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Abstract We propose and analyze a nonparametric
region-based active contour model for segmenting clut-
tered scenes. The proposed model is unsupervised and
assumes that pixel intensity is independently identi-
cally distributed. The proposed energy functional con-
sists of a geometric regularization term that penalizes
the length of region boundaries, and a region-based
image term that uses the probability density function
(or histogram) of pixel intensity to distinguish different
regions. More specifically, the region data encourages
partitioning the image domain so that the local his-
tograms within each region are approximately homoge-
neous. The solutions of the proposed model do not need
to differentiate histograms. The similarity between nor-
malized histograms is measured by the Wasserstein dis-
tance with exponent 1, which is able to fairly compare
two histograms, both continuous and discontinuous. We
employ a fast global minimization method based on [11,
6] to solve the proposed model. The advantages of this
method include less computational time compared with
the minimization method by gradient descent of the
associated Euler-Lagrange equation [12] and the abil-
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ity to find a global minimizer. Moreover, our proposed
model has several desired properties due to the use of
the Wasserstein distance. We further propose a variant
of the proposed model that addresses local illumination
changes in an image.

Keywords Image Segmentation · Unsupervised ·
Wasserstein Distance · Image Processing and Computer
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1 Introduction

Image segmentation plays an important role in com-
puter vision. The process involves partitioning the im-
age domain into several regions either according to edge
information or region information so that the image
within each region has uniform characteristics. The char-
acterized regions depend on the application and may
include one or more of the following: edges, intensi-
ties, textures, and shapes. Snake [21], balloon [10], and
geodesic active contours based [7,20] methods use edge
detection functions and evolve contours towards sharp
gradients of pixel intensity. This classic active contour
approach is widely used in medical image processing.
However, it is not robust to noise, and typically a noisy
image has to be smoothed. Region-based active con-
tours incorporate region and boundary information and
are robust to noise. Furthermore, they are able to de-
tect objects with either sharp or smooth edges. One of
the first region-based active contours is the Mumford-
Shah segmentation model [24], which approximates an
image by a piecewise smooth function, with a length pe-
nalizing term. However, this model is difficult to solve
in practice. The active contours without edges (ACWE)
model [13], a variant of the piecewise constant Mumford-
Shah model, approximates an image by a two-phase
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piecewise constant function and is based on a level-
set implementation [26]. The minimizing flow is de-
rived by computing the variation of the energy with re-
spect to the level set function. Region competition [37]
is a statistical and variational model that is based on
minimizing a generalized Bayes and Minimum descrip-
tion length criterion. The model penalizes the bound-
ary length and the Bayes error within each region, in
which appropriate probability distributions are chosen.
The ACWE, region competition, and other paramet-
ric region-based active contour models, such as [34,27],
assume the probability density function (pdf) of the
pixel intensity in each region up to a few parameters.
For example, often a Gaussian distribution is assumed
with mean and variance the only unknowns. However,
many natural images are not necessarily described by
a specific distribution. Nonparametric region-based ac-
tive contour models, such as [19,16,4,1], use the full
pdf, or histogram, of the intensity to drive the segmen-
tation. Therefore, they do not suffer from the above
limitations. Our model is related to, yet different from,
previous work. In [1,4], the segmentation model is su-
pervised and the data descriptors directly depend on
the regions, which consequently involves histogram dif-
ferentiation in the evolution equations. Unsupervised
segmentation models in [19,16] take an information-
theoretic approach and their data descriptors also di-
rectly depend the regions. In our work, each pixel is
initially assigned a local histogram, i.e. a normalized
histogram of the pixel intensities in a neighborhood of
that pixel. The model finds a partition such that the
local histograms in each region are similar to one an-
other. We use an optimal transport distance to measure
the similarity between histograms.

Previous models are quite effective in segmenting
images when the histograms in each region are distinct.
However, the distances used for comparing histograms
are pointwise and may not be reliable even under sim-
ple circumstances. Furthermore, some distances used
are not metrics; for instance, the triangle inequality is
not satisfied. As an example of this issue, a pointwise
distance between two delta functions with disjoint sup-
ports is the same no matter how far apart the supports
are; this is a situation that arises often in segmenta-
tion applications, since for example images consisting of
two objects with approximately constant but different
intensities would fall into this category. Previous non-
parametric approaches did not address this issue and
used the Parzen window method [28] to approximate
and smooth histograms. The degree of smoothness has
to be controlled by a user-selected parameter. To over-
come this issue, we propose to use an optimal trans-
port distance to compare histograms, which extends as

a metric to measures such as the delta functions. We
believe this to be the more natural and appropriate way
to compare histograms.

The optimal transport, or the Monge-Kantorovich,
problem is to find the most efficient plan to rearrange
one probability measure into another. We will introduce
Kantorovich’s version [18] here. Let (X, µ) and (Y, ν) be
two probability measure spaces. Let π be a probability
measure on the product space X × Y and Π(µ, ν) =
{π ∈ P (X×Y ) : π[A×Y ] = µ[A], and π[X×B] = ν[B]
hold for all measureable sets A ∈ X and B ∈ Y } be
the set of admissible transference plans. For a given
cost function c : X × Y → R, the total transport cost,
associated to plan π ∈ Π(µ, ν), is

I[π] =
∫

X×Y

c(x, y)dπ(x, y).

The optimal transport cost between µ and ν is

Tc(µ, ν) = inf
π∈Π(µ,ν)

I[π].

More detail can be found in [35] and [30]. In the case
when the probability measures µ and ν are on R, with
cost function c(x, y) = |x − y|p, the optimal transport
cost has a closed-form solution,

Tp(µ, ν) =
∫ 1

0

|F−1(t)−G−1(t)|pdt,

where F and G are the cumulative distribution func-
tions of µ and ν, respectively, and F−1 and G−1 repre-
sent their corresponding inverse functions. The optimal
transport distance, commonly called the Wasserstein
distance with exponent p, is Wp(µ, ν) = Tp(µ, ν)1/p.

When the cost function is Euclidean distance c(x, y) =
|x− y|,

W1(µ, ν) =
∫ 1

0

|F−1(t)−G−1(t)|dt =
∫

R
|F (x)−G(x)|dx.

The last equality is obtained by Fubini’s Theorem. The
Wasserstein distance defines a metric and is insensitive
to oscillations [35].

The main contributions of this paper are as follows:

1. the novelty of using the Wasserstein distance to prop-
erly compare histograms, both discontinuous and
continuous,

2. a segmentation model that does not need to differ-
entiate histograms to find a solution,

3. the use of the fast global minimization method [6]
to solve the proposed model, which significantly im-
proves the previous model [12] in two ways, the com-
putational time is less than the standard method
and initialization can be arbitrary,

4. mathematical properties of the proposed model are
presented.
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The proposed model shown in this paper is based
on the statistics of image intensity. However, the data
term certainly can be replaced by histograms of other
features, such as gradient, curvature, orientation and
scale.

2 Related Works

In [19], Kim et al. took an information-theoretic ap-
proach and proposed a nonparametric region-based ac-
tive contours model. Given an image I : Ω → [0, L] with
two regions, in each of which pixel intensities are inde-
pendently identically distributed, a curve −→C is evolved
towards the boundary. Denote the region inside (resp.
outside) the curve −→C by R+ (resp. R−). Define the re-
gion labels associated with curve −→C by

L−→
C

(x) =
{

L+ if x ∈ R+,

L− if x ∈ R−.

The proposed model maximizes the mutual information
between the image pixel intensities and region labels,
subject to a constraint on the total length of the region
boundaries:

inf−→
C

∮
−→
C

ds− λ|Ω|M(I(X); L−→
C

(X)), (1)

where λ is a positive parameter, | · | is the 2-dimensional
Lebesgue measure, i.e. area, and M stands for mutual
information, defined as:

M(I(X); L−→
C

(X)) = h(I(X))− h(I(X)|L−→
C

(X)).

Since entropy of image h(I(X)) is constant, maximizing
the mutual information between I(X) and L−→

C
(X) min-

imizes the conditional entropy h(I(X)|L−→
C

(X)). The
curve −→C is evolved so that knowing which region a pixel
belongs to decreases the uncertainty of the pixel inten-
sity. The conditional entropy is

h(I(X)|L−→
C

(X))

= − 1
|Ω|

( ∫

R+

log P+(I(x))dx +
∫

R−
log P−(I(x))dx

)
,

where the probability density functions P+(I(x)) and
P−(I(x)) of each region are approximated using the
Parzen window method [28],

P+(I(x)) =
1

|R+|
∫

R+

K(I(x)− I(x̂))dx̂, (2)

P−(I(x)) =
1

|R−|
∫

R+

K(I(x)− I(x̂))dx̂. (3)

The Gaussian function K(z) = (1/
√

2πσ2)e−z2/2σ2
is

used as a smoothing kernel, where σ is a scalar param-
eter that controls the smoothness of the approximation.

The minimization problem (1) is solved by the following
gradient flow:

∂
−→
C

∂t
= λ

[
log

P+(I(−→C ))
P−(I(−→C ))

+
1

|R+|
∫

R+

K(I(x)− I(−→C ))
P+(I(x))

dx

− 1
|R−|

∫

R−

K(I(x)− I(−→C ))
P−(I(x))

dx
]−→
N − κ

−→
N, (4)

where −→N is the outward normal and κ is the curvature
of −→C . The implementation for (4) is by the level-set
method with narrow band approach.

In [16], Herbulot et al. also took a nonparametric
region-based active contours approach and used infor-
mation entropy as competition between two regions:

inf−→
C

∮
−→
C

ds + λh(I(X), R+) + λh(I(X), R−), (5)

where entropy of pixel intensities in each region is

h(I(X), R+) = −
∫

R+

P+(I(x)) log P+(I(x))dx

h(I(X), R−) = −
∫

R−
P−(I(x)) log P−(I(x))dx.

The probability density functions P+(I(x)) and P−(I(x))
are approximated using the Parzen window method as
described in (2) and (3). The minimization is solved by
the following gradient flow:

∂
−→
C

∂t
= λ

[
−

(
P+(log P+ + 1)− P−(log P− + 1)

)

− 1
|Ω|

(
h(I(X), R+)− h(I(X), R−)

+
∫

R+

K(I(x)− I(−→C )) log P+(I(x))dx

+
∫

R−
K(I(x)− I(−→C )) log P−(I(x))dx

)]
−→
N − κ

−→
N,

The curve evolution is implemented by using smoothing
B-splines.

3 Proposed Model I

In this section, we discuss an unsupervised segmenta-
tion model proposed in our previous work [12] for clut-
tered images. Suppose the observed gray-scale image
I : Ω → [0, L] is measurable and has two regions of
interests. Let Nx,r be the ball of radius r centered at x.
Define the local histogram of a pixel x ∈ Ω by

Px(y) :=
|{z ∈ Nx,r ∩Ω : I(z) = y}|

|Nx,r ∩Ω| ,
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for 0 ≤ y ≤ L. Define the corresponding cumulative
distribution function by

Fx(y) :=
|{z ∈ Nx,r ∩Ω : I(z) ≤ y}|

|Nx,r ∩Ω| , (6)

for 0 ≤ y ≤ L. These are the image data used in the
following proposed segmentation model:

inf
Σ,P1,P2

{
E1(·, ·, ·|I) = Per(Σ) (7)

+λ

∫

Σ

W1(P1, Px)dx + λ

∫

Σc

W1(P2, Px)dx

}
,

where Per(Σ) is the perimeter of the set Σ. This min-
imization problem finds an optimal region Σ ⊆ Ω and
approximates the local histograms inside Σ (resp. Σc)
by a constant histogram P1 (resp. P2). Recall that W1

is the Wasserstein distance with exponent 1, described
in the introduction:

W1(P1, P2) =
∫ L

0

|F1(y)− F2(y)|dy. (8)

Energy functional (7) can be formulated in terms of the
level set method [26]. The boundary between Σ and Σc

is represented by the 0-level set of a Lipschitz function
φ : Ω → R.

inf
φ,F1,F2

{
E1(·, ·, ·|I) =

∫

Ω

|∇H(φ(x))|dx (9)

+λ

∫

Ω

H(φ(x))
∫ L

0

|F1(y)− Fx(y)|dy dx

+λ

∫

Ω

[1−H(φ(x))]
∫ L

0

|F2(y)− Fx(y)|dy dx

}
,

where H is the Heaviside function,
∫

Ω
|∇H(φ(x))|dx

represents Per(Σ), and H(φ) (resp. 1 − H(φ)) defines
Σ (resp. Σc).
The minimization of (9) can be achieved by a two-step
scheme, which gives a local minimum. First, we fix φ

and minimize with respect to F1 and F2, respectively.
Variations with respect to F1 and F2 yield the following
optimality conditions that should be held for all 0 ≤
y ≤ L,

∫
H(φ(x))

F1(y)− Fx(y)
|F1(y)− Fx(y)|dx = 0

and
∫

[1−H(φ(x))]
F2(y)− Fx(y)
|F2(y)− Fx(y)|dx = 0,

respectively. Therefore,

F1(y) = median of Fx(y), over {x : φ(x) ≥ 0} (10)

and

F2(y) = median of Fx(y), over {x : φ(x) < 0}. (11)

Next, with fixed F1 and F2, the gradient descent of
Euler-Lagrange equation for φ gives

φt = δ(φ)
[
∇ ·

( ∇φ

|∇φ|
)
− λ

∫ L

0

(|F1(y)− Fx(y)| (12)

−|F2(y)− Fx(y)|)dy

]
,

where δ is a regularized Dirac function and ∇·
(
∇φ
|∇φ|

)
is

the curvature of the level sets. Steps (10), (11), and (12)
are iterated alternately, until convergence to a steady
state solution.

However, equation (12) has a serious time-step re-
striction, in addition to being a second-order equation.
Numerically, the curvature term, the first term of (12),
is approximated by

∂

∂x

(
φx√

φ2
x + φ2

y + ε2

)
+

∂

∂y

(
φy√

φ2
x + φ2

y + ε2

)
, (13)

where ε > 0 so that the denominators are not zero
but small enough to stay close to the solution. By the
CFL condition, the time-step restriction of the explicit
scheme for (12) is [25] 4t ≤ c · ε · (4x)2, where c is
a constant. The factor ε comes from (13) when φ2

x +
φ2

y = 0. This time-step restriction can be improved to
4t ≤ c · (4x)2 with Chambolle’s method [9], where
c = 1/8. The application of Chambolle’s method on
the proposed model is presented in Section 4.3.

4 Fast Global Minimization of Model I

4.1 Global Minimization of Model I

Like many variational segmentation models, model (7)
suffers from being non-convex (with respect to Σ) and is
therefore sensitive to initializations. The requirement of
reasonable initializations conflicts the purpose of auto-
matic segmentation. Numerically, a non-compactly sup-
ported dirac function is used in [13] to increase the
chances of finding global minimizers of the piecewise
constant segmentation model. Theoretically, based on
the framework of [6,11,23], we propose the following
global minimization of Model I:

min
0≤u≤1,P1,P2

{
E2(·, ·, ·|I) =

∫

Ω

|∇u(x)|dx (14)

+λ

∫

Ω

W1(P1, Px)u(x)dx

+λ

∫

Ω

W1(P2, Px)(1− u(x))dx

}
.

This problem is closely related to problem (7) but over-
comes the non-convexity. Let 1S denote the character-
istic function of set S. Model (14) extends the original
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minimization over the non-convex set {u ∈ BV (Ω) :
u = 1Σ for some set Σ with finite perimeter} to the
convex set {u ∈ BV (Ω) : 0 ≤ u ≤ 1}. Thus, (14) is
convex with respect to u and, unlike (7), does not have
(non-global) local minima with respect to the geometric
unknown.

The major advantage of (14) is that initializations
can be arbitrary. The relation between (7) and (14) is
that, for fixed F1 and F2, a global minimizer of (7) can
be found through a global minimizer of (14). This rela-
tion is stated in the following theorem, which is based
on the geometric properties of TV.

Theorem 1: (Global Minimizers) Suppose I(x) ∈
[0, 1]. If P1, and P2 are fixed, and u(x) is any minimizer
of E2(·, P1, P2|I), then for a.e. µ ∈ [0, 1], 1{x:u(x)>µ}(x)
is a global minimizer of E1(·, P1, P2|I).

Proof: Based on [11], by the coarea formula and
setting Σ(µ) := {x : u(x) > µ} , we can write E2 in
terms of E1

E2(u, P1, P2|I) =
∫ 1

0

{
Per(Σ(µ))

+λ

∫

Σ(µ)

W1(P1, Px)dx

+λ

∫

Ω−Σ(µ)

W1(P2, Px)dx

}
dµ

=
∫ 1

0

E1(Σ(µ), P1, P2|I)dµ,

Therefore, if u is a minimizer of E2(·, P1, P2|I), then for
a.e. µ ∈ [0, 1], Σ(µ) is a minimizer of E1(·, P1, P2|I).¤

4.2 Existence of Global Minimization Solutions

In this section, we show the existence of a minimizer
for and convexity of model (14).

Theorem 2: (Existence of Solutions for u) For fixed
P1 and P2,

min
0≤u≤1

{
E2(·, P1, P2 | I) =

∫

Ω

|∇u(x)|dx (15)

+λ

∫

Ω

W1(P1, Px)u(x)dx

+λ

∫

Ω

W1(P2, Px)(1− u(x))dx

}

has a solution u ∈ BV (Ω) with 0 ≤ u ≤ 1.
Proof: Let {un} ∈ BV (Ω) with 0 ≤ u ≤ 1 be

a minimizing sequence. Then,
∫

Ω
|Dun| is uniformly

bounded. Since every uniformly bounded sequence in
BV (Ω) is relatively compact in L1(Ω), there exists a
subsequence {unk

} converging to some u ∈ BV (Ω).
Since unk

→ u in L1(Ω), we have unk
→ u in measure,

i.e. |{x : |unk
(x) − u(x)| ≥ ε}| → 0 as ε → 0. Since we

also have 0 ≤ unk
≤ 1, u satisfies 0 ≤ u ≤ 1. Finally,

one can check easily that u is indeed a minimizer by the
lower semicontinuity of BV (Ω) and Fatou’s lemma. ¤.

For fixed u, the minimizer for F1 (resp. F2) has an
explicit solution. Variations of E2 with respect to F1

and F2 yield the following optimality conditions that
should hold for all 0 ≤ y ≤ L:

∫
u(x)

F1(y)− Fx(y)
|F1(y)− Fx(y)|dx = 0

and ∫
[1− u(x)]

F2(y)− Fx(y)
|F2(y)− Fx(y)|dx = 0,

respectively. Therefore,

F1(y) = weighted (by u(x)) median of Fx(y), (16)

and

F2(y) = weighted (by 1− u(x)) median of Fx(y), (17)

We will next show that E2[u, P1, P2|I] is convex with
respect to each variable. First, E2 is convex with respect
to u because

∫
Ω
|Du(x)|dx is convex in u and the set

{u ∈ BV (Ω) : 0 ≤ u ≤ 1} is convex. Second,
Theorem 3: The minimization problem

min
P1∈P (Ω)

E2[u, ·, P2|I]

is convex, where P (Ω) denotes the set of Borel proba-
bility measures on Ω.

Proof: E2[u, ·, P2|I] is convex in P1 because the
Wasserstein distance is a metric and in particular satis-
fies the triangle inequality. Since P (Ω) is a convex set,
minimization with fixed u and P2 is a convex problem.¤

Similarly, the minimization minP2∈P (Ω) E2[u, P1, ·|I]
is convex. Therefore, E2[u, P1, P2|I] is convex with re-
spect to each variable.

4.3 Fast Minimization Scheme

Minimizing the proposed energy E2 in (14) with respect
to u can be efficiently solved by applying methods in
[2,6]. The regularization and data terms in (14) can be
decoupled by using a new variable v to replace u in the
data term and adding a convex term that forces v and
u to be significanly close:

min
u,0≤v≤1

∫

Ω

|∇u(x)|dx+
1
2θ

∫

Ω

(u(x)− v(x))2dx (18)

+λ

∫

Ω

r(x, F1, F2)v(x)dx ,

where

r(x, F1, F2) =
∫ L

0

|F1(y)− Fx(y)| − |F2(y)− Fx(y)|dy,
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and θ > 0 is a small parameter. Minimizing the convex
variational model (18) can be approached by alternately
solving the following coupled problems:

min
u

∫

Ω

|∇u(x)|+ 1
2θ

(u(x)− v(x))2dx (19)

and

min
0≤v≤1

∫

Ω

1
2θ

(u(x)− v(x))2 + λr(x, F1, F2)v(x)dx . (20)

The minimization problem in (19) can be efficiently
achieved by Chambolle’s method [9], based on the dual
formulation of the total variation norm. The derived
solution is

u(x) = v(x)− θdivp(x) , (21)

where p = (p1, p2) solves ∇(θdivp − v) − |∇(θdivp −
v)|p = 0 and is solved by a fixed point method,

pn+1 =
pn + δt∇(divpn − v/θ)
1 + δt|(divpn − v/θ)| . (22)

The solution of (20) is found as in [6]:

v(x) = max{min{u(x)− θλr(x, F1, F2), 1}, 0} . (23)

The proposed fast minimization scheme is to iterate
(16), (17), (22), (21), and (23) alternately, until conver-
gence.

5 Properties of Proposed Models and
Comparison with Other Models

The proposed model has several desired mathematical
properties as shown in Table 1. In Section 4.2, we show
the existence of solution and the convexity of model in
each variable. In the discrete setting, if the resolution
of an image f is m×n and L is the number of the gray
levels, then u ∈ Rm×n and P ∈ P ({0, 1, ...L}) ⊂ RL.
Therefore, the model in the discretized form is convex in
Rm×n×P ({0, 1, ...L}) and thus a global minimizer can
be found. Based on Chambolle’s dual method regarding
the length-penalizing term, the solution converges after
a small number of iterations, compared to directly solv-
ing the associated Euler-Lagrange equation. Moreover,
since the Wasserstein distance is insensitive to oscil-
lations, our model is intrinsically robust to noise. On
the other hand, it does not require histograms to be
smoothed, which has to be done for many segmenta-
tion models even for noiseless images. For instance, the
Wasserstein distance is able to distinguish the distance
between any pair of delta functions with disjoint sup-
ports. Many distances do not tell apart the distance
between two disjointly supported histograms unless the

histograms are smoothed. The complexity of comput-
ing one iteration is O(Lmn). For a 200 × 150 image,
the computational time for a solution to converge is
approximately two minutes. Since the partition is im-
plicitly embedded in function u, the model is able to
handle topological changes.

Kim et al.’s model [19] also has existence of solu-
tion. Their model minimizes over a non-convex set {u ∈
BV (Ω) : u = 1Σ for some set Σ with finite perimeter},
thus does not guarantee to get a global minimizer. The
gradient flow (4) has a curvature term and the con-
vergence can be slow, due to the CFL condition dis-
cussed in Section 3. The probability density functions
are estimated by the Parzen window method. This en-
ables their model to handle noise but introduces a user-
selected parameter, i.e. kernel width. They use the fast
Gauss transform to compute probability densities, which
reduces the complexity of computing one iteration to
O(M), where M is the size of the narrow band. The
level-set method is used for curve evolution and thus
allows topological changes.

Herbulot et al. [16] use smoothing B-splines to im-
plement their derived evolution equation instead of the
usual level-set method to avoid extensive computational
time. The complexity of each iteration is O(LM), where
L is the number of gray levels and M and the size of the
narrow band. The parametric method using B-splines
does not handle topological changes of the contours.
They further use a smoothing B-splines in order to be
more robust to noise. The tradeoff between the smooth-
ness and interpolation error is controlled by a parame-
ter that has to be chosen by the user. Their model also
minimizes over a non-convex set, thus does not guaran-
tee to get a global minimizer.

6 Description of Model II

We propose a variant of Model I that handles segmen-
tation properly when the captured image has uneven
lighting exposure, due to reasons such as the location
of the light source and camera. The original model con-
siders the data term globally, i.e. compares all the local
histograms within each region. Therefore, when the lo-
cal lighting changes significantly, local histograms of the
same feature may have similar shapes but are far apart
by a translation in the intensity axis. As a result, the
Wasserstein distance between them is large and thus
the original model is not designed to deal with uneven
lighting. To model this variation, we introduce a func-
tion a(x), representing the translation in the intensity
axis, and propose a new model:
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Table 1 Properties of the proposed model and Kim et al. [19] and Herbulot et al. [16] models

Our model Kim et al. [19] Herbulot et al. [16]

existence of solution X X X
global minimum/convexity X x x
fast minimization X x X
insensibility to noise X - -
no need to smooth histograms (noiseless case) X x x
local change of lighting X x x
complexity for one iteration O(Lmn) O(M) O(LM)
computational time 2 mins 10 mins 10 mins
handle topological changes X X x

inf
Σ,a,F1,F2

{
E3(Σ, a, F1, F2|I) = Per(Σ) (24)

+
α

2

∫
|∇a(x)|2dx

+λ

∫

Σ

∫ L

0

|F1(y)− Fx(y − a(x))|dy dx

+λ

∫

Σc

∫ L

0

|F2(y)− Fx(y − a(x))|dy dx
}

.

This model allows local histograms to translate on
the intensity axis in order to find a best fit among
one another within each region. A regularity constraint∫ |∇a(x)|2dx is imposed to ensure smoothness of a.

To solve the minimization, we have the following
three-step scheme. The evolution equations for F1, F2

and φ can be derived similarly as in Section 3:

F1(y) = median of Fx(y − a(x)), over {φ ≥ 0} (25)

F2(y) = median of Fx(y − a(x)), over {φ < 0} (26)

φt = δ(φ)

[
∇·

( ∇φ

|∇φ|
)
− λ

∫ L

0

(
|F1(y)− Fx(y − a(x))|

−|F2(y)− Fx(y − a(x))|
)

dy

]
. (27)

The minimization with respect to a(x) is to solve:

inf
a

E3(Σ, ·, F1, F2|I) =
α

2

∫
|∇a(x)|2dx (28)

+λ

∫

Σ

∫ L

0

|F1(y)− Fx(y − a(x))|dy dx

+λ

∫

Σc

∫ L

0

|F2(y)− Fx(y − a(x))|dy dx .

Without the first term, a(x) can be solved explicitly
by

a0(x) =
{

F−1
1 (0.5)− F−1

x (0.5) if φ(x) > 0
F−1

2 (0.5)− F−1
x (0.5) if φ(x) ≤ 0

Therefore, the problem of (28) is transformed into
solving the following:

inf
a

1
2

∫
|a(x)− a0(x)|2dx +

α

2

∫
|∇a(x)|2dx . (29)

The solution to (29) is a(x)−α4a(x) = a0(x), which
can be easily solved, for example, by the fast fourier
transform. We may also employ the fast global mini-
mization technique for Model II, instead using (27).

7 Experimental Results

7.1 Comparison with other methods

As explained in Section 5, our model does not require
histograms to be smoothed for proper segmentation. In
contrast, previous methods use Parzen window method
[28] to estimate pdfs, which requires a smoothness pa-
rameter selection. If the bandwidth of the kernel is too
small, point-wise metrics cannot detect similar intensi-
ties. Fig.1 (a) is a synthetic image with three regions, in
each of which the pixel intensity is independently iden-
tically distributed (b). The pixels in the inner region
take intensities 3, 110, 140, and 247, with probability
about 0.25 each. The pixels in the middle region take
intensities 85, 110, 140, and 165, with probability about
0.25 each. The pixels in the outer region take intensities
80, 115, 135, and 170, with probability about 0.25 each.
The middle and outer regions are perceptually simi-
lar and so are their corresponding intensity histograms,
(d) and (e), respectively. A desired partition is to distin-
guish the inner region from the rest. The initial contour
is shown in (f). Our model does not have the smoothing
parameter and correctly segments the inner region from
the rest because of the use of the Wasserstein distance.

On the other hand, Kim et al.’s model [19] needs a
careful selection of the smoothness parameter σ (vari-
ance of the Gaussian kernel) in order to segment cor-
rectly. Fig.2(a) is the final contour with σ = 5, which in-
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correctly groups the inner and middle regions together.
This is because the histograms of the inner and mid-
dle regions overlap 50% but the histograms of the mid-
dle and outer region do not overlap. In (b), the seg-
mentation with σ = 10 is correct because the intensity
pdf is greatly smoothed and thus mutual information is
able distinguish the inner region from the rest. When
σ = 50, the final contours (c) incorrectly separate pix-
els with intensity = 3, 247 from pixels with intensity
= 110, 115, 135, 140.

We emphasize here that nonparametric models are
able to deal with a greater variety of images than para-
metric models. In this experiment, the object and back-
ground have the same intensity mean and variance. In
Fig.3(a), we show the boundaries of the objects in red
curves and the corresponding histograms in each region.
Fig.3(c) and (b) are the final contours of our proposed
model and ACWE, respectively. The proposed model
is able to distinguish the objects from the background.
On the other hand the ACWE model cannot handle
this case due to its parametric nature.

7.2 Comparison between original model and fast
global minimization

The proposed fast global minimization in Section 4 im-
proves the original minimization in [12] described in
Section 3 of model I. Fig.4 is a downsized 175 × 135
image of cheetah. In Section 4.1, we explain that the
global minimization model does not have local minima
and thus is guaranteed to find a global minimizer. We
experiment with several images with different and ar-
bitrary initializations and all arrive at similar results
for each image. This is a nice consequence of the global
minimization model being convex with respect to each
variable. On the other hand, the original minimization
is non-convex and thus requires initializations to be rea-
sonably close to the final contours. Moreover, the fast
global minimization improves the speed from two hours
to two minutes.

7.3 Robustness to noise/More results of Model I and
Model II

Fig.5(a) is a clean image of cheetah and (b) is with
noise. The final contour shown in (d) by the global
minimization of Model I is able to segment the cheetah
patterns and is nearly as good as the result in (c) of
the clean image. In this experiment, the neighborhood
radius is 11.

Fig.6 shows other experiments of Model I. The first
experiment is a 285× 281 image consisting of two Bro-

datz textures. The final contours are shown in (a) and
the corresponding histograms on each region are plot-
ted in (c). Model I is able distinguish these two Brodatz
textures, even though their intensity distributions are
highly discontinuous. The second is a 481× 321 image
of tiger; (b) shows the final contours by Model I and (d)
shows the histograms in each region. The final contour
successfully selects the tiger patterns.

Fig.7 shows that Model II improves Model I when
there are local lighting changes in the image. The first
experiment is a 384 × 223 image of cheetah. In (a),
Model I is able to capture some of the cheetah patterns
but not near the back legs, due to the local lighting
difference. Final contours of Model II, in (b), are more
accurate. Another experiment is a 282 × 218 image of
fish. The final contours by Model I, in (d), do not select
the fish patterns accurately, because the local illumi-
nation is significantly uneven. Model II, on the other
hand, is able to overcome this difficulty, as shown in (e)
the final contours separates the fish patterns from the
background.

7.4 Implementation issues

We show a method to solve the weighted median for
F1(y) in equation (16) in the discrete case.
For each y = 0, 1, ..., L,

1. Compute the weighted histogram, Hy, of value Fx(y)
with weight u(x). More precisely, for all pixels x ∈
Ω, each value Fx(y) is counted u(x) times. Then,
normalize the weighted histogram, Hy, by dividing
by the total count,

∑
x∈Ω u(x).

2. For each weighted histogram Hy, compute the cu-
mulative distribution Cy.

3. The weighted median is then F1(y) = C−1
y (0.5).

The calculation of F2(y) is similar and with weight 1−
u(x).

We empirically demonstrate that segmentation re-
sults are not sensitive to the size of local neighborhood
histograms, within a reasonable range. The experiment
is on a 384 × 223 image of cheetah, shown in Fig.5(a).
Fig.8 shows final contours by global minimization of
Model I with different neighborhood sizes, radius rang-
ing from 1 to 25. If the neighborhood size is smaller than
the clutter features, the final contour partitions clut-
ter features into smaller regions, an undesired result. If
the neighborhood size is large enough, our results show
the cheetah patterns are segmented for a large range of
neighborhood sizes.
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(a) Given image
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(b) Intensity is i.i.d in each region
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(c) Inner region histogram
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(d) Middle region histogram
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(e) Outer region histogram

(f) Initial contour

(g) Model I

Fig. 1 The given image (a) has three regions (b), in each of which pixel intensity is independently identically distributed. (c), (d),
and (e) are the intensity histograms of the pixels in the inner, middle, and outer regions, respectively. The pixels in the inner region
take intensities 3, 110, 140, and 247, with probability about 0.25 each; the pixels in the middle region take intensities 85, 110, 140, and
165; and the pixels in the outer region take intensities 80, 115, 135, and 170. The middle and outer regions look similar, as well as
their corresponding histograms. Wasserstein distance does not require histograms to be smoothed in order to compare histograms in
a reasonable manner. The final contour of proposed model I, in (g), correctly distinguish the inner region from the rest.

7.5 Limitations and Extensions

Our segmentation model is formulated for gray-scale
images but can be extended to color images. The data
term can be generalized because the Wasserstein dis-
tance is defined on any space of probability measures.
However, the implementation would be much more com-
plicated because there is no closed form for the Wasser-
stein distance between probability measures on Euclidean
spaces with dimensions larger than one. The Earth Movers
Distance between signatures is equivalent to the Wasser-
stein distance when signatures have the same total mass
(or normalized discrete pdfs) and the optimization has
been investigated in [31]. This can be a possible di-
rection to extend our segmentation model. Works in
[15,17] numerically solve the the optimal maps of the
optimal transport problem on R2 and may also be ap-
plied to our extension. Another limitation is that our
model assumes the given image has two regions of clut-
ters. Many natural images have more than two regions
and requires a multi-phase segmentation model. This
limitation can be easily overcome, since our model has

a natural extension to multi-phase segmentation as in
[36]. Moreover, since our model only uses the inten-
sity probability density, it does not take into account
higher-order characteristics, such as gradient, scale, and
orientation. For example, if two textures have the same
intensity probability density, our model is not able to
distinguish them. However, histograms of suitable de-
scriptors can be used instead of intensity or combined.
On the other hand, our segmentation model can be con-
tributed to segmentation algorithms [32,33] that incor-
porate many image characteristics, one of which is clut-
ter.

8 Conclusions

In this paper, we proposed a fast global minimization
of a local histogram based model using the Wasserstein
distance with exponent 1 to segment cluttered images.
Our model is different from previous nonparametric
region-based active contours in three ways. The first
is the use of the Wasserstein distance, which is able to
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(a) Kim et al. with σ = 1 (b) Kim et al. with σ = 10 (c) Kim et al. with σ = 50

Fig. 2 Kim et al.’s model [19] needs a careful selection of the smoothness parameter σ in order to segment correctly. (a) is the final
contour with σ = 5, which incorrectly groups the inner and middle regions (see Fig. 1(b)). The segmentation with σ = 10 (b) is correct
because the intensity pdf is greatly smoothed and thus mutual information is able distinguish the inner region from the rest. When
σ = 50 (c), the final contours separate pixels with intensity 3 and 247 from pixels with intensity 110, 115, 135, and 140.

compare both continuous and discontinuous histograms
properly. The second is that the proposed model does
not need to differentiate histograms to find the solu-
tions. The third is the application of the global min-
imization method and consequently the segmentation
results are not sensitive to initializations. We have proved
a number of desired mathematical properties of the
model and provided experimental verifications. In the
future, we will generalize our model to color images and
multi-phase segmentation. The former can be achieved
by using the fast minimization of vectorial total vari-
ation in [5] and adapting the numerical scheme for com-
puting the optimal transport distance in [31,15,17]. The
later can be approached by applying methods such as
the multi-phase level set framework [36].
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Histoire de l’Académie Royale des Sciences de Paris, pp.666-
704, 1781.

23. B.Mory and R.Ardon, Fuzzy Region Competition: A Con-
vex Two-Phase Segmentation Framework, in Proc. of SSVM,
pp.214-226, 2007.

24. D.Mumford and J.Shah, Optimal approximation by piece-
wise smooth functions and associated variational problems,
Commun. Pure Appl. Math, vol. 42, pp. 577-685,1989.

25. S.Osher and R.Fedkiw, Level Set Methods and Dynamic Im-
plicit Surfaces, Springer-Verlag New York, Applied Mathemat-
ica Sciences, 153, 2002.

26. S.Osher and J.A.Sethian, Fronts propagating with curvature-
dependent speed: Algorithms based on Hamilton-Jacobi For-
mulation, J. Comput. Phys., vol. 79, pp. 12-49, 1988.

27. N.Paragios and R.Deriche, Geodesic active regions: a new
paradigm to deal with frame partition problems in computer
vision, Journal of Visual Communication and Image Prepresen-
tation, 13(1-2):249-268, 2002.

28. Parzen E, On estimation of a probability density function
and mode, Ann. Math. Stat. 33, pp. 1065-1076, 1962.

29. Y.Rubner,J.Puzicha,C.Tomasi,J.M.Buhmann, Empirical
evaluation of dissimilarity measures for color and texture,
Computer Vision and Image Understanding 84, pp. 25-43,
2001.
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(a) locations object boundary (b) ACWE (c) Model I
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(d) histograms on each region (e) ACWE (f) Model I

Fig. 3 Objects and background regions have the same intensity mean and variance. (b) Final contours of ACWE model. (c) Final
contours of proposed model I

(a) result of [12] (b) result of (14)

Fig. 4 Down-sized cheetah image. Global minimization improves segmentation result

(a) clean cheetah image (b) noisy cheetah image

(c) final contour of clean image (d) final contour of noisy image

Fig. 5 The performance of Model I is nearly as good even with added noise to the clean image
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(a) Model I (b) Model I
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Fig. 6 Final contours of Model I and their corresponding histograms on each region.

(a) Model I (b) Model II (c) a(x)

(d) Model I (e) Model II (f) a(x)

Fig. 7 The smoothness component allows local illumination changes and captures more of the cheetah pattern
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r = 1 r = 2 r = 3

r = 5 r = 7 r = 9

r = 11 r = 13 r = 16

r = 19 r = 22 r = 25

Fig. 8 The neighborhood size in model (14) needs to be equal or bigger than the smallest features of interest in the given image. The
segmentation results are not too sensitive to the size r of the neighborhood, but are more accurate when the size is closer to that of
the smallest image features of interest


