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Non-Local Means for Audio Denoising
Arthur Szlam

Abstract—The application of the NL-Means algorithm
(and some cousins) to audio denoising is discussed.

Index Terms—NL-means, PDE on graphs, audio denoising

The NL-means algorithm of [BCM05] regularizes images
by running the heat equation on the space of patches of
the image. When well engineered, it is one of the most
effective methods currently available for denoising natural
images contaminated with white Gaussian noise.

In this note we describe how and why the NL-means
algorithm (and some other related algorithms) can be ap-
plied to audio denoising. We start by describing the algo-
rithm, and giving heuristics for its successful deployment.
We then remark that the locally stationary model of audio
signals is a good match for the heuristics we have given. Fi-
nally, we conclude with a numerical experiment to demon-
strate the above ideas.

I. NL means and PDE on graphs

In its simplest form, NL means goes as follows: given a
noisy m×n image f0, fix a patch size k, and consider the
set of all k× k patches of f0. Denote the patch at pixel j
by Pj , where j ∈ {1, ...,mn}. Fix a variance parameter σ,
and form the mn×mn matrix

W (i, j) = e−||Pi−Pj ||2F/σ, (I.1)

where ‘F’ is for Frobenious and

||Pi − Pj ||2F =
k∑

a=1

k∑

b=1

|Pi(a, b)− Pj(a, b)|2; (I.2)

thus ||Pi −Pj ||F is just the norm of the difference of the
two patches considered as a k2 dimensional vectors. Set

d(i) =
∑

j

W (i, j) , (I.3)

and let the filter

K(i, j) = d−1(i)W (i, j) , (I.4)

so that
∑

y∈V K(x,y) = 1, and so multiplication of a vector
from the left by K is an averaging operation. To obtain
the denoised image f1 from f0, write f0 as a column vector,
and set

f1 = Kf0. (I.5)

In this way, to find the correct intensity at a given pixel j,
we average the intensities of all the pixels i such that i and
j have similar neighborhoods, with a Gaussian weight.

A. The heat equation on weighted graphs

We now follows [ZS05]; see also [GO07]. Given a
weighted graph with n vertices V and weights W , set the
density

d(i) =
∑

j

W (i, j) , (I.6)

and let the matrix D be the diagonal matrix with diagonal
d. Let g be a function on V . The normalized gradient at
a vertex i is defined to be the vector

∇w(g)
∣∣∣
i
=




√
W (i,1)

d(i) g(i)−
√

W (i,1)
d(j) g(1)√

W (i,2)
d(i) g(i)−

√
W (i,2)

d(2) g(2)
...√

W (i,n)
d(i) g(i)−

√
W (i,n)

d(n) g(n)




. (I.7)

The smoothness functional
∑

i ||∇w(g)
∣∣∣
i
||2 is the discrete

analog of
∫ |∇g|2 for a smooth image. Gradient descent on

this functional starting from g leads to the equations

g0 = g,

gt+1 − gt = (D− 1
2 WD− 1

2 − I)gt. (I.8)

Since D− 1
2 WD− 1

2 − I is the normalized graph Laplacian
[Chu97], equation I.8 is simply the discrete time (density
normalized) heat equation on the graph W with initial
condition given by g0.

If we iterate the multiplication in equation (I.5), we get

ft+1 = Kft, (I.9)

which with a little manipulation becomes the equation

D
1
2 (ft+1 − ft) = (D− 1

2 WD− 1
2 D

1
2 −D

1
2 )ft. (I.10)

Setting gt = D
1
2 ft, we get the equation

gt+1 − gt = (D− 1
2 WD− 1

2 − I)gt. (I.11)

and so we are actually running the (density normalized)
heat equation on the set of patches of f0 with weights given
by W [Szl06], [GO07], and moreover, as above, this is ex-
actly the gradient descent for the energy

∑
|∇wg|2. (I.12)

Note that most of the familiar ideas from the Euclidean
heat equation carry over to this setting. In particular,
the normal relationships between scale, smoothness, and
frequency persist in this setting; remembering that fre-
quency now refers to the eigenfunctions and eigenvalues
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of the graph Laplacian defined above. Also note that if we
would like to balance smoothing by K with fidelity to the
noisy f , we can choose β > 0 and, as before, set

f0 = f, (I.13)

but now set

ft+1 = (Kft + βf)/(1 + β); (I.14)

the noisy function is treated as a heat source. In contrast to
the equation evolving without a heat source, which tends
to a constant steady state, this version of the equation
tends to a non-constant steady state.

One final note: patches are not the only useful features
for image denoising. For example, good results can be ob-
tained using Gabor filter responses as features [BSS07], or
using grid shifted wavelet or curvelet denoisings as fea-
tures[Szl06]. With some small amount of engineering,
the methods described in this section are among the best
known denoising algorithms for natural images.

B. computational costs

In practice the algorithm as described is not feasible,
because to even construct the matrices W and D requires
time at least (mn)2. One possible solution is to use
some sort of fast nearest neighbor searcher in the space
of patches, and fixing a number r, for each pixel i set
W (i, j) = 0 if j is not one of the r nearest neighbors to
i, and as before set W (i, j) = e−||Pi−Pj ||2F/σ if j is one of
the r nearest neighbors of i. A simpler approach which
works even better is to only search for neighbors in an l× l
box around a given pixel. Searching in the l× l box limits
the construction time of W to mnk2l2 operations; and D,
which is built by summing the rows of W , costs mnk2 op-
erations. To then run the equation costs Mmnk2, where
M is the number of times the matrix K is iterated. The
restricted search does not degrade the denoising; in fact,
it actually improves the results. The reasons for this are
not completely understood, but probably have to do with
the importance of certain kinds of image features, espe-
cially edges, whose likely patch-space neighbors lie nearby
in pixel space.

C. When does NL-means work?

The success of the algorithm rests on three assumptions:
• If two patches are close in Frobenious norm, then the

center pixel of the two patches should have nearly the
same intensity.

• pixels sit in patches which have many instances in the
image; and

• The noise does not grossly change the distance be-
tween patches, or at least does not change the nearest
neighbors of a patch.

Note if features other than patches are used, the first as-
sumption can be changed to ”if the pixels are close in fea-
tures space, then the pixels should have the same inten-
sity”. This assumption is simply that the intensity func-
tion is smooth as a function on the space of patches. The

second assumption says that the patches (features) of pix-
els are not isolated; of course any function at an isolated
point is smooth. In order for smoothness to be useful,
each pixel should lie in a (feature) neighborhood of similar
patches. The third assumption says that the geometry of
the patches (features) is not badly distorted by noise. In
particular, for white Gaussian noise, if Pn

j = Pj + η1 and
Pn

i = Pi + η2 are noisy patches with two different realiza-
tions of noise η1 and η2,

||Pn
i −Pn

j ||2 = ||Pi−Pj ||2 + 〈Pi−Pj , η2−η1〉+ ||η1−η2||2.

As the patches become large, we expect the middle term
to be small, and the last term to be near twice the variance
of the noise. Under these circumstances, although all the
distances have been changed, the nearest neighbors to any
given patch remain roughly the same. Note that if the
noise has spatial correlations or is expected to be correlated
with the image patches, the distances could be distorted
in a much more serious way.

If all three conditions are satisfied, then the intensity
function should be smooth as a function of the noisy
patches (features), and thus can be denoised by running
the heat equation. For a more rigorous discussion of re-
lated ideas see [SSN07]; note also that we do not need any
explicit knowledge of the geometry of the patches (i.e. pa-
rameterization, etc...), although sometimes these are avail-
able (see [Pey07]).

II. Application to audio denoising

It is well known that many common audio signals are
locally stationary; in other words, if one takes a windowed
Fourier transform with a small sliding window, the abso-
lute value of the coefficients will be roughly constant for
short shifts of the window. For audio sampled at the usual
rates, with windows of size a few hundred samples, “short
shifts” includes shifts several times the size of the window.
The upshot is that near any sample we expect to find many
(almost exact) copies of the patch centered at that sample;
and moreover, the value at a sample should be determined
by the phase of that patch. We thus get the first two con-
ditions necessary for an NL means type method to work
for audio denoising. If the noise is white Gaussian, and our
patch size is large enough, as before, the third condition is
satisfied.

We then can run the NL-means algorithm in essentially
the same way for the audio signals as for the images (if
anything, the algorithm is simplified since the signal and
patches are 1-d arrays). Below we will illustrate the ideas
in section C in the context of audio signals and then give
a denoising example.

A. Experiments

We use an audio sample f (at 11025 Hz) of a recording
of Darwin’s “On the Origin of Species by Means of Nat-
ural Selection”, obtained from http : / / librivox . org /
the-origin-of-species-by-charles-darwin/, in mp3
format. We use the Matlab package mp3read available at
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http : //labrosa.ee.columbia.edu/matlab/mp3read.
html to read the a 50000 sample from the recording into
Matlab. We add .1 times Gaussian white noise to get a de-
graded signal fn with SNR =−7.94 (correlation = .373).

We would first like to illustrate the ideas in section C in
figures 4-7. First, in figures 4 and 6, we have 1000 samples
from the clean and noisy signals. In figure 7, the set of
all patches of length 257 from the 1000 noisy samples (i.e.
1000 points in R257) is shown projected onto its first three
principal components. The color signifies the (clean) func-
tion value (speaker position) at the sample in the center of
the patch; that is, the color is the y axis in figure 4. In fig-
ure 5, the set of clean patches is shown, projected onto the
same subspace as the patches in figure 7, for ease of com-
parison. The important thing to notice is that the function
value is smooth in the noisy patch space, even though the
original audio signal was not smooth in the time domain.

We now build the weights matrix and denoise the sig-
nal. For each sample j, set Sj to be the search window
consisting of the patches of fn centered at the 256 sam-
ples preceding j, and the 256 samples following j; and let
Uj ⊂ Sj be the 21 nearest patches of fn to Pj . Then we
then build a weights matrix W by setting

W (i, j) =
{

1 if Pi ∈ Uj

0 otherwise ;

that is, we set σ =∞ in equation (I.1). We average W with
its transpose to symmetrize, and then normalize as above
to get a matrix K with row sums equal to one. We then set
f0 = fn, and ft+1 = (Kft + .01fn)/1.01, i.e., set β = .01
as in (I.14). After three iterations we get a denoised signal
with SNR = 3.29 (correlation = .739).

B. Some notes on the various parameters

The reader will have noticed the large number of seem-
ingly arbitrarily set parameters introduced in the above
example. Some descriptions of the tradeoffs entailed in
the various choices:
• patch size: the larger the patch size, the more resis-

tant patch similarity is to the influence of noise, as
for large patches, the distance between realizations of
white noise is roughly constant. However, the larger
the patch size, the harder it is to find similar patches,
even in clean signals. Our experience suggests that
window sizes on the order of .01-.05 seconds seem to
work well for speech signals.

• search window size: the larger the search window, the
easier to find a similar patch. However, large windows
also increase the chance of spurious matches, and the
run time of the algorithm is determined by the size of
the search window. Search windows one to two times
the patch size seem to work well for speech.

• σ: larger σ means more smoothing per iteration. We
use σ =∞ for simplicity. In image denoising, this pa-
rameter is quite important; but here, because we ex-
pect almost exact patch matches, setting σ =∞ and
controlling the smoothing with the number of neigh-
bors seems ok.

• number of neighbors: larger number of neighbors
means more smoothing per iteration. Too many and
the chosen patches are no longer very similar; too
few means bad choices for nearest neighbors are more
costly. This parameter seems to be quite impor-
tant, especially considering in our experiment σ =∞,
but for many audio signals the smoothing kernel con-
structed at coherent regions is banded with bands at
the fundamental period of the local oscillation. It
seems good to choose just enough neighbors so one
can see this banded structure.

• number of iterations of the weight matrix: larger num-
ber of iterations means less noise, but also less signal.
With no forcing weight, iterations of the weight ma-
trix converge to a constant function.

• forcing weight: the larger the forcing weight β, the
larger the residual noise, but the smaller the distortion
after multiple iterations of K.

Fig. 1. 50000 samples from a recording of a reading of ”On the
Origin of Species”, sampled at 11025 Hz

Fig. 2. The audio sample from 1 with Gaussian white noise added,
SNR =−7.94 (correlation = .373)
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Fig. 3. The noisy audio sample in figure 2 denoised using the heat
equation on the weighted graph of patches. Recovered SNR = 3.29
(recovered correlation = .739)

Fig. 4. 1000 samples from an audio recording of “The Origin of
Species”

III. Conclusions and future work

The NL-means algorithm is useful for audio denoising
because many audio signals are locally stationary. It is
possible that other features are also useful, e.g. Gabor
filter responses, or perhaps local (in time) PCA vectors.
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