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Abstract. This paper focuses on a new image resolution enhancemehbaet
based on the TV regularization model by Marquina and OsHeg.ldw resolu-
tion images considered in this paper are natural images thasv8D anatomi-
cal MRI scans of patients. The idea of image resolution ecd/aent concerns
with the improvement of image resolution based on the fusfaseveral acquisi-
tions of low resolution observations by the imaging sendfr.also demonstrate
the coarse to fine effect of the Bregman iterative procechathelps to recover
finer scales from the reconstructed image. Additionallypn@pose a new edge-
preserving up (down) sampling operator that yields a sicgnifi improvement
during the up/down sampling stage of the method.

Keywords: Edge-preserving operators, total variation regulammatdeconvo-
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1 Introduction

With the recent advances in low-cost imaging solutions acdeasing storage capac-
ities, there is an increased demand for better image qualiywide variety of appli-
cations involving both image and video processing. Whilis ipreferable to acquire
image data at a higher resolution to begin with, one can inegiwide range of sce-
narios where it is technically not feasible. In some casésttie limitation of the sensor
due to low-power requirements as in satellite imaging, rensensing, and surveillance
imaging. In other cases, it is the limitation of the sensadrenment itself, for e.g. the
presence of atmospheric clutter, background noise, urdal® weather , etc., etc. In
some cases, it is a combination of both, for e.g. the aciprstaf medical images is
limited both by the physical issues of MRI imaging, as weltlzs time constraints of
subjecting the magnetic field to patients without becomimgalth hazard. One mea-
surement of image quality is the spatial resolution of theelsi distributed per unit
length/area. An improvementin the spatial resolution fitlimages directly improves
the ability to discern important features in images with tidyerecision.

The low-resolution data can exist in the form of still imagassequence of im-
age frames devoid of inter-frame motion, a single video eaqa, or a collection of
video sequences. Furthermore the observations can betearoy motion-induced ar-
tifacts either in the case of still images or videos. TheeatiVe approach that tackles



the problem of reconstructing a high-resolution image frame or more of the above
low-resolution observations is termed as super-resaiufibere are several prominent
approaches to this problem, all of them largely employingotss cues such as sub-
pixel shifts between successive frames, the camera bliogde and zoom , etc. These
approaches can be divided into two types, one that uses miofiormation between
successive frames (e.g., video super-resolution), andttier that uses a motion-free
approach. Most of these approaches usually expect multpleesolution observa-
tions as input. Super-resolution image reconstruction i-@onditioned inverse prob-
lem, since the observation process of the original highlugism object consists of a
noisy blurred low resolution observation affected by sangphrtifacts, blurring and
noise. This is mathematically modeled as a nonlinear psocessisting of a convo-
lution operator acting on the image, followed by a down samgpbperation and the
mixing of additive noise. Most of the earlier research wods lbeen developed in the
frequency domain approach using (discrete) Fourier teanstind wavelet-transform
based methods. For e.g. the approach of Tsai and Huang [20d(itlined the idea of
super-resolution in their seminal paper. Padegl.[8] used the iterative back projection
scheme to achieve image reconstruction. Yet another agip@8] uses projections on
convex sets (POCS) of images to restrict the solution dofieaireconstruction. A hy-
brid approach by Elad and Feuer [5] combines the POCS andalxemam likelihood
approaches for both motion-based and motion-free sugeitrion. A very different
set of methods use the learning-based approach for supdutien. The general idea
here is to learn a set of image features from exemplar imagesuse them for the
reconstruction of a high-resolution image. Capel and Zisae [2] use PCA on face
image databases to learn the image model and use it to reeciristages from mul-
tiple views. Freemart al. [6] learn a feature set of image patches that encode the
relationships among different spatial frequencies fromargd training set and use it
as prior information for reconstructing higher frequesdiar resolution enhancement.
The reader is referred to an excellent monograph by ChaudhdrJoshi [4] for a
comprehensive bibliography and references in the fieldnglwith a wide range of
applications of super-resolution methods in tasks suchatslise image processing,
surveillance, computer vision, and even video processhage has been a consider-
able effort by researchers trying to apply these methodsddical imaging. In par-
ticular, MRI acquisitions usually have a low-resolutiortlre inter-slice direction, and
it is of considerable interest to “fill-in” the intermediaséices. Carmiet al. [3] use
sub-pixel shifted MR (Magnetic Resonance) images for hggolution reconstruction.
Greenspaet al.[7] combine several low resolution images in the slice-ediérection
to achieve SR reconstruction. Kornprobsal.[9] also achieve higher resolution in the
slice-select direction for fMRI sequences.

While super-resolution methods attempt to exploit the rimiation redundancy in
several low-resolution observations of images, at timesy a single low-resolution
instance of the image is available. This is sometimes the taMRI images, where
due to economic or health reasons, a patient is scanned noéyaver a period of time,
or the time elapsed between successive scans may be totcdamgeserve any temporal
coherence to take advantage of. This is the idea that is eegla this paper, where
we will focus mainly on the problem of single frame high regmn reconstruction
of images. A super-resolution related variational modé@igishe total variation (TV)
norm as regularizing functional for de-blurring and ovengéing a single noisy image
was also proposed in [10] . This model was formulated andestilvthe Fourier domain



assuming periodic boundary conditions by means of the gradiescent method and
using characteristic functions as convolution kernels.

Our approach will be based upon a variational model thatth&sEV norm [15] as a
regularizing functional. Recently, Marquieaal.[12] have proposed a new variational
model based on the TV norm [15] for super-resolution of ndiriensional images.
They use a new multi-scale approach (Bregman iteratiomsdefiamtive refinement and
recovery of finer details in images. We will follow this appah to solve the more gen-
eral super-resolution problem using the TV norm as regitagifunctional. The pro-
posed model uses a multi-frame dataset instead of a singlgarand Gaussian kernels
of convolution allowing homogeneous Neumann boundary itimmg. In addition, we
propose an iterative refinement procedure based on an aridea by Bregman [1], as
suggested and implemented in [11], to improve spatial teiwwl. The proposed super-
resolution method improves the behavior of any interpofathethod (including high
order and sinc interpolation) because our method presedgss satisfactorily avoid-
ing Gibbs phenomenon and the iterative refinement proceadiorgs us to recover fine
scales of the image.

This paper is organized as follows: Section 2 outlines thpesuesolution model
using TV regularization. In particular, it explains the i@dional model as well as a
new scale-space approach that utilizes the Bregman iteratocedure for recovering
finer details from images. Additionally, section 2.2 prop®a new edge-preserving up
(down) sampling operator used in the model. Section 3 ptesietails of the numerical
implementation of the model. Section 4 demonstrates exyattal results for a few 2D
natural images as well as 2D slices and 3D volumes of MRI imafpdiowed by the
summary.

2 Image Observation and Synthesis Model

The low resolution image observation model can be formdlate standard fashion as

a down-sampled degraded version of the original high réismlimage. We assume that
the low resolution imagg is defined on a subset of a plafeC R*. For the purpose

of this paperk is either2 or 3. Here onwards, all the notation will be specified 3dp
images. The restriction 2D images is straightforward. For a discrete representation,
we assumg € R" x R™ x R? . Let the unknown high resolution image to be estimated
be given byu € R2™ x R?" x R?P. Then given a linear down sampling operafgrwe

can write the observation model as,

f=D(h*u)+mn, (1)

wheren is an additive Gaussian white noise with zero mean and \egiah andh is
translation invariant convolution kernel correspondiaghe point spread function of
the imaging device. A related problem in the above formafais the estimation of the
kernel h, that we shall skip in this paper. Throughout this paper, sgime that the
kernel is given by the Gaussian,

h(z,y,z) = Ke [”2 i +%], ()
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whereK is a normalization constant, and, o,,, o, are variances along th€, Y, and
Z directions respectively. The problem in Eqn. 1 is usuallyest as a constrained op-



timization problem that seeks to minimize the regularifgt|Vu||>dzdy, while con-
straining the noise to bi¢h « u — f||?. = o2. This ensures that the reconstructed image
u is free of discontinuities. However in order to recover thges satisfactorily, Rudin
and Osher [15] propose the total variation norm as the reigirig functional. The total
variation norm is given as,

TV(u) = , |Vu|dzdy 3

Using the regularizer in Eqn. 3, we can state the single franage reconstruction
model as the minimization problem as follows:

0= arginin{TV(u) + g[”f — D(h*u)||f> — 0°]} (4)

The Euler-Lagrange formulation for Eqn. 4 can be written as

V.%—l—)\(ﬁ*S(f)—ﬁ*(SoD(h*u))):() (5)
:>V-|§—uu|+)\ﬁ*(g—T(h*u)):0 (6)

whereg = S(f), and the operatdF is defined ag” = S o D.
The Euler-Lagrange equation given by Eqn. 6 can be solvedtiaseadependent

equation
v

[Vl

with homogeneous Neumann boundary conditions and imgatiith wg = S(f).

ug =V + M (G —T(h*u)) (7)

2.1 Bregman lterative Method

The convergence of Eqn. 7 to the steady state yields a reoaotexd high resolution
image. However if one wishes to recover even finer scalestinemeconstructed image,
one can use the Bregman iterative refinement procedure i) $0. Ifu, is the solution
of Euler-Lagrange equation (6), then we have,

VUO

vV ——
|VUO|

+ M (g—T(h*ug)) =0 (8)

We will denote the image residual in the high resolutionstslv, as,
Vo = g — T(h * UQ) (9)

We now solve the Euler-Lagrange equation for the new intagevy to obtain a new
solution, which we denote by;. Again, the solution:; will satisfy

Vu1

V.
[V

+AB*(Q+UO—T(h*u1)) —0, (10)

where the new residual is defined as

vi=g+vo—T(h*uy) (112)



and so on. We term the sequence of imaggs:,, - - - , u;, - - - as Bregman iterates. It
is advisable to terminate this procedure when a satisfadtoege quality is obtained,
otherwise it has a tendency to recover noise after all the &oales in the image are
recovered. This iterative procedure was introduced fogierastoration in [14] and has
also been used for blind deconvolution of images based ondrhin [11].

2.2 Edge-preserving Up (Down)-sampling operator

There are various choices for the uf) @nd down ) sampling operators used in the
observation model in Eqn. 1 and the synthesis model in Eqgaespectively. The sim-
plest down sampling operator can be an averaging operabisimply averages the
eight neighbors of the pixel using either a Gaussian keoredn arithmetic average.
Equivalently, the up sampling operation correspondindnéodown sampling operator
above simply involves repeating voxel values for each raymn, and slice. Alter-
nately, one can also use 3D bilinear interpolation for uparg and down sampling
images. The problems with the above approaches are theessaey blurring (averag-
ing) thatis caused at each step of the iteration while sglihie Euler Lagrange equation
in 6. To overcome this problem, one can further suggest te@iisetter signal preserv-
ing operators that use sinc or Fourier interpolation for ng down sampling. However
these methods can potentially introduce ringing artifattenages with sharp edges or
boundaries.

Especially for images with prominent edges and interfasesneed an appropri-
ate interpolation operator that preserves these feattioesrdingly, we propose a new
piecewise-linear up (down) sampling operator that presesuch edges and bound-
aries. We describe the edge-preserving operator in detiaihb

We set up the grid; = (j — 1)Az,y, = (k — 1)Ay andz; = (I — 1)Az, where
Ax >0,Ay >0,Az>0andj =1,...,n,k=1,...,mandl =1,...,p. We define
the domain® = [0, 4] x [0, B] x [0, C], whereA = (n — 1)Az, B = (n — 1) Ay, and
C = (n — 1)Az. We consider the grid functiom defined as

.3 3
Uj k1 ‘R — R

We define theedge-preserving piecewise linear approximationf the grid functioru
as the function.(z,y, 2)|g,,, = Ljx(z,y,2) where the computational voxél;; is
given by

Az Az Ay Ay Az Az

Ejkl:[xj—— —]X[yk—7,1/k+7] [Zl_7vzl 7]

and
Liki(z,y,2) = ujrg +alx —x;) + by — yr) + c(z — 21),
wherea, b, andc are determined from

A” A
o= minmod( A“J”” *“”’”) (12)
. Ay U5 k. l A Uj.k,l
b= d . t ) 13
minmo < Ay Ay > (13)
A? A3
c= minmod< Auj ki S kl) , (14)
z



where the operations in the term containing derivativesiaderstood component-wise,
and

ALuilyy, = F(uir jp — i)
Ai“ﬁj,k = i(uﬁjil,k - u?]k) (15)
Afl:u?.,j,k = i(u?,j,k:tl - u?]k)?

wherei, j, k are the indices of the 3D grid.
The minmodd, ¢) function is defined as,

sgn(d) + sgre)

minmodd, e) = 5

min(|d], |e]), (16)
where sgfd) = 1 if d > 0 and sgiid) = —1 otherwise.

The functionL ;(z,y, z) is defined on the computational voxg};;. We want to
up-(down) sample the grid functianwith a spatial resolution df, > 0, h, > 0, h, >
0. Then the up-(down) sampled grid functions defined on a new grid(q, r, s) for
q=¢q,...,nh,r=1,...,mh,ands = 1...,ph where

A
nh = floor (h/_m)
mh = floor (E)
hy
C
h = fl —
P oor (hz> ,

where floofd) is the maximum of all integerssuch that < d. The new grid is then
defined agry, = (¢ — 1)ha, yn, = (r —1)hy, andz,, = (s — 1)h.. Based on this grid,
the functionw is defined as(q, 7, s) = L(zn,, Yn, , 2n,)-

We demonstrate the edge-preserving property of the aboxeatmp by applying it
to a checkerboard pattern as shown in Fig. 1. Figure 1 shoms-adsolution image, as
well as its up sampled versions using a bilinear, sinc anetlye-preserving operator
for two different types of checkerboard patterns. It alsovgha magnified portion from
the center of the image. Itis noticed that the bilinear aedsthc interpolation operators
introduce significant spurious levels of gray in betweerbilagk squares in the pattern.
Furthermore, they have a tendency to smooth out the bowewdzfihe flat black squares
in the image. In contrast, the edge-preserving operatordtaged, and in some cases
even enhanced the boundaries and edges as compared to trestdution image.

3 Numerical Implementation

This section discusses the numerical implementationseo§ttution to the Euler La-
grange equation. The Euler-Lagrange derivative of the dkfmis not well defined at
points whereVu = 0, due to the presence of the terﬁu—l. Hence we modify the
regularization TV functional as follows:

/Q vV |Vul|? + € dzdy a7)



wheree is a small positive parameter or

/Q |Vule ddy (18)

with the notation
[vle = V/]v]2 + € (19)
forv € R2.
We express the 3D model (7) in terms of explicit partial detiixes

wg =Ah (g — T(h *u))
() + (u?)? + €) + up, (uh)? + (u2)? + ) + u?, (u)? + (uf)? + €))
[(u)? + (u)® + (uz)? + €*/2
=2ul ulul — 2u” uu? — 2ul ulu?

+ zy Yz Yy xz%r Yz yz Py Yz 20
()2 + (a2 + (uz)? + 372 (20)

u

+

usinguy = S(f) as the initial guess and homogeneous Neumann boundaryticorsdi
(i.e. absorbing boundary).
The above expression can also be rewritten as

u L

igk “? ik = n
—E s = A (g =T ™))k
Wl (u)? + (W)? + €) + ull, (Wf)? + (u2)? + €)) + ul, (u)? + (u)? + ¢))
[(un)? 4 (u)? + (ul)? + €]3/2
N = 20U U Uy — 2Ug U U — 2Uy Uy U 21)

[(u)? + (uy)? + (ug)? + ]/

+

The approximations to the derivatives in Eqn. 21 can be tatied as:

[Wralign = AT AT U /G

[ugyligie = AL AT %k/hfj

[W2.)ign = AL AZ w1/

[uzylije = (A2 + AT)(AY + A)uil; . /A(hahy)

[U’Zz]z,] k= (AT + AY )(Az— + Ai)uﬁj,k/‘l(hth) (22)
[uy:Jige = (AL + AL)(AZ + AL )ui; 1 /4(hyhs)

[uilign = (AL + AD)uil; 1 /2he

[uylie = (AL + AL )ui; /2Dy

[uZlijr = (A2 + AL )uil; i /2h=,

where the derivatives along the X, y, and z direction arertaide the same as defined
in Eqn. 15. The Lagrange multiplierwas chosen to be the maximum value for which
the algorithm was stable. It was empirically determined éo\b= 10, and was not
changed thereafter. The above algorithm was implementégi+in using the FFTW
library by Frigo and Johnson [13].



4 Experimental Results

Lastly, we demonstrate the algorithm by performing experita with 2D natural im-
ages, 2D slices of 3D volumetric images, and finally the 3irw@@tric MRI images.

4.1 Results for Natural Images

Figure 2 shows the results of the super-resolution recectsbin algorithm applied to a
380 x 285 map image. This image has been scaled@® x 570 by pixel-replication
for display purposes. It can be observed that pixel reptioahherently adds blocking
artifacts to the image. The low-resolution image is up saably a factor of two us-
ing bilinear interpolation, and sinc interpolation, andifip using the super-resolution
reconstruction method. It is noticed that the bilinearriptdation grossly smoothes out
the image, the result due to sinc interpolation is somewbta¢bin the sense, some high
frequency information is preserved. However the supesives reconstruction yields
a sharp, crisp image, even resolving the little text at ficates.

Figure 3 shows similar results with280 x 200 scene image. The first image in
the top row shows th&60 x 400 pixel replicated image, whereas the last image is the
super-resolved image. The bottom row shows a small porfittmeamage magnified to
show detail. One can immediately observe the blocking &ffdae to pixel replication
in the first image, and blurring of the edge boundaries in tliedarly interpolated
version. The edges get somewhat better using the sinc ai&ign, but the best quality
is given by the super-resolved image, that resolves andevieances sharp edges and
interfaces in the image. In both the above cases, we usedtopge Gaussian kernel
with kernel widthss, = o, = 1.

4.2 Results for 2D slices of 3D MRI image

In this experiment, we look at enhancing the in-plane reaswiof individual transverse
slices of a 3D MRI image. From left, all rows of Fig. 4 show astispic original image
180 x 216, the subsampled image, a Fourier interpolated image, angexr-sesolved
reconstructed image from the subsampled image. For digpigoses, the subsampled
image is shown at twice the resolution using pixel-repiaratlt is observed that the
high resolved reconstructed image has sharper edge featuoee details, and visually
closely resembles the original image as compared to thddfanterpolated result.

4.3 Results for full 3D MRI images

The proposed super-resolution algorithm can be appliethitrary 2D images or even
3D volumes of anisotropic voxel dimensions. In this experit we apply the recon-
struction algorithm to the full 3D MRI image volume. Figuresbows a volume ren-
dering of an original image of dimensiof56 x 256 x 160, at voxel widths given by
1x1x1.25mm3. Thisimage is first subsampled to half the resolutiol28tx 128 x 80
(2 x 2x2.5mm?) super-resolved to a full isotrop56 x 256 x 160image withl x 1 x 1
mm? resolution. As expected, we can see an improvement in tiodutem plus an in-
crease in the detail simultaneously across all X, Y, and Zdisions. In this experiment,
we used an anisotropic Gaussian kernel with the variancgmoptional to the voxel di-
mensions. Furthermore the grid dimensions for the edgsepvang up sampling and



down sampling operators were taken to e = h—;,Ay = h—;,Az = 2z, where
hz, hy, h, are the voxel dimensions of the appropriate up sampled ondsamnpled
image.

4.4 Improving Results for Skull Stripping of MRI Brain Image s

In this experiment we investigate the use of super-resoiuds an enhancement pre-
processing step for an important problem of skull stripmifigrain MRI images. When-
ever any patient undergoes a brain MRI scan, the resultihgnetric image always
shows the skull cap, eye sockets, sometimes the cereballuthhe brain stem. Often
for diagnostic or even research purposes, the physicianlysimterested in looking at
the brain tissue (comprising of the gray/white matter). thig purpose the MRI scan
is processed to “skull-strip” unwanted anatomical featudrem the image. Currently,
even though there are a wide variety of automated methotlpdinimrm skull stripping
of MRI images, not all of them yield satisfactory results aride range of image data
sets. Such methods often require manual intervention tadimethe parameters of the
algorithm.

We perform a comprehensive experiment using the LONI LPBAI4ta set [16].
The LONI Probabilistic Brain Atlas (LPBA40) is a series of psaof brain anatomic
regions. These maps were produced from a set of whole-heddMR® human vol-
unteers. Each MRI is manually delineated to identify a sé&tGo$tructures in the brain,
most of which are within the cortex. These delineations hes tiransformed into a
common atlas space to produce a set of co-registered amaidatiels. Additionally,
the 3D volumes contained within this data set also reprasggrisity averages of the
co-registered skull-stripped MRI volumes. We used therB&irface Extractor (BSE)
[18] as a tool for skull stripping MRI images. As a first stegfdre using BSE, we
processed the entire dataset using our super-resolugiorithim to enhance edges and
anatomical boundaries. We then used BSE on the processadetato obtain skull
stripped versions of images. In order to test the accurasggientation, we used an
automated online resource (Segmentation, Validation&)diL 7] to test and evaluate
segmentation algorithms. This system accepts a segnmntasults (for e.g. running
BSE on the entire data set after our algorithm) and compavethi the manually deli-
nated, skull stripped intensity volumes already presetitér PBA 40 data set. It com-
putes false positive and false negative values for each esetion result, and colors
the values at each voxel to obtain a projection map. Sincddtevolumes are initially
processed in their native MRI space, we re-map the falseiy®sind false negative re-
sults to a common atlas space based on the LPBA40 mappingheiaverage these
maps across the 40 subjects. For each cardinal directidgal,(aagittal, and coronal),
we then sum the average counts along projections that dregmmal to the plane of
section. Table 1 shows the improvement in the results of skipping after the super-
resolution algorithm is applied. In this table, the Jaccsindilarity index, also known
as the Tanimoto coefficient, measures the overlap of two Ratsdefined as the size
of the intersection of the sets divided by the size of theioanThe Dice coefficient
represents the size of the union of 2 sets divided by the geesiae of the two sets. In
both the cases, higher mean better.

Visually, these results are shown as colored average pi@mjemaps in Fig. 6. The
first column shows the method and the measurement, for ell§Pstmplies standard
skull stripped, false positive, whereas SRFP implies supsuolved skull stripped false



positive. It is noticed that after super-resolution therage brightness intensity in all
of the regions is reduced as compared to the standard rékidtimplies a lowering of
the false positive rates, and improvement in segmentation.

Table 1. Comparison of Image metrics for skull stripped volumes kefo
and after the application of the super-resolution algarith

\ Metric | Std \ Edge \
Dice coefficienf{0.93164 0.03030.9611+ 0.0078
Jaccard index||0.8735+ 0.05180.9253+0.0144
Sensitivity {|0.9868+ 0.00550.9728+0.0151
Specificity ]/0.9761+4+ 0.01340.9909+0.0039

5 Conclusion and Future Directions

We have presented a method for enhancement of resolutiomagfdas. The strengths of
this approach lie in the i) TV norm as a regularizing funcéibin the variational model,
and ii) a new piecewise-linear up(down) sampling operdtat preserves edges. While
we are aware that the proposed method works with the physjgzde, and not the
frequency (k-space) of the data, we emphasize that the TV igra nonlinear prior that
does modify the amplitudes of the k-space data. In other syanar algorithm works on
the processed physical image, yet it modifies the specfi@rmation implicitly in the
data. This is an important point to be noted, especiallyéwnaf comparison with other
methods that involve MRI image processing that work withkkspace representation
of the data. We have demonstrated the improvementin spasialution for 2D as well
as 3D anatomical MRI images. Furthermore we have also denated its use as a
preprocessing step for brain skull extraction from MRI ireagThe intuition in the
improvement of skull stripped volumes after super-resofuprocessing stems from
the fact that the total variation prior prefers edges, anddeo reduce uncertainty in
their estimation. This implies that overall precision oé ttietection of edges will be
improved by super-resolution. This translates in the lawgeof the false positive rates
and is evident from the experimental results. The edgeepvery operator maintains or
sometimes even enhances edges in the image compared tetatheard interpolation
methods (including high order and sinc interpolation), velas the Bregman iterations
help in the recovery of higher order details from the image.

Diffusion Tensor Imaging (DTI) is an imaging modality thatgaining widespread
attention due to its potential of imaging fiber tracts in thaib. However, the current
acquisition resolution falls short of its intended use, uizaging the micro-structural
information in the brain. One of the consequences of lowlutiem are artifacts such
as PVE (partial volume effect), where a single imaged voxay mpotentially contain
multiple anatomical substructures or tissues. PVE canrevémit the analysis of
directional and structural connectivity. In the future, wtend to investigate the effect
of the proposed method to mitigate such issues.
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Low-resolution Imagg Bilinear Interpolation |  Sinc Interpolation ||[Edge-preserved Upsampling

Fig. 1. The first and the third rows show a low-resolution image from t
left, and its up sampled versions using a bilinear intejpmtaoperator,
a sinc operator, and the new edge-preserving operator fodifferent
checkerboard patterns. The second and the third rows shoagaified
area from the center of the image.



low-resolution image ilinear interpolation
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Fig. 2. Clockwise from top, 880 x 285 low-resolution image, upsampled

to twice the size by bilinear interpolation, sinc intergada, and super-
resolved reconstruction.



Low-resolution Image  Bilinear Interpolation Sinc Intelgkion Super-resolved reconstruction

Fig. 3. Top row shows the low-resolution image, and the upsampled ve
sions using bilinear, sinc and the super-resolved reaactstn. The bot-
tom row shows a magnified detail of a portion of the image.



Original Image  Subsampled Image Fourier Interpolation &f®mnstruction

Fig. 4. Examples of super-resolved reconstruction for 2D slice8f
MRI images.



Original Image Subsampled Image Fourier Interpolation &fomstruction

Fig.5. Examples of super-resolved reconstruction for full 3D MR i
ages (volume rendered).



Fig. 6. Examples of projection maps for false positive and negatees
for the segmentation result for each of the axial, sagittalj coronal
views.



