
A Simple Compressive Sensing Algorithm for Parallel
Many-Core Architectures

Alexandre Borghi 1 Jérôme Darbon2 Sylvain Peyronnet1
Tony F. Chan2 Stanley Osher2

1Laboratoire de Recherche en Informatique (LRI), Université Paris Sud, France
2Department of Mathematics, UCLA, Los Angeles, California, USA

Original version: September 2008, revised version: August 2009

Abstract

In this paper we consider the l1-compressive sensing problem. We propose an algorithm
specifically designed to take advantage of shared memory, vectorized, parallel and many-core
microprocessors such as the Cell processor, new generation Graphics Processing Units (GPUs)
and standard vectorized multi-core processors (e.g. quad-core CPUs). Besides its implementa-
tion is easy. We also give evidence of the efficiency of our approach and compare the algorithm
on the three platforms, thus exhibiting pros and cons for each of them.

1 Introduction

An algorithm that relies on standard optimization techniques is proposed for solving compres-
sive sensing problems involving l1 minimization. Its main characteristic is that it is designed for
running efficiently on parallel many-core architectures and thus takes huge benefit from these
technologies.

Let us briefly describe the compressive sensing problem. Given a sensing matrix A ∈ IRm×n

and some observed data f ∈ IRm , one wishes to find an optimal solution u∗ ∈ IRn of the follow-
ing constraint minimization problem: {

minu ‖u‖1
s.t. Au = f

(1)

where the number of constraints m is typically much lower than the size of the signal n. This
problem has received a lot of attention since it has application for instance in signal/image pro-
cessing, data compression and more recently as compressive sensing [8, 9, 10, 19, 50]. The latter
corresponds to identify matrices that allow for exact recovery of the original signal which is as-
sumed to be sparse, from the observations. Such matrices are for instance proposed in [8, 10, 16,
19, 3]. This approach has led to several applications such as machine learning [30, 37], dimension
reduction [27], face recognition [54], image processing [11] and medical imaging [36]. There is
a very large literature for algorithms to solve this problem [13, 18, 25, 28, 29, 32, 49, 51, 50, 55]
for instance. We refer the reader to these for more detailed reviews of available algorithms. We
note that many of them rely on iterative based thresholding/shrinkage approach that has been
originally presented in [44] and [12] and with further developments and improvements such as
[6, 7, 13, 22, 24, 15, 21]. This paper also falls into this category. However, contrary to these pre-
vious approaches, we focus on the practical considerations of such an approach (as opposed to
pure theoretical ones) and our goal is to design an efficient algorithm that takes benefit from
available computing technologies.

1

More precisely, we consider a standard Moreau-Yosida regularization as originally proposed
in the seminal work of [39] and [56]. The latter yields an iterative algorithm that is also known as
the proximal point iterations [13, 20, 31, 34] that requires the inversion of a non-linear operator.
We show that the latter can be efficiently performed by a shrinkage approach by defining an
appropriate Moreau-Yosida regularization. The convergence of the method is assured by the
theoretical properties of the Moreau-Yosida regularization [31, 34]. This approach allows for an
efficient implementation on parallel, shared memory and vectorized architectures. The latter are
now standardly available and lead to tremendous speedups compared to unary non-vectorized
processors. Eventually, we note the work of [38] that also performs proximal point iterations for
solving the compressive sensing problem but on a dual formulation.

Note that in general, efficient implementations of a numerical algorithm on these parallel
shared memory platforms are difficult to develop due to technical specificities of these architec-
tures. However, our algorithm has been designed keeping in mind these technical issues so that it
allows a short, easy and efficient implementation on these platforms. Experiments on three differ-
ent parallel many-core architectures, namely vectorized multi-core processors, Graphic Processor
Unit processors (GPUs) and the Cell Broadband Engine Architecture microprocessor (Cell), are
presented and demonstrate the effectiveness of the approach.

The structure of the paper is as follows: section 2 describes main concepts of parallel com-
puting and essential features of many-core architectures that must be taken into account while
designing an algorithm intended to yield an easy and fast implementation to run on them. Our
algorithm is described in section 3. Experiments along with comparisons with several different
architectures are presented in section 4. Finally we draw some conclusions in section 5.

2 Parallel Architectures

We recall that our goal is to design an algorithm that benefits from current parallel architectures.
In this section, we present general concepts about parallel computing along with their implemen-
tations in current parallel architectures we considered, before presenting the algorithm designed
for them in section 3.

2.1 General parallel computing concepts

In order to design an efficient algorithm on current parallel architectures, we need to understand
the main concepts they rely on. We now describe these concepts.

Coarse parallelism. Each platform features several computing units, thus tasks can be spread
over them in order to improve performance. However, developers must take care of locks that
are likely to arise in this context. A lock is used to prevent at least two computing units to update
the same space of memory. It is well known that the use of locks to force unique access to data
severely deteriorate performances. A good way to avoid the use of locks, and thus to enhance
the performance, is to schedule operations so that they never interfere with each others. This
general issue is known as the synchronisation problem and is one of the most important problem
regarding performance.

Vectorization. Another level of parallelism, finer than the previous one, consists of processing
the data as a vector. This technique receives the name of SIMD. Some architectures implement
this technique and rely on the so-called vector units. Performances are greatly improved through
the use of these vector units, provided the fact that data are well aligned (data must be accessed
at specific adresses in memory). Note that not all algorithms can take benefit from this technique
because they are not intrinsically built on vectorial primitives. Besides, even though the latter
holds, the alignment property still needs to be fullfilled. In other words, it means that this re-
quirement must be taken into account during the design phase of the algorithm. Our algorithm

2

is taking advantage of this technique.

Memory considerations. Memory limitations are the main constraints of considered architec-
tures, namely bandwidth, latency and cache memory issues. Recall that these platforms have
two kinds of memory : cache memory, which is typically structured in different levels, and stan-
dard RAM. Cache memory has for goal to reduce the time needed to access data in RAM. Cache
memory is an order of magnitude faster than RAM but also a lot smaller in terms of capacity
storage. To perform computations on large inputs, data parts must be transfered back and forth
between cache memory and RAM. This implies memory communications that can be a bottleneck
of the method due to limited available bandwidth and latency. To efficiently achieve this memory
management, implementations have to take into account the structure of the cache, i.e., the cache
hierarchy. Indeed, an algorithm and its implementation should help a processor to maintain this
structure and facilitate the prediction of data moves. Since several cores might require simulta-
neous memory accesses, performances can be limited by the available bandwidth. To cope with
this problem, it is needed to satisfactorily schedule data transfers. If these memory issues are not
taken into account then computing units may wait for the data to be processed. This is called
computation starvation since a processor is not computing. To avoid this behavior, the frequency
and the size of data transfers must be tuned to have no computing units without data.

2.2 Parallel architectures

We now explain how current parallel architectures implement concepts just described above. We
consider three different architectures: standard vectorized multi-core CPU, modern GPU and
the Cell Broadband Architecture (CBEA or Cell for short). These three platforms share common
features. First, they are all based on a shared memory, i.e., a central memory accessible from all
computing units. Second, they are parallel, i.e., composed of several computing units working
together. However, these architectures do not implement parallelism in the same way. This
leads to very different performances in both terms of computational power and memory transfer,
which are two key aspects for global performance.

We now describe more precisely each of these architectures in view of the above considera-
tions.

Multi-core CPU. A standard multi-core CPU is a processor made of several cores. Each core is
superscalar, out-of-order and composed of vector computing units (such as Altivec [17] or Intel
Streaming SIMD Extensions). From a parallel computing point of view, main differences between
current commercial multi-core CPUs are core interconnections, cache hierarchy and how they
access RAM.

The Intel Core 2 has cores clustered by 2. Each core has its own very fast level 1 cache (L1)
and each cluster features a shared L2 cache. Clusters are linked together through a Front-Side
Bus (FSB) with motherboard northbridge, which integrates the memory controller used to access
RAM. The Core 2 Quad features 2 clusters of 2 cores. Because the 2 clusters are not connected
through an internal crossbar nor a shared cache, cache coherency is maintained thanks to the
motherboard northbridge. This implies slower communications between cores of separate clus-
ters than cores of a unique cluster and more generally nefast repercussions on performance in a
parallel context.

On the contrary, the Intel Core i7 has a unique cluster for all of its cores and a L3 cache shared
over them in addition to their own L2. Thanks to this shared L3 cache, better cache use can be
achieved when several threads work on the same data. The FSB is replaced by a QuickPath In-
terconnect (QPI), which is a point-to-point interconnection, and the memory controller is now
on-die. That allows both reduced latency and higher bandwidth. More, the Core i7 has 2 impor-
tant features from a parallel computing point of view : Turbo Boost (TB) and Hyper-Threading
(HT). The first one consists of a dynamic increase of frequency for active cores when some cores
are inactive. When enabled this feature must be taken into accoung as it acts as a bias in par-
allel results. The second one allows the OS to see 2 logical cores for each physical core, which

3

can yield better uses of computational units : as 2 threads have independant instructions the
processor pipeline can be filled more efficently and the out-of-order engine can achieve better
performance. However, handling 2 threads per core can increase pressure on cache (i.e., more
cache misses per core) and then on RAM.

Core 2 and Core i7 are shown in figure 1 in their 4 cores configuration. Current high-end
quad-core processors achieve a theoretical peak performance of 96 GFLOPS in single precision at
3GHz.

FSB

Core 1 Core 2

L1

Core 3 Core 4

L1

Shared L2

L1 L1

Shared L2

QPIQPI

Core 1Core 1 Core 2Core 2

L1+L2L1+L2

Core 3Core 3 Core 4Core 4

L1+L2L1+L2 L1+L2L1+L2 L1+L2L1+L2

Shared L3Shared L3

Figure 1: Architectural schemes of Intel multi-core CPUs (left : Core 2 Quad; right : Core i7). See
text for details.

Graphics Processing Unit (GPU). A modern GPU (such as current NVIDIA GPUs) consists of a
large set of the so-called stream processors that share a common memory [40]. These homoge-
neous processors have been originally designed for 3D graphics computations and thus had poor
scientific computation units in terms of precision.

They now have the capabilities (in terms of precision) to achieve good performances for sci-
entific computing. The latter is called General-Purpose GPU (GPGPU), see [46]. Note that a GPU
is hosted by a standard CPU-based computer that embeds some RAM.

NVIDIA GPU architectures are depicted in figure 2. Contrary to CPU cores, GPU cores are
scalar. They still use cache memory using several layers but in a very different way than CPUs.
Cores are grouped into clusters with a shared L1 cache. Clusters are subdivided in groups of 8
cores which shares a local memory. These 8 cores execute the same instruction on multiple data.
Therefore, vectorization is achieved using several scalar cores. The number of cores per cluster
can variate according to models : clusters of 16 cores for G80 architecture or clusters of 24 cores
for G200, which is an optimized version of G80.

Thanks to a dedicated bus, GPU cores have access to a very fast embedded memory of hun-
dreds of MB. It allows an efficient use of the highly parallel and bandwidth-demanding units of
GPUs. RAM can also be accessed through PCI Express. However, transfers between GPU em-
bedded memory and RAM are very time consuming due to the PCI Express limited bandwidth.
Therefore, they must be avoided as most as possible.

Thanks to their radically different architectures, GPUs have a theoretical peak performance
an order of magnitude higher than current high-end CPUs. For instance a NVIDIA 8800 GTS
(G80 architecture) with 96 stream processors at about 1.2GHz achieves a computational power
of 345 GFLOPS in single precision and a NVIDIA GTX 275 (G200 architecture) with 240 stream
processors at about 1.4GHz achieves 1010 GFLOPS, compared to the 96 GFLOPS of Intel quad-
core processors at 3GHz.

Since GPUs were originally used for graphics purpose, they could only be accessed through
dedicated graphic libraries. In order to implement numerical algorithms, NVIDIA has devel-
opped CUDA (Compute Unified Device Architecture), which is composed of a compiler and a
set of tools organized as a library to help programmers. CUDA is currently the state-of-the-art

4

for General-Purpose GPU. The last step for generalized General-Purpose GPU adoption is the
release of GPU clusters specifically designed for scientific computing.

C

C

C

C

L
o
c
a
l

C

C

C

C

C

C

C

C

...

Memory MemoryMemory Memory

L
o
c
a
l

C

C

C

C

Shared L1

C

C

C

C

L
o
c
a
l

C

C

C

C

C

C

C

C

L
o
c
a
l

C

C

C

C

Shared L1

...

PCI Express

CC

CC

CC

CC

L
o
c
a
l

L
o
c
a
l

CC

CC

CC

CC

CC

CC

CC

CC

...

Memory MemoryMemory Memory

L
o
c
a
l

L
o
c
a
l

CC

CC

CC

CC

...

PCI ExpressPCI Express

CC

CC

CC

CC

L
o
c
a
l

L
o
c
a
l

CC

CC

CC

CC

Shared L1Shared L1

CC

CC

CC

CC

L
o
c
a
l

L
o
c
a
l

CC

CC

CC

CC

CC

CC

CC

CC

L
o
c
a
l

L
o
c
a
l

CC

CC

CC

CC

CC

CC

CC

CC

L
o
c
a
l

L
o
c
a
l

CC

CC

CC

CC

Shared L1Shared L1

Memory Memory

Figure 2: Architectural schemes of NVIDIA GPUs (left : G80; right : G200). See text for details.

Cell Broadband Engine Architecture (CBEA). The Cell Broadband Engine Architecture is a new
architecture developed by Sony, Toshiba and IBM [47]. CBEA is designed for high computational
throughput and bandwidth along with power efficiency. The general architecture is depicted in
figure 3.

The Cell processor consists of an in-order 64-bit PowerPC core, also called Power Processing
Element (PPE), that controls several vector computing cores called Synergistic Processing Ele-
ment (SPE). Current implementations feature up to 8 SPEs. A SPE is an in-order core made of
a 128-bit SIMD unit, i.e., a vector unit, and 256KB of local memory. These elements are linked
together through a high bandwidth ring bus, denoted as EIB for Element Interconnect Bus.

Since only 256KB of local memory are available per SPE, it is unavoidable to prevent data
parts transfer back and forth through the EIB. However, thanks to the high performance of this
bus, some usually memory-bound operations, such as matrix/vector multiplication, do not suffer
from this limitation on Cell architectures and therefore can be implemented efficiently in parallel
[33]. Because no scalar unit is present in SPE cores, it is very important to fully use vectorization
in order to achieve best performance.

The well known Sony Playstation 3 (PS3) features a 3.2GHz Cell with 7 SPEs and 256MB of
RAM. However, only 6 SPEs and 192MB of RAM are available for scientific calculus. A single
SPE at 3.2GHz has a peak performance of 25.6 GFLOPS in single precision. A PS3 Cell can there-
fore achieve a peak performance of about 150 GFLOPS thanks to its SPEs, i.e., about 150% of the
theoretical peak performance of a high-end 3GHz quad-core from Intel. However, the perfor-
mance increases at the cost of the ease of programming, as depicted by [23, 53]. Many efforts are
currently underway to make it easier to exploit the Cell computing power, see [45] for instance.

After these technical considerations about theoretical performance of these architectures, we
propose in the next section a simple algorithm that takes benefit from all these features.

3 A Proximal based Algorithm

In this section, we describe our algorithm that allows an efficient implementation on any vector-
ized parallel many-core architectures. Our approach consists of using a proximal operator on a
penalized version of the original problem (1) such that the minimization scheme is reduced to
a series of matrix/vector multiplications followed by separable minimizations (i.e., independent
point-wise optimizations). This overall process is embedded into a dyadic continuation scheme
that speeds-up the approach.

5

EIBPPE

L1

L2

Local
SPE

Local
SPE

Local
SPE

Local
SPE

SPE SPE SPE SPE
Local LocalLocalLocal

Figure 3: Architectural scheme of a Cell Broadband Engine Architecture. See text for details.

3.1 Moreau-Yosida Regularization

Instead of minimizing the original problem (1) we wish to minimize for u ∈ IRn the following
energy:

Eµ(u) = ‖u‖1 +
µ

2
‖Au− f‖22 , (2)

where µ is a non-negative parameter whose role is to enforce the constraint Au = f . Note that
the latter energy corresponds to a penalization method as described by [5]. It is worth to note that
a solution of (2) is a solution of problem (1) provided µ =∞ . However, for practical applications
one only needs to compute a solution for a finite µ since the measures are corrupted by some
noise, or because only a precise-enough solution is wished. Let us denote by u? a minimizer of
Eµ.

Let us first introduce some notations. Given some non-negative N , the usual Euclidean prod-
uct in IRN is denoted by 〈·, ·〉 and its associated norm by ‖ · ‖2. Assume B is a symmetric positive
definite linear operator. We set 〈·, ·〉B = 〈B·, ·〉 and we note for any x ∈ IR, ‖x‖2B = 〈x, x〉2B .
Let us introduce the Moreau-Yosida regularization Fµ of Eµ associated with the metric M as the
following [31, 34]: at any point u(k) ∈ IRn,

Fµ(u(k)) = inf
u∈IRn

{
Eµ(u) +

1
2
‖u− u(k)‖2M

}
. (3)

In other words, it corresponds to inf-convolve the function to minimize with the metric M . Note
that Fµ is strictly convex, since it is the sum of a convex and a strictly convex function, and thus
there is a unique point minimizing Fµ. Besides, it is not difficult to show that the infimum in (3)
is reached and thus it can be replaced by a minimum. Following [39], this unique minimizer is
also called the proximal point of u with respect to Eµ and M and is denoted by pµ(u(k)) .

Given a function E : IRn → IR, let us denote by ∂E the sub-differential of E defined by
w ∈ ∂E(u)⇔ E(v) ≥ E(u) + 〈w, v− u〉 for every v (see [31, 31] for instance). This proximal point
pµ(u) is characterized by the following Euler-Lagrange equation:

0 ∈ ∂

(
Eµ +

1
2
‖ · −u(k)‖2M

)
(pµ(u(k))) ·

The latter is equivalent to:

0 ∈ ∂Eµ(pµ(u(k))) + M(pµ(u(k))− u(k)) .

6

And thus we have:
Mu(k) ∈ (M + ∂Eµ) (pµ(u(k))) .

Since pµ(u(k)) is uniquely defined, we get that:

pµ

(
u(k)

)
= (M + ∂Eµ)−1

(
Mu(k)

)
. (4)

The idea of the Moreau-Yosida regularization approach to minimize Eµ is to iterate the update
formula (4) until convergence. This is also known as the proximal point iterations.

The above approach yields the following generic algorithm for minimizing Eµ (for µ fixed).

Generic proximal point minimization algorithm

1. Set k = 0 and u(0) = 0

2. Compute

u(k+1) = pµ

(
u(k)

)
= (M + ∂Eµ)−1 (Mu(k))

3. If ”Not converged” then set k ← k + 1 and go to 2 else return u(k+1)

The proof of convergence of this algorithm is gieven in Appendix A.

3.2 Proximal operator choices

So far only the generic version of the approach has been described. Indeed, as we have seen, the
Moreau-Yosida regularization with any metric M yields an iterative algorithm that converges
toward a solution of our problem. The versatility of the approach gives us some freedom on the
choice of the metric M . One may wish to consider metrics that yield good speed of convergence,
i.e., few iterations [31, 34]. However, recall that our goal is to design an approach that is easy to
implement on parallel multi-core architectures. Thus, this goal should lead us to the design of M .

The most tedious part in the optimization problem (4) is that we need to invert (M + ∂Eµ)
(for Mu(k)). The optimality condition of the solution u(k+1) writes as follows:

s(u(k+1)) + µAtA(u(k+1) − f) + M(u(k+1) − u(k)) = 0 ,

where s(u(k+1)) is a sub-gradient of ‖ · ‖1 at u(k+1). In a more concise form, from an optimization
point of view, we have:

s(u(k+1)) + (µAtA + M)u(k+1) = µAtf + Mu(k) .

This operation becomes algorithmically easy when it is separable, i.e., the optimization can be
independently carried out dimension by dimension. For our problem, separability means that
(µAtA + M) is a diagonal matrix. Besides, this separability property also leads to an implemen-
tation that enjoys the requirement properties of section 2. Indeed, since variables are decoupled,
coarse parallelism is straightforward. The variables are easily arranged in an well-aligned array
that allows vectorized computations. This approach is also wise for cache considerations since
the prediction for the next data to process is straightforward.

In order to get a separable optimization problem, M should kill the off-diagonal elements of
µAtA. Besides, to ensure the global convergence of the approach, M should be positive semi-
definite. Recall that good compressive sensing matrices corresponds to submatrices of matrices
that satisfies the Restricted Isometry Property (all eigenvalues belong to [1 − ν, 1 + ν] for ν > 0
and small). In this paper, we assume that ν = 0. Examples of such matrices are obtained by
considering Discrete Fourier or Discrete Cosine Transform, or orthogonalized Gaussian matrices.

7

Thus, we have that the eigenvalues of AtA are 0 or 1. And since AtA is always a non-negative
definite matrix we can define M as follows:

M = (1 + ε)µId− µAtA ,

where ε is a small positive real number to make M positive definite. Using this M we need to
solve the following problem: Find u(k+1) that satisfies:

s(u(k+1)) + (1 + ε)µu(k+1) = µAtf + Mu(k) .

The latter is well known to be solved by using a shrinkage approach. It has been used and
described in many papers such as in [12, 6, 7, 13, 22, 24, 15, 44, 21] for instance. We have that:

u(k+1) =
1

(1 + ε)µ

{
µAtf + Mu(k) − sign

(
µAtf + Mu(k)

)
if

∣∣µAtf + Mu(k)
∣∣ > 1 ,

0 otherwise ,
(5)

where sign(x) = x
|x| if x 6= 0 and 0 otherwise. As one can see, the update of the solution

only involves matrix/vector multiplications and some standard scalar operations that can be
implemented using vectorized instructions. Also note that one wishes to set ε as small as possible
to have faster convergence. Setting ε to 0 empirically leads to convergence although the proof
presented here does not hold for this case.

3.3 Our algorithm

We now fully describe our algorithm. So far, we have considered the optimization of Eµ when µ
is set to some arbitrary positive value. Recall that one wishes to set µ to a large value in order to
enforce the constraint Au = f . However, when µ is large then the procedure generates a series
of signals u(k+1) that converges slowly to the solution. One standard way to speed the process
is to use a continuation approach that consists of solving (approximately or not) for a series of
increasing µ. This kind of approach has been successfully used for instance in [42, 41, 43, 21].

Recall that we choose the constant null signal as an initial guess. It turns out that if µ is too
small Eµ does not decrease. We thus wish a µ large enough so that Eµ decreases. Besides, recall
that for performance considerations, we would like the smallest one that generates a sequence.
This can be achieved thanks a dichotomic-like approach. We assume that we have a lower bound
on µ such that µ > µmin > 0 . The following procedure computes the smallest µ, up to a precision
ebitonic, such that the update gives an energy decrease:

Bitonic Search for initial µ
Input: f , A, µmin

1. Set µmax = 0

2. While µmax = 0

(a) Compute û using formula (5) for µmin using the null signal as the previous solution

(b) If Eµmin(û) < Eµmin(0) then set µmax = µmin and µmin = µmin

2

(c) Else set µmin ← 2µmin

3. While |µmax − µmin| > ebitonic

(a) Compute û using formula (5) for µmin+µmax

2 using the null signal as the previous solu-
tion

(b) If Eµmin(û) < Eµmin(0) then set µmax = µmin+µmax

2

(c) Else set µmin = µmin+µmax

2

4. Return µmax

8

This procedure first looks for µmax, an upper bound on µ, during the iterations of 2−(a) to 2−(c).
Then a standard bitonic search is performed through iterations 3− (a) to 3− (c) .

Once a good initial µ is known, we embed the proximal iterations into a continuation process,
i.e., µ will successively takes the values µ, 2µ, . . . , 2lmaxµ, where lmax is a strictly positive integer.
Note that other coefficients than 2 could be used but experiments have shown that this value
gives good results. We also need to give the stopping criteria of our approach. These criteria are
used for any optimization of Eµ when µ is fixed. The first criteria concerns the closeness of the
reconstructed solution to the observed values. The process is stopped when the reconstructed

solution u(k+1) is below some prescribed tolerance etol measured as follows: ‖Au(k+1)−f‖2
‖f‖2 . Since

the proximal iterations converge toward the solution but not necessarily in finite time, we also
stop the process when the energy decrease between two consecutive solutions is below some
prescribed value denoted by econsec, i.e., we stop as soon as (Eµ(u(k)) − Eµ(u(k+1))) < econsec .
When one of this stopping criteria is met, the value of µ is updated and we start a new descent
minimization for Eµ using the current solution as initial guess.

Minimization Algorithm
Input: f , A and µmin

1. Set k = 0 and u(0) = 0

2. Compute the initial value of µ using the above bitonic approach

3. for l = 1 to lmax (number of continuation values for µ)

(a) Do

i. Set k ← k + 1
ii. Compute u(k+1) using formula (5)

(b) While
(
Eµ(u(k))− Eµ(u(k+1)) > econsec

)
and

(
‖Au(k+1)−f‖2

‖f‖2 > etol

)
(c) µ← 2µ

4. Return u(k+1)

4 Experimental results

In this section, we shortly present general implementation choices we have made and more spe-
cific ones that depend on the architectures we have considered. Then we give experimental re-
sults that assess the efficiency of our method running on these parallel many-core architectures.

4.1 Implementation details

The most time consuming operations in our method are those that involve the sampling matrix
A. These operations can be performed in two different ways depending on the nature of A.
Either A is described explicitly, i.e., all the coefficients of the matrix are stored in memory, and
one needs to perform a standard matrix/vector multiplication; or A can be represented implicitly
with the help of a transform. A typical example for the latter case is when A is a sub-matrix of
the Discrete Fourier Fransform (FFT), or Discrete Cosine Transform (DCT). Both representations
enable operations to done in parallel, i.e., they are very good candidates for both coarse and
fine-grained parallelism implementations.

Allowing matrices to be stored explicitly allows for flexibility in the design of the matrix. Un-
fortunately, storing such a matrix is memory consuming and since a matrix/vector multiplication
needs O(n ×m) operations where n ×m is the size of the matrix, it is also time consuming. On
the contrary, the use of the implicit form is memory-wise. Indeed, it is then no longer needed
to store A (and its transpose AT). Besides, it generally allows for faster computations because of

9

fast available transforms. According to the literature (see [4] for instance) the time complexity for
computing an FFT is O(n log n). However, the price to pay is that it drastically reduces the set of
possible sampling matrices.

In this paper, we consider these two kinds of matrices. For the explicit case, we consider
orthogonalized Gaussian matrices where their elements are generated using i.i.d normal distri-
butions N (0, 1) and where their rows are orthogonalized. The second class of matrices we have
used corresponds the partial DCTs. They are generated by randomly choosing, with uniform
sampling, m rows from the full Discrete Cosine matrix. Please note that operations that involve
orthogonalized Gaussian matrices or partial DCT comply with the requirements we present in
section 2.

Due to the large amount of memory needed, only the CPU platform can run a code that uses
large orthogonalized Gaussian matrices. On the contrary, partial DCTs can be used on any of the
architectures we are interested in. To allow a fair comparison, only the latter was implemented
on all three platforms. This partial DCT have been implemented through a complex-to-complex
Fast Fourier Transform (FFT) with an additionnal O(n) pre and postprocessing for converting
the results to real numbers. Indeed, direct DCT implementations are currently subject to perfor-
mance issues and cannot be used for our purpose. Using this complex-to-complex FFT means
an overhead of 4 times the memory required by directly applying DCT but allows to keep good
time performances.

All implementations use single precision floating point arithmetic because of GPU and Cell
limitations. It is important to note that these limitations are currently partly addressed by devel-
opers of these platforms.

We now present architecture-dependent implementation details.

CPU implementation details. The code running on the CPU is parallelized using the OpenMP
API (Open Multi-Processing Application Programming Interface). We refer the reader to [14] for
further details. Our implementation is vectorized using SSE instructions and is also tuned to
ensure the most efficient use of the cache. Recall that the thresholding approach (see section 3)
has been chosen for its separability property (i.e., each element can be processed independently),
therefore parallel and vector computing are profitable to obtain an efficient implementation. FFT
computations are performed thanks to the FFTW 3.1 (Fastest Fourier Transform in the West). We
refer the reader to [26] for further details. Last, the code is compiled using the Intel C compiler
version 10.1.

Cell implementation details. Our Cell implementation uses the Cell SDK 3.0 (Software Devel-
opment Kit) provided by IBM and the FFTW 3.2 alpha 3 library. To the best of our knowledge,
FFTW is the current state-of-the-art FFT implementation in term of input size (for instance FFTC
[2] is the fastest Fourier transform, but only for up to 16K complex input samples) and still have
good time performances. This alpha version of the FFTW library requires exclusive access to
the SPEs it uses (i.e., SPEs cannot run FFT and others processes together). Therefore, since FFT
computations are the most time-consuming tasks of our method, we chose to assign all SPEs to
FFT computations. FFT/DCT conversion, thresholding and energy computations are done on
the PPE (which is not intended for performance). In order to balance the cost of using the PPE
for these tasks, vectorized Altivec [17] code has been written to improve performances of the
FFT/DCT conversions, which are the second most costly computations of our method. Never-
theless, our Cell implementation can still be optimized as a lot of computations could be done on
SPEs instead of on PPE (SPEs are at least one order of magnitude faster than the PPE). However,
this can only be done using a dynamic load balancing process, which will be time consuming
and difficult to implement.

GPU implementation details. The GPU implementation is based on CUDA1 (Compute Uni-
fied Device Architecture) 2.0 and the CUFFT library (part of the CUDA package). Since the PCI

1More informations can be found on the website : http://www.nvidia.com/object/cuda home.html

10

Express bus suffers severe bandwidth limitations, we designed our implementation such that it
uses very few data communications between central RAM and GPU embedded memory. Note
that this is a very common problem in General-Purpose computing on GPUs. However, when
absolutely needed and as explained in [35], transfer sizes must be carefully chosen. Modern
GPUs feature highly hierarchical set of computational units, memories and caches. The number
of threads must be maximized in order to achieve best performance, but attention must be paid
for avoiding bank conflicts, i.e., multiple threads accessing the same shared memory bank at the
same time. For example, [1] implements a memory manager to meet this goal.

4.2 Experiments

In this section, we first describe the experimental conditions we have considered for our experi-
ments. Then, we present numerical results that show the effectiveness of our approach.

4.2.1 Experimental conditions

In order to prove the effectiveness of our approach and to compare the benefits and disadvan-
tages of the different architectures, we use an experimental platform that consists of the follow-
ing:

• Two standard Intel quad-core processors. The first one is an Intel Core 2 Quad Q6600
2.4GHz with 8MB of L2 cache and 4GB of RAM. Theoretically, this processor can achieve a
peak performance of 38 GFLOPS. For our specific case where only single precision compu-
tations are used, this means that we can hope a peak performance of 76 GFLOPS in single
precision. The second processor is an Intel Core i7 920 2.66GHz with 1MB of L2 cache, 8MB
of L3 cache and 6GB of RAM. This processor can achieve a theoretical peak performance
of 43 GFLOPS in double precision and 86 GFLOPS in single precision. The Turbo Boost
feature has been systematically disabled to avoid bias in our results.

• A popular implementation of the Cell Broadband Engine Architecture that one can find in
the Sony Playstation 3. The machine consists of a 3.2Ghz Cell processor with 6 usable SPEs
and 192MB of RAM.

• Two commercial video cards produced by NVIDIA, namely the NVIDIA GEFORCE 8800
GTS and the NVIDIA GEFORCE GTX 275. The first one has 96 cores and embeds 640MB of
memory while the second has 240 cores and 896MB of memory.

We now give the values of the parameters we have used for our experiments. We set m =
n/8 (recall that m is assumed to be much smaller than n). The number of non-zero values in
the original sparse signal is set to k = m/10. Recall that there are two stopping criteria: the

tolerance error etol with associated stopping criteria ‖Au(k+1)−f‖2
‖f‖2 < etol, and the consecutive

variation tolerance econsec associated with (E(u(k)) − E(u(k+1))) < econsec. We set etol = 10−5

and econsec = 10−3. Concerning the bitonic search, we set µmin = 2 and ebitonic = 0.5 . The
number of continuation steps, lmax, performed after the bitonic step is set to lmax = 10.

4.2.2 Parallel speedup and caches issues

We now present preliminary experiments about parallel speedup in order to show particular is-
sues arising with matrix/vector multiplication, which is a key operation in our method. Squared
and rectangular single precision matrices are both used to run our benchmarks on the Intel Core
i7 processor (with Turbo Boost disabled). The results are the average of 10 instances based on or-
thogonalized Gaussian matrices and randomly generated vectors. Note that results are not about
absolute performance but parallel performance, therefore better results means better scaling but
not necessarily better wall clock time.

11

 0

 1

 2

 3

 4

 5

 6

256 x 256

512 x 512

1024 x 1024

2048 x 2048

4096 x 4096

8192 x 8192

16384 x 16384

S
pe

ed
up

Matrix size

1 thread
2 threads
3 threads
4 threads
5 threads
6 threads
7 threads
8 threads

 0

 1

 2

 3

 4

 5

 6

128 x 512

256 x 1024

512 x 2048

1024 x 4096

2048 x 8192

4096 x 16384

8192 x 32768

S
pe

ed
up

Matrix size

1 thread
2 threads
3 threads
4 threads
5 threads
6 threads
7 threads
8 threads

Figure 4: Parallel speedup with respect to the number of threads for matrix/vector multiplica-
tions (Intel Core i7 920).

A super linear speedup is achieved for matrice sizes up to 512×512 and 256×1024, i.e., 512KB
matrices. The shared L3 cache is very efficiently used and each core can take full advantage of its
own very fast 256KB L2 cache.

A cut-off effect appears for 2048× 2048 and 1024× 4096 matrices, i.e., when the matrices use

12

8MB of memory, which is the size of the L3 cache. The whole data used by the program do not
hold anymore into the L3 memory, which implies that L3 reuse is compromised and then a huge
performance penalty.

The use of Hyper-Threading can yield positive or negative effects, as explained in section 2.
HT allows to more efficiently use computing units inside a core. It can yield super linear parallel
speedup, which can be seen principally before reaching 8MB matrices. However, handling 2
threads per core can increase pressure on cache. This phenomenon can be seen after reaching
8MB matrices. The graphs show a balance between these two effects.

4.2.3 Results

We now present experimental results of our method. Figure 5 represents the variation of errors
with respect to time. We chose a representative example to illustrate the different steps of the
optimization process. We consider two error criteria : etol (defined above) and the relative error

of the reconstructed signal u(k+1) to the ground truth defined as relative = ‖u(k+1)−u∗‖2
‖u∗‖2 .

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600 1800

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

T
o
le

ra
n
c
e

G
ro

u
n
d
 t

ru
th

Number of iterations

Tolerance

Ground truth

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 400 800 1200 1600

 0

 0.01

 0.02

 0.03

 0.04

 0.05

Figure 5: Errors with respect to time for a representative example of orthogonalized Gaussian
matrix of size 2048× 16384.

We can see at the very beginning of the process the bitonic search. When an appropriate
initial µ is found, the continuation process is launched. Each step of the continuation is shown
at the curve level as a huge decrease of both error criteria. We can also observe that the ground
truth error decreases almost linearly until 400 iterations, from then the decrease is far slower.
On the contrary, the relative error does not show this first fast decrease process. This graph
depicts the fact that out method could be stopped earlier using tighter parameters. This is a very
common characteristic for this kind of optimization methods, such as those previously presented
in section 1. The downside is that it makes comparison between methods very difficult because
of the multiple biased involved. In fact, each method has its own set of parameters that do not
necessarily have equivalents. In particular, our method has the advantage to not rely on a dt
parameter representing the optimization process step, unlike methods based on linearization.

13

Our other results are presented as tables where the final values of etol (tolerance) and the rel-
ative error of the reconstructed signal to the ground truth (relative) are given. The tables also
present the number of iterations (#iter) that have been performed to obtain the final solution
and the wall clock time in seconds taken by the whole process.

Compressive sensing with orthogonalized Gaussian matrices. The first experiment (figure 1)
uses orthogonalized Gaussian matrices and standard Intel quad-core processors. The tables give
the time spent for the computation with respect to the number of threads used by the program.

in out time (s)
m n tolerance relative #iter 1 thread 2 threads 4 threads
64 512 1.24e-03 1.40e-03 1163.2 0.076 0.044 0.029

128 1024 4.81e-04 5.22e-04 1155.2 0.238 0.128 0.072
256 2048 2.99e-04 3.26e-04 1326.4 1.144 0.562 0.293
512 4096 1.93e-04 2.15e-04 1461.7 5.659 3.584 3.386

1024 8192 1.29e-04 1.43e-04 1505.0 23.224 15.500 15.352
2048 16384 8.66e-05 9.62e-05 1611.1 97.123 64.527 64.778

Table 1: Results for orthogonalized Gaussian matrices on an Intel Core 2 Quad Q6600.

in out time (s)
m n tolerance relative #iter 1 thread 2 threads 4 threads 8 threads
64 512 1.24e-03 1.39e-03 1162.0 0.042 0.025 0.017 0.252

128 1024 4.81e-04 5.22e-04 1155.5 0.115 0.068 0.046 0.350
256 2048 2.99e-04 3.26e-04 1321.5 0.423 0.227 0.132 0.375
512 4096 1.93e-04 2.15e-04 1465.8 2.362 1.495 1.130 1.359

1024 8192 1.29e-04 1.43e-04 1505.6 9.933 6.035 4.574 4.885
2048 16384 8.66e-05 9.62e-05 1604.9 41.842 25.284 19.576 19.997

Table 2: Results for orthogonalized Gaussian matrices on a Intel Core i7 920.

Table 1 presents results for an Intel Core 2 Quad and table 2 results for an Intel Core i7. The
Core 2 Quad shows an interesting performance scaling until n = 4096, where the situation begins
to change. When this value is reached, there is no more benefit to use 4 threads compared to 2.
This is due to Core 2 Quad core interconnection using FSB and its cache hierarchy, which has
huge repercutions on available bandwidth, as pointed by [52]. Note that the scaling ratio from 1
thread to 2 is only slightly affected as the 2 threads are executed on 2 cores of the same cluster.

Concerning the same experiment with the Core i7, let us recall that HT enables to handle up
to 8 threads for a 4-core processor. For our particular experiment, the HT implies a loss in per-
formance from 4 to 8 threads due to a too high cache pressure. The phenomenon beginning at
n = 4096 with the Core 2 Quad does not happen with the Core i7 thanks to its new core intercon-
nection and its optimized cache hierarchy. These results are coherent with our previous results of
section 4.2.2. Above n = 4096 the scaling is not as good as before but remains constant and still
yield a performance increase.

Compressing sensing with partial DCT. The second experiment (table 3 for an Intel Core 2 Quad
and table 4 for an Intel Core i7) uses partial DCTs instead of orthogonalized Gaussian matrices.
Since DCT and Inverse DCT are used instead of matrix/vector multiplications, memory can be
saved and faster computations can be achieved. This means that n can take higher value in this
experiment compared to the previous one.

One can see that performance scaling of multithreading for the Core 2 Quad is poor when n

14

is small. The benefit of using more cores only comes up when enough computations are done
on each core. For n = 2048, the best wall clock time happens when using 2 threads. Inside a
cluster of 2 cores, the shared L2 cache allows to scale for this problem size. However, the core
interconnection and the cache hierarchy penalize the scaling over 2 cores. In our case, the benefit
of using 4 cores happens when n reaches 4096. Larger n means better scaling ratio.

For the Core i7, there is no penalty using 2 threads instead of 1, nor 4 instead of 2 whatever
the problem size. The bigger the problem is, the better the scaling is. Concerning HT, like for
orthogonalized Gaussian matrices, it implies a loss in performance when using 8 threads instead
of 4.

in out time (s)
m n tolerance relative #iter 1 thread 2 threads 4 threads
64 512 1.02e-03 1.11e-03 1029.9 0.034 0.044 0.050

128 1024 4.74e-04 5.08e-04 1075.1 0.072 0.081 0.089
256 2048 2.81e-04 3.09e-04 1219.6 0.180 0.169 0.185
512 4096 1.92e-04 2.15e-04 1415.6 0.501 0.472 0.405

1024 8192 1.27e-04 1.40e-04 1456.6 1.110 0.884 0.818
2048 16384 8.68e-05 9.61e-05 1584.7 2.544 1.840 1.797
4096 32768 6.20e-05 6.91e-05 1780.5 6.366 4.647 4.424
8192 65536 4.33e-05 4.82e-05 2016.0 16.571 11.543 10.797
16384 131072 3.01e-05 3.35e-05 2256.5 46.512 32.627 27.568
32768 262144 2.15e-05 2.40e-05 2672.1 199.254 117.574 94.599
65536 524288 1.52e-05 1.70e-05 3261.0 508.388 298.467 204.657

131072 1048576 1.11e-05 1.25e-05 4067.5 1321.440 825.617 567.315

Table 3: Results for partial DCTs on a Intel Core 2 Quad Q6600.

in out time (s)
m n tolerance relative #iter 1 thread 2 threads 4 threads 8 threads
64 512 1.02e-03 1.11e-03 1031.3 0.025 0.023 0.020 0.055
128 1024 4.74e-04 5.08e-04 1076.8 0.055 0.038 0.034 0.068
256 2048 2.81e-04 3.09e-04 1223.2 0.120 0.082 0.070 0.126
512 4096 1.92e-04 2.15e-04 1419.6 0.288 0.197 0.157 0.220

1024 8192 1.25e-04 1.38e-04 1438.5 0.598 0.413 0.316 0.391
2048 16384 8.76e-05 9.70e-05 1597.2 1.452 0.954 0.718 0.911
4096 32768 6.21e-05 6.91e-05 1783.2 3.494 2.112 1.641 1.887
8192 65536 4.33e-05 4.81e-05 2004.8 8.293 5.280 3.780 4.137

16384 131072 3.00e-05 3.35e-05 2253.2 20.026 11.961 8.755 11.017
32768 262144 2.13e-05 2.38e-05 2625.0 87.031 49.508 32.411 34.852
65536 524288 1.52e-05 1.70e-05 3262.0 225.341 129.467 82.432 91.006
131072 1048576 1.12e-05 1.26e-05 4074.6 628.962 337.811 222.477 239.236

Table 4: Results for partial DCTs on a Intel Core i7 920.

The next two experiments (figures 5 and 6/7) are specific implementations respectively for
PS3 Cell and NVIDIA GPU platforms. Only partial DCT results are provided for these platforms
as they have strong memory limitations. Note that, as explained in previous section and contrary
to our CPU implementation, these specific implementations are yet not optimal and only reflect
what kind of performances can be achieved with very little development effort.

Figure 6 gives a comparison between the three implementations on the five hardwares. GPUs
are currently limited by the dimension size they can work on but our basic GPU implementation

15

m n tolerance relative #iter time (s)
64 512 1.02e-03 1.12e-03 1033.3 0.071
128 1024 4.74e-04 5.08e-04 1077.7 0.153
256 2048 2.81e-04 3.09e-04 1231.1 0.359
512 4096 1.92e-04 2.15e-04 1420.6 0.913

1024 8192 1.27e-04 1.39e-04 1458.8 1.935
2048 16384 8.67e-05 9.61e-05 1581.1 4.340
4096 32768 6.21e-05 6.91e-05 1772.4 10.445
8192 65536 4.33e-05 4.82e-05 2006.8 29.523
16384 131072 3.00e-05 3.34e-05 2232.5 60.178
32768 262144 2.14e-05 2.38e-05 2663.0 149.679
65536 524288 1.51e-05 1.68e-05 3236.5 367.822

131072 1048576 1.09e-05 1.23e-05 4066.7 934.656

Table 5: Results for partial DCTs on a PS3 Cell.

m n tolerance relative #iter time (s)
64 512 1.02e-03 1.12e-03 1014.6 0.309

128 1024 4.72e-04 5.03e-04 1034.1 0.344
256 2048 2.83e-04 3.12e-04 1213.1 0.461
512 4096 1.92e-04 2.14e-04 1411.3 0.623
1024 8192 1.26e-04 1.39e-04 1437.8 0.978
2048 16384 8.71e-05 9.64e-05 1573.0 1.985
4096 32768 6.25e-05 6.97e-05 1760.5 4.532
8192 65536 4.37e-05 4.88e-05 2017.2 11.036

16384 131072 3.09e-05 3.46e-05 2259.5 28.337

Table 6: Results for partial DCTs on a NVIDIA GPU 8800 GTS.

m n tolerance relative #iter time (s)
64 512 1.02e-03 1.12e-03 1015.6 0.177

128 1024 4.72e-04 5.03e-04 1033.8 0.222
256 2048 2.83e-04 3.12e-04 1215.6 0.298
512 4096 1.92e-04 2.14e-04 1408.5 0.404
1024 8192 1.26e-04 1.39e-04 1428.1 0.500
2048 16384 8.71e-05 9.65e-05 1563.1 0.957
4096 32768 6.25e-05 6.97e-05 1757.2 2.011
8192 65536 4.37e-05 4.88e-05 2001.5 4.586

16384 131072 3.09e-05 3.46e-05 2251.2 11.274

Table 7: Results for partial DCTs on a NVIDIA GPU GTX 275.

is as fast as our optimized multi-core CPU one. More precisely, the NVIDIA 8800 GTS is head
to head with the Core 2 Quad whereas the NVIDIA GTX 275 is head to head with the Core i7,
the quad-core CPUs being always slightly faster that GPUs. Our Cell implementation running
on the PS3 is slower than our multi-core CPU implementation but this is due to the fact that a
lot of computations are done on the PPE, which is very slow (even if vectorized Altivec code
reduces a little this overhead), although they could be fully done on SPEs to reach maximal per-
formance. The reader should also note that the Cell is now quite old and here tested in a 6 SPEs
configuration. Current GPU and Cell implementations give a lower bound on performances that

16

can be achieved on these platforms and an idea about standard implementation performances.
In particular, a better Cell implementation that fully takes advantage of the characteristics of this
processor (i.e., use also the SPE not only for the FFT but also for the shrinkage process) is left as
future work.

 0

 60

 120

 180

 240

 300

 360

 420

 480

 540

 600

 660

 720

 780

 840

 900

 960

512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

W
al

l c
lo

ck
 ti

m
e

(s
)

Signal size (n)

Core 2 Quad (4 threads)

Core i7 (4 threads)

PS3 Cell

NVIDIA 8800 GTS GPU

NVIDIA GTX 275 GPU

 0

 2

 4

 6

 8

 10

 12

512 1K 2K 4K 8K 16K 32K

Figure 6: Results for partial DCTs on various platforms.

5 Conclusion

In this paper we presented a standard algorithm for solving compressive sensing problems in-
volving l1 minimization. This algorithm has been especially designed to take benefit of current
parallel many-core architectures and achieves noticeable speedups. Besides, it is easy to imple-
ment on these architectures. To validate our approach, we proposed implementations on various
current high-end platforms, such as vectorized multi-core CPU, GPU and Cell. Pros and cons of
both platforms and implementations have been discussed. In particular, we have seen that multi-
core CPUs can offer comparable performances with GPUs when their parallel features are used.
The results are promising and allow to hope very fast implementations on new architectures such
as the next generation many-core x86 architecture of the Intel Larrabee [48].

A Proof of Convergence

We briefly show the standard elements of the proof of the convergence of the proximal iterations.
Recall that the approach is quite standard and some proof can be adapted for [31, 34] for instance.

First, let us note that the series {Eµ

(
p(u(k))

)
} is clearly non-decreasing and bounbded by

below, and thus converges toward some value referred to as η.
Then, let us recall a standard convex optimality result. Assume that g : IRN → IR is convex

and differentiable and h : IRN → IR is convex, then u? is a global minimizer of (g + h) if and only

17

if the following holds:

∀u ∈ IRN 〈∇g(u?), u− u?〉+ h(u)− h(u?) ≥ 0 . (6)

For our case, let us have g(·) = 1
2‖ ·−u(k)‖2M and h(·) = Eµ(·) and recall that pµ(u(k)) is the global

minimum of the inf-convolution when it is fed with u(k):

∀u ∈ IRN
〈
p

(
u(k)

)
− u(k), u− p

(
u(k)

)〉
M

+ Eµ(u)− Eµ

(
p

(
(u(k)

))
≥ 0 . (7)

Now, we consider this inequality for the two points û and ū with associated proximal points p(û)
and p(ū), respectively. Some simple calculus lead to:

〈p(û)− û, p(ū)− p(û)〉M + 〈p(ū)− ū, p(û)− p(ū)〉M ≥ 0 ,

and thus we get:
〈ū− û, p(ū)− p(û)〉M ≥ ‖p(û)− p(ū)‖2M .

The latter is equivalent to:

‖û− ū‖2M − ‖p(û)− û− p(ū) + ū‖2M ≥ ‖p(û)− p(ū)‖2M .

Now, let us set ū to a global minimizer of Rµ, i.e., ū = u?, and û = u(k), in the previous inequality.
Note that p (u?) = u?, and recall that u(k+1) = p

(
u(k)

)
. The following inequality holds:∥∥∥u(k) − u?

∥∥∥2

M
−

∥∥∥u(k+1) − u(k)
∥∥∥2

M
≥

∥∥∥u(k+1) − u?
∥∥∥2

M
(8)

With this inequality we can conclude using the following points.
The series ‖u(k)− u?‖2M is non-decreasing and bounded by below (by Eµ(u?))) and thus does

converge. Thus, we deduce that limk→∞
(
‖u(k+1) − u?‖2M − ‖u(k) − u?‖2M

)
= 0 . Using this result

and (8) we get that limk→∞ ‖u(k+1) − u(k)‖2M = 0 .
Note that by the convexity of the energy Eµ, we have:

Eµ (u?) ≥ E
(
u(k+1)

)
+

〈
∂Eµ, u? − u(k+1)

〉
(9)

Since u(k+1) is the global minimizer of F (u(k)), we have that:〈
∂Eµ, u? − u(k+1)

〉
+

〈
u(k+1) − u(k), u? − u(k+1)

〉
≥ 0 . (10)

Recall that, as it has been shown above, limk→+∞ ‖u(k+1)−u(k)‖2 = 0, and since ‖u(k+1)−u?‖2
is bounded we have that lim infk→+∞

〈
∂Eµ, u? − u(k+1)

〉
≥ 0 . Injecting this information into (9),

we obtain that limk→+∞Eµ

(
u(k)

)
≤ η, and thus we conclude that limk→+∞Eµ(u(k)) = η .

Acknowledgments

The research of A. Borghi on this work has been done while being at the mathematics department
of UCLA and being supported by the ONR grant N000140710810. The research of J. Darbon and
S. Osher was supported by ONR grant N000140710810. The research of T. Chan was supported
by DMS-0610079 and ONR N00014-06-1-0345.

References

[1] S. Al-Kiswany, A. Gharaibeh, E. Santos-Neto, G. Yuan, M. Ripeanu, StoreGPU: exploiting
graphics processing units to accelerate distributed storage systems, in: Proceedings of the
17th international symposium on High performance distributed computing (HPDC), 2008,
pp. 165–174.

18

[2] D. A. Bader, V. Agarwal, FFTC: Fastest Fourier Transform for the IBM Cell Broadband En-
gine, in: S. Aluru, M. Parashar, R. Badrinath, V. K. Prasanna (eds.), HiPC, vol. 4873 of Lecture
Notes in Computer Science, Springer, 2007, pp. 172–184.

[3] W. U. Bajwa, J. D. Haupt, G. M. Raz, S. J. Wright, R. D. Nowak, Toeplitz-structured com-
pressed sensing matrices, in: Proceedings of the 14th IEEE/SP Workshop on Statistical Sig-
nal Processing (SSP), 2007, pp. 294–298.

[4] D. J. Bernstein, The tangent FFT, in: S. Boztas, H. feng Lu (eds.), Applied Algebra, Algebraic
Algorithms and Error-Correcting Codes, vol. 4851 of Lecture Notes in Computer Science,
Springer, 2007, pp. 291–300.

[5] D. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, Athena Scien-
tific, 1996.

[6] J. Bioucas-Dias, M. Figueiredo, A new TwIST: two-step iterative shrinkage/thresholding
algorithms for image restoration, IEEE Trans. on Image Processing 16 (12) (2007) 2992–3004.

[7] K. Bredies, D. A. Lorenz, Iterated hard shrinkage for minimization problems with sparsity
constraints, SIAM Journal on Scientific Computing 30 (2) (2008) 657–683.

[8] E. Candès, J. Romberg, Quantitative robust uncertainty principles and optimally sparse de-
compositions, Foundations of Computational Mathematics 6 (2006) 227–254.

[9] E. Candès, J. Romberg, T. Tao, Robust uncertainty principles: Exact signal reconstruction
from highly incomplete frequency information, IEEE Trans. on Information Theory 52 (2)
(2006) 489–509.

[10] E. Candès, T. Tao, Near optimal signal recovery from random projections: Universal encod-
ing strategies?, IEEE Trans. on Information Theory 52 (12) (2006) 5406–5426.

[11] V. Cevher, A. Sankaranarayanan, M. F. Duarte, D. Reddy, R. G. Baraniuk, R. Chellappa, Com-
pressive sensing for background subtraction, in: Proceedings of the 10th European Confer-
ence on Computer Vision (ECCV), vol. 5303, 2008, pp. 155–168.

[12] A. Chambolle, R. A. DeVore, N.-Y. Lee, B. J. Lucier, Nonlinear wavelet image processing:
variational problems, compression, and noise removal through wavelet shrinkage, IEEE
Trans. on Image Processing 7 (1998) 319–335.

[13] P. Combettes, J.-C. Pesquet, Proximal thresholding algorithm for minimization over or-
thonormal bases, SIAM Journal on Optimization 18 (4) (2007) 1351–1376.

[14] L. Dagum, R. Menon, OpenMP: an industry standard API for shared-memory program-
ming, IEEE Computational Science & Engineering 5 (1) (1998) 46–55.

[15] I. Daubechies, M. Defrise, C. D. Mol, An iterative thresholding algorithm for linear inverse
problems with a sparsity constraint, Communications in Pure and Applied Mathematics
57 (11) (2004) 1413–1457.

[16] R. A. DeVore, Deterministic constructions of compressed sensing matrices, Journal of Com-
plexity 4–6 (23) (2007) 918–925.

[17] K. Diefendorff, P. Dubey, R. Hochsprung, H. Scale, Altivec extension to PowerPC accelerates
media processing, IEEE Micro 20 (2) (2000) 85–95.

[18] D. Donoho, Y. Tsaig, I. Drori, J.-L. Starck, Sparse solution of underdetermined linear equa-
tions by stagewise orthogonal matching pursuit, Tech. rep. (2006).

[19] D. L. Donoho, Compressed sensing, IEEE Trans. on Information Theory 52 (4) (2006) 1289–
1306.

19

[20] F.-X. Dupe, J. Fadili, J.-L. Starck, A proximal iteration for deconvolving Poisson noisy images
using sparse representations, IEEE Trans. on Image Processing 16 (12) (2008) 2992–3004.

[21] W. Y. E. T. Hale, Y. Zhang, A fixed-point continuation method for l1-regularized minimiza-
tion with applications to compressed sensing, Tech. rep., Rice University (2007).

[22] M. Elad, Why simple shrinkage is still relevant for redundant representation?, IEEE Trans.
on Information Theory 52 (2006) 5559–5569.

[23] G. D. Fabritiis, Performance of the Cell processor for biomolecular simulations, Computer
Physics Communications 176 (11–12) (2007) 660–664.

[24] M. Figueiredo, R. Nowak, An EM algorithm for wavelet-based image restoration, IEEE
Trans. on Image Processing 12 (8) (2003) 906–916.

[25] M. Figueiredo, R. Nowak, S. Wright, Gradient projection for sparse reconstruction: applica-
tion to compressed sensing and other inverse problems, IEEE Journal of Selected Topics in
Signal Processing 1 (3) (2007) 586–598.

[26] M. Frigo, S. Johnson, FFTW: an adaptive software architecture for the FFT, in: Proceedings
of the IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 3,
1998, pp. 1381–1384.

[27] A. C. Gilbert, M. J. Strauss, J. A. Tropp, R. Vershynin, Algorithmic linear dimension reduc-
tion in the l1 norm for sparse vectors, in: Proceedings of the 44th Annual Allerton Confer-
ence on Communication, Control and Computing, 2006, pp. 1411–1418.

[28] T. Goldstein, S. Osher, The split Bregman method for l1 regularized problems, Tech. Rep.
CAM 08-29, UCLA (2008).

[29] R. Griesse, D. A. Lorenz, A semismooth Newton method for Tikhonov functionals with
sparsity constraints, Inverse Problems 24 (3), 2008.

[30] C. Hegde, M. Wakin, R. Baraniuk, Random projections for manifold learning, in: Neural
Information Processing Systems (NIPS), 2007.

[31] J.-B. Hiriart-Urruty, C. Lemaréchal, Convex Analysis and Minimization Algorithms,
Springer Verlag, Heidelberg, 1996, two volumes - 2nd printing.

[32] S.-J. Kim, K. Koh, M. Lustig, S. Boyd, D. Gorinevsky, An interior-point method for large-
scale l1-regularized least squares, IEEE Journal of Selected Topics in Signal Processing 1 (4)
(2007) 606–617.

[33] J. Kurzak, J. Dongarra, Implementation of mixed-precision in solving systems of linear
equations on the CELL processor, Concurrency and Computation: Practice and Experience
19 (10) (2007) 1371–1385.

[34] C. Lemaréchal, C. Sagastizábal, Practical aspects of the Moreau-Yosida regularization: The-
oretical preliminaries, SIAM Journal on Optimization 7 (2) (1997) 367–385.

[35] M. D. Lieberman, J. Sankaranarayanan, H. Samet, A fast similarity join algorithm using
graphics processing units, in: Proceedings of the IEEE International Conference on Data
Engineering (ICDE), 2008, pp. 1111–1120.

[36] M. Lustig, D. Donoho, J. M. Pauly, Sparse MRI: The application of compressed sensing for
rapid MR imaging, Magnetic Resonance in Medicine 58 (6) (2007) 1182–1195.

[37] J. Mairal, F. Bach, J. Ponce, G. Sapiro, A. Zisserman, Discriminative learned dictionaries for
local image analysis, in: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
2008, pp. 23–28.

20

[38] F. Malgouyres, T. Zeng, A predual proximal point algorithm solving a non negative basis
pursuit denoising model, Tech. Rep. ccsd-00133050, Centre pour la communication scien-
tifique directe (CCSD) (2007).

[39] J. Moreau, Proximité et dualité dans un espace hilbertien, Bulletin de la S.M.F. 93 (1965)
273–299.

[40] J. Nickolls, I. Buck, M. Garland, K. Skadron, Scalable parallel programming with CUDA,
Queue 6 (2) (2008) 40–53.

[41] M. Nikolova, Markovian reconstruction using a GNC approach, IEEE Trans. on Image Pro-
cessing 8 (9) (1999) pp. 1204–1220.

[42] M. Nikolova, J. Idier, A. Mohammad-Djafari, Inversion of large-support ill-posed linear op-
erators using a piecewise Gaussian MRF, IEEE Trans. on Image Processing 8 (4) (1998) 571–
585.

[43] M. Nikolova, M. K. Ng, S. Q. Zhang, W. K. Ching, Efficient reconstruction of piecewise con-
stant images using nonsmooth nonconvex minimization, SIAM Journal on Imaging Sciences
1 (1) (2008) 2–25.

[44] R. Nowak, M. Figueiredo, Fast wavelet-based image deconvolution using the em algorithm,
in: Proceedings of the 35th Asilomar Conference on Signals, Systems, and Computers, 2001,
pp. 371–275.

[45] K. O’Brien, K. M. O’Brien, Z. Sura, T. Chen, T. Zhang, Supporting OpenMP on Cell, Interna-
tional Journal of Parallel Programming 36 (3) (2008) 289–311.

[46] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kruger, A. E. Lefohn, T. J. Purcell, A
survey of general-purpose computation on graphics hardware, Computer Graphics Forum
26 (1) (2007) 80–113.

[47] D. Pham, S. Asano, M. Bolliger, M. N. Day, H. P. Hofstee, C. Johns, J. Kahle, A. Kameyama,
J. Keaty, Y. Masubuchi, M. Riley, D. Shippy, D. Stasiak, M. Suzuoki, M. Wang, J. Warnock,
S. Weitzel, D. Wendel, T. Yamazaki, K. Yazawa, The design and implementation of a first-
generation CELL processor, in: Proceedings of the Solid-State Circuits Conference, 2005, pp.
184–185.

[48] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, S. Junkins, A. Lake,
J. Sugerman, R. Cavin, R. Espasa, E. Grochowski, T. Juan, P. Hanrahan, Larrabee: a many-
core x86 architecture for visual computing, in: ACM SIGGRAPH 2008 papers, ACM, New
York, NY, USA, 2008, pp. 1–15.

[49] R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statisti-
cal Society Series B 58 (2006) 267–288.

[50] J. Tropp, Just relax: Convex programming methods for identifying sparse signals, IEEE
Trans. on Information Theory 51 (3) (2006) 1030–1051.

[51] J. A. Tropp, Greed is good: algorithmic results for sparse approximation, IEEE Trans. on
Information Theory 50 (10) (2004) 2231–2242.

[52] S. Williams, J. Carter, L. Oliker, J. Shalf, K. Yelick, Lattice boltzmann simulation optimiza-
tion on leading multicore platforms, IEEE International Parallel and Distributed Processing
Symposium (2008) 1–14.

[53] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, K. Yelick, The potential of the Cell
processor for scientific computing, in: Proceedings of the 3rd conference on Computing
frontiers (CF), ACM, New York, NY, USA, 2006, pp. 9–20.

21

[54] J. Wright, A. Yang, A. Ganesh, S. Sastry, Y. Ma, Robust face recognition via sparse represen-
tation, IEEE Trans. on Pattern Analysis and Machine Intelligence 31 (2) (2009) 210–227.

[55] W. Yin, S. Osher, D. Goldfarb, J. Darbon, Bregman iterative algorithms for l1-minimization
with applications to compressed sensing, SIAM Journal on Imaging Sciences 1 (1) (2008)
143–168.

[56] K. Yosida, Functional Analysis, Springer, 1965.

22

