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Abstract
We propose Gaussian-beam based Eulerian methods to compute semi-classical solutions of

the Schrödinger equation. Traditional Gaussian beam type methods for the Schrödinger equa-
tion are based on the Lagrangian ray tracing. We develop a new Eulerian framework which uses
global Cartesian coordinates, level-set based implicit representation and Liouville equations.
The resulting method gives uniformly distributed phases and amplitudes in phase space simul-
taneously. To obtain semi-classical solutions to the Schrödinger equation with different initial
wave functions, we only need to slightly modify the summation formula. This yields a very effi-
cient method for computing semi-classical solutions to the Schrödinger equation. For instance,
the proposed algorithm requires only O(sNn2) operations to compute s different solutions with
s different initial wave functions under the influence of the same potential, where N = O(1/~),
~ is the Planck constant, and n� N is the number of computed beams. Numerical experiments
indicate that this Eulerian Gaussian beam approach yields accurate semi-classical solutions even
at caustics.

1 Introduction

It is well known that classical mechanics describes the behavior of macroscopic objects, while quan-
tum mechanics describes the behavior of microscopic objects with physical characteristics compa-
rable in values with the Planck constant, such as elementary particles, atoms, and molecules. For
macroscopic objects the Planck constant is considered to be negligible so that quantum effects can
be ignored and classical mechanics in this regime provides a satisfactory approximation. However,
for microscopic objects it is critical to incorporate quantum effects into modeling for the best physi-
cal fidelity. There are several equivalent quantum mechanics models, such as Schrödinger’s scheme,
Heisenberg’s scheme, and Feyman’s path-integral scheme.

Here we consider the Schrödinger equation for a particle with unity mass

−i~ Ut + V (x)U − ~
2

2
∆U = 0, x ∈ Rn, t > 0, (1)

U(x, 0) = A0(x) exp

(

i τ̃0(x)

~

)

(2)
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where V is real and smooth, τ̃0 and A0 are smooth, and ~ ≡ h/2π with h a small (scaled) Planck’s
constant. This equation is obtained by introducing undulatory theory into classical mechanics,
the so-called quantization procedure. Because the Schrödinger equation propagates oscillations of
wavelength ~ in space and time, resolving such oscillations by direct numerical simulation requires
many grid points per wavelength of O(~), which is costly in practice. As an alternative to obtain
numerical approximation capturing quantum effects, semi-classical methods are sought to link
classical and quantum mechanics. In this paper, we design an Eulerian Gaussian-beam method for
the Schrödinger equation in the semi-classical regime, where the Planck constant is small.

The spirit of semi-classical approximation is expanding the quantum wave function around
classical expressions in powers of contributions from quantum fluctuations. In the simplest case,
we consider the following leading-order WKBJ ansatz for the quantum wave function,

U(x, t) ≈ A(x, t) exp

(

i τ(x, t)

~

)

, (3)

where A(x, t) is the amplitude function and τ(x, t) is the phase function. Applying this ansatz
to the Schrödinger equation and considering the leading order singularities, we have the following
eikonal equation for the phase function and the transport equation for the amplitude function,

τt + V (x) +
1

2
τ2
x = 0 , (4)

At + τx ·Ax +
1

2
∆τA = 0 , (5)

with the initial data,

τ(x, 0) = τ̃0(x), (6)

A(x, 0) = A0(x). (7)

The transport equation for the amplitude is weakly coupled to the eikonal equation in the
sense that one must first solve the eikonal equation to provide related coefficients for the transport
equation. Because the eikonal equation is a non-linear first-order equation, in general there exists
no global smooth (classical) solutions for the equation. Consequently, the WKBJ ansatz (3) might
not be valid globally in terms of global smooth eikonal and amplitude. One remedy is to seek
globally defined unique weak solutions in physical space to the eikonal equation, which leads to
the so-called viscosity solution [8]. Another remedy is to solve the eikonal equation in phase space
first using the method of characteristics and then projecting the resulting solution into physical
space. The essential difference between these two remedies can be seen right away: the viscosity-
solution based eikonal solution in physical space results in a single-valued phase function while the
method-of-characteristics based eikonal solution in physical space might result in a multivalued
phase function. Which remedy is more appropriate depends on specific applications.

For linear Schrödinger equations, multivalued phases are appropriate, and the resulting ampli-
tudes are also multivalued. As a result, the WKBJ ansatz (3) should be modified to accommodate
multivalued phases and amplitudes, which has been done systematically in terms of uniform asymp-
totic solutions in [19, 24]. In both [19] and [24] one has to pay particular attention to so-called
caustics, where the projections of phase-space bi-characteristics into physical space, the so-called
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rays, converge and the resulting amplitudes become infinite. In [19] one has to identify caustics so
as to choose appropriate expanding functions, such as Airy or Pearcy functions, to treat the bound-
ary layer effect near caustics. In [24] one has to keep track of the so-called Keller-Maslov index
to compensate for the phase shift when passing through a caustic. In general, since caustics can
occur anywhere along the ray, the above two approaches are not satisfactory. In contrast, Gaussian
beams provide a powerful framework for constructing uniform asymptotic solutions systematically
even at caustics without identifying caustics or keeping track of Keller-Maslov index.

The idea underlying Gaussian beams is simply to build asymptotic solutions to partial differen-
tial equations concentrated on a single curve through the domain; this single curve is nothing but
a ray as shown in [32]. The existence of such solutions has been known to the pure mathematics
community since sometime in the 1960s [1], and these solutions have been used to obtain results
on propagation of singularities in hyperbolic PDEs [13, 32]. An integral superposition of these
solutions can be used to define a more general solution that is not necessarily concentrated on a
single curve. Gaussian beams can be used to treat pseudo-differential equations in a natural way,
including Helmholtz and Schrödinger equations.

In the geophysical applications, Gaussian beam superpositions have been used for seismic wave
modeling [6] and for seismic wave migration [12]. The numerical implementations in these works
are based on ray-centered coordinates which prove to be computationally inefficient. More recently,
based on [32, 36] a purely Eulerian computational approach was proposed in [17] which overcomes
some of these difficulties. In [36] Gaussian beams are successfully constructed to simulate mountain
waves, a kind of stationary gravity waves forming over mountain peaks and interfering with aviation.

In quantum mechanics, some variants of Gaussian beams, such as frozen Gaussian beams and
Gaussian wave packets, have been used to construct approximate solutions to Schrödinger equa-
tions in the semi-classical regime [16, 10, 11]. However, these formulations were all based on the
Lagrangian framework. In this paper, we propose an Eulerian formulation for Gaussian beams. We
first follow the ansatz proposed in [32, 36] to construct Gaussian beams to the Schrödinger equation
along central rays. Mathematically, this ansatz constructs an approximate phase function with an
imaginary part as a Taylor expansion around a central ray by using phase derivatives on the central
ray. To have a corresponding Eulerian formulation capturing multi-valued phases and caustics, we
generalize an Eulerian Gaussian beam approach proposed in [17] to the Schrödinger equation. The
Eulerian method proposed in [17] is based on level sets and paraxial Liouville equations [29, 18, 30]
and is designed to solve Helmholtz equations in the high frequency regime.

The advantages of this Eulerian Gaussian Beams approach over the usual Lagrangian framework
are multi-folded. Unlike usual Lagrangian formulations, we obtain a uniform resolution of ray
distribution so that the resulting Gaussian beam summation will have a uniform resolution as well.
To obtain another asymptotic solution to the Schrödinger equation with a different initial wave
function or for a different parameter ~, we only slightly modify the summation formula. This
results in a computationally very efficient algorithm when we are solving the Schrödinger equation
especially for various settings of the initial wave function under the same potential. For instance,
the proposed algorithm requires at most O(sNn2) operations to compute s different solutions with
s different initial wave functions under the same potential, where N = O(1/~), and n � N is the
number of beams we apply.

We remark that there are some other recent works for solving the Schrödinger equation in the
semi-classical regime. In [21] the authors apply Wigner-transform techniques to the analysis of finite
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difference methods for the Schrödinger equation in the case of a small Planck constant; in terms of
numerical approximations of quadratic observables rather than the quantum wave function itself,
they are able to obtain Wigner-measure related sharp conditions on the spatial-temporal grid which
guarantee convergence for average values of observables as the Planck constant tends to zero. In
[2] the authors propose time-splitting spectral approximations for the linear Schrödinger equation
in the semi-classical regime; in terms of numerical approximations of quadratic observables rather
than the quantum wave function itself, their numerical examples and analytical considerations
based on the Wigner transform show that weaker constraints on mesh sizes for the direct numerical
solution of the Schrödinger equation are admissible for obtaining “correct” observables. In terms
of computing multivalued phases and amplitudes in an Eulerian framework, an approach based on
level sets and Liouville equations first initiated in [27] and further developed in [28, 7, 15], etc, has
been successful; as a further development along this line, in [14] an Eulerian approach is proposed
for computing multivalued physical observables for the Schrödinger equation in the semi-classical
regime, but the approach unavoidably runs into difficulty at caustics, and it does not construct
the quantum wave function either. Unlike [21, 2] where physical observables are computed from
numerical solutions obtained by direct numerical methods for the Schrödinger equations, the Eu-
lerian Gaussian beam approach proposed here computes the observables from uniform asymptotic
solutions of the Schrödinger equation. Since the beam-based asymptotic solution is valid even at
caustics, our Eulerian Gaussian beam approach is different from the approach in [14].

The rest of the paper is organized as follows. In Section 2, we summarize the Lagrangian
Gaussian beam formulation and develop four different methods for initializing beam propagation.
In Section 3, we develop an Eulerian Gaussian beam formulation and develop a semi-Lagrangian
method for solving the resulting level-set equations and Liouville equations. In Section 4, we
analyze the complexities of the resulting algorithms. In Section 5, we show numerical examples to
demonstrate the efficiency and accuracy of the algorithms.

2 Lagrangian Gaussian Beams (LGB)

2.1 Construction of Gaussian beams

We would like to construct an asymptotically valid solution Ψ(x, t; ~) for the Schrödinger equation,
that is concentrated on a single curve γ. Namely, |Ψ(x, t; ~)| is small away from γ, and it will
satisfy the Schrödinger equation up to O(~M ) for some fixed positive number M under some
appropriate norm. Here we are interested in constructing the lowest-order Gaussian beam so that
the Schrödinger equation will be satisfied up to O(

√
~)

To construct such Gaussian beams for the Schrödinger equation,

−i~ Ut + V (x)U − ~
2

2
∆U = 0, x ∈ Rn, t > 0, (8)

we follow [32, 36, 23] and start with the WKBJ ansatz,

U(x, t) ≈ A(x, t) exp

(

i τ(x, t)

~

)

. (9)

The functions A(x, t) and τ(x, t) are all assumed to be smooth, and these requirements are feasible
because the beam solution is constructed to be concentrated on a single curve; this is the essential
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difference between traditional WKBJ asymptotic solutions and Gaussian beam solutions. As a
result, the requirements on the phase function τ are slightly different from those of traditional
WKBJ asymptotics. We will require that τ is real valued on γ, but away from this curve γ, τ can
be complex valued with the restriction that the imaginary part of the second-order derivative τxx

is positive definite. This will make U look like a Gaussian distribution with variance ~ on planes
perpendicular to γ.

Define the following Hamiltonian for the Schrödinger equation,

H(x, p) =
p2

2
+ V (x). (10)

According to the Gaussian beam theory [32], such a curve γ is nothing but the x-projection of
bicharacteristics (x(t), p(t)) satisfying the following Hamiltonian system,

ẋ =
dx

dt
= Hp, x|t=0 = x0,

ṗ =
dp

dt
= −Hx, p|t=0 = p0, (11)

where t is time parametrizing bicharacteristics. Along bicharacteristics, the phase function satisfies

τ̇ =
dτ

dt
=

1

2
p2 − V (x), τ |t=0 = τ0. (12)

To determine the second order derivative τxx along bicharacteristics, we solve the following
variational system for matrix-valued solutions B(t) and C(t):

Ḃ = −HT
xpB −HxxC, B|t=0 = B0,

Ċ = HppB +HpxC, C|t=0 = I, (13)

where I is the identity matrix, and matrix B0 is chosen to take into account the initial phase
function and to have an imaginary part which is positive definite. Here B = B(t;x0, p0) and
C = C(t;x0, p0) are taken to be the variations of p = p(t;x0, p0) and x = x(t;x0, p0) along the
bi-characteristics with respect to the initial point x0 = α,

B(t;x0, p0) =
∂p

∂α
, C(t;x0, p0) =

∂x

∂α
. (14)

We notice that BC−1 yields the Hessian of the phase function τ along the bi-characteristics. So-
lution to the above equations exists on any interval t ∈ [0, T ]. Moreover, we have the following
lemma on the bound of the solution; its proof can be found in [32, 36].

Lemma 2.1. Under the above assumptions, C(t) is non-singular for any t, and Im(BC−1) is
positive definite.

Since p(t) = τx(t) along bicharacteristics, we can use the following second-order Taylor expan-
sion to define a smooth global approximate phase function:

τ(x, t;x0, p0) = τ(t;x0, p0) + p(t;x0, p0) · (x− x(t;x0, p0))

+
1

2
(x− x(t;x0, p0))

T (BC−1)(x− x(t;x0, p0)). (15)
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Next we need to determine the amplitude function A. According to the beam theory, the
amplitude function A satisfies the transport equation,

Ȧ = −1

2
trace(BC−1) A, A|t=0 = A0(x0, p0). (16)

The initial condition A0 depends on how the initial wave function is decomposed into a summation
of Gaussians centered at different locations, as we will see in Section 2.2. Solution to this equation
can be found analytically and is given by the following lemma.

Lemma 2.2. The solution for the transport equation (16) is

A(t;x0, p0) =
A0(x0, p0)

√

det(C(t;x0, p0))
. (17)

Lemma 2.2 can be proved by applying the divergence theorem to equation (5) around a ray
tube; this ray tube in the time-space domain is defined by intersecting two neighboring rays with
two horizontal surfaces corresponding to t′ = t1 and t′ = t2; see [17] for a proof of a similar lemma.

To obtain a smooth global approximate amplitude function, we use the following extension:

A(x, t;x0, p0) = A(t;x0, p0). (18)

Inserting (15) and (18) into the WKBJ ansatz yields an asymptotically valid solution:

Ψ(x, t;x0, p0) = A(x, t;x0, p0) exp

[

i
τ(x, t;x0, p0)

~

]

; (19)

this beam solution is concentrated on a single smooth curve γ which is the x-projection of the
bicharacteristic emanating from (x0, p0) at t=t0=0.

The asymptotic solution is obtained by integrating all the beams parametrized by the initial
point (x0, p0),

U(x, t) = c(ε, ~, n)

∫

p0

∫

x0

Ψ(x, t;x0, p0)dx0dp0 , (20)

for some normalization constant c(ε, ~, n).

2.2 Initializing Gaussian beams

We will consider the following highly oscillatory initial data for the Schrödinger equation:

U(x, 0; ~) = U0(x; ~) = A0(x) exp

(

i τ̃0(x)

~

)

, (21)

where A0(x) and τ̃0(x) are smooth functions, and A0(x) has compact support.
In practice, we may only know that U0(x; ~) is highly oscillatory, but we may not know the

specific expressions of A0(x) and τ̃0(x). Therefore, we will initialize beam propagation by using
different strategies and superpose them accordingly.
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2.2.1 Initializing by asymptotic decomposition (AD)

If A0(x) and τ̃0(x) are given in specific expressions, then we may use the following strategy to
initialize beam propagation:

x|t=0 = x0,

p|t=0 = p0 =
∂τ̃0
∂x

(x0),

τ |t=0 = τ̃(x0),

B|t=0 = B0 =
∂2τ̃0
∂x2

(x0) + iεI,

C|t=0 = I,

A|t=0 = A0(x0). (22)

Consequently, the resulting beam ingredients are functions of x0 only, and the approximate func-
tions τ(x, t;x0, p0) = τ(x, t;x0) and A(x, t;x0, p0) = A(x, t;x0). Furthermore, the beam summation
formula will be modified to be the following:

U(x, t) = c(ε, ~, n)

∫

x0

∫

p0

Ψ(x, t;x0, p0)δ(p0 − τ̃x(x0))dp0dx0

= c(ε, ~, n)

∫

x0

Ψ̃(x, t;x0)dx0, (23)

where

Ψ̃(x, t;x0) = A(x, t;x0) exp

[

i
τ(x, t;x0)

~

]

,

A(x, t;x0) = A(t;x0),

τ(x, t;x0) = τ(t;x0) + p(t;x0) · (x− x(t;x0)) +
1

2
(x− x(t;x0))

T (BC−1)(x− x(t;x0)). (24)

The following lemma proved in [35] holds in terms of recovering the initial data by the initial
beam summation:

Lemma 2.3. Let φ0 ∈ C∞(Rn) be a real-valued function and a0 ∈ C∞
0 (Rn). Define

u(x) = a0(x) exp

[

i

~
φ0(x)

]

v(x; y) =
( ε

2π~

)
n

2

a0(y) exp

{

i

~

[

φ0(y) + φ′0(y)(x− y)
]

+
1

2~
[iφ′′0(y) − ε](x− y)2

}

.

(25)

Then
∣

∣

∣

∣

∣

∣

∣

∣

u(x) −
∫

Rn

v(x; y)dy

∣

∣

∣

∣

∣

∣

∣

∣

L2

≤ C

(

~

ε

)1/2

(26)

for some constant C.
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The parameter ε in the beam decomposition controls the initial beam width since the amplitude
of the beam decays away from the center in the order of

O

(

exp

[−ε
2~

(x− y)2
])

. (27)

Theoretically, this parameter will not affect the asymptotic solution as ~ → 0 and therefore we
can arbitrarily pick this width. One simple way is to pick unity. In this case, as seen from the
estimate, the initial condition of this particular asymptotic decomposition converges to the exact
initial profile in the order of O(~1/2).

In numerical implementation, numerical quadrature for the beam integral will introduce errors
as well. Suppose that we shoot out rays parameterized by y with a uniform spacing ∆x, and we
approximate the integral by a simple midpoint quadrature. Then the overall error in approximating
the initial wave function will be O

(

(~

ε )
1/2 + ∆x2

)

. If ε = 1, then the error is O
(

~
1/2 + ∆x2

)

; in
other words, if ~ is fixed and we increase the number of beams by letting ∆x → 0, then the
approximation error in the initial wave function is still in the order of ~

1/2, which is undesirable.
Here we propose to balance the two errors by choosing the initial beam width ε according to

~ and ∆x. Consider one Gaussian centered at zero in the form of exp(−εy2/2~), which has the
standard deviation of σ =

√

~/ε. Since this Gaussian decays to almost zero 3σ away from the
center, we propose to resolve this Gaussian using a fixed number of grid points. Numerically, we
use three grid points to resolve 3σ, which gives ε = ~/∆x2. Another motivation of this particular
choice comes from [12] in which the author makes use of a sum of shifted Gaussians to approximate
unity,

1 ' 1√
2π

∆x

σ

∑

i

exp

(

−(x− xi)
2

2σ2

)

, (28)

where xi = i∆x, i = 0,±1,±2, · · ·. The conclusion leads to a restriction that ∆x < 2σ. Relating
this condition to ε, we have ε < 4~/∆x2. Our choice indeed satisfies this extra accuracy requirement
according to [12]. Similar considerations can also be found in [10, 33].

With this particular choice of the initial beam width, we have the following error estimate in
the initial wave decomposition,

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

u(x) − ∆x
∑

i

v(x;xi)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L2

≤ C∆x, (29)

where C is a constant. Given ~ and ε, this gives a reasonable numerical recipe for decomposing an
initial wave function into Gaussians.

We remark that we may set up a mesh which is fine enough so that it will resolve Gaussians
for ~ larger than a certain ~min. As a result, we may not recompute necessary beam ingredients;
this is essentially done in [17] for the Helmholtz equation in the high frequency regime.

2.2.2 Initializing by pointwise matching decomposition (PM)

Because the amplitude function A0 has compact support, we can further improve the numerical
accuracy in the initial decomposition by requiring that the summation matches with the initial wave
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function pointwise at the discrete level. Mathematically, this means that we determine A(xi, 0) for
all i such that

U(xj , 0) = ∆x
∑

i

A(xi, 0) exp

(

iτ0(xj ;xi)

~

)

(30)

for all j with

τ0(x;xi) = τ̃0(xi) +
∂τ̃0(xi)

∂x
(x− xi) +

1

2
(x− xi)

T ∂
2τ̃0(xi)

∂x2
(x− xi) + i

1

2
ε(x− xi)

2. (31)

Letting Ai = A(xi, 0) and fi = U(xi, 0), we obtain Ai by solving the following system of linear
equations for ~A = (A1, · · · , AI)

T

E ~A = ~F (32)

where ~F = (f1, · · · , fI)
T , E = [Ei,j ] and Ei,j = exp [iτ0(xj ;xi)/~] ∆x. Following the same argument

as in the previous section, we use ε = O(~/∆x2) which resolves the Gaussian using a fixed number
of grid points.

A similar decomposition has been widely used in the radial basis function method for multivari-
ate approximation. We refer interested readers to [3] for more analysis on properties of the matrix
E . In terms of a more general framework, these coefficients ~A can be found using the following
projection such that for k = 1, · · · , I
∫

U(xj , 0) exp

(

iτ0(xj ;xk)

~

)

dxj =

∫

∆x
∑

i

A(xi, 0) exp

(

iτ0(xj ;xi)

~

)

exp

(

iτ0(xj ;xk)

~

)

dxj .

(33)

2.2.3 Initializing by semi-classical Fourier transform

Applying the semi-classical Fourier transform to the initial wave function U(x, 0) = U0(x), we have

Û(p, 0; ~) =
1

(2π~)n/2

∫ +∞

−∞
U0(x) exp

(−ip · x
~

)

dx . (34)

Then the following system will be solved to obtain ingredients for beam propagation:

ẋ = Hp, x|t=0 = x0,

ṗ = −Hx, p|t=0 = p0,

τ̇ =
1

2
p2 − V (x), τ |t=0 = x0 · p0,

Ḃ = −HT
xpB −HxxC, B|t=0 = iεI,

Ċ = HppB +HpxC, C|t=0 = I,

Ȧ = −1

2
trace(BC−1) A, A|t=0 = Û(p0, 0; ~). (35)

Thus, the asymptotic solution to the Schrödinger equation is obtained by integrating all the
beams parametrized by the initial point (x0, p0),

U(x, t) =

(

ε1/2

2π~

)n
∫

p0

∫

x0

Ψ(x, t;x0, p0)dx0 dp0 , (36)
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where Ψ is the contribution from a single Gaussian beam defined as in (19).
It is easy to verify that at t = 0 we recover the initial data in the case when the initial phase

function is linear in x. Since

Ψ(x, 0;x0, p0) = Û(p0, 0) exp

(

i
τ(x, 0;x0, p0)

~

)

, (37)

where

τ(x, 0;x0, p0) = x0 · p0 + p0 · (x− x0) +
iε

2
(x− x0)

T (x− x0) , (38)

we have

U(x, 0) =

(

ε1/2

2π~

)n
∫

p0

∫

x0

Ψ(x, 0;x0, p0)dx0 dp0

=

(

ε1/2

2π~

)n
∫

p0

∫

x0

Û(p0, 0) exp

[

i

(

p0 · x+ iε
2 |x− x0|2
~

)]

dx0 dp0

=
1

(2π~)n/2

∫

p0

Û(p0, 0) exp
(

i
p0 · x

~

)

dp0

= U0(x) .

A similar initialization has been used in modeling mountain waves in [36].

2.2.4 Initializing by the Fourier-Bros-Iagolnitzer (FBI) transform

The Fourier-Bros-Iagolnitzer (FBI) transform [22] provides another approach for decomposing the
initial data into Gaussians. The FBI transform is defined by the following formula:

Û(x, p; ~) = T U0 = αn,~ exp

(

− p2

2~

)
∫

y
exp

[

−(x− ip− y)2

2~

]

U0(y)dy , (39)

with the normalization constant given by

αn,~ = 2−n/2(π~)−3n/4 . (40)

The main advantage of the FBI transform over the Fourier transform is that this transform can
provide information simultaneously about the local behavior of U0 and that of its semi-classical
Fourier transform, namely, the microlocal behavior of the function U0 [22]. Therefore, the FBI
transform provides a micro-localized representation for U0 in phase space so that the total number
of beams in phase space can be reduced as we will see in numerical examples.

To construct beams, we solve the following system to obtain ingredients for beam propagation:

ẋ = Hp, x|t=0 = x0,

ṗ = −Hx, p|t=0 = p0,

τ̇ =
1

2
p2 − V (x), τ |t=0 = 0,

Ḃ = −HT
xpB −HxxC, B|t=0 = iI,

Ċ = HppB +HpxC, C|t=0 = I,

Ȧ = −1

2
trace(BC−1) A, A|t=0 = Û(x0, p0; ~). (41)
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The asymptotic solution to the Schrödinger equation is obtained by integrating all the beams
parametrized by the initial point (x0, p0),

U(x, t) = αn,~

∫

x0

∫

p0

Ψ(x, t;x0, p0)dx0dp0 . (42)

It is easy to show that at t = 0 we recover the initial data. Since

Ψ(x, 0;x0, p0) = Û(x0, p0; ~) exp

(

i
τ(x, 0;x0, p0)

~

)

(43)

where

τ(x, 0;x0, p0) = p0 · (x− x0) +
i

2
(x− x0)

T (x− x0) , (44)

we have

U(x, 0) = αn,~

∫

x0

∫

p0

Ψ(x, 0;x0, p0)dx0dp0

= αn,~

∫

x0

∫

p0

Û(x0, p0; ~) exp

[

− i

~
(x0 − x) · p0 −

(x0 − x)2

2~

]

dx0dp0

= T ∗T U0

= U0 .

Here we have used a property of FBI transform [22]: T ∗T = I under some appropriate conditions.
To the best of our knowledge, initializing beam propagation by the FBI transform is new.

2.3 Numerical Methods

2.3.1 A Numerical FBI Transform

For some simple cases, we can analytically compute the integral (39). However, it is generally
difficult to find the closed form of Û for an arbitrary U0. In this section, we will discuss how
to numerically evaluate the integral. In fact, the FBI transform is related closely to the Gabor
transform

GU0(x)(x, p) =

∫ ∞

−∞
exp(−π(y − x)2) exp(−2πip · y)U0(y)dy (45)

by

Û(x, p, ~) = αn,~

√
2π~ exp

(

ix · p
~

)

GU0(x/
√

2π~)

(√
2π~x,

√
2π~p

)

. (46)

It is still an active research area to develop a fast discrete Gabor transform [31, 37]. Therefore in
this paper, instead of applying these newly developed methods, we simply implement the following
O(n3) algorithm to embed the one-dimensional initial wave function in the phase space using the
FBI transform.

We assume that U0 has compact support and we denote Ui = U0(xi) at the grid points xi for
i = 1, · · · , I. Consider an equivalent form of the FBI transform,

Û = T U0 = αn,~

∫

y
exp

[

−(x− y)2

2~
+
p · (x− y)i

~

]

U0(y)dy , (47)
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One way to determine Û(xi′ , pj′ ; ~) is to approximate the above integral using the midpoint quadra-
ture,

Û(xi′ , pj′ ; ~) = αn,~∆x
I
∑

j=1

exp

[

−(xi′ − xj)
2

2~
+
pj′ · (xi′ − xj)i

~

]

Uj (48)

for each individual (xi′ , pj′). In MATLAB, we do not implement this in a point-by-point fashion.
For a one dimensional numerical FBI transform, we first construct two matrices A and B with each
entry given by −(xi′ −xj)

2/2~ and i(xi′ −xj)/~, respectively. These two matrices are independent
of pj′ and are stored separately from the integration routine. Then, for each pj′ we construct the

matrix exp(A + pj′B) and multiply it by the vector u containing U0(xi′). This gives Û(xi′ , pj′ ; ~)
for all i′ = 1, · · · , I for a fixed pj′.

The above approximation converges to the exact solution as ∆x→ 0. However, in practice, we
have to avoid the aliasing error as in the numerical Fourier transform. For simplicity, we consider
the one-dimensional case where U0(y) is real. We first rewrite (39) into

T U0 = αn,~ exp

(

ixp

~

)
∫

y
exp

[

−(x− y)2

2~

]

exp

[

− iyp
~

]

U0(y)dy . (49)

To well-sample the oscillations from exp(−iyp/~), we require

max(−pmin, pmax)∆x

~
<
π

2
, (50)

which implies p ∈ (−~π/2∆x, ~π/2∆x).
One possible improvement to the current approach is to truncate the Gaussians in the kernel

and limit the evaluation of the integral in a small neighborhood of each x. For instance, the
matrix exp(A) can be approximated by a sparse matrix by ignoring those off-diagonal entries when
(xi′ − xj) is significantly large. Presumably, this will reduce the computational complexity from
O(n3) to O(n2 log n); however, this is left for future work.

2.3.2 Algorithm: LGB-AD

Here we summarize the Lagrangian Gaussian Beam summation algorithm for solving the one-
dimensional Schrodinger equation by initializing beams based on the asymptotic decomposition
(AD). It is relatively straight-forward to generalize the algorithm to higher dimensions or use
different initialization for beam propagation.

Algorithm 1: LGB-AD

1. Discretize the computational domain

xi = xmin + (i− 1)∆x , i = 1, 2, · · · , I
pi = p(xi) = τ ′

0
(xi) , i = 1, 2, · · · , I

tk = t0 + k∆t , k = 1, 2, · · · ,K , (51)

where ∆x = (xmax − xmin)/(I − 1) and ∆t = (tf − t0)/K. Initialize ε.
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2. At a fixed t = tk, for each i′ = 1, · · · , I ,

(a) solve the ray tracing system (11-16) if A0(xi′) 6= 0 using the initial conditions

x(t = t0) = xi′

p(t = t0) = pi′

τ(t = t0) = τ̃ ′0(xi′ )

A(t = t0) = A0(xi′ )

B(t = t0) =
∂2τ0(xi′ )

∂x2
+ iεI

C(t = t0) = I . (52)

(b) for each ĩ = 1, · · · , Ĩ, compute

Ψ(xĩ, tk;xi′ , pi′) = A(tk) exp

(

iτ(xĩ, tk)

~

)

(53)

where

τ(xĩ, tk) = τ(tk) + p(tk)(xĩ − x(tk)) +
1

2
(xĩ − x(tk))T (B(tk)C(tk)−1)(xĩ − x(tk)) . (54)

3. Sum up the individual wave function. For each ĩ = 1, · · · , Ĩ ,

U(xĩ, tk) = c(ε, ~, n)∆x

I
∑

i′=1

Ψ(xĩ, tk;xi′ , pi′) . (55)

Theoretically, (17) is the exact solution to the transport equation for the amplitude. However,
since C(t;x0, p0) is complex, we have to choose the correct branch for the square root in (17) so
that A(t;x0, p0) is continuous along the characteristics. Therefore, it is easier to directly solve (16)
which will automatically determine the continuous solution in time.

As described above, we approximate the integral in the Gaussian beam summation using the
midpoint quadrature. We discretize the x−direction of the phase space using a mesh with grid
size ∆x. This resolution is chosen solely according to the accuracy in the solution. The finer
the discretization, the better the approximation will be in calculating the Gaussian summation
integral using the midpoint rule. Further, in the cases when we pick ε = ~/∆x2, this mesh size
also contributes an error of O(∆x) to the asymptotic decomposition of the initial wave function.
This accuracy requirement is different from the resolution requirement. To visualize the solution,
we have to sample the continuous solution U(x, t), (20), defined for all x ∈ R

n. These sampling
locations might be different from those grid locations we used to discretize the x−direction in
the phase space. In general, both the number and the locations of these sampling points can be
arbitrary. However, to resolve fine oscillations in the solution, we have to sample the solution on a
mesh which is finer than the scale of those oscillations. This is a requirement imposed only on the
visualizing step. To distinguish these sampling points from the discretization points xi, we have
denoted them by xĩ in the above algorithm.
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When we initialize beam propagation in phase space using one of the transforms, we only modify
the above algorithm by discretizing the p-direction using pj = pmin + (j − 1)∆p, then shoot more
rays, and sum more beams with a summation of j ′ from 1 to J in the last step.

In terms of numerical implementation, the initial beams in the Lagrangian formulation are
uniformly distributed over phase space, while the beam locations at the final time are not uniformly
distributed. Since we have no control of these beam locations, it is generally difficult to determine
the size of the computational domain and the total number of beams used.

3 Eulerian Gaussian Beams (EGB)

3.1 Formulations

By the level set methodology we embed the ray tracing system into the Liouville equation in phase
space. Let φ(x, p, t) ∈ R

n, ψ(x, p, t) ∈ R
n, and T (x, p, t) ∈ R

1. We have the following level set
equations and the phase equation,

φt +Hp · φx −Hx · φp = 0, φ(x, p, 0) = x,

ψt +Hp · ψx −Hx · ψp = 0, ψ(x, p, 0) = p,

Tt +Hp · Tx −Hx · Tp =
1

2
p2 − V (x), T (x, p, 0) = τ0(x). (56)

Similarly we have the equations for A, B and C.

At +Hp ·Ax −Hx ·Ap = −1

2
trace(BC−1)A, A|t=0 = A0(x, p),

Bt +Hp ·Bx −Hx ·Bp = −HT
xpB −HxxC, B|t=0 = B0(x, p),

Ct +Hp · Cx −Hx · Cp = HppB +HpxC, C|t=0 = I. (57)

The initial conditions for functions A and B are specified according to how the initial wave
function is decomposed into a summation of Gaussians. If we initialize beam propagation by
the FBI transform, then we set B0(x, p) = iI and A0(x, p) = Û(x, p; ~). If we initialize beam
propagation by the asymptotic decomposition or the pointwise matching decomposition, then we
set B0(x, p) = ∂2 τ̃0

∂x2 (x) + iεI and A0(x, p) = A0(x).
Now we have all the ingredients for constructing Eulerian Gaussian beams. If the beam propa-

gation is initialized by the Fourier transform or the FBI transform, the asymptotic solution is given
by

U(x, t) = c(ε, ~, n)

∫

p′

∫

x′

Ψ(x, t;x′, p′)∆(x0, p0;x
′, p′, t)dx′dp′ . (58)

where

Ψ(x, t;x′, p′) = A(x′, p′, t) exp

[

i
1

~
τ(x, t;x′, p′)

]

, (59)

τ(x, t;x′, p′) = T (x′, p′, t) + p′ · (x− x′) +
1

2
(x− x′)T (BC−1)(x− x′) , (60)
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and ∆(x0, p0;x
′, p′, t) is the Jacobian of the map (x′, p′) → (x0, p0), where (x0, p0) refers to the

initial values of the level sets φ and ψ arriving at (x′, p′) at time t. Moreover, the Jacobian of the
map (x0, p0) → (x′, p′) satisfies the conservation law

∆t + (Hp∆)x − (Hx∆)p = 0, ∆t=0 = 1, (61)

and it follows that ∆(x0, p0;x
′, p′, t) ≡ 1. This implies that the asymptotic solution is simply given

by

U(x, t) = c(ε, ~, n)

∫

p′

∫

x′

Ψ(x, t;x′, p′)dx′dp′ . (62)

On the other hand, if the beam propagation is initialized by the asymptotic decomposition or
the pointwise matching decomposition, we extract the necessary information by looking into the
zero level set defined by

{(x, p) : ψ(x, p, t) − ∂τ̃0[φ(x, p, t)]/∂x = 0} . (63)

For simplicity of notations, we will below use τ̃ ′0 to denote ∂τ̃0
∂x . Then the wave function can be

computed by

U(x, t) = c(ε, ~, n)

∫

p′

∫

x′

Ψ(x, t;x′, p′)δ[ψ(x′, p′, t) − τ̃ ′0(φ(x′, p′, t))]dx′dp′, (64)

To avoid discretizing the δ-function, we will use the properties of the δ-function to simplify the
above integral; such a technique has been used in [4]. We will first consider the case of n = 1, and
we will comment on the case of n ≥ 2. If n = 1, we first explicitly determine the set of points where
the zero level set intersects with the grid lines, i.e.

Γ = {(x, p) : ψ(xi, p) = τ̃ ′0[φ(xi, p)] or ψ(x, pj) = τ̃ ′0[φ(x, pj)] for i = 1, · · · , I, j = 1, · · · , J .} ; (65)

then we interpolate all necessary ingredients at these locations and the wave function can be
integrated by

U(x, t) = c(ε, ~, n)
∑

Γ

∆φ(Γ)Ψ(x, t; Γ), (66)

where the weight ∆φ(Γ) (the Jacobian) is computed by taking the difference in the take-off value of
x between two adjacent beams, as shown in Figure 1. A similar approach has been developed in [17]
in the context of solving the Helmholtz equation in the high frequency regime. Such an approach
can be generalized to n ≥ 2 in the following way. Assuming that x ∈ R

n, we first determine a set
of points Γ in phase space R

2n which samples the zero level set. For example, this can be done by
the isosurfacing algorithm presented in [26]. In higher dimensions, since the initial implicit surface
{(x, p) : p = ∇τ̃0(x)} can be parameterized by x ∈ R

n, we can apply the summation formula (66)
accordingly.

We remark that even though the Lagrangian formulation (20) and the Eulerian formulation
(62) are theoretically equivalent to each other, there are multiple advantages of the above Eulerian
formulation. The first advantage is that we have uniform resolution of beam distribution, so that
the Gaussian beam summation will have uniform resolution as well. The second advantage is that
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Figure 1: Eulerian Gaussian Beam with the initial wave function decomposed using the asymptotic
decomposition or the pointwise matching decomposition. The set of sampling points Γ are shown
in blue dots. The useful level set is plotted using a black solid line.

we can generate wave functions under the same external potential with different initial profiles by
slightly modifying the solution from the amplitude equation in (57). The idea is to use Lemma
2.2 which essentially means that the amplitude at t > 0 is proportional to the initial condition A0.
Using this relation, we have

Anew(xi, pj , tk) = Aold(xi, pj , tk)
Anew

0 (φ(xi, pj , tk), ψ(xi, pj , tk))

Aold
0 (φ(xi, pj , tk), ψ(xi, pj, tk))

, (67)

where Aold is the solution obtained by using the initial condition Aold
0 from the previous initial

wave function, and Anew is the new amplitude solution with a different initial wave function.

3.2 A Preliminary Numerical Method

We give the Eulerian Gaussian Beam summation algorithm for constructing wave functions when
the beam propagation is initialized by either the Fourier transform or the FBI transform. It is
straight-forward to generalize this algorithm to other initializations or problems in higher dimen-
sions.

Algorithm 2: EGB-Tran-PDE:

1. Discretize the computational domain

xi = xmin + (i− 1)∆x , ∆x =
xmax − xmin

I − 1
, i = 1, 2, · · · , I

pj = pmin + (j − 1)∆p , ∆p =
pmax − pmin

J − 1
, j = 1, 2, · · · , J
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tk = t0 + k∆t , ∆t =
tf − t0
K

, k = 1, 2, · · · ,K , (68)

and initialize ε and all functions φi,j,0, ψi,j,0, Ti,j,0, Ai,j,0, Bi,j,0 and Ci,j,0 according to (56-57).

2. Solve the Liouville equations according to (56-57). For each i = 1, · · · , I , j = 1, · · · , J and k = 2, · · · ,K,
determine

φ(xi, pj , tk) , ψ(xi, pj , tk) , T (xi, pj , tk) , A(xi, pj , tk) , B(xi, pj , tk) , C(xi, pj , tk) . (69)

3. Construct the individual wave function. At a fixed t = tk, for each i′ = 1, · · · , I and j′ = 1, · · · , J , compute

Ψ(xĩ, tk;xi′ , pj′) = A(xi′ , pj′ , tk) exp

[

iτ(xĩ, tk;xi′ , pj′)

~

]

(70)

where

τ(xĩ, tk;xi′ , pj′) = T (xi′ , pj′ , tk) + pj′ · (xĩ − xi′)

+
1

2
(xĩ − xi′ )

T (B(xi′ , pj′ , tk)C(xi′ , pj′ , tk)−1)(xĩ − xi′ ) . (71)

4. Sum up the individual wave function. For each ĩ = 1, · · · , Ĩ ,

U(xĩ, tk) = c(ε, ~, n)∆x∆p
I
∑

i′=1

J
∑

j′=1

Ψ(xĩ, tk;xi′ , pj′) . (72)

Unfortunately, this algorithm has two main drawbacks. One is related to the accuracy. To obtain
accurate solution of the Liouville equations (56-57), we have to use a very fine computational grid
even though those PDEs are solved using a high-order numerical scheme such as WENO5-TVDRK3
[34]. Since the number of computational grids is essentially the same as the number of beams used
in sampling the integral, this underlying grid refinement might introduce unnecessary beams to
over-sample the solution.

Another drawback is related to the computational efficiency. Since the Liouville equations are
hyperbolic type, the marching step size is restricted by the CFL condition. The complexity of the
whole algorithm is O(n2d+1), where n is the number of grid points in each direction in phase space
and d is the dimension of physical space.

3.3 Semi-Lagrangian Methods (SL)

To improve accuracy and efficiency of the above algorithm, we follow [18, 17] which solve Liouville
equations (56-57) using a semi-Lagrangian method. This approach can be easily generalized to
higher dimensions. We apply the method of characteristics to the level set equations and the phase
equation, giving

Dφ

Dt
= 0 ,

Dψ

Dt
= 0 ,

DT

Dt
=

1

2
p2 − V (x) , (73)
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Figure 2: Eulerian Gaussian Beam computed using the semi-Lagrangian method.

where D/Dt is the material derivative defined by

D

Dt
=

∂

∂t
+Hp

∂

∂x
−Hx

∂

∂p
. (74)

At each grid point (xi, pj , tk) for i = 1, · · · , I, j = 1, · · · , J and k = 2, · · · ,K in the phase space,
one traces backward from t = tk to t = t0 along the characteristic by integrating dx

dt = Hp and
dp
dt = −Hx to obtain (x(t0), p(t0)). For the level set equations, we assign φ(xi, pj , tk) = x(t0) and
ψ(xi, pj , tk) = p(t0). For the phase equation, we use the reciprocal principle and integrate the
source term [p(t)2/2 − V (x(t))] along the characteristic to obtain T (xi, pj , tk).

As for A, B and C, we apply the method of characteristics and obtain

DA

Dt
= −1

2
trace(BC−1)A, A|t=0 = A0(φ(xi, pj , tk), ψ(xi, pj , tk)),

DB

Dt
= −HxpB −HxxC, B|t=0 = B0(φ(xi, pj, tk), ψ(xi, pj , tk)),

DC

Dt
= HppB +HxpC, C|t=0 = C0(φ(xi, pj, tk), ψ(xi, pj , tk)), (75)

with the initial conditions imposed on the level t = t0. In this case, we do not have the reciprocal
principle as for the phase equation anymore; we need to use the forward ray tracing to solve these
quantities along the same characteristic provided by the backward ray tracing. This means that
we first compute the ray trajectory by integrating dx

dt = Hp and dp
dt = −Hx backward in t, and then

we integrate (75) forward in t along the same characteristic, as shown in Figure 2.
In terms of numerical integration of the Hamiltonian system, we adopt a symplectic scheme.

Specifically, to preserves the symplectic structure of the Hamiltonian system,

q̇ = f(q, v)

v̇ = g(q, v) . (76)
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we adopt the following fourth order implicit Runge-Kutta method [5, 9]:

ki = f



qn + h

s
∑

j=1

aijkj , vn + h

s
∑

j=1

âijlj





li = g



qn + h
s
∑

j=1

aijkj, vn + h
s
∑

j=1

âijlj





qn+1 = qn + h

s
∑

i−1

biki

vn+1 = vn + h

s
∑

i−1

bili , (77)

where s = 2 and

[aij ] = [âij ] =

(

1/4 1/4 −
√

3/6

1/4 +
√

3/6 1/4

)

. (78)

and bi = 1/2.
Therefore, the accuracy in the solution now depends solely on the size of the time step ∆z but

independent of the number of grid points in discretizing the phase space, since we treat each of
these grid points independently. This allows us to use relatively small number of beams to sample
the solution, which in most cases are sufficient to give reasonable qualitative solution.

Algorithm 3: EGB-Tran-SL:

1. Discretize the computational domain

xi = xmin + (i− 1)∆x , ∆x =
xmax − xmin

I − 1
, i = 1, 2, · · · , I

pj = pmin + (j − 1)∆p , ∆p =
pmax − pmin

J − 1
, j = 1, 2, · · · , J

tk = t0 + k∆t , ∆t =
tf − t0
K

, k = 1, 2, · · · ,K (79)

and initialize ε.

2. Solve the Liouville equations backward in time according to (73). For each i = 1, · · · , I , j = 1, · · · , J and
k = 2, · · · ,K, determine

φ(xi, pj , tk) , ψ(xi, pj , tk) , T (xi, pj , tk) . (80)

3. Solve the Liouville equations forward in time along the same trajectory (x(t), p(t), t) according to (75).
For each i = 1, · · · , I , j = 1, · · · , J and k = 2, · · · ,K, if |A0(x(t0), p(t0))| 6= 0, determine

A(xi, pj , tk) , B(xi, pj , tk) , C(xi, pj , tk) . (81)
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4. Construct the individual wave function. At a fixed t = tk, for each i′ = 1, · · · , I and j′ = 1, · · · , J , compute

Ψ(xĩ, tk;xi′ , pj′ ) = A(xi′ , pj′ , tk) exp

(

iτ(xĩ, tk;xi′ , pj′)

~

)

(82)

where

τ(xĩ, tk;xi′ , pj′) = T (xi′ , pj′ , tk) + pj′ · (xĩ − xi′)

+
1

2
(xĩ − xi′ )

T (B(xi′ , pj′ , tk)C(xi′ , pj′ , tk)−1)(xĩ − xi′ ) . (83)

5. Sum up the individual wave function. For each ĩ = 1, · · · , Ĩ ,

U(xĩ, tk) = c(ε, ~, n)∆x∆p

I
∑

i′=1

J
∑

j′=1

Ψ(xĩ, tk;xi′ , pj′) . (84)

4 Complexity

In this section, we will compare the complexities of various methods. In particular, we will concen-
trate on solving the Schrödinger equation for s different initial wave functions or different ~ under
the same potential. For simplicity, we look at the one-dimensional case, i.e. d = 1. Let n be the
number of beams we used in each x- or p-direction. Therefore, the total number of beams is n if we
initialize beam propagation by the asymptotic decomposition or the pointwise matching decompo-
sition. The total number of beams is n2 if we initialize beam propagation by the FBI transform.
Let N be the number of points we used to visualize the solution. In general, we need at least
five grid points to visualize one wavelength and this implies N = O(1/~). Using the asymptotic
method, we would like to resolve the solution in much less computational cost so that n� N .

Since a fast discrete Gabor transform is not yet well-developed, in Tables 1 and 2, we estimate
the complexity for the FBI transform as β which should be somewhere in between O(n2) (total
number of coefficients) and O(n3) (our implementation).

When initializing beam propagation by the pointwise matching decomposition, we need to invert
a matrix of size n-by-n. The complexity of an exact direct solver is at most O(n3). However, since
n � N , the computational cost for this part is not significant in comparison to the cost of the
whole algorithm.

Table 1 shows the complexity of the Eulerian Gaussian beam approach. The evolution step
involves computing the characteristics (73) and (75). Since we have totally n2 grid points and the
stability condition requires ∆t = O(∆x), we have O(n3) operations. When the initial condition
is embedded as the zero level set of a level set function, we are required to extract the neces-
sary information. This requires interpolation and root-finding processes which has a complexity of
O(n log n). Since the FBI transform embeds the useful information everywhere, we do not need
to extract anything from the function φ and ψ. In the summation process, we compute the con-
tributions to N points from each of these O(n log n) or O(n2) beams, the complexity is therefore
O(Nn log n) or O(Nn2).

The most expensive part of the EGB algorithm is the evolution step. However, we can treat
this as a pre-processing step since all the information can be re-used if we compute another solution
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AD PM FBI

Wave function Decomposition n n3 β
Evolution n3 n3 n3

Extraction n log n n log n -
Summation Nn log n Nn log n Nn2

Total n3 +Nn log n n3 +Nn log n n3 + β +Nn2

Each Extra Wave function Nn log n n3 +Nn log n β +Nn2

Table 1: Complexity of various Eulerian Gaussian Beam algorithms.

FDCN sN 2

SP2 sN2 logN

LGB-AD s(n2 +Nn)
LGB-PM s(n3 +Nn)
LGB-FBI s(n3 + β +Nn2)

EGB-AD n3 + sNn log n
EGB-PM sn3 + sNn log n
EGB-FBI n3 + sβ + sNn2

Table 2: Complexity of various algorithms for solving s different initial wave functions or different
~.
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with a different initial wave function or a different ~ under the same potential. To each of such
extra initial wave functions, the complexity for finding the solution to the Schrödinger equation
depends only on the initial wave function decomposition, zero level set extraction (if necessary) and
a summation process. Let s be the total number of different initial wave functions under the same
potential. In Table 2, we compare the overall complexity of various algorithms. FDCN represents
the finite difference Crank-Nicolson method and SP2 corresponds to the Strang Splitting Spectral
method; see [2]. Even though the computational complexity of FDCN is slightly smaller than that
of SP2, SP2 uses N = O(1/~) grid points while FDCN requires N = O(1/~1.5) points to obtain a
physically correct solution.

5 Numerical Examples

We show some numerical examples to validate our algorithms. Since the wave function is an
auxiliary quantity used to compute primarily physical observables, such as the position density,

I(x, t) = |U(x, t)|2 , (85)

and the current density,
J(x, t) = ~ Im[U(x, t)∇U(x, t)] (86)

we will use these two quantities to justify our algorithms.
If an exact wave function for the Schrödinger equation is available, then we will use the resulting

position and current densities to justify our beam-based position and current densities. If an exact
wave function for the Schrödinger equation is not available, then we will use a direct numerical
method to solve the Schrödinger equation first to obtain an “exact” wave function and use the
resulting position and current densities to calibrate our beam solutions.

Here we will solve the Schrödinger equation by either the Crank-Nicolson scheme[2]

1

∆t

(

Un+1
j − Un

j

)

=
i~

4∆x2

(

Un+1
j−1 − 2Un+1

j + Un+1
j+1 + Un

j−1 − 2Un
j + Un

j+1

)

− i

2~
Vj

(

Un+1
j + Un

j

)

, (87)

where Un
j = U(xj , t

n) and Vj = V (xj), or the following Strang Splitting Spectral Method (SP2) [2]

U∗
j = exp[−iVjk/2~]Un

j

Û∗
l =

M−1
∑

j=0

U∗
j exp[−iµl(xj − xmin)]

U∗∗
j =

1

M

M/2
∑

l=−M/2

exp[−i~kµ2
l /2]Û

∗
l exp[iµl(xj − xmin)]

Un+1
j = exp[−iVjk/2~]U ∗∗

j , (88)

where µl = 2πl/(xmax−xmin) and j = 0, · · · , N . For a detailed analysis of these two finite difference
methods, we refer readers to [2].
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5.1 Example 1: Free-Space Gaussian with focusing

In this example, the initial wave function is in the form of a Gaussian with a nonlinear quadratic
phase, given by

U(x, t = 0) =
1

√

σ0

√
2π

exp

(

− x2

4σ2
0

)

exp

(

− ix
2

2~

)

, (89)

where σ0 = 0.1 and ~ = 2π/1024.
We have plotted the ray trajectories in Figure 3(a) for beam evolution initialized by the asymp-

totic decomposition or the pointwise matching decomposition; all rays converge and form a caustic
at t = 1. When we look at the terminal locations of the bicharacteristics in the x-p space at t=0.5
(Figure 3(b)), t=1.0 (Figure 3(c)), and t=2.0 (Figure 3(d)) we can see that the p-component of
the terminal location as a function of the x-component changes from a single-valued function to a
multi-valued function to a single-valued function.

Concerning the initial wave function decomposed using the FBI transform, we have shown the
magnitude of the function A0(x, p) = T U0 in Figure 4. Unlike the Fourier transform where the
coefficients spread all over the phase space, the FBI transform provides a microlocalized represen-
tation in phase space. Since in this case we only shoot out beams if |A0| is non-zero, the number
of beams we use to represent the initial wave function is much less than that in the case of using
the Fourier transform.

To validate our algorithms in treating caustics, we compare the beam solutions with the finite-
difference solution in terms of the position density as shown in Figures 5 to 9. In the beam
computation we discretize the x-p space by a uniform 257×257 mesh and initialize the beams
by four different strategies: (a) the asymptotic decomposition with ε = 1, (b) the asymptotic
decomposition with ε = ~/∆x2, (c) the pointwise matching decomposition with ε = ~/∆x2, and
(d) the FBI transform with ε = 1. The finite-difference solution is obtained by directly applying the
Crank-Nicolson scheme to the Schrödinger equation with a mesh of N=215 and ∆t=10−4. Since the
solution is smooth before and after the caustic, the differences between the finite-difference position
density and the beam-based position density are not visible in Figures 5 and 7. If, however, we
zoom in the peak regions, then we will see the differences as shown in Figures 6 and 8. At t=1, we
have a caustic, and Figure 9 shows the beam solutions based on different initialization strategies.

5.2 Example 2: Simple Harmonic Oscillator

The simple harmonic oscillator has an external potential,

V (x) =
1

2
ω2 x2, (90)

where ω is the potential’s natural angular frequency of oscillation. Consider the following one-
dimensional wave packet

U(x, t = 0) =
( ω

π~

)1/4
exp

(

−ω(x− x̄)2

2~

)

exp

(

ip̄x

~

)

. (91)

This is a minimum wave packet [25] (page 446): it represents a particle with unit mass localized
in configuration space about its mean position x̄ with a root-mean-square deviation ∆x =

√

~/2ω
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Figure 3: (Example 5.1) The initial wave function is decomposed using the asymptotic decom-
positions or the pointwise matching decomposition. (a) Rays in the x-t space. (b) The terminal
locations of bicharacteristics in the x-p space at t = 0.5. (c) The terminal locations of bicharacter-
istics in the x-p space at t = 1.0. (d) The terminal locations of bicharacteristics in the x-p space
at t = 2.0.
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Figure 4: (Example 5.1) Contour plot of |A0| obtained by embedding the initial wave function in
the phase space using the FBI transform.

and localized in momentum space about its mean position p̄ with a root-mean-square deviation
∆p =

√

~ω/2.
When this particle is subject to the harmonic oscillation, it can be shown that such a packet

retains minimum size in the course of time and that it oscillates with a frequency ω. Moreover, the
wave packet evolves according to the following form

U(x, t) =
( ω

π~

)1/4
exp

(

−ω(x− x̄t)
2

2~

)

exp

(

ip̄tx

~

)

(92)

where p̄t ad x̄t are the mean values of p and x at time t. Here we remark that p̄t and x̄t are given
by the classical trajectory (or the central ray) in the beam construction. Moreover, the current
density is given by

I(x, t) =
( ω

π~

)1/2
exp

(

−ω(x− x̄t)
2

~

)

. (93)

We have computed the evolution of a Gaussian packet for t = 2 with ~ = 0.01 and p̄ = −0.5
under a harmonic potential of ω = 2. Figure 10 shows the errors in position densities computed by
the Eulerian Gaussian beams according to different initialization strategies.

5.3 Example 3: smooth solution with a constant potential

This example is taken from [20, 2]. The background potential is taken to be V (x) = 100 and the
initial condition is given by

U(x, t = 0) = exp
[

−25(x− 0.5)2
]

exp

[

iτ̃0(x)

~

]

(94)

where
τ̃0(x) = 0.2(x2 − x) . (95)
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Figure 5: (Example 5.1) Comparison of the position density at t = 0.5 (before caustic) computed
by the Crank-Nicolson scheme and Eulerian Gaussian beams for h = 1/1024. The Crank-Nicolson
position density is computed with a mesh N = 215 and ∆t = 10−4. (a) The asymptotic decompo-
sition with ε = 1, (b) the asymptotic decomposition with ε = ~/∆x2, (c) the pointwise matching
decomposition with ε = ~/∆x2, and (d) the FBI transform with ε = 1.
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Figure 6: (Example 5.1) A zoom in of figure 5. Comparison of the position density at t = 0.5 (before
caustic) computed by the Crank-Nicolson scheme and Eulerian Gaussian beams for h = 1/1024.
The Crank-Nicolson position density is computed with a mesh N = 215 and ∆t = 10−4. (a) The
asymptotic decomposition with ε = 1, (b) the asymptotic decomposition with ε = ~/∆x2, (c) the
pointwise matching decomposition with ε = ~/∆x2, and (d) the FBI transform with ε = 1.
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Figure 7: (Example 5.1) Comparison of the position density at t = 2.0 (after caustic) computed
by the Crank-Nicolson scheme and Eulerian Gaussian beams for h = 1/1024. The Crank-Nicolson
position density is computed with a mesh N = 215 and ∆t = 10−4. (a) The asymptotic decompo-
sition with ε = 1, (b) the asymptotic decomposition with ε = ~/∆x2, (c) the pointwise matching
decomposition with ε = ~/∆x2, and (d) the FBI transform with ε = 1.
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Figure 8: (Example 5.1) A zoom in of figure 7. Comparison of the position density at t = 2.0 (before
caustic) computed by the Crank-Nicolson scheme and Eulerian Gaussian beams for h = 1/1024.
The Crank-Nicolson position density is computed with a mesh N = 215 and ∆t = 10−4. (a) The
asymptotic decomposition with ε = 1, (b) the asymptotic decomposition with ε = ~/∆x2, (c) the
pointwise matching decomposition with ε = ~/∆x2, and (d) the FBI transform with ε = 1.
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Figure 9: (Example 5.1) The position density at t = 1.0 (at caustic) for h = 1/1024 with the initial
wave function decomposed using (a) the asymptotic decomposition with ε = 1, (b) the asymptotic
decomposition with ε = ~/∆x2, (c) the pointwise matching decomposition with ε = ~/∆x2, and
(d) the FBI transform with ε = 1.
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Figure 10: (Example 5.2) The errors in the position density using Eulerian Gaussian beams with
129 grid points in each direction of the phase space. The initial wave function is decomposed using
(a) the asymptotic decomposition with ε = 1, (b) the asymptotic decomposition with ε = ~/∆x2,
(c) the pointwise matching decomposition ε = ~/∆x2, and (d) the FBI transform with ε = 1.
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We compare the beam based solutions with the Crank-Nicolson finite-difference solutions at t=0.54.
In terms of beams we use a uniform mesh of 257 × 257 grid points to discretize the x-p space. In
terms of the Crank-Nicolson finite-difference scheme we use a uniform mesh of N=24576 and a
time step of ∆t = 10−5. We illustrate the behavior of our algorithms as h tends to zero.

Figure 11 shows the comparison of position densities computed by the two methods, where the
beam solutions are based on the asymptotic decomposition with ε = 1 and ε = ~/∆x2. As we can
see in the figure, the asymptotic decomposition with ε = ~/∆x2 is more accurate than that with
ε = 1. Although the beam solution is Figure 11 (f) has some tiny oscillations, which are due to
insufficient number of beams, those oscillations can be removed if we increase the number of beams
as will be shown in a late example.

Figure 12 shows the comparison of position densities computed by the two methods, where the
beam solutions are based on the pointwise matching decomposition with ε = ~/∆x2 or the FBI
based decomposition with ε = 1. Overall the FBI based beam summation is more accurate than
the pointwise matching decomposition based beam summation since the former uses much more
beams than the latter.

5.4 Example 4: smooth solution with a quadratic potential

We borrow another example from [2]. The initial wave function has the same form as equation
(94) with a linear initial phase function τ̃0(x) = x+1. The external potential is harmonic given by
V (x) = x2/2.

We compare the beam based solutions with the time-splitting spectral finite-difference solutions
(SP2) at t=0.54. In terms of beams we use a uniform mesh of 257×257 grid points to discretize the
x-p space. In terms of the time-splitting spectral finite-difference scheme we use a uniform mesh of
N=1024 and a time step of ∆t = 10−2. We illustrate the behavior of our algorithms for ~ = 1/400
and ~ = 1/6400, respectively.

Figure 13 compares the solutions ~ = 1/400 obtained by the SP2 scheme and the beam solutions
based on four different approaches to initialize the beams. As we can see, the FBI based beam
solution has the best behavior among the four beam solutions.

Figure 14 compares the solutions ~ = 1/6400 obtained by the SP2 scheme and the beam
solutions based on four different approaches to initialize the beams. As we can see, although
all the four beam solutions approximate the “true” solution reasonably well, there are some tiny
oscillations. However, those oscillations are gone if we increase the number of beams as shown in
Figure 15.

5.5 Example 5: caustics

This example is also taken from [20, 2]. The background potential is given by V (x) = 10 and the
initial wave function has the same form as equation (94) with the initial phase function τ̃0(x) given
by

τ̃0(x) = −1

5
ln [exp(5(x− 0.5)) + exp(−5(x− 0.5))] . (96)

As illustrated in [20, 2], caustics will form in this example as shown in Figure 16. For example,
when initializing beams based on the asymptotic decomposition, initially only one ray departs from
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Figure 11: (Example 5.3) Comparison of the position densities computed by the Crank-Nicolson
scheme and Eulerian Gaussian beams based on the asymptotic decomposition for the initial con-
dition. The Crank-Nicolson position density is computed with a mesh N = 24576 and ∆t = 10−5.
(a) ε = 1 and ~ = 1/256, (b) ε = ~/∆x2 and ~ = 1/256, (c) ε = 1 and ~ = 1/1024, (d) ε = ~/∆x2

and ~ = 1/1024, (e) ε = 1 and ~ = 1/4096, and (f) ε = ~/∆x2 and ~ = 1/4096.
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Figure 12: (Example 5.3) Comparison of the position densities computed by Eulerian Gaussian
beams and the Crank-Nicolson scheme. The Crank-Nicolson position density is computed with a
mesh N = 24576 and ∆t = 10−5. (a) The pointwise matching decomposition with ε = ~/∆x2

and ~ = 1/256, (b) the FBI transform based decomposition with ε = 1 and ~ = 1/256, (c)
the pointwise matching decomposition with ε = ~/∆x2 and ~ = 1/1024, (d) the FBI transform
based decomposition with ε = 1 and ~ = 1/1024, (e) the pointwise matching decomposition with
ε = ~/∆x2 and ~ = 1/4096, and (f) the FBI transform based decomposition with ε = 1 and
~ = 1/4096.
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Figure 13: (Example 5.4) Comparison of the position densities computed by Eulerian Gaussian
beams and the SP2 scheme for ~ = 1/400. The Gaussian-beam position density is computed
with a uniform 257 × 257 mesh in the phase space. The SP2 position density is computed with
a mesh N = 210 and ∆t = 2 × 10−2. The initial condition is obtained by (a) the asymptotic
decomposition with ε = 1, (b) the asymptotic decomposition with ε = ~/∆x2, (c) the pointwise
matching decomposition with ε = ~/∆x2, and (d) the FBI transform with ε = 1.
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Figure 14: (Example 5.4) Comparison of the position densities computed by Eulerian Gaussian
beams and the SP2 scheme for ~ = 1/6400. The Gaussian-beam position density is computed
with a uniform 257 × 257 mesh in the phase space. The SP2 position density is computed with
a mesh N = 210 and ∆t = 2 × 10−2. The initial condition is obtained by (a) the asymptotic
decomposition with ε = 1, (b) the asymptotic decomposition with ε = ~/∆x2, (c) the pointwise
matching decomposition with ε = ~/∆x2, and (d) the FBI transform with ε = 1.
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Figure 15: (Example 5.4) Comparison of the position densities computed by Eulerian Gaussian
beams and the SP2 scheme for ~ = 1/6400. The Eulerian Gaussian-beam position density is
computed with a uniform 513×513 mesh in the phase space. The SP2 position density is computed
with a mesh N = 210 and ∆t = 2 × 10−2. The initial condition is obtained by (a) the asymptotic
decomposition with ε = 1, (b) the asymptotic decomposition with ε = ~/∆x2, (c) the pointwise
matching decomposition with ε = ~/∆x2, and (d) the FBI transform with ε = 1.
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Figure 16: (Example 5.5) The initial wave function is decomposed using the asymptotic decompo-
sitions or the pointwise matching decomposition. (a) Initial locations of bicharacteristics in the x-p
space, and (b) terminal locations of bicharacteristics in the x-p space.

each physical location x with a corresponding ray parameter p as illustrated in Figure 16(a), we
plot the derivative of the phase function τ̃0(x); however, at a later time there are three rays arriving
at some physical locations x with three different ray parameters p as illustrated in Figure 16(b).

We compare the beam based solutions with the Crank-Nicolson finite-difference solutions at
t=0.54. In terms of beams we use a uniform mesh of 257 × 257 grid points to discretize the x-p
space. In terms of the Crank-Nicolson finite-difference scheme we use a uniform mesh of N=32768
and a time step of ∆t = 10−5. We illustrate the behavior of our algorithms as h tends to zero.

Since the initial condition is not represented well using the asymptotic decomposition with ε = 1,
the solutions show large errors, as shown in Figure 17. Because the errors made in initializing the
beams converges to zero in the order of O(~), the accuracy does improve as ~ decreases.

The solutions are significantly improved when initializing the beams using the asymptotic de-
composition with ε = ~/∆x2, as shown in Figure 18. As ~ decreases, given the uniform mesh
we will not have enough beams to resolve tiny scales of the oscillations; therefore, the errors for
~ = 1/1024 are larger than those in the other two cases (~ = 1/64 or ~ = 1/256).

Figures 19 and 20 compare the Crank-Nicolson finite-difference solutions with the beam so-
lutions based on the pointwise matching decomposition and the FBI decomposition, respectively.
Overall the FBI based beam summation is more accurate than the pointwise matching decomposi-
tion based beam summation since the former uses much more beams than the latter.

6 Conclusions

We propose Gaussian-beam based Eulerian methods to compute semi-classical solutions of the
Schrödinger equation. A new Eulerian framework uses global Cartesian coordinates, level-set based
implicit representation and Liouville equations. The resulting method gives uniformly distributed
phases and amplitudes in phase space simultaneously. To obtain semi-classical solutions to the
Schrödinger equation with different initial wave functions, we only need to slightly modify the



Eulerian Gaussian Beams for Schrödinger Equations in the Semi-Classical Regime 39

(a)
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

 x

 I

 

 

GB
CN

(b)
0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 x

 J

 

 

GB
CN

(c)
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

 x

 I

 

 

GB
CN

(d)
0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 x

 J

 

 

GB
CN

(e)
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

 x

 I

 

 

GB
CN

(f)
0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 x

 J

 

 

GB
CN

Figure 17: (Example 5.5) Comparison of the position densities computed by Eulerian Gaussian
beams and the Crank-Nicolson scheme. The Eulerian Gaussian beam is based on the asymptotic
decomposition for the initial condition with ε = 1. The Crank-Nicolson position density is computed
with a mesh N = 215 and ∆t = 10−5. (a) The position densities with ~ = 1/64; (b) the current
densities with ~ = 1/64; (c) the position densities with ~ = 1/256; (d) the current densities with
~ = 1/256; (e) the position densities with ~ = 1/1024; (f) the current densities with ~ = 1/1024.
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Figure 18: (Example 5.5) Comparison of the position densities computed by Eulerian Gaussian
beams and the Crank-Nicolson scheme. The Eulerian Gaussian beam is based on the asymptotic
decomposition for the initial condition with ε = ~/∆x2. The Crank-Nicolson position density is
computed with a mesh N = 215 and ∆t = 10−5. (a) The position densities with ~ = 1/64; (b)
the current densities with ~ = 1/64; (c) the position densities with ~ = 1/256; (d) the current
densities with ~ = 1/256; (e) the position densities with ~ = 1/1024; (f) the current densities with
~ = 1/1024.
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Figure 19: (Example 5.5) Comparison of the position densities computed by Eulerian Gaussian
beams and the Crank-Nicolson scheme. The Eulerian Gaussian beam is based on the pointwise
matching decomposition for the initial condition with ε = ~/∆x2. The Crank-Nicolson position
density is computed with a mesh N = 215 and ∆t = 10−5. (a) The position densities with ~ = 1/64;
(b) the current densities with ~ = 1/64; (c) the position densities with ~ = 1/256; (d) the current
densities with ~ = 1/256; (e) the position densities with ~ = 1/1024; (f) the current densities with
~ = 1/1024.
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Figure 20: (Example 5.5) Comparison of the position densities computed by Eulerian Gaussian
beams and the Crank-Nicolson scheme. The Eulerian Gaussian beam is based on the FBI transform
for the initial condition with ε = 1. The Crank-Nicolson position density is computed with a mesh
N = 215 and ∆t = 10−5. (a) The position densities with ~ = 1/64; (b) the current densities with
~ = 1/64; (c) the position densities with ~ = 1/256; (d) the current densities with ~ = 1/256; (e)
the position densities with ~ = 1/1024; (f) the current densities with ~ = 1/1024.
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summation formula. This yields a very efficient method for computing semi-classical solutions to
the Schrödinger equation. For instance, the proposed algorithm requires only O(sNn2) operations
to compute s different solutions with s different initial wave functions under the influence of the
same potential, whereN = O(1/~), ~ is the Planck constant, and n� N is the number of computed
beams. Numerical experiments indicate that this Eulerian Gaussian beam approach yields accurate
semi-classical solutions even at caustics.
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