ
~Xi(x, 0) = x.

Then the time-1 flow Φ
~Xi(x, 1) : Ω → Ω is a diffeomorphism.

Now let ~n := δ̃(φ) χ̃A∇φ, for regularized versions δ̃, χ̃A of the Dirac-δ function,

and χA. We see that ~n coincides with the unit-normal vector field on C. Let ηep

be a smooth function on Ω such that ηep = 0 at the endpoints of the open curves
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Γk ⊂ C, k = 1, 2, ..N . Consider the vector fields ~Yi that do not flow across C,

~Yi = PCXi := ηep

(
~Xi − ( ~Xi · ~n)~ni

)
.

This property of the vector field is important to ensure the diffeormorphism

obtained matches landmarks exactly. Figure 6.5 illustrates the idea of how ex-

act matching of landmark curves can be ensured. As shown in (A), the exact

matching of landmark curves can be guranteed by restricting the vector field on

C is parallel to the tangential direction of C. This requirement is satisfied by

projecting the vector field along C to the horizontal component.

We notice the following properties for the time-1 flow, Φ
~Yi(., 1),

• Φ
~Yi(., 1) : Ω → Ω is a diffeomorphism since ~Yi is C1.

• Also ~Yi|C is a C1 vector field on C. Thus Φ
~Yi(., 1)|C is a diffeomorphism

onto C.

Hence it is natural to set fi = Φ
~Yi(., 1).

6.4.4 Energy

We formulate the energy (6.4) over the space of C1 smooth vector fields on Ω,

~Xi = ai
∂
∂x

+ bi
∂
∂y

,

J [ai, bi] =

∫

Ω
|∇f̃1|2 + |∇f̃2|2 dx + λ

∫

Ω
χA

(
κ1(f̃1)− κ2(f̃2)

)2 |∇H(φ)| |Fx ∧ Fy| dx

+β

∫

Ω
|D ~X1|2 + |D ~X2|2 dx (6.5)
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Here, as before f̃i = f0,i o fi, and fi = Φ
~Yi(., 1), the time-1 flow of the vector

field ~Yi = PCXi. The last integral in the energy is the smoothness term for the

vector fields ~Xi.

6.5 Minimization of the energy

We are going to briefly describe how we derive the Euler-Lagrange equation of

the energy functional.

In this work, we formulate the energy functional over the space of C1 smooth

vector fields on Ω, ~Xi = ai
∂
∂x

+ bi
∂
∂y

,

J [ai, bi] =

∫

Ω
|∇f̃1|2 + |∇f̃2|2 dx + λ

∫

Ω
χA

(
κ1(f̃1)− κ2(f̃2)

)2 |∇H(φ)| |Fx ∧ Fy| dx

+β

∫

Ω
|D ~X1|2 + |D ~X2|2 dx (6.6)

Here, as before f̃i = f0,i o fi, and fi = Φ
~Yi(., 1), the time-1 flow of the vector

field ~Yi = PCXi. The last integral in the energy is the smoothness term for

the vector fields ~Xi. The Euler Lagrange equations of (6.6) are derived here.

Let Dη
vF = d

dε
F (v + εη) denote the derivative of a functional F with respect to

variable v, and for variation η. Also denote the vector fields ~e1 := ∂
∂x

, ~e2 := ∂
∂y

.
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It follows that,

Dai
J(η) = −

∫

Ω

∆f̃i Df0,i Dη
ai

fi dx + λ

∫

Ω

χA(−1)i−1
(
κ1(f̃1)− κ2(f̃2)

)

∇κiDf0,i Dη
ai

fi|∇H(φ)| |Fx ∧ Fy| dx + λ

∫

Ω

χA

(
κ1(f̃1)− κ2(f̃2)

)2

1

|Fx ∧ Fy|(|Fy|2Fx ·Dη
ai

Fx + |Fx|2Fx ·Dη
ai

Fy − (Fx · Fy)(Fx ·Dη
ai

Fy + Fy ·Dη
ai

Fx))

|∇H(φ)|dx−
∫

Ω

∆ai η dx

(6.7)

Integrating the third term by parts gives,

−λ

∫

Ω

χA∇ · ((κ1(f̃1)− κ2(f̃2))
2 1

|Fx ∧ Fy| [|Fy|2∂xfi − (Fx · Fy)∂yfi ;

|Fx|2∂yfi − (Fx · Fy)∂xfi]
) |∇H(φ)|Df0,i Dη

ai
fidx (6.8)

In the first two integrals, the term Dη
ai

fi is given by the flow equation of

~Yi = PCXi,

∂Φ

∂t

~Yi

(x, t) = ~Yi(Φ
~Yi(x, t)),

Φ
~Yi(x, 0) = x.

Now computing the derivative with respect to ai on both sides, for variation η

gives the following differential equation, Pi := Dη
ai

Φ
~Yi ,

∂

∂t
Pi(x, t) = ηPC~e1 (Φ

~Yi(x, t)) + D~Yi(Φ
~Yi(x, t)) Pi(x, t),

Pi(x, 0) = 0. (6.9)

Since D~Yi(Φ
~Yi(x, t)) is continuous with respect to t, we have the existence of an
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orthogonal fundamental matrix Ψi, for the homogeneous system of (6.9). Then

a solution for the above problem can be easily verified to be

Pi(x, t) = Ψi(x, t)

∫ t

0

Ψ−1
i (x, s)PC~e1 (Φ

~Yi(x, s))η(Φ
~Yi(x, s)) ds

Let Bi := −∆f̃i Df0,i + λχA

(
(−1)i−1

(
κ1(f̃1)−κ2(f̃2)

)∇κi−∇·Ci

)
Df0,i |∇H(φ)|,

where Ci = (κ1(f̃1) − κ2(f̃2))
2 1
|Fx∧Fy| [|Fy|2∂xfi − (Fx · Fy)∂yfi ; |Fx|2∂yfi − (Fx ·

Fy)∂xfi]. Substituting Dη
Xi

fi = Pi(., 1) in (6.7), we have

Dai
J(η) =

∫

Ω

Bi(x) Ψi(x, 1)

∫ 1

0

Ψ−1
i (x, s) PC~e1 (Φ

~Yi(x, s)) η(Φ
~Yi(x, s)) ds dx

−
∫

Ω

∆ai η dx

For a fixed s, Φ
~Yi(y, s) : Ω → Ω, is a diffeomorphism; denote the inverse map by

φ
~Yi
s , and its Jacobian by |Dφ

~Yi
s |. Change of variables (x, s) → (y = Φ

~Yi(x, s), s)

in the first term gives

∫

Ω

Bi(φ
~Yi
s (y))

∫ 1

0

Ψi(φ
~Yi
s (y), 1) Ψ−1

i (φ
~Yi
s (y), s) PC~e1 (y) |Dφ

~Yi
s (y)| η(y) ds dy

Thus the Euler Lagrange equations are

dai

dt
=

∫ 1

0
Bi(φ

~Yi
s ) Ψi(φ

~Yi
s , 1) Ψ−1

i (φ~Yi
s , s) PC~e1 |Dφ

~Yi
s | ds− β∆ai

dbi

dt
=

∫ 1

0
Bi(φ

~Yi
s ) Ψi(φ

~Yi
s , 1) Ψ−1

i (φ~Yi
s , s) PC~e2 |Dφ

~Yi
s | ds− β∆bi,

where: Bi := −∆f̃i Df0,i + λχA

(
(−1)i−1

(
κ1(f̃1)−κ2(f̃2)

)∇κi−∇·Ci

)
Df0,i |∇H(φ)|;
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Ψi is the orthogonal fundamental matrix for the homogeneous system of

∂

∂t
Pi(x, t) = ηPC~e1 (Φ~Yi(x, t)) + D~Yi(Φ

~Yi(x, t)) Pi(x, t), Pi(x, 0) = 0.

6.6 Computer Algorithm

To summarize, the algorithm for computing the optimized shape-based landmark

matching conformal diffeomorphisms between cortical surfaces is as follow:

Algorithm 6.5.1 : Shape− based landmark matching diffeomorphism

Input : Conformal parameterization φ1 : S1 → D1, φ2 : S2 → D2 of S1 and S2

respectively. Initial maps f0,1 : D1 → Ω, f0,2 : D2 → Ω, time step dt, energy

threshold ε, β

Output : Optimized shape-based landmark matching conformal diffeomorphisms

G1,2 : S1 → S2 and G2,1 : S2 → S1

1. Set n = 0. Set ~X0
i = (a0

i , b
0
i ) = (0, 0) everywhere on Ω for i = 1, 2. Compute

energy E0 = E[f1, f2].

2. Compute ~Y n
i = PC

~Xi; φ
~Y n

i
S : Ω → Ω; Orthogonal fundamental matrix Ψn

i ;

Bi(φ
~Y n

i
S ) for i = 1, 2

3. Update (an
i , bn

i ) by:

an+1
i = [

∫ 1

0

Bi(φ
~Yi
s ) Ψi(φ

~Yi
s , 1) Ψ−1

i (φ
~Yi
s , s) PC~e1 |Dφ

~Yi
s | ds− β∆ai]dt + an

i

bn+1
i = [

∫ 1

0

Bi(φ
~Yi
s ) Ψi(φ

~Yi
s , 1) Ψ−1

i (φ
~Yi
s , s) PC~e2 |Dφ

~Yi
s | ds− β∆bi]dt + bn

i
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4. Compute energy En+1 = E[f1, f2]

5. If En+1 − En < ε, stop and return G1,2 = φ−1
2 ◦ f−1

0,2 ◦ f2 ◦ f−1
0,1 ◦ φ1, G2,1 =

φ−1
1 ◦ f−1

0,1 ◦ f1 ◦ f−1
0,2 ◦ φ2. Otherwise, repeat step 2 to step 4.

6.7 Experimental Results

We have tested our algorithm on synthetic surfaces. Figure 6.6 shows the match-

ing result of the synthetic surfaces with two sharp corners. Figure 6.6(A) shows

a synthetic surface. It is mapped to another synthetic surface through param-

eterizations without the shape based correspondence between landmark curves,

as shown in (B). Note that the correspondence between the landmark curves

does not follow the shape information ([See the yellow dot]). (C) shows the re-

sult of matching using our proposed algorithm. Note that the correspondence

between the landmark curves follows the shape information (corners to corners

[See the yellow dot]). Figure 6.7 shows the matching result of the synthetic sur-

faces with three sharp corners. (A) shows one synthetic surface with three sharp

corners. Again, it is mapped to another synthetic surface through parameter-

izations without the shape based correspondence between landmark curves, as

shown in (B). The correspondence between the landmark curves does not follow

the shape information. (C) shows the result of matching using our proposed

algorithm. The correspondence between the landmark curves follows the shape

information. We have also tested our algorithm on cortical hemispheric surfaces

extracted from brain MRI scans, acquired from normal subjects at 1.5 T (on a

GE Signa scanner). Experimental results show that our algorithm can effectively

compute cortical surface parameterizations that align the landmark features in a

way that also enforces shape correspondence, while preserving the conformality
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Figure 6.6: The figure shows matching result of the synthetic data with two sharp
corners.

Figure 6.7: The figure shows matching result of the synthetic data with three sharp
corners.
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of the surface-to-surface mapping to the greatest extent possible. The computed

map is guaranteed to be a diffeomorphism because the map is formulated as the

integral flow of a smooth vector field.

Figure 6.8 shows two different cortical surfaces with sulcal landmarks labeled

on them. We seek parameterizations of these surfaces that align the landmark

features consistently while optimally preserving conformality. A diffeomorphism

between the two surfaces is then obtained by computing the composition of the

two parameterizations. Figure 6.9 shows the result of matching the cortical sur-

faces with one landmark labeled (for purposes of illustration) on each brain.

Figure 6.9(A) shows the cortical surface of Brain 1. It is mapped to the corti-

cal surface of Brain 2 under the conformal parameterization as shown in Figure

6.9(B). Note that the sulcal landmark on Brain 1 is only mapped approximately to

the sulcal region on Brain 2. It is not mapped exactly to the corresponding sulcal

landmark on Brain 2. Figure 6.9(C) shows the matching result under the param-

eterization we propose in this paper. Note that the corresponding landmarks are

mapped exactly. Also, the correspondence between the landmark curves follows

the shape information. It maps the secondary features of one landmark curve to

the secondary features of the other landmark curve (See the black dots). Figure

6.9(D) and (E) show the standard 2D parameter domain of Brain 1 and Brain

2 respectively. The landmark curve is mapped to same horizontal line and the

shape feature are mapped to the same positions (see the black dots). This is

advantageous as the surface average of many subjects would retain features that

consistently occur on sulci, while uniform speed parameterizations may cause

these features to cancel out (please see Figure 6.2 for illustration). Figure

6.10 gives an illustration of the matching results for cortical surfaces with several

sulcal landmarks labeled on them. Figure 6.10(A) shows the brain surface 1 with

several landmarks labeled. It is mapped to brain surface 2 under the conformal
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Figure 6.8: The figure shows two different cortical surfaces with sulcal landmarks.

Figure 6.9: This figure shows the result of matching the cortical surfaces with one
landmark labeled. (A) shows the surface of Brain 1. It is mapped to Brain 2 under
conformal parameterization, as shown in (B). (C) shows the result of matching using
our proposed algorithm. (D) and (E) show the standard 2D parameter domains for
Brain 1 and Brain 2 respectively.
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Figure 6.10: Illustration of the result of matching the cortical surfaces with several
sulcal landmarks. (A) shows the brain surface 1. It is mapped to brain surface 2 under
the conformal parameterization as shown in (B). (C) shows the result of matching
under our proposed parameterization.

Figure 6.11: The left shows the histogram of g12 = g21 of the brain surface under the
parameterization computed with our algorithm. The right shows the shape energy at
different iterations.
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parameterization as shown in Figure 6.10(B). Again, the sulcal landmarks on

Brain 1 are only mapped approximately to the sulcal regions on Brain 2. Figure

6.10(C) shows the matching result under the parameterization we proposed. The

corresponding landmarks are mapped exactly. Also, the correspondence between

the landmark curves follows the shape information (corners to corners [See the

black dot]). To examine the conformality of the parameterization, we show in

Figure 6.11(Left) the histogram of g12 = g21 of the Riemannian metric under the

parameterization computed with our proposed algorithm. Observe that g12 = g21

are very close to zero at most vertices. This means that the Riemannian metric

is a diagonal matrix, thus the parameterization computed is very close to confor-

mal. It also shows that conformal map being intrinsic to global surface geometry,

is not significantly affected by small changes in the local geometry induced by

the shape term. Figure 6.11(Right) shows that the shape energy is decreasing

with iterations, implying an improving shape based correspondence between the

landmark curves.

6.8 Conclusion

In this paper, we developed an algorithm to find parametrizations of the corti-

cal surfaces that are close to conformal and also give a shape based correspon-

dence between embedded landmark curves. We propose a variational approach

by minimizing an energy that measures the harmonic energy of the parameteriza-

tion maps, and the shape dissimilarity between mapped points on the landmark

curves. The parameterizations computed are guaranteed to give a shape-based

diffeomorphism between the landmark curves. Experimental results show that

our algorithm can effectively compute parameterizations of cortical surfaces that

align landmark features consistently with shape correspondence, while preserv-
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ing the conformality as much as possible. As future work, we plan to apply this

algorithm to cortical models from healthy and diseased subjects to build popu-

lation shape averages. The enforcement of higher-order shape correspondences

may allow subtle but systematic differences in cortical patterning to be detected,

for instance in neurodevelopmental disorders such as Williams syndrome, where

the scope of cortical folding anomalies is of great interest but currently unknown.

Another area of interest is to work on better numerical schemes to improve com-

putational efficiency and accuracy.
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