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Abstract

This paper copes with the global optimization of Markovian energies. Energies are
defined on an arbitrary graph and pairwise interactions are considered. The label
set is assumed to be linearly ordered and of finite cardinality, while each interaction
term (prior) shall be a submodular function. We propose an algorithm that computes
a global optimizer under these assumptions. The approach consists of mapping the
original problem into a combinatorial one that is shown to be globally solvable using
a maximum-flow/s-t minimum-cut algorithm. This restatement relies on considering
the level sets of the labels (seen as binary variables) instead of the label values
themselves. The submodularity assumption of the priors is shown to be a necessary
and sufficient condition for the applicability of the proposed approach. Eventually,
some numerical results are presented.

Key words: Maximum-flow/s,t minimum-cut, global optimization, submodular
functions

1 Introduction

Many image processing and computer vision problems are formulated as a
discrete optimization problem. Among many available discrete frameworks,
Maximum a posteriori (MAP) estimators for Markov Random Fields (MRFs)
models have been increasingly used [8,18,33,47,63] since the seminal work
of Geman and Geman [32]. Markovian energies of interest are generally a
weighted combination of a fidelity term and a prior. The former measures the
distance of the reconstructed solution to the observed data while the latter
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embeds some a priori knowledge on the result. Unfortunately global opti-
mization of these energies is generally difficult. For some particular cases,
computations are tractable using dynamic programming [4] and shortest path
algorithms [19]. However, energies of interest generally remain difficult to glob-
ally optimize. Besides, these optimization problems can even be NP-hard as
shown in [12,31,39]. Thus stochastic sampling and simulated annealing tech-
niques [32] are sometimes used to compute the MAP although it might be
slow in practice [26,39,41,45,65]. Another approach consists of searching for
approximate solutions as proposed in [6,12] for instance. This paper aims at
finding the MAP of Markovian energies that involves pairwise interactions and
any separable data fidelity. An algorithm that computes a global minimizer of
a subclass of these energies in more generality that it was previously possible
is presented. The proposed approach shall be seen as a complementary com-
putational point of view to the theoretical work on the properties of global
minimizers of Nikolova [52,53], and Durand and Nikolova [28,29].

Let us define the problem of minimizing a first-order MRF. Images are defined
on a discrete lattice V whose cardinality is |V|. Let us denote by up the value of
the image u at the site p ∈ V . In this paper, it is assumed that up takes value
in the finite, linearly ordered, discrete set L ⊂ IR of cardinality |L| = L, i.e.,
L = {l0, . . . lL−1} with li < li+1 ∀i ∈ J0, L− 2K. The lattice V is endowed with
a neighbourhood system. The adjacency relationship of two adjacent sites p
and q is referred to as p ∼ q. In this paper, only pairwise interactions are
considered, and such a clique is referred to as (p, q), with p ∼ q. The set of
all cliques is denoted by E . The goal of this paper is to compute a global
minimizer of the following first order Markovian energy:

E(u|v) =
∑
p∈V

fp(up|vp) +
∑

(p,q)∈E
gpq(up, uq) , (1)

where v is the observed image. The family of functions {fp} and {gpq} are
respectively referred to as the fidelity terms and the priors. It is also assumed
that the functions {fp} and {gpq} take values in IR and are respectively defined
on the discrete sets L and L2. Such functions can thus be considered as discrete
functions [51]. In this paper, the priors {gpq} shall be submodular functions.
For any positive integer k, a function h : Lk 7→ IR is said submodular if and
only if it satisfies the following inequality [51]:

∀(x, y) ∈ L2k h(x ∨ y) + h(x ∧ y) ≤ h(x) + h(y) , (2)

where (x ∨ y) and (x ∧ y) respectively corresponds to the component-wise
maximum and minimum between x and y, i.e., we have for any p ∈ V (x∨y)p =
max{xp, yp} and (x ∧ y)p = min{xp, yp}. A function is said supermodular if
and only if its negation is submodular. Submodularity and supermodularity
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can be seen as a general property of discrete functions that are analogous to
convexity of functions defined on continuous domain [49,51].

The main contributions of this paper are the following: first, an algorithm that
computes a global minimizer for first order MRFs with submodular priors is
proposed. No assumption is required on data fidelity terms. The approach re-
lies on mapping the original problem into a binary optimization problem using
the level sets of the labels (see Section 3 for a definition). It is shown that the
global optimization of this binary energy can be performed by computing a s-t
minimum-cut (or by duality a maximum-flow [1,43]) on a graph associated to
this binary energy following the approach described in [5,12,35,45,55]. Second,
it is shown that the submodularity of the priors is a sufficient and necessary
condition for the applicability of the proposed approach. To our knowledge,
these results are new and considerably extend previous approaches for global
energy optimization such as those of Ahuja et al. [3], Darbon and Sigelle [26],
Ishikawa [41] and Zalesky [65]. This work can also be seen as a natural ex-
tension of the work of Picard and Ratliff [55], Kolmogorov and Zabih [45] for
global binary energies minimization via ”graph-cuts” [12]. We also note the
independent work of [57] that seems to describe similar results.

Although computing a maximum-flow can be performed in polynomial time,
our algorithm has only a pseudo-polynomial time complexity [1] since the
number of nodes of the graph grows linearly with respect to the number of
label |L|. To be polynomial, this number shall be O(log |L|) [1,31]. Although
these non-polynomial time and space complexities might not be attractive for
applications when the number of labels is large, it is worth to note, as in [35]
and [63, p. 136], that this exact optimization scheme allows to study the quality
of a model and the influence of its parameters independently of the algorithm
to compute the MAP estimates. Besides, a ground truth allows to measure the
practical performance of an approximation algorithm [7,24,27,48,60,61]. These
considerations motivates the development of global minimization algorithms.

The remainder of this paper is organized as follows. Related works are pre-
sented in section 2. The level-set based restatement of the data fidelities and
priors in terms of binary variables is described in section 3. This restatement
is the core of our mapping of the original minimization problem into a binary
one. The proposed algorithm for minimizing first order Markovian energies
with submodular priors is described in section 4. Some experiments for image
processing purposes are presented in section 5. Finally, some conclusions are
drawn in section 6.
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2 Related Works

Due to the difficulty, in general, of minimizing the discrete energy defined
by Equation (1), many suboptimal schemes have been proposed [6,8,32]. In
this paper, we focus on algorithms that compute a global minimizer. Most
of these global optimization schemes rely on combinatorial optimization algo-
rithms [59]. In particular among them, s-t minimum cuts or by duality max-
imum flows [1,43] are now popular techniques to exactly optimize Markovian
energies [12,26,41,45]. This technique consists of defining a graph such that
its s-t minimum-cut/maximum flow [1,43] yields an optimal labeling of the
discrete energy. Recall that computing a maximum flow can be performed in
polynomial time [1,43]. Thus the main challenge consists of defining a graph
construction associated with the discrete energy. In the following, we review
the schemes available in the literature. We first begin with energies involving
binary labels before considering the case of linearly ordered labels.

2.1 Binary energies

In [55], Picard and Raliff characterize a class of boolean energies, i.e., L =
{0, 1}, that can be minimized exactly in polynomial time via computing a
s-t minimum-cut on a related graph. More precisely, they consider binary
quadratic polynomials of the following form:

E(u) =
∑
p∈V

apup +
∑

(p,q)∈E
wpqupuq , (3)

where ap and wpq are real values and with wpq ≤ 0. The latter assumption
wpq ≤ 0 ensures that all capacities in the related graph are nonnegative and
thus, allows the minimum-cut to be efficiently computed [1,43]. This semi-
nal work has been firstly used by the statistical physics community to study
ground states of binary Markov Random Fields. In [5], Barahona applies this
approach to compute global minimizer of Markovian energies with ferromag-
metic Ising priors, i.e., priors that takes the following form gpq(x, y) = |x− y|
where (x, y) ∈ {0, 1}2. Indeed, by noticing that the following equality holds
for binary variables |x − y| = x + y − 2xy, then it is readily seen that it fits
the Picard and Ratliff framework. In [54], Ogielski uses this graph construc-
tion to study the phase transition for the ferromagnetic Ising MRF model in
3D. In [38], Hartmann and Usadel propose an approach that also relies on
the theoretical work of Picard and Ratliff to compute all optimal labelings
of ferromagnetic Ising MRF. The authors also note that the approach works
for all energies that they can be mapped to ferromagnetic Ising energies with
local changes of variables, also called local Gauge transformation in physics.
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From an image processing point of view, Greig et al. were the first to use in
[35] the work of Picard and Ratliff for studying binary image restoration with
ferromagnetic Ising-based models. This prior mainly corresponds to penalize
objects with large perimeters [63].

In [10], the authors use a similar technique to perform image segmentation with
hard constraints. We refer the reader to the review [9] for such approaches for
image segmentation and computer vision problems. In [45], Kolmogorov and
Zabih propose a graph construction for classes of binary Markovian energies
where priors correspond to pairwise or triplewise interactions. Besides, it is
shown that interactions should be binary submodular.

The next proposition establishes the equivalence between the work of Picard
and Ratlif [55] and the one of Kolmogorov and Zabih [45] for pairwise inter-
actions.

Proposition 1 [PR-KZ condition] Assume E is a binary energy with pair-
wise interactions, i.e.,

E(u) =
∑
p

fp(up) +
∑
(p,q)

gpq(up, uq) ,

with ∀p ∈ S up ∈ {0, 1}. The following two assertions are equivalent:

• (Picard and Ratliff [55]), each pairwise interaction writes as
gpq(x, y) = wpqxy with wpq ≤ 0 ,

• (Kolmogorov and Zabih [45]), each pairwise interaction is submodular.

Besides, if the binary energy E satisfies these conditions, then it can be opti-
mized in polynomial time via computing a maximum flow on a graph associated
with E as shown in [12,45,55].

The proof of the equivalence is given in Appendix A. These conditions for
maximum flow-based exact optimization will be referred to as the PR-KZ
condition in the remainder of this paper.

Energies involving triplewise interactions can also be exactly minimized via
graph-cuts as long as they are submodular, as shown by Kolmogorov and Zabih
in [45]. Some examples of submodular functions with higher order interactions
are described by Zalesky in [65]. In [30], some sufficient conditions for higher
order interaction energies (i.e., strictly more than triplewise interactions) are
given so that they can be globally minimized via maximum flows. We also note
that message passing approaches, such as those of [46,62], exactly optimize
binary MRF with submodular priors .

Note that all these approaches yield polynomial algorithms since all graph con-
structions described in these papers are linear with respect to the number of
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variables and that there exists polynomial algorithms to solve the maximum
flow problem [1,43]. However, the use of this binary optimization approach
for solving image processing and computer vision problem is made possible
mainly because of the very efficient maximum-flow algorithm of Boykov and
Kolmogorov [11]. Although the latter does not have a theoretical polynomial
time complexity, its empirical computational time behaves quasi-linearly with
respect to the number of nodes for graphs that have small connectivity (which
is the case for most of image processing and computer vision problems). Even-
tually, let us note that minimizing a non-submodular function is NP-hard in
general as shown in [45].

2.2 Energies with Linear ordered labels

Extensions of these approaches for exact optimization of MRFs involving more
than two labels have been tackled by some authors [3,26,41,65]. All approaches
assume that labels can be linearly ordered and there are no assumptions on
fidelity terms. In [41], Ishikawa proposes a graph construction for MRFs where
the priors are convex functions of the difference of labels. In [65], Zalesky study
the class of MRFs whose energies can be rewritten as submodular Boolean
polynomials (i.e., without any restriction on the degree of the interactions).
The author also proposes an algorithm based on submodular function mini-
mization algorithms [42,58] to optimize these Boolean energies. In [26], Darbon
and Sigelle consider the same class of Markovian energies dedicated to image
processing purposes. This assumption allows the authors to propose a graph
construction scheme for which a minimum s,t-cut yields a global minimizer.

Markovian energies with priors that are convex functions of the difference of
the labels, i.e., gpq(x, y) = hpq(x− y) where the family {hpq} are unary convex
functions, can be minimized via minimum cost flow as shown in [3,26,41]. To
our knowledge, these approaches cope with the most general class of first order
MRFs. Recall that the approach proposed in this paper includes this class and
also cope with more general cases.

Efficient approximation algorithms are proposed by Boykov et al. in [12] for
MRFs with pairwise priors that are semi-metric of the difference of the labels.
Moreover, the authors are able to estimate the quality of the local minimizer
computed via this algorithm. Such an approach is iterative and relies on the
ability to globally optimize a binary Markovian energy with submodular pri-
ors.

Finally, we note that efficient exact minimization schemes have been devel-
oped for MRFs where data fidelity terms are convex functions and where the
priors are convex functions of the difference of the labels, i.e., gpq(· − ·). Such
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approaches are described in [2,7,22,44,51]. Among these models, the particular
case of the Total Variation [56] minimization has received a lot of attention.
Very efficient algorithms are available and presented in [14,15,25,34,39,64].
We do not detail these approaches here since we focus, in this paper, on exact
optimization of Markovian energies that are generally non-convex.

The proposed approach presented in this paper copes with all Markovian op-
timization problems presented in this section. We need to introduce some
notations and useful results before describing our approach.

3 Development through Lower Level Sets

This section presents the rewriting of all unary data fidelity term {fp} and
all pairwise prior terms {gpq} appearing in the energy E defined by equa-
tion (1), as a linear combination of binary energies that involves the level
sets of the variables. More precisely, a label is rewritten as a sum of binary
variables. Note that such a representation is indeed widely used in the com-
munity of integer programming [20,21] and has been used successfully for
many combinatorial problems [3,21,40] as well as some image processing prob-
lems [14,16,17,25,26,64,65]. Our approach for optimizing exactly Markovian
energies with submodular priors relies on these developments. The notion of
level sets is firstly defined. Then the developments on level sets for functions
of one and two variables are given.

Let us introduce the characteristic function of a lower level set [x]λ of a variable
x ∈ L at a level λ ∈ L as follows:

[x]λ =


0 if x ≤ λ,

1 if x > λ .

Note that the upper level set [x]λ, of a variable x could be used in the sequel
instead of the lower ones since we have: [x]λ = 1 − [x]λ. Also, note that
inequality and strict inequality can be interchanged in the definition of a level
set without altering the nature of the results presented in this paper. It is
straightforward to see that lower level sets of a variable x satisfies a monotone
property:

∀λ ≥ µ [x]λ ≥ [x]µ , (4)

Also, one can reconstruct the the original gray-level value from its lower level
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sets using the following reconstruction formula as shown in [36,50]:

x = max{λ ∈ L, [x]λ = 0} . (5)

Conversely, it is shown in [36,50] that any family of binary variables {bi}i=1...n

that satisfies the monotone property, given by equation (4), defines a la-
bel. Note that the same result holds for level sets defined for continuous la-
bels [36,37] (up to a null measure set). In other words, it is equivalent to have
the knowledge of a label x or of its level sets {[x]λ} . The idea is to look for on
optimal solution, not in terms of the labels but using a series of binary vari-
ables that represent the level sets of the labels. We now rewrite the fidelity
terms and the priors through the level sets of the labels.

The next proposition gives a development for data fidelity term as a summa-
tion on the level sets of its variable as already proposed in [25]. It is based
on a ”discrete” integration of the variations of fp over its lower or upper level
sets.

Proposition 2 Any data fidelity term fp : L 7→ IR rewrites on its lower or
upper sets as follows:

fp(x) =
L−2∑
i=0

Dp(i)[x]li + fp(l0) , (6)

where ∀i ∈ J0, L− 2K Dp(i) = fp(li+1)− fp(li) .

The proof is straightforward and is a simple adaptation of the one given in [25].
Note that the summation goes only up to (L− 2) because for any label x that
lives in L we have [x]lL−1

= 0.

Next, we need to cope with functions of two variables. A natural way to
achieve this consists in applying the previous developments firstly on the first
variable and then on the second one. It yields the following proposition that
relates to the submodularity of a function to the PR-KZ conditions for global
optimization.

Proposition 3 Any prior term gpq : L2 7→ IR rewrites on its level sets as
follows:

gpq(x, y) =
L−2∑
i=0

L−2∑
j=0

Rpq(i, j)[x]li [y]lj (7)
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+
L−2∑
i=0

(
D1
pq(i)[x]li +D2

pq(i)[y]li
)

+ C ,

where

∀i ∈ J0, L− 2K D1
pq(li) = g(li+1, l0)− g(li, l0) ,

and

∀i ∈ J0, L− 2K D2
pq(li) = g(l0, li+1)− g(l0, li) ,

and C = gpq(l0, l0) and more importantly where

∀(i, j) ∈ J0, L− 2K2 Rpq(i, j) = g(li+1, lj+1)− g(li+1, lj)− g(li, lj+1) + g(li, lj)(8)

Again more details on this calculus can be found in [26]. So far, no assumptions
have been set neither on data fidelity terms, nor on priors. In other words,
claims stated in proposition 2 and proposition 3 hold for any function of one
and two variables, respectively. The next section specializes these results for
globally optimizing first order Markovian energies with submodular priors.

4 Markovian Energies with Submodular Priors

Recall that it is assumed that all priors {gpq} are submodular functions. In this
section we show that, under this assumption, a first order Markovian energy
can be exactly optimized via computing a maximum flow on an associated
graph [12,45,55]. Recall that for any positive integer k a function h : Lk 7→ IR,
is said submodular if and only if it satisfies the following inequality:

∀(x, y) ∈ L2k h(x ∨ y) + h(x ∧ y) ≤ h(x) + h(y) . (9)

First, let us give some examples of submodular priors:

• gpq(x, y) = g(x − y) with g a unary convex function. This kind of prior is
widely used models in image processing for restoration purposes.
• gpq(x, y) = −xy, i.e., minus of a scalar product. Such a prior can be used

for vector diffusion for instance.
• gpq(x, y) = g(x+ y) with g a unary concave function.

Our goal is to map the original Markovian energy given by equation (1), to
a binary one. For this purpose, all data fidelity and prior terms are rewritten
using the level sets-based expansions given by Proposition 2 and Proposition 3,
respectively. Thus the energy E(·|v) is to be rewritten such that it only involves
the level sets of the variable to optimize, i.e., {[·]li}i=0...L−1. We have:
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E(u|v) =
∑

(p,q)∈E


L−2∑
i=0

L−2∑
j=0

Rpq(i, j)[up]li [uq]lj +
L−2∑
i=0

D1
pq(i)[up]li +D2

pq(i)[uq]li


+
∑
p∈V

L−2∑
i=0

Dp(i)[up]li +K ,

where the constant K comes from the constant terms in Propositions 2 and 3.
We can now define a new energy Ẽ(·|v), whose variables are |L| binary images
{bi}i=0...L−1, as the following:

Ẽ({bi}i=0...L−1|v) =
∑

(p,q)∈E


L−2∑
i=0

L−2∑
j=0

Rpq(i, j)b
i
pb
j
q +

L−2∑
i=0

D1
pq(i)b

i
p +D2

pq(i)b
i
q


+
∑
p∈V

L−2∑
i=0

Dp(i)b
i
p +K .

Intuitively, the two energies E(·|v) and Ē(·|v) are equal provided the bi-
nary variables involves in Ē defines an image. More formally, if for all sites
p ∈ V , the families of binary images {bi}i=0...L−1 satisfy the monotone prop-
erty given by equation (4), then this family defines an image using the recon-
struction given by equation (5). Let us emphasize that if any of the families
{[bip]λ}λ=0...lL−1

violates the monotone property, then a gray level image can-
not be defined and thus one cannot easily relate Ē({[bip]λ}λ=0...lL−1

|v) to some

E(·|v). Besides, since for any image u we have E(u|v) = Ẽ({[u]λ}λ=0...lL−1
|v),

it means that if we are able to minimize the energy Ē({[·]λ}λ=l0...lL−1
|v) while

preserving the monotone property, then we get a global minimizer of E(·|v). In
order to force the monotone property to hold during the optimization process
we define the following new energy:

Ẽα({bi}i=0...L−1|v) = Ẽ({bi}i=0...L−1|v) +
∑
p∈V

α
L−2∑
i=0

H(bi+1
p − bip) , (10)

where H : IR 7→ IR is the Heaviside function defined as H(x) = 0 if x ≤ 0 and
1 else. The right hand side of equation 10 corresponds to a penalization term
that increases the energy by α every time two consecutive binary variables
violate the monotone property. Moreover, it is shown in [26] that if α is set to
a sufficiently large finite value, then we are assured that any global minimizer
of Ēα({·}i=0...L−1|v) never violates the monotone property give by Eq. (4). The
latter proof assumes that the set of labels L is discrete.
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So far we have reformulated the original energy in terms of binary variables.
Our goal is now to show that than the energy Eα({[·]λ}|v) can be optimized by
maximum flow. We first show in the next proposition that the submodularity
of the priors yields binary terms that satisfy the PR-KZ condition.

Proposition 4 Assume g : L2 7→ IR. The following two assertions are equiv-
alent:

(1) g is submodular,
(2) g writes as

g(x, y) =
L−2∑
i=0

L−2∑
j=0

R(i, j)[x]li [y]lj (11)

+
L−2∑
i=0

(
D+(i)[x]li +D−(i)[y]lj

)
+ C ,

where ∀(i, j) ∈ J0, L − 2K2 R(i, j) ≤ 0 , D+ and D− are two functions
and C is a constant.

Proof. Case 1) ⇒ 2) We apply Proposition 3 to g and we get the form given
in 2). It is straightforward to see that any unary function is submodular. The
submodularity condition given by Eq. (13) applied for the remaining terms
R(i, j)[x]li [y]lj , reduces to show that ∀(i, j) ∈ J0, L− 2K2 R(i, j) ≤ 0.

Recall that Eq. (8) of Proposition 3 also states that

R(i, j) = g(li+1, lj+1)− g(li+1, lj)− g(li, lj+1) + g(li, lj) .

Now let us introduce the pairs a = (li, lj+1) and b = (li+1, lj). Then it is readily
seen that R(i, j) rewrites as follows:

R(i, j) = g(a ∧ b)− g(a)− g(b) + g(a ∨ b) .

The latter is non-positive due to the submodularity of g. This concludes the
proof for the first case.

Case 2) ⇒ 1): Let a ∈ L2 and b ∈ L2. Note that the only interesting case
happens when a /∈ {(a ∨ b), (a ∧ b)} (otherwise the submodularity property is
obviously satisfied).

Let us denote by (xm, ym) = (a∧ b) and (xM , yM) = (a∨ b). We need to show
that g((xm, ym)) + g((xM , yM))− g((xm, yM))− g((xM , ym)) ≤ 0 .

To prove this inequality we write each term in the level-set development form
given by Eq. (11). One sees that the constant C and the terms involving the
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single summation
(∑L−2

i=0 ·
)

cancel each other. Thus, only the double summa-
tion terms remain, i.e., we need to show:

L−2∑
i=0

L−2∑
j=0

R(i, j)
(
[xm]li [ym]lj + [xM ]li [yM ]lj − [xM ]li [ym]lj − [xm]li [yM ]lj

)
≤ 0 ,

which is equivalent to

L−2∑
i=0

L−2∑
j=0

R(i, j) ([xM ]li − ([xm]li)
(
[yM ]lj − ([ym]lj

)
≤ 0 . (12)

Since xM ≥ xm and yM ≥ ym get that

∀i ∈ L ([xM ]li ≥ ([xm]li) ∧ ([yM ]li ≥ ([ym]li) ,

and thus every term in the double summation in (12) are non-positive since
R(i, j) ≤ 0. This concludes the proof. �

The next proposition claims than the energy Eα({[·]λ}|v) can be optimized
thanks to the maximum flow algorithm and that it is equivalent to the sub-
modularity of the prior terms {gpq}.

Proposition 5 The following two assertions are equivalent:

(1) all prior terms of energy E(·|v) given (1) are submodular functions,
(2) the associated energy Eα({[·]λ}|v), given by equation (10), is binary sub-

modular, i.e., all binary pairwise interaction terms satisfy the PR-KZ
condition.

Proof. Case 1)⇒ 2) Following Proposition 1, it is enough to show for Ēα, that
each single pairwise interaction terms of binary variables is submodular. Spe-
cializing the definition of submodularity, given by Equation (2), for a binary
function f of two variables, i.e., f : {0, 1}2 → R, we get that:

f(0, 0) + f(1, 1) ≤ f(0, 1) + f(1, 0) . (13)

For the case we are considering, we shall check the submodularity of the terms
H([up]li+1

− [up]li) and Rpq(i, j)b
i
pb
j
q. It is easily seen that the terms H(bi+1

p −
bip) satisfy the submodular property; see also [26] for further details. Thus
it remains to show the submodularity of the terms Rpq(i, j)b

i
pb
j
q. Using the

inequality (13) we need to show that ∀(i, j) ∈ J0, L − 2K2 R(i, j) ≤ 0 . This
property is assured by the submodularity assumption of the priors, as stated
in Proposition 4.

Case 2) ⇒ 1) This is straightforward by considering the converse part of
Proposition (4) which states that states that any series of non-positive R(·, ·)
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terms defines a submodular function up to some unary terms and a constant.
�

So, provided the priors are submodular, a global minimizer of E(·|v) can be
computer by minimizing its associated energy Ēα({[·]λ}|v) with the maximum-
flow approach approach [12,35,45,55] (recall that we set α to a sufficiently
finite large value). The submodularity assumption is necessary and sufficient.
To our knowledge, this result highly generalizes previous ones [3,26,41,65].
Indeed, our approach both includes the class of ”levelable” priors described
in [26] and [65] (that mainly corresponds to non-convex priors) and the class
of priors defined as a convex function of the difference of the labels [3,26,41].
The next proposition relates convexity and submodularity of the priors when
they are based on the difference of labels.

Proposition 6 Assume g : L2 → IR is submodular and takes the following
form g(x, y) = g̃(x− y) then g̃ is a unary convex function.

Proof. First we apply Proposition 3. Now, due to the form of g̃ we have that
R(i, j) = 2g̃(i − j) − g̃(i − j + 1) − g̃(i − j − 1). We also have R(i, j) ≤ 0
by the submodularity of g. By letting k = i − j we get that 2g̃(i − j) ≤
g̃(i − j + 1) + g̃(i − j − 1) which is exactly the discrete second variation
convexity criteria for a unary function [51] applied for g̃. �

In other words, the proposed approach reduces to the convex cases presented
[3,26,41] when the priors are unary functions of the difference of the labels.
Note that the latter priors are widely used in image analysis because it corre-
sponds to the regularization of the gradient of an image. The most well-known
example of such a prior is most probably the Total Variation [56].

Eventually, let us note that our approach consists in computing a s-t minimum-
cut on graph composed of |V| |L| nodes (one node per pixel and per gray level
value), and O(|E||L|2) edges. From a practical point of view, a large value of |L|
may correspond to a huge amount of memory that is potentially not available.
This behavior is not favorable for practical purposes but it allows to compare
an approximate solution (computed for instance by the approaches described
in [12,61,48]) with a global one. Eventually, recall that a global optimization
process, as the one proposed in this paper, allows to intrinsically study the
quality of a model [63, p. 136].

5 Experiments

In this Section we illustrate our approach for different MRF models. Our first
experiments cope with image restoration where MRFs have submodular priors.

13



Then we present a Markovian model for image dithering purposes.

5.1 Image Restoration

We present some results for image restoration when images are highly cor-
rupted by impulsive noise with parameter P , which corresponds to the follow-
ing data fidelity term:

fp(up|vp) =

− log
(
(1− P ) + P

L

)
if up = vp ,

− log P
L

else.

In other words, a pixel keeps its original value with a probability (1−P ) or it
takes a new one uniformly in L. Note that this kind of noise is extremely diffi-
cult to remove because the original information a pixel carries is totally lost as
soon as it is corrupted. Note that this noise behavior is much more destructive
than additive noise for instance. Figures 1-(a) and 2-(a) respectively depicts
the image plane (of size 250× 366) and squirrel (of size 209× 288) while some
highly corrupted versions are presented in Figure 1-(b), and in Figure 2-(b)
and Figure 3-(a). Note that it is almost impossible to guess the content of the
noisy image.

We consider a Discrete Total Variation (DTV) prior [15] as the prior of the
MRF. More formally, the considered neighborhood system on the grid is the
4-nearest neighbors and we set gpq(up, uq) = β|up − uq| . The non-negative
parameter β corresponds to the power of the filtering, i.e., the higher β the
more the image is regularized. For these experiments, we set L = J0, 255K.
Besides, β is adjusted so that the best visual result is achieved. Figure 1-(c)
depicts the result for the plane image. Note that although 70 percent of the
content of the original image is lost, one can recover most of the content of
the image. It takes 115s on an Intel Q9650 3GHz processor to perform this
minimization.

Restoration result for the corrupted squirrel image with P = 0.7 is depicted
in Figure 2-(c). We also depict in Figure 2-(d) the image obtained by median
filtering. The latter is able to recover globally the structure of the image but
some artifacts remain. Figure 2-(e) presents the result obtained by minimizing
the energy using the α−expansion algorithm described in [12]. It produces a
solution whose energy is within a known factor of the optimal one. It is clear
seen that this procedure is able to recover part of the optimal solution while it
fails for other areas by producing constant zones. We have checked that 49% of
the pixels of the result obtained by the α−expansion algorithm are identical
to the ones of the global solution we have computed, and 69% pixels differ
with an absolute difference that is than 10. Computing a global minimizer for
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this image takes 81s on an Intel Q9650 3GHz.

The restoration for the corrupted squirrel image with P = 0.9 is depicted in
Figure 3-(b). Again, note that many pixels are recovered even in the hard-
est case where only 10 percent of the information has survived and without
knowing where the non-corrupted pixels are. Figure 3-(c) and (d) respectively
presents the result for the median filter and the TV minimization using the
α−expansion algorithm. Comparing the α−expansion based result with the
global minimizer, we have found that there are 21% of the pixels that are
identical, while 40% differ by a magnitude of at most 10. For this experience,
the global optimization process takes 152s on an Intel Q9650 3GHz processor.

Let us recall that the graphs we need to built for these experiments contain
|V| |L| nodes and |E||L| edges (for the special case of TV). In practice, this
behavior prevents us from applying the approach on very large images and in
particular 3D volumes.

5.2 Halftoning

We now present a Markovian energy for performing non-binary halftoning.
The goal is to approximate an image with a very little number of gray level
values. The use of MRFs for binary halftoning has originally been proposed by
Carnaveli et al. in [13]. Their approach relies on the use of a anti-ferromagnetic
Ising model. Note that the latter favors signal that are oscillating. Such a be-
havior is of interest for halftoning purposes since such oscillations are blended
into smooth tone by human eyes. This optical effect is thus used to approxi-
mate continuous smooth tone.

We propose to extend their approach to the gray level case by considering
the maximization of the total variation (which also favours oscillations). More
precisely, the observed image takes values in the discrete set J0, 255K while each
pixel of its approximation lives in L = {0, 31, 62, 93, 124, 155, 186, 217, 248}.
We use the following data fidelity term: fp(up, vp) = (31up−vp)2. The discrete
TV we use here is the same as the one for the restoration experiments. Since
we wish to maximize TV, we set gpq = −β|up − uq|, with β non-negative.
Note that this prior is not submodular but it can be mapped to a submodular
one following the local change of variables strategies of [38]. Since, the nearest
neighbors connectivity is considered, the graph is bipartite (equivalent to the
2-colorability), i.e., the sites V can be decomposed into a partition V = V1∪V2

such that for any couple of interacting variables (up, uq) with s ∼ t, we have
either (p, q) ∈ V1×V2 or (p, q) ∈ V2×V1. One can thus perform the following
one-to-one mapping for the sites that belongs to S1: up ← (248 − up) . It is
straightforward to see that this maps the original prior into a sum of unary
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(a)

(b)

(c)

Fig. 1. The plane original image is depicted in (a) and its noisy version corrupted
by impulsive noise with P = 0.7 in (b). The restoration with a Total Variation prior
is depicted in (c).

concave functions of the sum of two labels, and is thus submodular. Thus one
can globally optimize this new energy by the maximum-flow approach and
then get a global minimizer of the original one by inverting the mapping.

Figure 4 depicts both original lena image (of size 5122) and the minimization
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(a)

(b) (c)

(d) (e)

Fig. 2. (a): the squirrel original image . (b) and (c): impulsive noisy version with
P = 0.7 and its TV restoration. (d): result obtained by median filtering. (e): result
obtained by minimizing TV with the α−expansion algorithm.

result when the weight coefficient β is set to β = 120. To better observe the
behavior of the model, a zoom on both the original image and on the results
are shown in Figure 5. It takes 2s to perform the minimization on an Intel
Q9650 processor. Let us note that there are many available and well known
techniques for dithering purposes. We do not claim that the simple model
proposed here is a state-of-the-art approach.
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(a) (b)

(c) (d)

Fig. 3. The squirrel image corrupted with an impulsive noise with P = 0.9 is depicted
in (a) while the restorations by global TV minimization,median filtering and TV
minimization with by the α−expansion algorithm are respectively shown in (b), (c)
and (d).

6 Conclusion

We have presented a method to globally optimize a Markovian energy with
pairwise interactions whose priors are submodular functions. The original
problem is restated as as binary optimization for which, an efficient graph-
based approach can be used. This mapping relies on considering the level-sets
of the labels. The submodularity of the priors has been shown to be a nec-
essary and sufficient condition for the applicability the proposed approach.
As future work, we plan to iteratively use this approach on a restricted set
of labels in order to perform the minimization while reducing the size of the
induced graph [12,61,48].

A Proof of Proposition 1

Recall the binary case is considered, i.e. ∀p ∈ V up ∈ {0, 1}. Let us write a
binary function of two variables gpq as follows:
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(a)

(b)

Fig. 4. The original image Lena is depicted in (a) while the halftoning result is
shown on (b). The weight coefficient β is set to β = 150.

gpq(up, uq) = gpq(0, 0)(1− up)(1− uq) + gpq(1, 1)upuq
+gpq(0, 1)(1− up)uq + gpq(1, 0)up(1− uq) .
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(a)

(b)

Fig. 5. Zoom of the original lena and of the halftoning result are respectively depicted
in (a) and (b).

A simple rewriting gives an expansion on the base (1, up, uq, upuq) so that we
get:

gpq(up, uq) = (gpq(1, 0)− gpq(0, 0))up + (gpq(0, 1)− gpq(0, 0))uq
+ (gpq(0, 0) + gpq(1, 1)− gpq(0, 1)− gpq(1, 0))upuq
+gpq(0, 0) .

The Picard and Ratliff condition [55] states that the coefficient of the pairwise
interaction shall be non positive, that is:

gpq(0, 0) + gpq(1, 1)− gpq(0, 1)− gpq(1, 0) ≤ 0 .
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The latter is the submodular inequality for the function gpq defined on the
lattice {0, 1}2 endowed with the usual order. This concludes the proof.
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