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Joint Regularization of Phase and Amplitude

of InSAR Data: Application to 3D

reconstruction
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Abstract

Interferometric SAR images suffer from a strong noise and their regularization is often a prerequisite for

successful use of their information. Independently of the unwrapping problem, interferometric phase denoising is

a difficult task due to shadows and discontinuities. In this paper, we propose to jointly filter phase and amplitude

data in a Markovian framework. The regularization term is expressed by the minimization of the total variation

and may combine different information (phase, amplitude, optical data). First, a fast and approximate optimization

algorithm for vectorial data is briefly presented. Then two applications are described. The first one is a direct

application of this algorithm for 3D reconstruction in urban areas with Very High Resolution (VHR) images.

The second one is an adaptation of this framework to the fusion of SAR and optical data. Results on aerial SAR

images are presented.

I. INTRODUCTION

The two previous years have seen a new generation of SAR sensors (TerraSAR-X [20], ALOS, CSK [16],

RadarSat-2) with increased resolution and smaller revisit time thanks to constellation. Although very popular for

their all-weather and all-time capabilities and their polarimetric and interferometric potential, SAR data remain

difficult to use and processing tools are still necessary to fully profit from them. In this paper, we propose a

new filtering tool for interferometric SAR data and investigate its application for 3D reconstruction with and

without an optical image.

This paper is divided in 3 parts. In the first section, a recent fast and approximate algorithm [11] for the

optimization of Markov Random Fields (MRF) with convex prior and defined on vectorial data is recalled for

the paper to be self consistent. Then, two applications of this algorithm are described which constitute the

main contributions of the paper. The first one is the joint regularization of phase and amplitude data and their

use for 3D building reconstruction. The method and associated results are described in section III. The second

application is the adaptation of this framework to the fusion of optical and interferometric data. Methodology

and results on real data are presented in section IV.

This work was supported by the Centre National d’Études Spatiales under the project R-S06/OT04-010.
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II. FAST AND APPROXIMATE ALGORITHM FOR THE OPTIMIZATION OF TV WITH VECTORIAL DATA

In this section, we briefly recall the optimization algorithm that will be used in the two following parts. A

more complete description of the method together with a comparison with other optimization approaches may

be found in [11].

A. MRF framework

It is assumed that a vectorial image u is defined on a finite discrete lattice S and takes values in a discrete

multi-dimensional integer set L = {1, . . . , L}N (where N is the dimension, i.e., the number of channels per

pixel). We denote by us the vectorial value of the image u at the site s ∈ S.

Given an observed image u, a Bayesian analysis using the MAP criterion (Maximum A Posteriori) consists

of finding a restored image û that maximizes:

p(û|u) ∝ p(u|û)p(û).

It can be shown under the assumption of Markovianity of û (with order-2 clique) and with some independence

assumption on u conditionally to û (P (u|û) = ΠsP (us|ûs)) that the MAP problem is an energy minimization

problem:

û(MAP ) = arg min
û

E(û|u) ,

with

E(û|u) =
∑
s

U(us|ûs) + β
∑
(s,t)

ψ(ûs, ût) ,

U(us|ûs) = − log p(us|ûs) and ψ is a function modeling the prior chosen for the solution. In this paper, the ψ

functions considered will be convex functions of ûs − ût, as required to apply the combinatorial optimization

algorithm described below.

B. Energy minimization problem

Graph-cut based approaches are very efficient methods for MRF optimization. In some cases, they lead to

the global minimum of non-convex problems with potentially numerous local minima. Exact optimization can

be achieved by two methods. The first one has been developed by Ishikawa [13]. It is able to handle any kind

of data driven term (U(us|ûs)) provided the regularization term (ψ function) is convex. In the case of remote

sensing however, the size of the graph to be built and stored in memory is prohibitive. The second method has

been proposed in [8]. It is based on the notion of levelable energies, but again the memory size is prohibitive for

remote sensing data. As far as approximate optimization methods are concerned, for regularization functions

which are metric, α-expansion algorithm proposed in [3] can be applied. Starting from a current solution,

this algorithm proposes to each pixel either to keep its current value, or to take α as new value. The energy

associated to each of the possible changes is minimized through a minimum cut computation. The succession

of α-expansions over all possible values in L until convergence leads to a solution which is shown to be

close to the global minimum. Besides, this approach has been shown in [6] to converge to a global minimizer

when data fidelity is convex. If the set of all possible pixel values can be large in the case of single image
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regularization, its size becomes prohibitive when vectorial data are considered. We suggest in the next section

a faster algorithm which is more suitable when large or multi-dimensional images are considered.

Minimizing a non-convex energy is a difficult task as the algorithm may fall into a local minimum. Algorithms

such as the Iterated Conditional Modes [1] require a “good” initialization and then perform local changes to

reduce the energy. Graph-cut approaches provide a way to explore a combinatorial set of changes involving

simultaneously all pixels. Following [3], we denote such changes large moves. Instead of allowing a pixel to

either keep its previous value or change it to a given one (α-expansion), we suggest that a pixel could either

remain unchanged or its value be increased (or decreased) by a fixed step. Such an approach has been firstly

described independently in [2], [5], [14] and applied recently with unitary steps in [2]. We however use these

large moves in a case of non-convex data term. The trial steps are chosen to perform a scaling sampling of the

set of possible pixel values. We express the algorithm in the general case of vectorial data.

We first describe the set of large moves considered, then the associated graph construction and the resulting

algorithm.

1) Local minimization: First, let us introduce the set of images that lie within a single move in our algorithm.

Sd(û(n)) = {û / ∀s ∈ S, ∃ks ∈ {0, 1}, ûs = û(n)
s + ksd}

is the set of images whose pixel value ûs is either unchanged or increased by step d. We define the “best”

move û(n) 7→ û(n+1) as the one that minimizes the restriction of the energy to the set Sd(û(n)):

û(n+1) = arg min
û(n+1)∈Sd(û(n))

E(û(n+1)|u).

The restriction of the energy to Sd(û(n)) corresponds to an energy involving only the binary variables

(ks)s∈S . According to [15], an energy of binary variables arising from a first-order Markov model can be

minimized by computing a minimum cut on a related graph provided it satisfies the following submodular

property:

ψ(0, 1) + ψ(1, 0) ≥ ψ(0, 0) + ψ(1, 1).

To compute the “best” move using a s-t minimum-cut algorithm, the following must therefore hold:

ψ(ûs, ût + d) + ψ(ûs + d, ût) ≥ ψ(ûs, ût) + ψ(ûs + d, ût + d). (1)

Note that in most cases, the prior model ψ depends only on the difference ûs − ût. For such prior models,

condition 1 becomes:

ψ(ûs − ût − d) + ψ(ûs − ût + d) ≥ 2ψ(ûs − ût)

which is the definition of the convexity of ψ.

In conclusion, the local problem of finding the vectorial field û(n+1) located within a single move (i.e.,

û(n+1) ∈ Sd(û(n))) that minimizes the posterior energy E(û(n+1)|u) can be exactly solved by computing a

minimum cut on a graph (described in next paragraph) provided that the regularization potential is convex and

depends only on the difference ûs − ût.
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2) Graph construction: We build a graph G(V, E), following the method of [15], to minimize the restriction

of the energy to allowed moves of step d:

arg min
(ks)s∈S

∑
s

U(us|û(n)
s + ksd) + β

∑
(s,t)

ψ(û(n)
s + ksd, û

(n)
t + ktd) (2)

The graph G(V, E) is directed, with nonnegative edge weights and two terminal vertices: the source S and

the sink P . The graph structure and the edge weights are chosen such that any cut1 has a cost (i.e., sum of the

cut edges capacities) corresponding to the energy to minimize. We create a vertice for each site s, all connected

respectively to the source and the sink through two edges with capacity cs,1 (resp. cs,0). Finally, each clique

(s, t) gives rise to an edge with capacity cs,t (fig. 1).

Fig. 1. Graph construction for local minimization: the graph has one layer of nodes (one per pixel) and two terminals (the source S and

the sink P).

The capacities are set according to the additive method described in [15]. The first term in equation (2) is

represented by the weights:

 cs,1 = max(0, U(us|û(n)
s + d))− U(us|û(n)

s ))

cs,0 = max(0, U(us|û(n)
s )− U(us|û(n)

s + d))).

1a cut is a partition of the vertices into two disjoint sets S and P such that S ∈ S and P ∈ P
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We add to these weights other weights that correspond to the clique term (second term of equation 2):



c′s,1 = β ·max
(

0, ψ(û(n)
s + d, û(n)

t )− ψ(û(n)
s , û(n)

t )
)

c′s,0 = β ·max
(

0, ψ(û(n)
s , û(n)

t )− ψ(û(n)
s + d, û(n)

t )
)

c′t,1 = β ·max(0, ψ(û(n)
s + d, û(n)

t + d)

−ψ(û(n)
s + d, û(n)

t ))

c′t,0 = β ·max(0, ψ(û(n)
s + d, û(n)

t )

−ψ(û(n)
s + d, û(n)

t + d))

cs,t = β · (ψ(û(n)
s , û(n)

t + d) + ψ(û(n)
s + d, û(n)

t )

−ψ(û(n)
s , û(n)

t )− ψ(û(n)
s + d, û(n)

t + d))

3) Approximate global minimization: When non-convex data terms are considered, the global minimization

problem can not be exactly solved without considering each possible configuration (i.e., building a huge graph).

On the other hand, when all terms are convex, it has been proven in [2], [5] that a succession of local

minimizations leads to the global minimum. An exploration based on different scalings of the step is then

suggested to speed up convergence.

We follow here a heuristic method that combines the exact determination of the best moves, with no guarantee

on how close to the global minimum we get. In one dimension, a scaling search is performed by looking for

the best move with steps d+
i = L/2i and d−i = −L/2i for i from 1 to the desired precision (i.e., quantization

level). In N dimensions, there are 3N − 1 vectorial steps di to consider for a given step size di:

di ∈ S (di)
def= {0,−di,+di}N/{0, . . . , 0}.

The regularization algorithm for vectorial data is summarized here:

1: for all s ∈ S do

2: û(0)
s ← {L/2, . . . , L/2}

3: end for

4: n← 0

5: for i = 1 to precision do

6: di ← L/2i

7: for all di ∈ S (di) do

8: û(n+1) ← arg minû(n+1)∈Sd(û(n))E(û(n+1)|u)

9: n← n+ 1

10: end for

11: end for

Line 8 represents the exact binary energy minimization obtained by computing a minimum cut on a graph

built according to section II-B2. Note that if we perform unitary steps di ∈ S (1) until convergence at the

termination of our algorithm, exact minimization is then guaranteed for convex energies [2], [5]. Results on the

performances (speed, complexity, quality of the optimum) of the algorithm may be found in [11].
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III. APPLICATION TO 3D RECONSTRUCTION WITH INSAR DATA

In this part, we will present an application of the previous algorithm to the joint filtering of phase and

amplitude data for 3D reconstruction purpose [10]. We are interested in this paper in high resolution interfer-

ometric data. In many cases of interest (such as urban area imaging), the elevation range is contained within

one fringe. The scene may then contain sharp transitions that must be well preserved (i.e., well modeled) in

the reconstruction algorithm. We focus in this paper on such non-wrapped phase data.

A. Energy definition

1) Log-likelihood term: The synthesized radar image z is complex-valued. Its amplitude |z| is very noisy

due to the interferences that occur inside a resolution cell. Under the classical model of Goodman [12], the

amplitude as of a pixel s follows a Nakagami distribution depending on the square root of the reflectivity âs.

This likelihood leads to the following energetic term:

U(as|âs) = M

[
a2
s

â2
s

+ 2 log âs

]
. (3)

In the case of SAR interferometric data, the interferometric product is obtained by complex averaging of the

hermitian product γ of the two SAR images. A good approximation of the phase φs distribution is a Gaussian

which leads to a quadratic energy:

U(φs|φ̂s) =
(φs − φ̂s)2

σ̂2
φs

. (4)

The standard deviation σ̂2
φs

at site s is approximated by the Cramer-Rao bound σ̂2
φs

= 1−ρ2s
2Lρ2s

(with L the number

of average samples and ρs the coherence of site s). For low coherence areas (shadows or smooth surfaces,

denoted Shadows in the following), this Gaussian approximation is less relevant and a uniform distribution

model is preferred: p(φs|φ̂s) = 1
2π .

2) Regularization term: For mono-dimensional data, the minimization of the total variation is a very popular

model [4], [7], [17]–[19] since the seminal work of [21]. It corresponds to a function ψ defined by the absolute

value of the difference of neighboring pixels and has a behavior which preserves discontinuities in the regularized

signal, while being convex. In the case of urban areas, many sharp discontinuities exist either in the amplitude

image or in the interferometric one, so this model is well adapted.

The proposed method aims at preserving simultaneously phase and amplitude discontinuities. Indeed, the

phase and amplitude information are hopefully linked since they reflect the same scene. Amplitude disconti-

nuities are thus usually located at the same place as phase discontinuities and conversely. We propose in this

paper to perform the joint regularization of phase and amplitude. To combine the discontinuities a disjunctive

max operator is chosen. The joint prior model is defined by:

E(â, φ̂) =
∑
(s,t)

max(|âs − ât|, γ|φ̂s − φ̂t|), (5)

with γ a parameter that can be set to 1, and otherwise accounts for the relative importance given to the

discontinuities of the phase (γ > 1) or of the amplitude (γ < 1). As requested by the minimization algorithm,

this regularization potential is convex.

DRAFT September 29, 2008



7

3) Global energy: The global joint energy term is then defined as:

E(â, φ̂|a, φ) =
1
βa

∑
s

M [
a2
s

â2
s

+ 2 log âs]

+
γ

βφ

∑
s

(φs − φ̂s)2

σ̂2
φs

+
∑
(s,t)

max(|âs − ât|, γ|φ̂s − φ̂t|).

βa and βφ are some weightings of the likelihood terms introduced in order to balance the data fidelity and

regularization terms.

4) Processing of shadow areas: Due to the specific properties of shadow areas (random phase implying no

likelihood term), they are separately detected and an adapted regularization term is defined. The regularized fields

â and φ̂ at sites s located inside the detected shadow areas Shadows are governed only by the regularization

term. With the prior term defined in equation (1), the phase φ̂s for s ∈ Shadows that minimizes the energy

corresponds to an interpolation of the phase value at the surrounding sites. However shadows areas are most of

the time at ground level and not at an intermediate height between the top of the structure that creates the shadow

and the ground at the shadow end. A modified regularization term that better describes this prior knowledge is

therefore used for cliques involving one or both site(s) inside the shadow regions: E(â, φ̂) =
∑

(s,t)E(â, φ̂)(s,t)

with E(â, φ̂)(s,t) defined as:

(i) if s /∈ Shadows and t /∈ Shadows,

E(â, φ̂)(s,t) = max(|âs − ât|, γ|φ̂s − φ̂t|),

(ii) if s ∈ Shadows and t /∈ Shadows and φ̂s ≤ φ̂t
E(â, φ̂)(s,t) = |âs − ât|+ γ|φ̂s − φ̂t|,

(iii) if s ∈ Shadows and t /∈ Shadows and φ̂s > φ̂t

E(â, φ̂)(s,t) = |âs − ât|+ 2γ|φ̂s − φ̂t|,

(iv) if s ∈ Shadows and t ∈ Shadows

E(â, φ̂)(s,t) = |âs − ât|+ γ
(
φ̂s − φ̂t

)2

.

The cases where s /∈ Shadows and t ∈ Shadows are treated in a symmetrical manner. Outside shadow areas

(case i), the regularization term is the same as previously. To limit the effect of a given shadow area on the

regularization of the amplitude, we independently regularize phase and amplitude in and at the limit of the

shadows (cases ii to iv). To force the regularized phase inside a shadow to follow ground level, we penalize

more heavily over-estimation (case iii) than under-estimation (case ii). Finally, a quadratic constraint (case iv)

enforces a smooth ground inside a shadow area. Note that in each case (i to iv) the prior term E(â, φ̂)(s,t) is

convex and so is the prior energy E(â, φ̂).

B. Results

The proposed joint regularization model and the fast and approximate regularization algorithm have been

applied to two VHR interferometric images. A result is presented in figure 3 for the regularized phase and

amplitude and in figure 2 for a 3D view.

The results are very close to the ones obtained in [23] with a very different approach. Note that a weaker

hypothesis is made here, since in [23] an assumption of planar surface is done for each region on the optical
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Fig. 2. 3D view of the amplitude superimposed on the elevation derived from the regularized phase.

image. However, a precise comparison is difficult due to the sensor parameters. Indeed, the baseline is 0.7m

leading to an ambiguity altitude of 180m and an altimetric precision between 2 and 3 meters. The accuracy of

the height retrieval for the large buildings is satisfying (a root mean square error of 2.5 m has been computed)

compared to the given altimetric precision.

IV. APPLICATION TO 3D RECONSTRUCTION WITH INSAR AND OPTICAL DATA FUSION

The second application is dedicated to the fusion of InSAR and optical data [9]. One of the main problems

is the projection of the SAR pixels using the elevation provided by the phase image in the optical geometry.

After projection, the cloud of points is irregular and our approach relies on a triangulation of this cloud.

A. Description of the method

The suggested method is summarized in figure 4. The main steps, denoted with circled numbers on the figure,

are the following:
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(a) (b)

(c) (d)

Fig. 3. Original SAR image (on the left amplitude and phase on the right) c©DGA/CNES and their joint regularization (below).
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Fig. 4. Scheme of the suggested method. The numbers correspond to the algorithm steps referred to in the text.

DRAFT September 29, 2008



11

The shadows are detected on the radar image.

The height map in the world coordinates is obtained by projection of all points from the radar image

except those in shadow areas.

The cloud of points of the height map is then triangulated into a mesh. This mesh defines the topology of

the graph used in steps and .

To ease the introduction of optical information, the optical image is regularized prior to graph construction.

A valued graph is then built with nodes corresponding to each of the points in the cloud, arcs given by

the mesh and values set using the SAR amplitude, height and the optical information.

Once the graph is built, a regularized height mesh is computed by defining a Markov field over the graph.

B. Preprocessing steps

Steps to are preprocessing steps required before the actual height regularization (steps – ). Before

merging the InSAR and optical data to perform a 3D reconstruction, images must be transformed into a common

coordinate system. Assuming the optical image is acquired at normal incidence, we then have to project back

the InSAR data from distance sampling coordinates to 3D coordinates. Before projecting the points from radar

geometry to world coordinates, shadows are detected (step ) to prevent from projecting points with unknown

(i.e., random) height. This detection is made using the Markovian classification described in [22]. Points outside

the shadows are then projected based on their interferometric phase and the radar acquisition parameters (step

). This gives a 3D cloud of points (x, y, z) in the world coordinates. The projection of this cloud on a

horizontal plane is then triangulated with Delaunay algorithm to obtain a height mesh (step ). The height

of each node of the obtained graph can then be regularized (see next section). The optical image is simplified

using a geometry+texture decomposition [24] before fusion (step ). This decomposition is obtained with a

TV+L1 regularization computed using the graph cut algorithm described in section II. Figure 5 displays the

gradient norm of the optical image before and after its regularization. Most irrelevant edges are removed.

C. Height regularization model

In this application, the joint information of amplitude and interferometric data is used together with the optical

data. Similarly as in the previous section, we define the regularized height field as that which maximizes the

posterior probability according to the log-likelihood and prior models described below.

1) Log-likelihood model: The model is exactly the same as the one used in the previous section for amplitude

and phase log-likelihood (see equations 3 and 4).

2) Prior model: We devise a prior model that accounts for the phase and amplitude dependency and that

introduces the edges of the optical image. Two options are possible to regularize the height mesh. The first

option is to jointly regularize the phase, amplitude and optical images (steps – shown at the top row

of figure 4) by including the optical data in the log-likelihood term and extending equation 5 to include the

regularized optical image (i.e., use a ternary max operator). This solution requires to set adequately the weights

of each of the terms. The second option consists of introducing the optical image gradient as a prior (in this
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(a) (b)

Fig. 5. Optical image regularization with TV+L1 decomposition model: (a) gradient norm of the optical image before regularization; (b)

after regularization, remaining gradients correspond to the building edges.

case the optical image can be seen as an external field). Equation 5 is then replaced by:

E(â, φ̂) =
∑
(s,t)

Gopt(s, t) max(|âs − ât|, γ|φ̂s − φ̂t|) (6)

with Gopt(s, t) = max(0, 1−kopt|opts−optt|) an expression that depends on the difference between the values

opts and optt of the optical image at sites s and t, and kopt a thresholding parameter.

When the optical image is constant between sites s and t, the Gopt(s, t) term equals 1 and does not modify

the joint TV regularization. When |opts − optt| is high (corresponding to a discontinuity), Gopt(s, t) is low,

thus reducing the regularization of amplitude and phase. This modification permits to preserve the building

shapes according to the optical data. Again, since the regularization potential is convex, the vectorial algorithm

of section II can be applied.
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(a) (b)

Fig. 6. Height mesh obtained (a) by direct projection of the InSAR data points (end of step , fig. 4); (b) after joint phase/amplitude

regularization with a prior that includes the optical image gradient (end of step , second row of fig. 4).

D. Results and discussion

Figure 6(a) shows a height mesh with the regularized optical image used as texture. The mesh is too noisy

to be usable. We performed a joint amplitude/phase regularization using the gradient of the optical image as

a weight that eases the apparition of edges at the location of the optical image contours. The obtained mesh

is displayed on figure 6(b). The surface is a lot smoother with sharp transitions located at the optical image

edges. Buildings are clearly above the ground level (note that the shadows of the optical image create a fake

3D impression).

This approach requires a very good registration of the SAR and optical data and implies the knowledge of

all acquisition parameters which is not always possible (depending on the source of images). The optical image

should be taken with normal incidence to match the radar data. The image displayed on figure 6 was taken with

a slight angle that displaces the edges and/or duplicates them. For the method to perform well, the edges of

structures must be visible in both optical and InSAR images. A more robust approach would require a higher

level analysis (significant edge detection, building detection).

V. CONCLUSION

In this paper we have presented two applications of a new optimization algorithm adapted for vectorial

data. The first one is dedicated to the joint filtering of phase and amplitude for 3D reconstruction. The second

one is the extension of such an approach for the introduction of information derived from the optical image.

The framework described is quite general and can be used to fuse heterogeneous data according to their

statistical distribution and to prior knowledge that can be introduced by various ways (edge co-location by joint

regularization, variable weights, . . . ). The discrete minimization algorithm can handle energies with non-convex

data-fidelity terms and (possibly non-smooth) convex priors. Such energies arise when modelling speckle noise
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(non-convex log likelihood) and edge-preserving regularization using L1 norm. By defining the regularized field

over a graph, it is possible to merge images with different sampling/geometry. In both cases promising results

are obtained. Further work will be dedicated to a more extensive testing and evaluation of this framework,

specially for the new data that are acquired by TerraSAR-X and CosmoSkyMed. Particularly, the phase filtering

should be adapted to take wrapped phase into account. Concerning the fusion application, one of the main point

to be investigated is the accurate registration between optical and SAR sensors with metric resolution.
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