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Abstract. This paper focuses on a new image resolution enhancement method
based on the TV regularization model by Marquina and Osher. The low resolu-
tion images considered in this paper are natural images as well as 3D anatomi-
cal MRI scans of patients. The idea of image resolution enhancement concerns
with the improvement of image resolution based on the fusionof several acquisi-
tions of low resolution observations by the imaging sensor.We also demonstrate
the coarse to fine effect of the Bregman iterative procedure that helps to recover
finer scales from the reconstructed image. Additionally, wepropose a new edge-
preserving up (down) sampling operator that yields a significant improvement
during the up/down sampling stage of the method.
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1 Introduction

With the recent advances in low-cost imaging solutions and increasing storage capac-
ities, there is an increased demand for better image qualityin a wide variety of appli-
cations involving both image and video processing. While itis preferable to acquire
image data at a higher resolution to begin with, one can imagine a wide range of sce-
narios where it is technically not feasible. In some cases, it is the limitation of the sensor
due to low-power requirements as in satellite imaging, remote sensing, and surveillance
imaging. In other cases, it is the limitation of the sensed environment itself, for e.g. the
presence of atmospheric clutter, background noise, unfavorable weather , etc., etc. In
some cases, it is a combination of both, for e.g. the acquisition of medical images is
limited both by the physical issues of MRI imaging, as well asthe time constraints of
subjecting the magnetic field to patients without becoming ahealth hazard. One mea-
surement of image quality is the spatial resolution of the pixels distributed per unit
length/area. An improvement in the spatial resolution for still images directly improves
the ability to discern important features in images with a better precision.

The low-resolution data can exist in the form of still images, a sequence of im-
age frames devoid of inter-frame motion, a single video sequence, or a collection of
video sequences. Furthermore the observations can be corrupted by motion-induced ar-
tifacts either in the case of still images or videos. The collective approach that tackles



the problem of reconstructing a high-resolution image fromone or more of the above
low-resolution observations is termed as super-resolution. There are several prominent
approaches to this problem, all of them largely employing various cues such as sub-
pixel shifts between successive frames, the camera blur, defocus, and zoom , etc. These
approaches can be divided into two types, one that uses motion information between
successive frames (e.g., video super-resolution), and theother that uses a motion-free
approach. Most of these approaches usually expect multiplelow-resolution observa-
tions as input. Super-resolution image reconstruction is an ill-conditioned inverse prob-
lem, since the observation process of the original high resolution object consists of a
noisy blurred low resolution observation affected by sampling artifacts, blurring and
noise. This is mathematically modeled as a nonlinear process consisting of a convo-
lution operator acting on the image, followed by a down sampling operation and the
mixing of additive noise. Most of the earlier research work has been developed in the
frequency domain approach using (discrete) Fourier transform and wavelet-transform
based methods. For e.g. the approach of Tsai and Huang [20] first outlined the idea of
super-resolution in their seminal paper. Peleget al.[8] used the iterative back projection
scheme to achieve image reconstruction. Yet another approach [19] uses projections on
convex sets (POCS) of images to restrict the solution domainfor reconstruction. A hy-
brid approach by Elad and Feuer [5] combines the POCS and the maximum likelihood
approaches for both motion-based and motion-free super-resolution. A very different
set of methods use the learning-based approach for super-resolution. The general idea
here is to learn a set of image features from exemplar images and use them for the
reconstruction of a high-resolution image. Capel and Zisserman [2] use PCA on face
image databases to learn the image model and use it to reconstruct images from mul-
tiple views. Freemanet al. [6] learn a feature set of image patches that encode the
relationships among different spatial frequencies from a large training set and use it
as prior information for reconstructing higher frequencies for resolution enhancement.
The reader is referred to an excellent monograph by Chaudhari and Joshi [4] for a
comprehensive bibliography and references in the field. Along with a wide range of
applications of super-resolution methods in tasks such as satellite image processing,
surveillance, computer vision, and even video processing,there has been a consider-
able effort by researchers trying to apply these methods to medical imaging. In par-
ticular, MRI acquisitions usually have a low-resolution inthe inter-slice direction, and
it is of considerable interest to “fill-in” the intermediateslices. Carmiet al. [3] use
sub-pixel shifted MR (Magnetic Resonance) images for high resolution reconstruction.
Greenspanet al. [7] combine several low resolution images in the slice-select direction
to achieve SR reconstruction. Kornprobstet al. [9] also achieve higher resolution in the
slice-select direction for fMRI sequences.

While super-resolution methods attempt to exploit the information redundancy in
several low-resolution observations of images, at times, only a single low-resolution
instance of the image is available. This is sometimes the case in MRI images, where
due to economic or health reasons, a patient is scanned only once over a period of time,
or the time elapsed between successive scans may be too largeto preserve any temporal
coherence to take advantage of. This is the idea that is explored in this paper, where
we will focus mainly on the problem of single frame high resolution reconstruction
of images. A super-resolution related variational model using the total variation (TV)
norm as regularizing functional for de-blurring and oversampling a single noisy image
was also proposed in [10] . This model was formulated and solved in the Fourier domain



assuming periodic boundary conditions by means of the gradient descent method and
using characteristic functions as convolution kernels.

Our approach will be based upon a variational model that usesthe TV norm [15] as a
regularizing functional. Recently, Marquinaet al. [12] have proposed a new variational
model based on the TV norm [15] for super-resolution of multidimensional images.
They use a new multi-scale approach (Bregman iterations) for iterative refinement and
recovery of finer details in images. We will follow this approach to solve the more gen-
eral super-resolution problem using the TV norm as regularizing functional. The pro-
posed model uses a multi-frame dataset instead of a single image and Gaussian kernels
of convolution allowing homogeneous Neumann boundary conditions. In addition, we
propose an iterative refinement procedure based on an original idea by Bregman [1], as
suggested and implemented in [11], to improve spatial resolution. The proposed super-
resolution method improves the behavior of any interpolation method (including high
order and sinc interpolation) because our method preservesedges satisfactorily avoid-
ing Gibbs phenomenon and the iterative refinement procedureallows us to recover fine
scales of the image.

This paper is organized as follows: Section 2 outlines the super-resolution model
using TV regularization. In particular, it explains the variational model as well as a
new scale-space approach that utilizes the Bregman iterative procedure for recovering
finer details from images. Additionally, section 2.2 proposes a new edge-preserving up
(down) sampling operator used in the model. Section 3 presents details of the numerical
implementation of the model. Section 4 demonstrates experimental results for a few 2D
natural images as well as 2D slices and 3D volumes of MRI images, followed by the
summary.

2 Image Observation and Synthesis Model

The low resolution image observation model can be formulated in a standard fashion as
a down-sampled degraded version of the original high resolution image. We assume that
the low resolution imagef is defined on a subset of a planeΩ ⊂ R

k. For the purpose
of this paper,k is either2 or 3. Here onwards, all the notation will be specified for3D
images. The restriction to2D images is straightforward. For a discrete representation,
we assumef ∈ R

n×R
m×R

p . Let the unknown high resolution image to be estimated
be given byu ∈ R

2m ×R
2n ×R

2p. Then given a linear down sampling operatorD, we
can write the observation model as,

f = D(h ∗ u) + n, (1)

wheren is an additive Gaussian white noise with zero mean and varianceσ2, andh is
translation invariant convolution kernel corresponding to the point spread function of
the imaging device. A related problem in the above formulation is the estimation of the
kernelh, that we shall skip in this paper. Throughout this paper, we assume that the
kernel is given by the Gaussian,

h(x, y, z) = Ke
− 1

2

»

x2

σ2
x

+
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σ2
y

+ z2

σ2
z

–

, (2)

whereK is a normalization constant, andσx, σy, σz are variances along theX , Y , and
Z directions respectively. The problem in Eqn. 1 is usually solved as a constrained op-



timization problem that seeks to minimize the regularizer
∫

Ω
||∇u||2dxdy, while con-

straining the noise to be||h ∗u− f ||2
L2 = σ2. This ensures that the reconstructed image

u is free of discontinuities. However in order to recover the edges satisfactorily, Rudin
and Osher [15] propose the total variation norm as the regularizing functional. The total
variation norm is given as,

TV(u) =

∫

Ω

|∇u|dxdy (3)

Using the regularizer in Eqn. 3, we can state the single frameimage reconstruction
model as the minimization problem as follows:

û = argmin
u

{TV (u) +
λ

2
[||f − D(h ∗ u)||2

L2 − σ2]} (4)

The Euler-Lagrange formulation for Eqn. 4 can be written as

∇ ·
∇u

|∇u|
+ λ(h̃ ∗ S(f) − h̃ ∗ (S ◦ D(h ∗ u))) = 0 (5)

=⇒ ∇ ·
∇u

|∇u|
+ λh̃ ∗ (ḡ − T (h ∗ u)) = 0 (6)

whereḡ = S(f), and the operatorT is defined asT = S ◦ D.
The Euler-Lagrange equation given by Eqn. 6 can be solved as atime-dependent

equation

ut = ∇ ·
∇

|∇u|
+ λh̃ ∗ (ḡ − T (h ∗ u)) (7)

with homogeneous Neumann boundary conditions and initiating withu0 = S(f).

2.1 Bregman Iterative Method

The convergence of Eqn. 7 to the steady state yields a reconstructed high resolution
image. However if one wishes to recover even finer scales fromthe reconstructed image,
one can use the Bregman iterative refinement procedure [1] todo so. Ifu0 is the solution
of Euler-Lagrange equation (6), then we have,

∇ ·
∇u0

|∇u0|
+ λh̃ ∗ (ḡ − T (h ∗ u0)) = 0 (8)

We will denote the image residual in the high resolution scale byv0 as,

v0 = ḡ − T (h ∗ u0) (9)

We now solve the Euler-Lagrange equation for the new imageḡ + v0 to obtain a new
solution, which we denote byu1. Again, the solutionu1 will satisfy

∇ ·
∇u1

|∇u1|
+ λh̃ ∗

(

ḡ + v0 − T (h ∗ u1)
)

= 0, (10)

where the new residual is defined as

v1 = ḡ + v0 − T (h ∗ u1) (11)



and so on. We term the sequence of imagesu0, u1, · · · , uj, · · · as Bregman iterates. It
is advisable to terminate this procedure when a satisfactory image quality is obtained,
otherwise it has a tendency to recover noise after all the finer scales in the image are
recovered. This iterative procedure was introduced for image restoration in [14] and has
also been used for blind deconvolution of images based on TV norm in [11].

2.2 Edge-preserving Up (Down)-sampling operator

There are various choices for the up (S) and down (D) sampling operators used in the
observation model in Eqn. 1 and the synthesis model in Eqn. 6 respectively. The sim-
plest down sampling operator can be an averaging operator that simply averages the
eight neighbors of the pixel using either a Gaussian kernel,or an arithmetic average.
Equivalently, the up sampling operation corresponding to the down sampling operator
above simply involves repeating voxel values for each row, column, and slice. Alter-
nately, one can also use 3D bilinear interpolation for up sampling and down sampling
images. The problems with the above approaches are the unnecessary blurring (averag-
ing) that is caused at each step of the iteration while solving the Euler Lagrange equation
in 6. To overcome this problem, one can further suggest the use of better signal preserv-
ing operators that use sinc or Fourier interpolation for up and down sampling. However
these methods can potentially introduce ringing artifactsin images with sharp edges or
boundaries.

Especially for images with prominent edges and interfaces,we need an appropri-
ate interpolation operator that preserves these features.Accordingly, we propose a new
piecewise-linear up (down) sampling operator that preserves such edges and bound-
aries. We describe the edge-preserving operator in detail below.

We set up the gridxj = (j − 1)∆x, yk = (k − 1)∆y andzl = (l − 1)∆z, where
∆x > 0, ∆y > 0, ∆z > 0 andj = 1, . . . , n, k = 1, . . . , m andl = 1, . . . , p. We define
the domainE = [0, A]× [0, B]× [0, C], whereA = (n− 1)∆x, B = (n− 1)∆y, and
C = (n − 1)∆z. We consider the grid functionu defined as

uj,k,l : R
3 → R

3

We define theedge-preserving piecewise linear approximationof the grid functionu
as the functionL(x, y, z)|Ejkl

= Ljkl(x, y, z) where the computational voxelEjkl is
given by

Ejkl = [xj −
∆x

2
, xj +

∆x

2
] × [yk −

∆y

2
, yk +

∆y

2
] × [zl −

∆z

2
, zl +

∆z

2
]

and
Ljkl(x, y, z) = uj,k,l + a(x − xj) + b(y − yk) + c(z − zl),

wherea, b, andc are determined from

a = minmod

(

∆x
−uj,k,l

∆x
,
∆x

+uj,k,l

∆x

)

(12)

b = minmod

(

∆y
−uj,k,l

∆y
,
∆y

+uj,k,l

∆y

)

(13)

c = minmod

(

∆z
−uj,k,l

∆z
,
∆z

+uj,k,l

∆z

)

, (14)



where the operations in the term containing derivatives areunderstood component-wise,
and

∆x
±un

i,j,k = ±(un
i±1,j,k − un

i,j,k)

∆y
±un

i,j,k = ±(un
i,j±1,k − un

i,j,k)

∆z
±un

i,j,k = ±(un
i,j,k±1 − un

i,j,k),

(15)

wherei, j, k are the indices of the 3D grid.
The minmod(d, e) function is defined as,

minmod(d, e) =
sgn(d) + sgn(e)

2
min(|d|, |e|), (16)

where sgn(d) = 1 if d ≥ 0 and sgn(d) = −1 otherwise.
The functionLjkl(x, y, z) is defined on the computational voxelEjkl. We want to

up-(down) sample the grid functionu with a spatial resolution ofhx > 0, hy > 0, hz >
0. Then the up-(down) sampled grid functionv is defined on a new gridv(q, r, s) for
q = q, . . . , nh, r = 1, . . . , mh, ands = 1 . . . , ph where

nh = floor

(

A

hx

)

mh = floor

(

B

hy

)

ph = floor

(

C

hz

)

,

where floor(d) is the maximum of all integersi such thati ≤ d. The new grid is then
defined asxhq

= (q− 1)hx, yhr
= (r− 1)hy, andzhs

= (s− 1)hz. Based on this grid,
the functionv is defined asv(q, r, s) = L(xhq

, yhr
, zhs

).
We demonstrate the edge-preserving property of the above operator by applying it

to a checkerboard pattern as shown in Fig. 1. Figure 1 shows a low-resolution image, as
well as its up sampled versions using a bilinear, sinc and theedge-preserving operator
for two different types of checkerboard patterns. It also shows a magnified portion from
the center of the image. It is noticed that the bilinear and the sinc interpolation operators
introduce significant spurious levels of gray in between theblack squares in the pattern.
Furthermore, they have a tendency to smooth out the boundaries of the flat black squares
in the image. In contrast, the edge-preserving operator hasretained, and in some cases
even enhanced the boundaries and edges as compared to the low-resolution image.

3 Numerical Implementation

This section discusses the numerical implementations of the solution to the Euler La-
grange equation. The Euler-Lagrange derivative of the TV-norm is not well defined at
points where∇u = 0, due to the presence of the term1

|∇u| . Hence we modify the
regularization TV functional as follows:

∫

Ω

√

|∇u|2 + ǫ dxdy (17)



whereǫ is a small positive parameter or
∫

Ω

|∇u|ǫ dxdy (18)

with the notation
|v|ǫ =

√

|v|2 + ǫ (19)

for v ∈ R2.
We express the 3D model (7) in terms of explicit partial derivatives

ut =λh̃ ∗ (ḡ − T (h ∗ u))

+
un

xx((un
y )2 + (un

z )2 + ǫ)) + un
yy((u

n
x)2 + (un

z )2 + ǫ)) + un
zz((u

n
x)2 + (un

y )2 + ǫ))

[(un
x)2 + (un

y )2 + (un
z )2 + ǫ]3/2

+
−2un

xyu
n
xun

y − 2un
xzu

n
xun

z − 2un
yzu

n
yun

z

[(un
x)2 + (un

y )2 + (un
z )2 + ǫ]3/2

(20)

usingu0 = S(f) as the initial guess and homogeneous Neumann boundary conditions
(i.e. absorbing boundary).

The above expression can also be rewritten as

un+1

i,j,k − un
i,j,k

∆t
= λ[h̃ ∗ (ḡ − T (h ∗ un))]i,j,k

+
un

xx((un
y )

2
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n
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[(un
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+
−2un

xyu
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xun

y − 2un
xzu

n
xun

z − 2un
yzu

n
yun

z

[(un
x)2 + (un

y )2 + (un
z )2 + ǫ]3/2

(21)

The approximations to the derivatives in Eqn. 21 can be calculated as:

[un
xx]i,j,k = ∆x

+∆x
−un

i,j,k/h2
x

[un
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+∆y
−un
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[un
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[un
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+)un
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(22)

where the derivatives along the x, y, and z direction are taken to be the same as defined
in Eqn. 15. The Lagrange multiplierλ was chosen to be the maximum value for which
the algorithm was stable. It was empirically determined to be λ = 10, and was not
changed thereafter. The above algorithm was implemented inC++ using the FFTW
library by Frigo and Johnson [13].



4 Experimental Results

Lastly, we demonstrate the algorithm by performing experiments with 2D natural im-
ages, 2D slices of 3D volumetric images, and finally the 3D volumetric MRI images.

4.1 Results for Natural Images

Figure 2 shows the results of the super-resolution reconstruction algorithm applied to a
380 × 285 map image. This image has been scaled to760 × 570 by pixel-replication
for display purposes. It can be observed that pixel replication inherently adds blocking
artifacts to the image. The low-resolution image is up sampled by a factor of two us-
ing bilinear interpolation, and sinc interpolation, and finally using the super-resolution
reconstruction method. It is noticed that the bilinear interpolation grossly smoothes out
the image, the result due to sinc interpolation is somewhat better in the sense, some high
frequency information is preserved. However the super-resolved reconstruction yields
a sharp, crisp image, even resolving the little text at finer scales.

Figure 3 shows similar results with a280 × 200 scene image. The first image in
the top row shows the560 × 400 pixel replicated image, whereas the last image is the
super-resolved image. The bottom row shows a small portion of the image magnified to
show detail. One can immediately observe the blocking effects due to pixel replication
in the first image, and blurring of the edge boundaries in the bilinearly interpolated
version. The edges get somewhat better using the sinc interpolation, but the best quality
is given by the super-resolved image, that resolves and evenenhances sharp edges and
interfaces in the image. In both the above cases, we used an isotropic Gaussian kernel
with kernel widthsσx = σy = 1.

4.2 Results for 2D slices of 3D MRI image

In this experiment, we look at enhancing the in-plane resolution of individual transverse
slices of a 3D MRI image. From left, all rows of Fig. 4 show an isotropic original image
180 × 216, the subsampled image, a Fourier interpolated image, and a super-resolved
reconstructed image from the subsampled image. For displaypurposes, the subsampled
image is shown at twice the resolution using pixel-replication. It is observed that the
high resolved reconstructed image has sharper edge features, more details, and visually
closely resembles the original image as compared to the Fourier interpolated result.

4.3 Results for full 3D MRI images

The proposed super-resolution algorithm can be applied to arbitrary 2D images or even
3D volumes of anisotropic voxel dimensions. In this experiment, we apply the recon-
struction algorithm to the full 3D MRI image volume. Figure 5shows a volume ren-
dering of an original image of dimensions256 × 256 × 160, at voxel widths given by
1×1×1.25mm3. This image is first subsampled to half the resolution at128×128×80
(2×2×2.5mm3) super-resolved to a full isotropic256×256×160 image with1×1×1
mm3 resolution. As expected, we can see an improvement in the resolution plus an in-
crease in the detail simultaneously across all X, Y, and Z dimensions. In this experiment,
we used an anisotropic Gaussian kernel with the variances proportional to the voxel di-
mensions. Furthermore the grid dimensions for the edge-preserving up sampling and



down sampling operators were taken to be∆x = hx

2
, ∆y =

hy

2
, ∆z = hz

2
, where

hx, hy, hz are the voxel dimensions of the appropriate up sampled or down sampled
image.

4.4 Improving Results for Skull Stripping of MRI Brain Image s

In this experiment we investigate the use of super-resolution as an enhancement pre-
processing step for an important problem of skull strippingof brain MRI images. When-
ever any patient undergoes a brain MRI scan, the resulting volumetric image always
shows the skull cap, eye sockets, sometimes the cerebellum,or the brain stem. Often
for diagnostic or even research purposes, the physician is only interested in looking at
the brain tissue (comprising of the gray/white matter). Forthis purpose the MRI scan
is processed to “skull-strip” unwanted anatomical features from the image. Currently,
even though there are a wide variety of automated methods that perform skull stripping
of MRI images, not all of them yield satisfactory results on awide range of image data
sets. Such methods often require manual intervention to finetune the parameters of the
algorithm.

We perform a comprehensive experiment using the LONI LPBA 40data set [16].
The LONI Probabilistic Brain Atlas (LPBA40) is a series of maps of brain anatomic
regions. These maps were produced from a set of whole-head MRI of 40 human vol-
unteers. Each MRI is manually delineated to identify a set of56 structures in the brain,
most of which are within the cortex. These delineations are then transformed into a
common atlas space to produce a set of co-registered anatomical labels. Additionally,
the 3D volumes contained within this data set also representintensity averages of the
co-registered skull-stripped MRI volumes. We used the Brain Surface Extractor (BSE)
[18] as a tool for skull stripping MRI images. As a first step, before using BSE, we
processed the entire dataset using our super-resolution algorithm to enhance edges and
anatomical boundaries. We then used BSE on the processed data set to obtain skull
stripped versions of images. In order to test the accuracy ofsegmentation, we used an
automated online resource (Segmentation, Validation Engine) [17] to test and evaluate
segmentation algorithms. This system accepts a segmentation results (for e.g. running
BSE on the entire data set after our algorithm) and compares it with the manually deli-
nated, skull stripped intensity volumes already present inthe LPBA 40 data set. It com-
putes false positive and false negative values for each segmentation result, and colors
the values at each voxel to obtain a projection map. Since thedata volumes are initially
processed in their native MRI space, we re-map the false positive and false negative re-
sults to a common atlas space based on the LPBA40 mappings. Wethen average these
maps across the 40 subjects. For each cardinal direction (axial, sagittal, and coronal),
we then sum the average counts along projections that are orthogonal to the plane of
section. Table 1 shows the improvement in the results of skull stripping after the super-
resolution algorithm is applied. In this table, the Jaccardsimilarity index, also known
as the Tanimoto coefficient, measures the overlap of two sets. It is defined as the size
of the intersection of the sets divided by the size of their union. The Dice coefficient
represents the size of the union of 2 sets divided by the average size of the two sets. In
both the cases, higher mean better.

Visually, these results are shown as colored average projection maps in Fig. 6. The
first column shows the method and the measurement, for e.g. stdFP implies standard
skull stripped, false positive, whereas SRFP implies super-resolved skull stripped false



positive. It is noticed that after super-resolution the average brightness intensity in all
of the regions is reduced as compared to the standard result.This implies a lowering of
the false positive rates, and improvement in segmentation.

Table 1.Comparison of Image metrics for skull stripped volumes before
and after the application of the super-resolution algorithm.

Metric Std Edge
Dice coefficient0.9316± 0.03050.9611± 0.0078
Jaccard index 0.8735± 0.05180.9253±0.0144

Sensitivity 0.9868± 0.00550.9728±0.0151
Specificity 0.9761± 0.01340.9909±0.0039

5 Conclusion and Future Directions

We have presented a method for enhancement of resolution of images. The strengths of
this approach lie in the i) TV norm as a regularizing functional in the variational model,
and ii) a new piecewise-linear up(down) sampling operator that preserves edges. While
we are aware that the proposed method works with the physicalspace, and not the
frequency (k-space) of the data, we emphasize that the TV prior is a nonlinear prior that
does modify the amplitudes of the k-space data. In other words, our algorithm works on
the processed physical image, yet it modifies the spectral information implicitly in the
data. This is an important point to be noted, especially in view of comparison with other
methods that involve MRI image processing that work with thek-space representation
of the data. We have demonstrated the improvement in spatialresolution for 2D as well
as 3D anatomical MRI images. Furthermore we have also demonstrated its use as a
preprocessing step for brain skull extraction from MRI images. The intuition in the
improvement of skull stripped volumes after super-resolution processing stems from
the fact that the total variation prior prefers edges, and tends to reduce uncertainty in
their estimation. This implies that overall precision of the detection of edges will be
improved by super-resolution. This translates in the lowering of the false positive rates
and is evident from the experimental results. The edge-preserving operator maintains or
sometimes even enhances edges in the image compared to otherstandard interpolation
methods (including high order and sinc interpolation), whereas the Bregman iterations
help in the recovery of higher order details from the image.

Diffusion Tensor Imaging (DTI) is an imaging modality that is gaining widespread
attention due to its potential of imaging fiber tracts in the brain. However, the current
acquisition resolution falls short of its intended use, viz. imaging the micro-structural
information in the brain. One of the consequences of low resolution are artifacts such
as PVE (partial volume effect), where a single imaged voxel may potentially contain
multiple anatomical substructures or tissues. PVE can severely limit the analysis of
directional and structural connectivity. In the future, weintend to investigate the effect
of the proposed method to mitigate such issues.
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Low-resolution Image Bilinear Interpolation Sinc Interpolation Edge-preserved Upsampling

Fig. 1.The first and the third rows show a low-resolution image from the
left, and its up sampled versions using a bilinear interpolation operator,
a sinc operator, and the new edge-preserving operator for two different
checkerboard patterns. The second and the third rows show a magnified
area from the center of the image.



low-resolution image bilinear interpolation

sinc interpolation Super-resolved reconstruction

Fig. 2.Clockwise from top, a380×285 low-resolution image, upsampled
to twice the size by bilinear interpolation, sinc interpolation, and super-
resolved reconstruction.



Low-resolution Image Bilinear Interpolation Sinc Interpolation Super-resolved reconstruction

Fig. 3. Top row shows the low-resolution image, and the upsampled ver-
sions using bilinear, sinc and the super-resolved reconstruction. The bot-
tom row shows a magnified detail of a portion of the image.



Original Image Subsampled Image Fourier Interpolation SR reconstruction

Fig. 4. Examples of super-resolved reconstruction for 2D slices of3D
MRI images.



Original Image Subsampled Image Fourier Interpolation SR reconstruction

Fig. 5. Examples of super-resolved reconstruction for full 3D MRI im-
ages (volume rendered).
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Fig. 6.Examples of projection maps for false positive and negativevalues
for the segmentation result for each of the axial, sagittal,and coronal
views.


