
A FAST ALGORITHM FOR EDGE-PRESERVING VARIATIONAL

MULTICHANNEL IMAGE RESTORATION

JUNFENG YANG∗, WOTAO YIN† , YIN ZHANG † , AND YILUN WANG †

Abstract. We generalize the alternating minimization algorithm recently proposed in [32] to efficiently solve a general,

edge-preserving, variational model for recovering multichannel images degraded by within- and cross-channel blurs, as well as

additive Gaussian noise. This general model allows the use of localized weights and higher-order derivatives in regularization,

and includes a multichannel extension of total variation (MTV) regularization as a special case. In the MTV case, we show

that the model can be derived from an extended half-quadratic transform of Geman and Yang [14]. For color images with three

channels and when applied to the MTV model (either locally weighted or not), the per-iteration computational complexity of

this algorithm is dominated by nine fast Fourier transforms. We establish strong convergence results for the algorithm including

finite convergence for some variables and fast q-linear convergence for the others. Numerical results on various types of blurs

are presented to demonstrate the performance of our algorithm compared to that of the MATLAB deblurring functions. We

also present experimental results on regularization models using weighted MTV and higher-order derivatives to demonstrate

improvements in image quality provided by these models over the plain MTV model.

Key words. half-quadratic, cross-channel, image deblurring, isotropic total variation, fast Fourier transform

AMS subject classifications. 68U10, 65J22, 65K10, 65T50, 90C25

1. Introduction. The multichannel (e.g., color) image restoration problem has recently attracted much

attention in the imaging community (cf. [3, 12, 29, 18, 11]). In this paper, we study an alternating mini-

mization algorithm for recovering multichannel images from their blurry and noisy observations.

Blurs in a multichannel image can be more complicated than those in a singlechannel (i.e., grayscale)

image because they can exist either within or cross channels. In this paper, we consider both within- and

cross-channel blurs. Without loss of generality, we assume that the underlying images have square domains

and let an n × n image with m channels be denoted by ū = [ū(1); . . . ; ū(m)] ∈ Rmn2
, where ū(j) ∈ Rn2

represents the jth channel for j = 1, . . . , m. An observation of ū is

f = Kū + ω,(1.1)

where f ∈ Rmn2
has the same size and the number of channels as ū, ω represents the additive noise, and K

is a blurring operator in the form of:

K =

K11 K12 · · · K1m

K21 K22 · · · K2m

...
...

. . .
...

Km1 Km2 · · · Kmm

∈ Rmn2×mn2

,(1.2)

where Kij ∈ Rn2×n2
, each diagonal submatrix Kii defines the blurring operator within the ith channel, and

each off-diagonal matrix Kij , i 6= j, defines how the jth channel affects the ith channel.

∗Department of Mathematics, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu Province, 210093, P.R. China

(jfyang2992@yahoo.com.cn)
†Department of Computational and Applied Mathematics, Rice University, 6100 Main Street, MS-134, Houston, Texas,

77005, U.S.A. (wotao.yin, yin.zhang, yilun.wang@rice.edu)

1

It is well-known that recovering ū from f by inverting (1.1) is an ill-posed problem because the solution

is highly sensitive to the noise ω. To stabilize the recovery of ū, one must utilize some a prior information.

In such a stabilization scheme, ū is obtained as the solution of

min
u

Φreg(u) + µΦfid(u, f),(1.3)

where in the objective function, the regularization term Φreg(u) models the a prior information about ū in

the sense that Φreg(ū) tends to be smaller than Φreg(u) for most u 6= ū that satisfies (1.1), the fidelity term

Φfid(u, f) measures the violation of the relation between u and its observation f (e.g., Eq. (1.1)), and the

penalty parameter µ > 0 weighs the two terms in the minimization. Traditional regularization techniques

such as the Tikhonov regularization [30] and the total variation regularization [22] have been carefully studied

for grayscale images. In the literature, for the Gaussian noise, the common fidelity term used is

Φfid(u, f) =
1
2
‖Ku− f‖22(1.4)

corresponding to the maximum likelihood estimation of ū. For the impulsive noise, e.g., the so-called salt-

and-pepper noise, the common fidelity term is based on the 1-norm instead of the square of the 2-norm as

in (1.4). This paper studies the case in which ω is Gaussian and the data fidelity term Φreg(u, f) is given

by (1.4).

In what follows, we give a brief review of the total variation regularization, summarize the contributions

of our work, and then describe the organization of this paper.

1.1. Total variation regularization. Among all regularization techniques, the total variation regu-

larization, first introduced in [22], is well-known for preserving discontinuities in recovered images. Let Ω be

a square region in R2. The total variation (TV) of a grayscale image u(x) : Ω → [0, 1] can be defined as

TV(u) =
∫

Ω

‖∇u‖dx,(1.5)

whenever the gradient ∇u exists, where ‖ · ‖ is a norm in R2. For more general functions, the TV is

defined using a dual formulation (cf. [34]), which is equivalent to (1.5) when u is differentiable. In practical

computation, a discrete form of (1.5) is always used, given by TV(u) =
∑

i ‖Diu‖ in which u ∈ Rn2

represents an n-by-n grayscale image, Diu ∈ R2 represents certain first-order finite differences of u at pixel

i in horizontal or vertical directions, and the summation is taken over all pixels. If ‖ · ‖ is the 2-norm, (1.5)

defines an isotropic TV, which means that (1.5) is irrelevant to rotation, reflection and changing of positions

of an image. If ‖ · ‖ is the 1-norm, (1.5) defines an anisotropic TV. Usually, the isotropic discretization

is preferred over any anisotropic ones. We use the first-order forward finite differences and the 2-norm

throughout this paper, and our algorithm can be easily extended for an anisotropic discretization of TV.

Various methods based on TV regularization have been proposed and studied for recovering grayscale images;

see e.g., [31, 6, 7, 10].

Since many TV based algorithms have been proven effective for reducing noise and blur without smearing

sharp edges for grayscale images, it is natural to extend the TV regularization to multichannel images. Several

approaches for this purpose have been proposed. Among them, the simplest one applies the TV regularization

to each channel independently. Besides, the authors of [23, 24, 25] extended TV to deal with vector-valued

images based on anisotropic diffusion and geometric active contours. Also in [2], the authors proposed the
2

so-called “color TV” (see (2.2) below) and used an explicit time marching scheme [31] to minimize it. In this

paper, we use a different extension of the singlechannel TV, called MTV (see (2.1) below and [4, 8, 9, 28]),

which preserves the desirable properties of (1.5) for multichannel image reconstruction and permits very

efficient solution for (1.3).

1.2. Contributions. The main contribution of this paper is an efficient algorithm for solving a very

general regularization model for multichannel image deblurring. Based upon our previous work in [32] for

singlechannel images, we show that this algorithm can be derived from a general half-quadratic formulation,

and is applicable to a variety of regularization functions for multichannel image restoration beyond TV,

as well as to regularization terms with localized weights. In addition, we establish attractive convergence

properties for this algorithm such as global convergence with a strong q–linear rate, and finite convergence

for some quantities. Under the periodic boundary conditions, its computation can take advantages of fast

operations such as high-dimensional shrinkage and the fast Fourier transform (FFT); therefore, our MATLAB

implementation was much more efficient than the compared solvers in our experiments.

1.3. Organization. The paper is organized as follows. In Section 2, we focus on an extension of TV to

vector-valued functions in general and discrete multichannel images in particular, and present the discrete

formulation of (1.3) for deblurring. We also compare this extended TV with the “color TV” proposed in

[2]. In Section 3, we apply a half-quadratic transform to the original discrete formulation to derive our

alternating minimization algorithm, and present its convergence properties. Numerical results, including a

comparison between the proposed algorithm and algorithms in the MATLAB imaging toolbox, are presented

in Section 4. In addition, this section demonstrates advantages of regularization models using weighted TV

and higher-order derivatives. Finally, conclusion remarks are given in Section 5.

2. Multichannel TV regularization problem. Before giving the definition of multichannel TV, we

introduce some notation. Let D(1), D(2) ∈ Rn2×n2
be the first-order forward finite difference matrices in

horizontal and vertical directions, respectively. As used in the discretized form of (1.5), Di ∈ R2×n2
is a two-

row matrix formed by stacking the ith row of D(1) on that of D(2). For two vectors v1 and v2, let v = (v1; v2)

be the long vector formed by stacking v1 on the top of v2. Similarly, D = (D(1);D(2)) , ((D(1))>, (D(2))>)>.

The spectral radius of a matrix is denoted by ρ(·). From here on, the norm ‖ · ‖ refers to the 2-norm unless

otherwise specified. Additional notation will be introduced as the paper progresses.

To present the definition of multichannel TV and compare it with the “color-TV” (CTV) proposed

in [2], we assume temporarily that u is a differentiable function defined on a square region Ω ⊂ R2. Let

u(x) = (u(1)(x); . . . ;u(m)(x)) : Ω → Rm be an m–channel image. It is natural to generalize (1.5) to

multichannel images as follows,

MTV(u) ,
∫

Ω

‖∇u‖dx =
∫

Ω

√
‖∇u(1)‖2 + · · ·+ ‖∇u(m)‖2dx,(2.1)

where ∇u ∈ Rm applies ∇· to all the m channels, namely, ∇u , (∇u(1); . . . ;∇u(m)). MTV(u) has already

been used in the literature for RGB images; see e.g., [4, 8, 9, 28]. For comparison, the “color-TV” proposed

in [2] is

CTV(u) =

√(∫

Ω

‖∇u(1)‖dx

)2

+ · · ·+
(∫

Ω

‖∇u(m)‖dx

)2

.(2.2)

3

It is easy to see from (2.1) and (2.2) that both MTV and CTV preserve the two basic properties of (1.5),

namely, i) not overly penalizing discontinuities and ii) rotationally invariant.

Although both MTV and CTV reduce to (1.5) for singlechannel images, they are different in several

aspects. First, they treat channels and pixels in different orders. While CTV computes the TV of each

channel separately and then combines them, MTV first computes the variation at each pixel with respect

to all channels and then sums up the variations over all pixels. Second, MTV and CTV have different

geometric interpretations. To illustrate this, let us assume that Ω = [a, b] ⊂ R and u(t) : Ω → Rm be a

spatial curve in Rm. Suppose each component of u(t) changes monotonously in Ω. Then, it is easy to see

from (2.2) that CTV(u) = ‖u(a)−u(b)‖, the Euclidean distance between u(a) and u(b), and from (2.1) that

MTV(u) = | ̂u(a)u(b)|, the length of the arc ̂u(a)u(b). Most importantly, the MTV regularization problem

allows a fast alternating algorithm as we will show below, while for the CTV regularization the most efficient

algorithm so far, to our best of knowledge, is lagged diffusivity (LD) [31], which is much slower when the

blurring kernel is relatively large (cf. [32]). This is because LD solves a large linear system at each iteration,

which is relatively dense and ill-conditioned unless the blurring kernel is very small. The aforementioned

alternating algorithm is much faster than LD because it avoids solving such a linear system. Taking into

account that both MTV and CTV regularization give restoration of similar quality (cf. [1]), we prefer MTV

to CTV as a regularizer.

The discretized form of (2.1) is given by

MTV(u) =
∑

i

‖(Im ⊗Di)u‖ =
∑

i

√
‖Diu(1)‖2 + · · ·+ ‖Diu(m)‖2,(2.3)

where u = (u(1); . . . ;u(m)) ∈ Rmn2
, Im is the identity matrix of order m, “⊗” represents the Kronecker

product, and (Im ⊗ Di)u ∈ R2m is the forward finite difference at pixel i for all m channels. Given f =

[f (1); . . . ; f (m)] ∈ Rmn2
, which is a blurry and noisy observation, and K = [Kk,l]mk,l=1 ∈ Rmn2×mn2

, which is

a block convolution matrix, we will recover the true image ū by solving

min
u

∑

i

‖(Im ⊗Di)u‖+
µ

2
‖Ku− f‖2.(2.4)

For RGB images, we let m = 3 in (2.4). In Section 3, we derive an alternating minimization algorithm based

on a more general, locally weighted model:

min
u

∑

i

αi‖Giu‖+
µ

2
‖Ku− f‖2,(2.5)

where, at any pixel i, Gi ∈ Rq×mn2
for some positive integer q, αi > 0 is a local weight and µ > 0. Although µ

can be removed in (2.5) by rescaling the objective function, we keep it for convenience. Clearly, (2.5) reduces

to (2.4) when Gi = Im ⊗ Di and αi ≡ 1. It is known that locally weighted TV can better preserve image

textures (cf. [26, 27]), and higher-order derivatives regularization can help reduce the so-called “staircasing”

effect sometimes found with the plain TV regularization (cf. [6]). The general model (2.5) incorporates both

features.

3. An alternating minimization algorithm. The image-quality advantages of TV over Tikhonov-

like regularization is not without a price. The TV-like regularized problem (2.5) is computationally more
4

difficult to solve due to the nondifferentiability and nonlinearity of the regularization term. Despite efforts

over the years, algorithms for solving the isotropic TV-like regularization model (2.5) are still much slower

than those for solving Tikhonov-like regularization models. In this section, we develop our alternating

minimization algorithm based on a half–quadratic approximation of (2.5). This algorithm makes full use of

the structure of the blurring and finite-difference operators, and thus is computationally highly efficient. It

significantly narrows the gap between TV-like and Tikhonov-like regularizations in terms of computational

costs.

To avoid nondifferentiability caused by the regularization term in (2.5), we consider its smooth approx-

imation problem

min
u

J(u) ,
∑

i

αi φαi
(Giu) +

µ

2
‖Ku− f‖2,(3.1)

where, for α > 0 and β À 0, φα(·) : Rq → R is an approximation to ‖ · ‖ in Rq defined by

φα(t) =

{
β
2α‖t‖2 if ‖t‖ ≤ α

β ;

‖t‖ − α
2β otherwise.

(3.2)

If αi is large, which hints that it is supposed to be blocky around pixel i, (3.2) aims to regularize pixel

i by quadratic function in a larger area. From the definition of φα(·) in (3.2), problem (2.5) is closely

approximated by (3.1) when β is large. We will reformulate (3.1) as a half-quadratic problem in Subsection

3.1 and propose to solve it by the alternating minimization algorithm in Subsection 3.2.

3.1. Half-quadratic formulation of (3.1). In this subsection, we transform (3.1) into (3.12) below

using the half-quadratic technique originally introduced by Geman and Yang in [14]. Consider the following

general framework of recovering an image u from its corrupted measurements f :

(3.3) min
u

∑

i

φ(g>i u) +
µ

2
‖Ku− f‖2,

where g>i u ∈ R is a local finite difference of u, φ(g>i ·) is convex and edge-preserving, and K is a convolution

operator. Instead of solving (3.3) directly, the authors of [14] (and also [13]) proposed to solve an equivalent

problem

(3.4) min
u,b

∑

i

(
ψ(bi) + Q(g>i u, bi)

)
+

µ

2
‖Ku− f‖2,

where Q(t, s) and ψ(s) are chosen such that Q(t, s) is quadratic in t and

(3.5) φ(t) = min
s∈R

(ψ(s) + Q(t, s)), ∀t ∈ R.

The objective function in the right-hand side of (3.5) is called “half-quadratic” because it is quadratic in

t, but not in s. The same applies to the objective function of (3.4) with respect to u and b. In addition,

(3.4) is separable in each bi. Since (3.4) can be solved by minimizing with respect to u and b alternately,

it is important to select Q and ψ that give rise to fast minimizations with respect to u and b, respectively

and separately. For this purpose, two forms of half-quadratic formulations have been widely studied: the

multiplicative form Q(t, s) = 1
2 t2s from [13] and the additive form Q(t, s) = 1

2 (t − s)2 from [14]. However,
5

in the half-quadratic model based on the multiplicative form, the computation cost is higher because the

Hessian of (3.4) with respect to u depends on b, and thus may vary from one iteration to another.

In the following, we transform (3.1) into a half-quadratic problem based on the additive form but in a

generalized manner that allows bi in (3.4) (or s in (3.5)) to be vectors . The Hessian with respect to u of the

new formulation is independent of b and has a block circulant structure, which is important because such a

matrix can be diagonalized by discrete Fourier transforms. As such, we need a function ψα(·) : Rq → R that

satisfies

α φα(t) = min
s∈Rq

{
α ψα(s) +

β

2
‖s− t‖2

}
.(3.6)

Let

θα(t) =
1
2
‖t‖2 − α

β
φα(t) and ϑα(s) =

α

β
ψα(s) +

1
2
‖s‖2.(3.7)

Simple manipulation shows that for φα and ψα to satisfy (3.6), it is necessary and sufficient to have θα = ϑ∗α
where ϑ∗α is the conjugate of ϑα defined as

ϑ∗α(s) = sup
t∈Rq

{s>t− ϑα(t)},(3.8)

which shows how to construct ψα from φα through computing ϑα from θα.

Lemma 3.1. For x ∈ Rq and A ∈ Rp×q, the subdifferential of f(x) , ‖Ax‖ is

∂f(x) =

{
{A>Ax/‖Ax‖} if Ax 6= 0;{
A>h : ‖h‖ ≤ 1, h ∈ Rp

}
otherwise.

(3.9)

A simple proof of Lemma 3.1 can be found in [32].

Lemma 3.2. For φα(t) defined in (3.2) and θα(t) defined in (3.7), we have

θ∗α(s) =
α

β
‖s‖+

1
2
‖s‖2.(3.10)

Proof. According to (3.8), (3.7) and (3.2), we have

θ∗α(s) = sup
t

{
s>t− θα(t)

}
= max

{
sup

‖t‖≤α/β

s>t, sup
‖t‖>α/β

{
s>t− 1

2
‖t‖2 +

α

β
‖t‖ − α2

2β2

}}
(3.11)

= max

{
α

β
‖s‖, sup

‖t‖>α/β

{
s>t− 1

2

(
‖t‖ − α

β

)2
}}

If s = 0, it is obvious θ∗α(0) = 0 and (3.10) holds. In what follows, we assume s 6= 0. In light of (3.9) with A

being the identity, the above supreme is attained for ‖t‖ > α/β and s = t− αt/(β‖t‖), from which we get

‖s‖ = ‖t‖ − α/β. Since s 6= 0, ‖t‖ > α/β is satisfied. Thus,

t = ‖t‖ · t
‖t‖ = ‖t‖ · s

‖s‖ =
(
‖s‖+

α

β

)
s
‖s‖ .

Plugging the above into the inside supreme in (3.11), we get (3.10).
6

Given Lemma 3.2, we are able to find ψα(·) that satisfies (3.6) in a simple way. It is easy to check from

the definitions of φα(t) and θα(t) in (3.2) and (3.7) that θα(t) is convex. Therefore, by considering the fact

that (θ∗α)∗ = θα, the requirement (3.6) or equivalently θα = ϑ∗α is satisfied by letting ϑα = θ∗α. Comparing

the definition of ϑα(·) with (3.10), letting ψα(s) ≡ ‖s‖ will satisfy (3.6). As such, the approximation problem

(3.1) becomes an equivalent augmented problem

min
u,w

J (u,w) =
∑

i

{
αi‖wi‖+

β

2
‖wi −Giu‖2

}
+

µ

2
‖Ku− f‖2,(3.12)

where wj ∈ Rq, j = 1, . . . , n2, and w = [w1; w2; . . . ;wn2] ∈ Rqn2
. Although derived from the half-quadratic

framework and the theory of conjugate functions, (3.12) is simply a splitting and penalty formulation of the

original problem (2.5) which can be explained as follows. By introducing a collection of auxiliary variables

{wi : i = 1, . . . , n2}, problem (2.5) is easily transformed into an equivalent constrained problem

min
u,w

{∑

i

αi‖wi‖+
µ

2
‖Ku− f‖2 : wi = Giu, i = 1, . . . , n2

}
.(3.13)

By comparing (3.13) with (3.12), it is easy to see that (3.12) is nothing but quadratic penalty method for

(3.13). Below our analysis focuses on (3.12).

3.2. Alternating minimization. Now, we are ready to apply the alternating minimization technique

from [32] to (3.12). On the one hand, there is no interaction between different wi’s in (3.12), so minimizing

with respect to w for fixed u reduces to solving a collection of low dimensional problems

min
wi∈Rm

αi‖wi‖+
β

2
‖wi −Giu‖2, i = 1, . . . , n2.(3.14)

On the other hand, minimizing with respect to u for fixed w becomes

min
u

β

2

∑

i

‖wi −Giu‖2 +
µ

2
‖Ku− f‖2,

which is a least squares problem equivalent to
(∑

i

G>i Gi +
µ

β
K>K

)
u =

∑

i

G>i wi +
µ

β
K>f.(3.15)

A similar technique with Bregman iterations [21, 33] recently proposed in [15] can be applied in the same

way. To simplify analysis, we introduce some additional notation. For j = 1, . . . , q, let G(j) ∈ Rn2×mn2
be

the matrix formed by staking the jth rows of G1, G2, . . . , Gn2 . Denote

G ,

G(1)

...

G(q)

 ∈ Rqn2×mn2

and W ,

w>
1

...

w>
n2

 , [w1, w2, . . . , wq] ∈ Rn2×q,(3.16)

namely, wj ∈ Rn2
is the jth column of W and formed by stacking the jth components of w1,w2, . . . ,wn2 .

Furthermore, let w = (w1; . . . ;wq) = W(:) ∈ Rqn2
be the vectorization of W (which is just a reordering of

w). Given these notation, (3.15) can be rewritten as
(

G>G +
µ

β
K>K

)
u =

q∑

j=1

(G(j))>wj +
µ

β
K>f = G>w +

µ

β
K>f.(3.17)

7

In what follows, we argue that the problems in (3.14) admit closed form solutions and (3.17) can also

be solved easily as long as G defined in (3.16) has certain special structures.

Lemma 3.3. For any α, β > 0 and t ∈ Rq, the minimizer of

min
s∈Rq

α‖s‖+
β

2
‖s− t‖2(3.18)

is

s(t) = max
{
‖t‖ − α

β
, 0

}
t
‖t‖ ,(3.19)

where we follow the convention 0 · (0/0) = 0.

Proof. Since the objective function in (3.18) is convex, bounded below and coercive, problem (3.18) has

at least one minimizer s. According to the optimality condition for convex optimization, the subdifferential

of the objective function at a minimizer should contain the origin. In light of (3.9) with A = I, s must

satisfy
{

αs/‖s‖+ β(s− t) = 0 if s 6= 0;

β‖t‖ ≤ α otherwise.
(3.20)

If s 6= 0, it holds t = s + αs/(β‖s‖). Hence, ‖t‖ = ‖s‖+ α/β and

s = ‖s‖ · s
‖s‖ = ‖s‖ · t

‖t‖ =
(
‖t‖ − α

β

)
t
‖t‖ .(3.21)

Furthermore, s = 0 if and only if ‖t‖ ≤ α/β. Combining this with (3.21), we obtain (3.19).

According to Lemma 3.3, the problems in (3.14) have unique solutions given explicitly by

wi = max
{
‖Giu‖ − αi

β
, 0

}
Giu

‖Giu‖ , i = 1, . . . , n2.(3.22)

Now, we show that (3.17) can also be easily solved under many circumstances. Without loss of generality,

we assume that u is a RGB color image. In this case, we have u = (ur;ug;ub) ∈ R3n2
and K = [Kk,l]3k,l=1 ∈

R3n2×3n2
. For simplicity, we assume that Gi = I3 ⊗Di ∈ R6×3n2

, namely, Giu only contains the first-order

finite differences of u at pixel i. For higher-order finite differences, the following argument also applies.

Recall that D = (D(1);D(2)) and Di is a two-row matrix formed by stacking the ith rows of D(1) and D(2).

Following the notation in (3.16), the normal equations (3.17) reduce to
(

I3 ⊗ (D>D) +
µ

β
K>K

)
u = (I3 ⊗D)>w +

µ

β
K>f.(3.23)

Under the periodic boundary conditions for u, D(1), D(2), (D(1))>(D(1)), (D(2))>(D(2)) and all block matrices

{K>
i,jKk,l, i, j, k, l = 1, 2, 3} in K>K are block circulant (see [19], for example). Therefore, each block in

the coefficient matrix of (3.23) can be diagonalized by the two-dimensional discrete Fourier transform F .

Applying F to both sides of (3.23) yields

Λ11 Λ12 Λ13

Λ21 Λ22 Λ23

Λ31 Λ32 Λ33

F(ur)

F(ug)

F(ub)

 = F(D(1))∗ ◦

F(w1)

F(w3)

F(w5)

 + F(D(2))∗ ◦

F(w2)

F(w4)

F(w6)

 +

µ

β
ξ,(3.24)

8

where Λij , for i, j = 1, 2, 3, are all diagonal matrices, “∗” represents the complex conjugate, “◦” represents

the pointwise product and ξ is a constant vector given by

ξ =

F(K11) F(K12) F(K13)

F(K21) F(K22) F(K23)

F(K31) F(K32) F(K33)

∗

F(fr)

F(fg)

F(f b)

 ,

where F(Kij) is a diagonal matrix formed by the Fourier transform of the vector representing the convolution

matrix Kij under the periodic boundary conditions.

For a fixed β > 0, the coefficients matrix in (3.23) is a constant. Therefore, {Λij : i, j = 1, 2, 3}, F(D(1)),

F(D(2)) and ξ only need to be computed once before the iterations. At each iteration, (3.23) is solved in

three steps. First, two dimensional FFTs are applied to wj , for j = 1, . . . , 6. Second, a block diagonal system

in the form of (3.24) is solved to obtain F(uσ), for σ = r, g, b, which can be easily done by the Gaussian

elimination method. Third, the inverse two dimensional FFT, F−1, is applied to F(uσ), for σ = r, g, b, to

get the updated u. The total number of FFTs required is 9.

Alternatively, under the Neumann boundary conditions and assuming that all the blurring kernels are

symmetric, the forward and inverse FFTs shall be replaced by the forward and inverse Discrete Cosine Trans-

forms, respectively (cf. [19]). In our numerical experiments, we assumed the periodic boundary conditions

and used FFTs.

Now, we are ready to formally present our algorithm. For a fixed β, (3.12) is solved by an alternating

minimization scheme given below.

Algorithm 1. Input f , K, µ > 0, β > 0 and αi > 0, i = 1, . . . , n2. Initialize u = f .

While “not converged,” Do

1) Compute w by (3.22) for given u.

2) Solve (3.17) to get u for given w.

End Do

The stopping criterion is specified in the next subsection. A practical implementation of Algorithm 1

including the setting of parameters and a continuation scheme is presented in Section 4.

3.3. Optimality conditions and stopping criterion. Since the objective function in (3.12) is con-

vex, (w, u) solves (3.12) if and only if the subdifferential of the objective function at (w, u) contains the

origin. This gives rise to the following optimality conditions in light of Lemma 3.1,

αiwi/‖wi‖+ β(wi −Giu) = 0 i ∈ I1 , {i : wi 6= 0},
β‖Giu‖ ≤ αi i ∈ I2 , {i : wi = 0},

(3.25)

βG>(Gu− w) + µK>(Ku− f) = 0.(3.26)

Our stopping criterion for Algorithm 1 is based on the optimality conditions (3.25) and (3.26). Let

r1(i) , (αiwi/‖wi‖)/β + wi −Giu i ∈ I1,

r2(i) , ‖Giu‖ − αi/β i ∈ I2,

r3 , βG>(Gu− w) + µK>(Ku− f),

(3.27)

9

where I1 and I2 are defined in (3.25). Algorithm 1 is terminated once

Res , max
{

max
i∈I1

{‖r1(i)‖},max
i∈I2

{r2(i)}, ‖r3‖∞
}
≤ ε(3.28)

is met, where Res measures the total residual and ε > 0 is a prescribed tolerance. In (3.27), condition (3.25)

is scaled by 1/β, but (3.26) is not, because in practice the latter can be met quickly even without this scaling.

Combining (3.25) and (3.26) to eliminate w, we can derive
∑

i∈I1

αiG
>
i

Giu

‖Giu‖ +
∑

i∈I2

G>i hi + µK>(Ku− f) = 0,(3.29)

where hi , βGiu satisfies ‖hi‖ ≤ αi. Let u∗ be any solution of (2.5). Define I∗1 = {i, Giu
∗ 6= 0} and

I∗2 = {1, . . . , n2} \ I∗1 . Then, from Lemma 3.1, there exist h∗i ∈ R2 satisfying ‖h∗i ‖ ≤ αi, for all i ∈ I∗2 , such

that
∑

i∈I∗1

αiG
>
i

Giu
∗

‖Giu∗‖ +
∑

i∈I∗2

G>i h∗i + µK>(Ku∗ − f) = 0.(3.30)

Equation (3.29) differs from (3.30) only in the index sets over which the summations are taken. As β

increases, I1 will approach I∗1 . In subsection 3.4, we present the convergence properties of Algorithm 1.

3.4. Convergence results. The convergence of the quadratic penalty method as the penalty parameter

goes to infinity is well known (see Theorem 17.1 in [20] for example). That is, as β →∞, the solution of (3.1)

or (3.12) converges to that of (2.5). However, in practice a sufficiently large value for β should be adequate.

We will specify how to choose β empirically in Section 4. In this subsection, we present convergence results

of Algorithm 1 for a fixed β without proofs since these results are rather straightforward generalizations of

the results in [32] to higher dimensions. First, we present a technical assumption and necessary notation.

Assumption 1. N (K) ∩N (G) = {0}, where N (·) is the null space of a matrix.

Define

M = G>G +
µ

β
K>K and T = GM−1G>.(3.31)

Assumption 1 ensures that M is nonsingular, and therefore T is well defined. Clearly ρ(T) ≤ 1.

We will make use of the following two index sets:

L =
{

i : ‖Giu
∗‖ <

αi

β

}
and E = {1, . . . , n2} \ L.(3.32)

Denote wE = ((w1)E ; . . . ; (wq)E) where (wj)E is the subvector of wj with components in E. For k, l =

1, . . . , q, let B(k,l) = G(k)M−1(G(l))> and B
(k,l)
EE = [B(k,l)

i,j]i,j∈E be the minor of B(k,l) with indices in E.

From the definition of T , T = [B(k,l)]qk,l=1. Let TEE = [B(k,l)
EE]qk,l=1 be a minor of T . Similar notation applies

to (T 2)EE . Now, we are ready to present the convergence results.

Theorem 3.4 (Convergence). Under Assumption 1, for any fixed β > 0, the sequence {(wk, uk)}
generated by Algorithm 1 from any starting point (w0, u0) converges to a solution (w∗, u∗) of (3.12).

Theorem 3.5 (Finite convergence). Under Assumption 1, the sequence {(wk, uk)} generated by Algo-

rithm 1 from any starting point (w0, u0) satisfies wk
i = w∗

i = 0 for all i ∈ L, for all but a finite number of

iterations that does not exceed ‖w0 − w∗‖2/ω2, where

ω , min
i∈L

{
αi

β
− ‖hi(w∗)‖

}
> 0.

10

Theorem 3.6 (q-linear convergence). Let M and T be defined as in (3.31). Under Assumption 1, the

sequence {(wk, uk)} generated by Algorithm 1 satisfies

1. ‖wk+1
E − w∗E‖ ≤

√
ρ((T 2)EE)‖wk

E − w∗E‖;
2. ‖uk+1 − u∗‖M ≤

√
ρ(TEE)‖uk − u∗‖M ;

for all k sufficiently large, where ‖v‖2M , v>Mv.

Theorem 3.6 states that Algorithm 1 converges q-linearly at a rate depending on the spectral radii of

the submatrices TEE and (T 2)EE rather than on that of the whole matrix T . Since ρ(T) ≤ 1 and TEE is

a minor of T , it holds that ρ(TEE) ≤ ρ(T) ≤ 1. Similarly, ρ((T 2)EE) ≤ ρ(T 2) ≤ 1. As pointed out in [32],

ρ(TEE) is often much smaller than ρ(T) in practice, so our results are sharper than the general convergence

results for the quadratic penalty method.

4. Numerical experiments. In this section, we present numerical results to show the efficiency of

the proposed alternating minimization algorithm in recovering multichannel images. Specifically, we exper-

imented on recovering several RGB images with different blurs and noise levels and using different regular-

ization approaches. The first class of results concentrates on different blurs including both within-channel

and cross-channel blurs. The second class shows that the proposed algorithm can solve models with differ-

ent regularizations. We illustrate this by solving two additional regularization problems: the weighted TV

regularization problem and the higher-order derivatives regularization problem.

4.1. Test images, platform and practical implementation. We tested several images including

Lena (512× 512), Rose (303× 250), and Sunset (338× 460). Image Lena has a nice mixture of flat regions,

shading area, textures, and other details. Rose and Sunset were used in weighted TV regularization and

higher-order derivatives regularization problems. We implemented Algorithm 1 in MATLAB and generated

blurring effects using the MATLAB function “imfilter” with the periodic boundary conditions. The ex-

periments were performed under Windows Vista Premium and MATLAB v7.0 (R14) running on a Lenovo

laptop with an Intel Core 2 Duo CPU at 1.8 GHz and 1 GB of memory.

As is usually done, the quality of restoration is measured by the signal-to-noise ratio (SNR)

SNR , 10 ∗ log10

‖ū−E(ū)‖2
‖ū− u‖2 ,

where ū is the original image, E(ū) is the mean intensity value of ū and u is the restored image. We tested

three blurring kernels: motion, Gaussian, and average. For simplicity, let the motion blur with a motion

length len and an angle theta be denoted by (M, len, theta). Similarly, the Gaussian blur with a blurring

size hsize and a standard deviation sigma is denoted by (G, hsize, sigma), and the average blur with a

blurring size hsize by (A, hsize). Throughout the experiments, we added Gaussian noise with zero mean

and different standard deviations, which are denoted by std. To determine a good pair of parameters (β, µ)

in (3.12), we fixed {αi = 1,∀i} and tested our code on a series of combinations of different blurring effects.

Specially, for std= 10−3, we tested on the color image Rose (which has a relatively small size) with different

blurs and a relatively strict stopping criterion: ε = 10−3 in (3.28). Fig. 4.1 gives the recovered SNRs for

different (β, µ) values. The left-hand plot in Fig. 4.1 gives the SNRs with respect to within-channel blurs in
11

which we set the diagonal kernels as follows

{H11 = (M, 41, 135),H22 = (G, 11, 9),H33 = (A, 15)} ,

and off-diagonal kernels {Hij = 0 : i, j = 1, 2, 3; i 6= j}. The right-hand plot in Fig. 4.1 gives the SNRs with

respect to cross-channel blurs. The cross-channel kernels were generated in three steps:

1. Generate 9 kernels:

{(M, 11, 45), (M, 21, 90), (M, 41, 135); (G, 7, 5), (G,9, 5), (G, 11, 5); (A, 13), (A, 15), (A, 17)} ;

2. Randomly assign the above 9 kernels to {H11,H12,H13;H21,H22,H23;H31,H32,H33};
3. Multiply 0.8 to diagonal kernels and 0.1 to off-diagonal kernels.

As can be seen from Fig. 4.1, β does not need to be extremely large for any µ in practice. Specifically, a β

value of 27 is sufficiently large to get a SNR that is very close to the highest one for each µ (which is also

the case for other noise levels). For β ≥ 27, the SNRs almost remain constant. Hence, letting β to be larger

than 27 will only increase computational cost but not solution quality. Therefore, we set β = 27 by default

in Algorithm 1.

0
2

4
6

8
10

0

2

4

6

x 10
5

8

10

12

14

16

18

20

22

log
2
β

Within−channel result

µ

S
N

R

0
2

4
6

8
10

0

2

4

6

x 10
5

8

10

12

14

16

18

20

22

log
2
β

Cross−channel result

µ

S
N

R

Fig. 4.1. Within-channel (left) and Cross-channel (right) results. µ = [0.1 : 10]× 5× 104 and β = {20, 21, . . . , 210}.

The above approach of generating cross-channel kernels was used in all of our experiments involving

cross-channel blurs. In step 2, randomness is introduced to avoid possible bias. We point out that the

same set of kernels generated in step 1 may result in blurry images of different degrees because kernels

may be assigned to different cross-channel positions in step 2. We have observed that the performance

of our algorithm seems indifferent to such kernel configurations. In addition, the speed of our algorithm

remains essentially unchanged as the kernel sizes vary (though recovery quality is clearly a function of kernel

sizes). In our experiments presented in the following subsections, we tested kernels of different sizes and

at different locations to validate the above assertions. In step 3, we choose weights added to the kernels

to be diagonally dominant, considering that within-channel blurs are usually stronger than cross-channel

ones. Similar methods for choosing kernel weights are used in the literature; see e.g., [11, 12]. Using such
12

diagonally dominant weights also helps avoid numerical singularity in the matrix K that had been sometimes

observed when equal weights were used.

To accelerate convergence, we also implemented a continuation scheme for β in which β changes from

a small value step by step to the default value as the algorithm proceeds. This continuation approach

accelerates convergence according to Theorem 3.6. For more information on how this continuation scheme

improves the overall convergence speed, see e.g., [32, 16]. The best choice of µ depends on the noise level

std. For too large values of µ, the restored images will remain noisy. On the other hand, for too small values

of µ, some fine details in the images will get lost. In our tests with noise level std being 10−3, µ = 5× 104

seems suitable, as can be seen from Fig. 4.1. Thus, we set µ = 5× 104 by default for std = 10−3. For larger

noise, we first determined a good µ for the standard TV/L2 model (2.4) based on experience and then tested

it with different regularizations.

The implementation of Algorithm 1 includes two loops: the outer loop increases β from 1 to 27 and

the inner loop solves (3.12) to a prescribed accuracy for each fixed β. We simply doubled β after every

outer iteration and stopped the inner iteration when Res ≤ 0.05 was satisfied in (3.28). Of course this

algorithm framework can be more flexible in terms of updating β and stopping the inner iterations, but the

above simple implementation already worked very well. Following [32], we give the name fast total variation

deconvolution, or FTVd, to Algorithm 1 with the above continuation strategy.

It is interesting to observe from Fig. 4.1 that numerically there is a local maximum SNR value for µ = 104

and β = 1. Note that here µ is only 0.2 times of the default value 5×104 corresponding to std = 10−3. Since

we changed β from 1 to a prefixed value, there will be only one outer iteration if we set the final (target)

value of β to 1. The inner iteration number used is also one which can be explained as follows. From (3.22),

the shrinkage quantity 1/β is large when β is small. Since we rescaled the intensity value of u into [0, 1], this

results to {‖Giu‖ ≤ 1,∀i} in all our tests and therefore wi ≡ 0 when β = 1. As such, (3.12) reduces to the

Tikhonov regularization problem

min
u
‖Giu‖2 + µ‖Ku− f‖2,

which is solved exactly by FFTs. Although the resulting SNR is a little lower than the highest SNR

reachable, it is much better than the initial SNR of the blurry and noisy image. Most importantly, the CPU

time consumed is much less in this case. Therefore, for std = 10−3 we set µ = 104, β = 1 and name the

corresponding algorithm instance as the fast mode of FTVd or FTVd–FM.

4.2. Comparisons with MATLAB functions. In this subsection, we compare the images recovered

by FTVd and FTVd–FM with those recovered by functions “deconvreg”, “deconvwnr” and “deconvlucy”

from the MATLAB Image Processing Toolbox. Currently, these are the only MATLAB functions that can

be used to restore color images, and they require the within-channel blurring kernels to be identical over all

channels, namely, H11 = H22 = H33 ≡ H, and that there be no cross-channel blurs. For this simple case, we

tested H =(G, 21, 11) with std = 10−3. The results on image Lena are given in Fig. 4.2.

From Fig. 4.2, FTVd gave better results in terms of both SNR and visible quality. The results of

“deconvreg” and “deconvwnr” have obvious ripples. Generally, MATLAB functions were faster than FTVd

because they solved much simpler models. However, FTVd–FM was not only faster than “deconvreg” and

“deconvlucy” but also gave a better result. We did not present the result of “deconvlucy” here because
13

Original. Size: 512 × 512 Blurry&Noisy. SNR: 9.91dB deconvreg: SNR: 13.50dB, t = 4.06s

deconvwnr: SNR: 13.50dB, t = 1.31s FTVd−FM: SNR: 16.01dB, t = 3.98s FTVd: SNR: 17.10dB, t = 31.31s

Fig. 4.2. Comparison results with MATLAB deblurring functions.

the algorithm spent much longer CPU time than “deconvreg” and “deconvwnr” just to yield an image of a

similar quality.

4.3. Cross-channel results. In this subsection, we present the experimental results recovered by

FTVd from cross-channel blurred images. The cross-channel kernels were generated in exactly the same way

as in subsection 4.1 except the 9 kernels used here are:

{(M, 21, 45), (M, 41, 90), (M, 61, 135); (G, 11, 9), (G, 21, 11), (G, 31, 13); (A, 13), (A, 15), (A, 17)}.

Observe that the above blurs in all three channels are quite severe. The noise level was still std = 10−3. To

the best of our knowledge, problem (2.4) with the MTV replaced by the “color-TV” is usually solved by the

LD method. As pointed out in [32], for yielding similar or better results, FTVd is faster than LD especially

for larger blurring kernels. Therefore, we did not compare with LD. The recovered Lena images are given in

Fig. 4.3.

As can be seen from Fig. 4.3, FTVd with the default settings produced an image with an SNR value

of 21.07dB. The image recovered by FTVd–FM with much shorter time, although has a lower SNR, is also

visually acceptable.

4.4. Weighted TV restoration results. We tested our algorithm on a weighted TV/L2 model, which

enhances the reconstruction of (2.4) by preserving sharp edges better. At pixels near color discontinuities,

we penalize the relevant pixels less by assigning relatively small weights in TV. Specifically, for RGB images

we set Gi = I3 ⊗Di and determined αi in (2.5) by

γi =
1

1 + τ‖Giũ‖ and αi =
n2γi∑

j γj
,(4.1)

14

Blurry&Noisy. SNR: 9.16dB FTVd−FM: SNR: 18.76dB, t = 5.19s FTVd: SNR: 21.07dB, t = 34.52s

Fig. 4.3. Results recovered by FTVd–FM and FTVd from cross-channel blurring.

where ũ is an estimation of the original image and τ > 0 is determined based on experiments. As an

empirical formula, (4.1) may be far from optimal but is sufficient for our purpose here which is to illustrate

that FTVd can efficiently solve the weighted model (2.5). In this test, we set std = 10−2 and µ = 103. The

cross-channel kernels were generated in the same manner as in subsection 4.1 except that the 9 kernels used

here were:

{(M, 21, 45), (M, 41, 90), (M, 61, 135); (G, 7, 5), (G, 9, 5), (G, 11, 5); (A, 13), (A, 15), (A, 17)}.

Compared with the 9 kernels used in subsection 4.3, we used Gaussian blurs of smaller sizes because the noise

level was higher, while using motion and average blurs of the same sizes as in subsection 4.3. We solved the

unweighted (original MTV) model (2.4) followed by the weighted model (2.5) in which the weights {αi,∀ i}
are determined by formula (4.1) using the solution ũ of the unweighted model and τ = 15 in this test. The

results on image Rose are given in Fig. 4.4.

Original. Size: 303 × 250 Blurry&Noisy. SNR: 8.65dB TVL2. SNR: 15.07dB WTVL2. SNR: 15.70dB

Fig. 4.4. Numerical results of weighted TV/L2. Original (left, 303×250); Blurry and noisy (middle left); Results of

unweighted TV/L2 (middle right); Results of weighted TV/L2 (right).

From Fig. 4.4, the image reconstructed by the weighted TV/L2 model has both higher SNR and better

visual quality than that by the unweighted model. The little drops of water on the flower are clearer in the

weighted restoration result. When the “correct” weights were used, namely, the weights computed by (4.1)

using the original image as ũ, we obtained an image (which was not depicted in Fig. 4.4) with SNR=16.72dB.

Therefore, a better choice of weights can help improve the restoration quality, as is expected.
15

4.5. Higher-order derivatives regularization. In this subsection, we present images reconstructed

by solving regularization models based on higher-order derivatives. We tested with the RGB image Sunset

(338×460) and set Gi = I3 ⊗ Di, where Di is the matrix that computes first and second order forward

finite differences at pixel i, namely, Diu
(j) ∈ R6, j = r, g, b, is the vector consisting of the two first-order

forward finite differences (approximating ux and uy, respectively) and the four second-order finite differences

(approximating uxx, uxy, uyx and uyy, respectively, where uxy = uyx) of u(j) at pixel i. Since the weighted

model gives better results than the unweighted one, we computed the weighted higher-order model, called

HTV/L2. In all, the problem we solved is

min
u

∑

i

αi‖(I3 ⊗Di)u‖+
µ

2
‖Ku− f‖2.

In order to make the staircasing effect of TV model visible, in this test we used even larger additive

noise with std = 0.1. On the other hand, to maintain a good recovery quality, we chose to use smaller sizes

for blurring kernels. The nine kernels used in this experiment were

{(M, 3, 0), (M, 3, 0), (M, 3, 0); (G, 3, 0.5), (G, 3, 0.5), (G, 3, 0.5); (A, 3), (A, 3), (A, 3)}.

The weights were generated according to (4.1) using the original image ũ. We set µ = 12.5 and τ = 15. The

results on image Sunset are given in Fig. 4.5.

Comparing the middle two images in Fig. 4.5, the right-hand image produced by the HTV/L2 model has

cleaner sky and less staircasing in the clouds. The reduction of staircasing effects can be seen by comparing

the two zoom-in images on the bottom of Fig. 4.5.

4.6. Computational cost of FTVd and a note. In the framework of Algorithm 1, there are two

steps at each iteration. The first step applies the weighted shrinkage operation in (3.22) and has a linear

computational complexity. The second step solves a system of linear equations by calling FFT and Gaussian

elimination. Note that the computational cost of Gaussian elimination in solving block diagonalized equations

such as (3.24) is very small compared with that of FFTs since no fillings occur and no pivoting is necessary.

Therefore, the per-iteration computation cost of Algorithm 1 is dominated by that on the FFTs, each costing

O(n2 log(n)). The remaining question is what is the total number of inner iterations needed for Algorithm

1 to attain a required accuracy and how this number varies with the image size. In our experiments, this

number for the current implementation of FTVd using the default parameters is almost always around 12.

For each β > 1, since Algorithm 1 has a good starting point from the previous outer iteration, it only takes

1 or 2 inner iterations on average to reach the prescribed accuracy. Given that nine FFTs are required at

each inner iteration, the total numbers of FFTs taken by FTVd is around 120 for MTV regularized problem.

If higher-order derivatives are involved in regularization, more FFTs will be needed for additional auxiliary

vectors. Furthermore, since Algorithm 1 does not require any matrix operations, it is numerically stable and

insensitive to ill-conditioning.

Recently, a new splitting algorithm is proposed in [17], which also solves (2.4). The augmented problem

formed in [17] can be written in the form of

min
u

∑

i

‖(I3 ⊗Di)v‖+ α‖v − u‖2 +
µ

2
‖Ku− f‖2,(4.2)

16

Original. Size: 338 × 460 Blurry&Noisy. SNR: 7.23dB

Weighted TVL2. SNR: 16.89dB Weighted HTVL2. SNR: 17.27dB

Zoom in Weighted TVL2. Zoom in Weighted HTVL2.

Fig. 4.5. Numerical results of weighted high order regularization. Original (upper left); Blurry and noisy (upper right);

Weighted TV/L2 result (middle left); Weighted higher-order result (middle right); Zoom in the results of weighted TV/L2

(bottom left) and HTV/L2 (bottom right).

and was solved by alternating minimizations with respect to u and v. For a fixed v, the minimization with

respect to u involves six FFTs. However, for a fixed u, the minimization problem with respect to v is a

TV denoising problem that does not have a closed-form solution. In [17], the TV denoising problem is

solved iteratively by extended Chambolle’s projection algorithm [5]. While the per-iteration computational

complexity of our method is dominated by nine FFTs, that of [17] is dominated by the cost of solving a

TV denoising problem in addition to six FFTs. According to the reported numerical results in [17], their

algorithm appears to require at least as many outer iterations as ours.
17

5. Conclusion remarks. In this paper, we derived an alternating minimization algorithm for deblur-

ring multichannel (color) images based on a general variational model that includes total variation regular-

ization as a special case. In this model, the blurs can take place both within and cross channels, and the

edge-preserving regularization terms can be locally weighted and use higher-order derivatives of images. The

algorithm possesses strong convergence properties and, more importantly, is practically efficient. The fast

speed of the algorithm is the result of exploiting problem structures to enable the use of multi-dimensional

shrinkage and fast transforms in solving subproblems. Our numerical experiments confirm that, with the help

of a continuation scheme, a simple MATLAB implementation of our algorithm already achieves a remarkable

practical performance.

Acknowledgments. The work of J. Yang has been supported by the Chinese Scholarship Council

during his visit to Rice University. The work of W. Yin has been supported in part by NSF CAREER Grant

DMS-0748839. The work of Y. Zhang has been supported in part by NSF Grant DMS-08yyyyy. The work

of Y. Wang has been supported by the second author’s internal faculty research grant from the Dean of

Engineering at Rice University.

REFERENCES

[1] L. Bar, A. Brook, N. Sochen and N. Kiryati, Deblurring of color images corrupted by impulsive noise, IEEE Trans. Image

Process., vol. 16, no. 4, pp. 1101–1110, 2007.

[2] P. Blomgren and T. F. Chan, Color TV: Total variaiton methods for restoration of vector-valued images, IEEE Trans.

Image Process., vol. 7, no. 3, pp. 304–309, 1998.

[3] K. Boo and N. K. Bose, Multispectral image restoration with multisensors, IEEE Trans. Geosci. Remote Sensing, vol. 35,

pp. 1160–1170, 1997.

[4] A. Brook, R. Kimmel, and N. Sochen, Variational restoration and edge detection for color images, J. Math. Imag. Vis.,

vol. 18, pp. 247–268, 2003.

[5] A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imag. Vis., vol. 20, pp. 89–97,

2004.

[6] A. Chambolle and P. L. Lions, Image recovery via total variation minimization and related problems, Numer. Math., vol. 76,

pp. 167–188, 1997.

[7] T. F. Chan, S. Esedoglu, F. Park, and A. Yip, Recent developments in total variation image restoration, CAM Report

05-01, Department of Mathematics, UCLA, 2004.

[8] T. F. Chan, S. H. Kang, and J. Shen, Total variation denoising and enhancement color images based on the CB and HSV

color models, Journal of Visual Communication and Image Representation, vol. 12, no. 4, 422–435 June 2001.

[9] T. F. Chan, and J. Shen, Variational restoration of non-flat image features: Models and algorithms, SIAM J. Appl. Math.

vol. 61, pp. 1338-1361, 2000.

[10] D. C. Dobson and F. Santosa, Recovery of blocky images from noisy and blurred data, SIAM J. Appl. Math., vol. 56,

pp. 1181–1198, 1996.

[11] H. Y. Fu, M. K. Ng, and J. L. Barlow, Structured total least squares for color image restoration, SIAM J. Sci. Comput.,

vol. 28, no. 3, pp. 1100–1119, 2006.

[12] N. P. Galatsanos, A. K. Katsaggelos, R. T. Chan, and A. D. Hillery, Least squares restorations of multichannel images,

IEEE Trans. Signal Process., vol. 39, pp. 2222–2236, 1991.

[13] D. Geman and G. Reynolds, Constrained restoration and the recovery of discontinuities, IEEE Trans. Pattern Analysis

and Machine Intelligence, vol. 14, no. 3, pp. 367–383, 1992.

[14] D. Geman and C. Yang, Nonlinear image recovery with half-quadratic regularization, IEEE Trans. Image Process., vol. 4,

pp. 932–946, 1995.

[15] T. Goldstein and S. Osher, The split Bregman algorithm for L1 regularized problems, UCLA CAM Report 08-29, 2008.

18

[16] E. Hale, W. Yin, and Y. Zhang, Fixed-point continuation for L1 minimization: methodology and convergence, Tech. Report

07-07, CAAM, Rice University, 2007.

[17] Y. M. Huang, M. K. Ng, and Y. W. Wen, Efficient total variation minimization methods for color image restoration,

submitted.

[18] M. K. Ng, and N. K. Bose, Fast color image restoration with multisensors, International Journal of Imaging Systems and

Technology, vol. 12, pp. 189–197, 2002.

[19] M. K. Ng, R. H. Chan, and W. Tang, A fast algorithm for deblurring models with neumann boundary conditions, SIAM

J. Sci. Comput., vol. 21, no. 3, pp. 851–866, 1999.

[20] J. Nocedal and S. J. Wright, Numerical optimization, Springer, 2000.

[21] S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, An iterative regularization method for total variation based image

restoration, SIAM J. Multiscale Model. Simul., 4 (2005), pp. 460–489.

[22] L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D, vol. 60, pp. 259–

268, 1992.

[23] G. Sapiro, Color snakes, Tech. Rep. HPL-95-113, Hewlett Packard Comput. periph. Lab., 1995.

[24] G. Sapiro, Vector-valued active contours, Proc. Conf. Computer Vision and Pattern Recognition, IEEE Computer Society,

pp. 520–525, 1996.

[25] G. Sapiro and D. L. Ringach, Anisotropic diffusion of multivalued images with applications to color filtering, IEEE Trans.

Image Process., vol. 5, pp. 1582–1586, 1996.

[26] D. Strong and T. F. Chan, Relation of regularization parameter and scale in total variation based image denoising, UCLA

CAM Report 96–7, University of California, Los Angeles, CA, 1996.

[27] D. Strong, P. Blomgren and T. F. Chan, Spatially adaptive local feature-driven total variation minimizing image restora-

tion, UCLA CAM Report 97–32, University of California, Los Angeles, CA, 1997.

[28] B. Tang, G. Sapiro, and V. Caselles, Color image enhancement via chromaticity diffusion, Tech. Report, Department of

Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 1999.

[29] A. Tekalp, and G. Pavlovic, Multichannel image modeling and kalman filtering for multispectral image restoration, Signal

Process., vol. 19, pp. 221–232, 1990.

[30] A. Tikhonov, and V. Arsenin, Solution of ill-posed problems, Winston, Washington, DC, 1977.

[31] C. R. Vogel and M. E. Oman, Iterative methods for total variation denoising, SIAM J. Sci. Comput., vol. 17, no. 1,

pp. 227–238, 1996.

[32] Y. Wang, J. Yang, W. Yin and Y. Zhang, A new alternating minimization algorithm for total variation image reconstruc-

tion, Accepted by SIAM Journal on Imaging Sciences, 2008.

[33] W. Yin, S. Osher, D. Goldfarb, and J. Darbon, Bregman iterative algorithms for compressed sensing and related problems,

SIAM J. Imag. Sciences 1 (2008), pp. 143–168.

[34] W. P. Ziemer, Weakly differentiable functions: Sobolev spaces and functions of bounded variation, graduate texts in

mathematics, Springer, 1989.

19

