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Abstract. New image denoising models based on non-local image information have
been recently introduced in the literature. These so-called ”non-local” denoising
models provide excellent results because these models can denoise smooth regions
or/and textured regions simultaneously, unlike standard denoising models. Stan-
dard variational models s.a. Total Variation-based models are defined to work in
a small local neighborhood, which is enough to denoise smooth regions. However,
textures are not local in nature and requires semi-local/non-local information to be
denoised efficiently. Several papers have introduced non-local filters and non-local
variational models for image denoising. Yet, few studies have been done to develop
unsupervised image segmentation models based on non-local information. This will
be the goal of this paper. We define and study three unsupervised non-local seg-
mentation models. These models will be based on the continuous global minimiza-
tion approach for image segmentation recently introduced in [10, 6]. The energy
of [10, 6] is a first order energy composed of the weighted Total Variation norm
and a linear term. The first proposed non-local segmentation model will extend
the Total Variation regularization term of [10, 6] to the non-local Total Variation
energy. We will see that the non-local energy can segment fine and small structures
better than the standard Total Variation energy. The second model will extend the
data-based term of [10, 6] to a non-local term using the Chan-Vese model. The
proposed non-local Chan-Vese model will overcome the main limitation of the orig-
inal model, that does not work with local intensity inhomogeneities. Finally, the
third model will also extend the data-based term of [10, 6] to a non-local term using
the Mumford-Shah energy. The original Mumford-Shah energy is designed to work
for piecewise smooth images only. We suggest to extend it to textures, defining
a non-local Mumford-Shah model that works with real-world images. Numerical
minimization schemes presented in this paper are based on continuous and discrete
(graph cut) approaches. Experimental results will illustrate the improvements pro-
vided by the three proposed non-local unsupervised segmentation models.

Keywords: unsupervised image segmentation, non-local/graph approach, active
contour, level set method, graph cut, Chan-Vese model, Mumford-Shah model,
Total Variation energy, global minimization, continuous minimization, graph cut
minimization.

1. Introduction

Many papers have been recently introduced on image denoising using spatially non-
local (NL) information [7, 20, 21, 48]. These new denoising models produce excellent
results compared with standard models such as [46, 44]. The main reason is based on
the fact that most standard denoising models work with local image information, which is
enough to denoise (piecewise) smooth images but not textures. It is indeed well-known that
variational models and PDEs are efficient models to implement local computations but
these models process textures like noise and textures are lost or partially lost during the
denoising process. Recently, new denoising models have been developed on non-local image
information. One of the recent and influential models is the non-local means algorithm
of Buades, Call and Morel [7], which produces very good denoising results. This model
is a filter-based model, whose filter is computed using distance between patches of image
intensity. Gilboa and Osher defined in [20] the variational formulation of NL-means, with
a non-local partial differential equation (PDE). We notice that the two denoising models [7,
20] are also related with Szlam, Maggioni and Coifman’s model [48], defined in the context
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of diffusion geometry. Although other researches have been done on non-local image
denoising models, few studies have been developed on unsupervised image segmentation
using non-local image information. This will be the objective of this paper. We believe and
we will show that standard segmentation models can be enhanced in several ways using
a NL extension of standard models. We propose in this paper three NL segmentation
models based on the global continuous minimization approach for unsupervised image
segmentation recently introduced in [10, 6].

The image segmentation approach proposed in [10, 6] makes the important step from
local continuous minimization solution to global minimization solution. Global minimiza-
tion solution is important to design robust image segmentation models (and other image
processing models) because a global solution is independent of a good initial position of the
contour unlike e.g. standard active contour models [29, 8, 30]. Although [10, 6] define a
global minimization approach for the Chan-Vese’s model [11], the geodesic active contour
model [8, 30] and the Mumford-Shah’s model [50, 39], this global minimization approach
can naturally be applied to any active contour model as shown in [38]. Traditionally active
contour segmentation models are solved using the level set method [43] which depends on
slow minimization process and needs regular re-distancing the level set function. Some
algorithms have been developed to improve the speed of active contours s.a. [32] but these
approaches still compute a local minimizer. Unlike the level set method, the paradigm
introduced in [10, 6] is able to compute a global minimizer for any kind of active contour
(boundary-, region-, shape-based) model. We will present the image segmentation model
of [10, 6] in the first section of this paper. This presentation will also be useful to in-
troduce the proposed NL segmentation models since these models are based on [10, 6].
The first section will also emphasize that continuous segmentation models can determine
global minimum, like recent discrete (graph cut) segmentation models introduced in [4]. [4]
proposed a combinatorial approach for semi-supervised segmentation based on the para-
metric max flow/min cut developed in [5]. This discrete segmentation model is very fast
and provides a global discrete minimum. However, the global discrete minimizer does not
have a sub-pixel accuracy unlike continuous approaches. Besides, graph cut models are
known to be anisotropic models and dependant of the grid. Finer grids are necessary to
extract fine structures (metrification error) and memory allocation for 3D images need
special schemes. Continuous models are isotropic, independent of the grid and are not
limited to memory issues for 3D images. But, they need special implementations (parallel
implementations or GPU implementation) to converge in a very fast way [49, 45]. Finally,
one might say that the continuous segmentation model [10, 6] and the discrete segmenta-
tion model [4] are related to each other. The model [4] can be seen as the discrete analogue
segmentation model to the continuous model [10, 6], or vice-versa.

The first NL segmentation model extends the TV regularization term of [10, 6] to
the NL-TV energy. We will see that the non-local energy can segment fine and small
structures better than the standard TV energy. Besides, this NL extension introduces a
graph representation for images. Graph is an obvious representation to encode non-local
information, such as neighboring pixels that are spatially far way but share close image
features. This new image representation, based on a graph of intensity patches like in
[7, 20], enhances the segmentation result. The reason is as follows. The regularization
process of [10, 6] is defined by the TV norm, which is thus equivalent to smooth iso level
sets using their curvature (the higher the curvature of the level set is, the stronger the
regularization is). This can be an issue with small structures (with high curvature) to be
segmented since they can be lost with the standard TV (especially in the case of medical
images). In the situation where the regularization process is done on a graph defined from
the image and its structures, then the regularization will better preserve fine and small
structures which are repetitive in the image domain (which is the case in natural images
and explains ) while smoothing out the noise. We will provide synthetic and medical
results to show the improvements providing by this NL segmentation model. We will also
present two minimization schemes, one based on a continuous approach and one based
on a discrete (graph cut) approach based on the parametric max flow/min cut of [5],
which is very fast1. The second NL segmentation model will extend the data-based term

1Our code can be found at http://www.math.ucla.edu/∼xbresson
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of [10, 6] to a NL term using the Chan-Vese model [11]. The proposed NL-CV model
will be able to integrate simultaneously semi-local and global image information through
a specific graph. The NL-CV model will improve the original model, that does not work
with images with local intensity inhomogeneities. The implementation will be done with a
continuous approach (a graph cut approach is also possible). The third NL segmentation
model will extend the data-based part of [10, 6] to a NL term using the Mumford-Shah
model [39]. This extension is interesting because the original MS energy was designed
to work for piecewise smooth images only. We propose a MS energy for smooth or/and
textured images by defining a NL-MS model that is piecewise regular (regular can mean
smooth or/and textured). We investigate two numerical schemes to implement the NL-MS
model. The first one is based on the level set formulation of the MS energy as proposed in
[50]. The second one is based on an elliptic approximation of the MS energy introduced
in [2]. We will see that not only the NL-MS is able to segment images, this model also
provides better denoising results than the state-of-the-art.

The outline of this paper is as follows. In section 2, we introduce the continuous global
minimization scheme introduced in [10, 6]. Any (boundary-, region-, shape-based) active
contour model, that are usually solved by the level set method, can be solved in a efficient
way with this new segmentation approach. This minimization is global, i.e. no good
initial condition are needed to get a global solution and it can be efficiently implemented
using fast continuous minimization schemes. Then, the rest of the paper will introduce
our contributions:

• Section 3 presents the first extension of [10, 6] to a NL framework. We change the
regularization process of Section 2 by considering the NL-TV norm defined on a graph
of image patches. This NL regularization, based on prior information about image struc-
tures, is able to better segment finer and smaller structures unlike the original approach.
Continuous and discrete (graph cut) minimization schemes are introduced.

• Section 4 extends the data-based term of [10, 6] to a NL term using the CV model.
The proposed NL-CV model improves the original CV model because the proposed model
can segment images with local intensity inhomogeneities. A continuous minimization
scheme is also introduced.

• Section 5 extends the data-based term of [10, 6] to a NL term using the Mumford-Shah
model. The NL-MS overcomes the original MS model that is defined to work for piecewise
smooth images only. The proposed NL-MS is defined for piecewise smooth or/and tex-
tured images. Two continuous algorithms are introduced to implement the NL-MS model.
The first model is based on a level set formulation of the original MS energy. The second
model is based on an elliptic approximation of the original energy. This model not only
segments textured images but also produces better denoising results than state-of-the-art.

2. Continuous Global Minimization Approach for Image Segmentation

2.1. Proposed Energy.

We present the continuous global minimization approach for unsupervised image seg-
mentation introduced in [10, 6] (see also [38]). The variational segmentation model pre-
sented in this section will be extended to a non-local framework in the rest of the paper.
As we previously said in the introduction, the continuous global minimization approach
introduced in [10, 6] is important because it makes the step between continuous local min-
imization approaches (mostly used with standard variational and PDE-based models) to
global minimization approaches. Global minimization models are important because they
are robust to bad initial condition, which is not the case with standard segmentation mod-
els such as active contour models [29, 8, 30]. Indeed, standard active contours have to be
initially located close to the solution to successfully segment objects of interest. Authors in
[10, 6] introduced a new paradigm to design continuous global minimization algorithm for
image segmentation based on the active contour model and the level set method [43]. Al-
though [10, 6] developed a global segmentation approach for the Chan-Vese model [11], the
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geodesic active contour model [8, 30], and the two-phase piecewise smooth Mumford-Shah
model [39], the objective of this section is to present the continuous global minimization
approach to any (boundary-, region-, shape-based) active contour model. It is possible to
re-formulate any active contour model to compute a global minimization solution. In the
large literature on active contour models, the active contour model is implemented with
the level set method. We will develop at this end of this section, the new advantages to
use our implementation of active contour models. In a nutshell, our segmentation model
is well-posed, determines a global minimum, is easy to code and much faster than the
level set method. We notice that we have specified the word ”continuous” in the proposed
global minimization method. We emphasize the continuous nature of the minimization
process because there are also discrete global minimization algorithm based on graph cut
techniques. We will compare continuous and discrete approaches in Section 2.2.

In image segmentation, a successful variational model is the active contour model,
initially proposed by Kass, Witkin and Terzopoulos in [29]. A lot of literature has been
written on active contour models since this segmentation allows to easily combine different
kind of information such as boundary, region and shape prior [8, 30, 11, 12]. The general
energy of any active contour model is as follows (we focus on two-phase segmentation
models but they can be extended to multi-phase):

EAC(C) =

∫

C

gbds + λ

∫

Cin

gin
r dx + λ

∫

Cout

gout
r dx, C : γ → R

N(1)

where AC stands for active contour, C is a closed contour (curve/surface) parameterizes
by the set γ (γ := [0, 1] for curve), gb : Ω → R+ is an arbitrary edge function (for example
an edge detector function in the geodesic active contour model [8, 30] or a distance function
of a set of points in the surface interpolation model [53]), ds is the contour element, C is
the boundary between Cin,out ⊂ Ω which are the inside and outside region of C in the
image domain Ω, gin,out

r : Ω → R are arbitrary inside and outside region detector functions
(use to force region intensity statistics such as mean, variance, histogram or/and shape
prior), dx is the volume element and λ is a positive constant. Energy (1) encodes most of
existing active contour models. The well-know geodesic/geometric active contour model
proposed in [8, 30] is given when gin

r = gout
r = 0 and gb = gb(|∇u0(C(s))| such that

EGAC(C) =
∫

C
gb(|∇u0(C(s))|)ds. This segmentation model has been successfully used

in many applications because this model is well-posed and the level set method can be used
to handle the segmentation flow. Another well-know active contour model given with (1)
is the Chan-Vese (CV) model [11]. Indeed, if we choose gb = 1, gin

r = (µin−I)2 and gout
r =

(µout − I)2 then we have ECV (C) =
∫

C
ds + λ

∫

Cin
(µin − I)2 + λ

∫

Cout
(µout − I)2, which

is the two-phase piecewise constant approximation of the Mumford-Shah model [39]. The
two-phase piecewise smooth approximation of the Mumford-Shah model proposed in [50]
can also be introduced considering gb = 1, gin

r = |∇sin|2 +(sin−I)2 and gout
r = |∇sout|2 +

(sout−I)2 such as EV C(C) =
∫

C
ds+λ

∫

Cin
|∇sin|2 +(sin−I)2 +λ

∫

Cout
|∇sout|2 +(sout−

I)2. Many other active contour models fall into energy (1). How can we compute a (local)
minimum of (1)?

Energy (1) is usually minimized with the well-known level set method developed by
Osher and Sethian in [43], which represent an evolving contour in a higher dimensional
space (co-dimension 1) in such way that changes of topology can be dealt with in an
automatic way. The level set function not only represents the contour by its zero level
set (non-parametric representation) but also the inside and outside regions of the closed
zero level set. In [37], Merriman, Bence and Osher show that operators which identifies
the zero level set is the Dirac operator δ and the Heaviside operator H provides the inside
and outside regions. Thus the level set formulation of e.g. the CV model is E2

CV (φ) =
∫

Ω
|∇H(φ)|dx + λ

∫

Ω
(µin − I)2H(φ)dx + λ

∫

Ω
(µout − I)2(1 − H(φ))dx, where φ : Ω → R

is the level set function. Then, the minimization is carried out assuming that operators
δ, H are regularized and using standard Euler-Lagrange equation technique. The level set
minimizer of the Chan-Vese energy is local but experimental results in [11] suggest that
the model has the tendency to compute a global minimizer since the model is able to deal
with interior contours even with an initial condition contour position far away from the
objects.
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Based on this important observation, Chan, Esedoglu and Nikolova (CEN) proposed in
[10] to reformulate the original CV model in order to determine a global minimizing solu-
tion. The new functional of CEN consists in minimizing E3

CV (u) =
∫

Ω
|∇u|+λ

∫

Ω

(

(µin −
I)2 − (µout − I)2

)

udx, u : Ω → [0, 1]. It is possible to prove that the steady state of E3
CV

is the same as ECV , which means that both energies have common minima. Besides, CEN
stated a theorem that showed that global minima (not unique but global minimizers are
similar) can be determined for E3

CV (using any optimization algorithm including standard
gradient descent method). The theorem states that for any minimizer u⋆ of E3

CV , then
any thresholded function of u⋆ gives also a global minimizer for E3

CV . The paper of CEN
made the important step from the continuous level set method, which gives local minima,
to a new continuous optimization approach, which produces global minima. In [6], Bres-
son et al. extended the global minimization approach of the CV model to the geodesic
active contour model [8, 30] using the weighted TV norm

∫

Ω
gb|∇u| and to the two-phase

piecewise smooth Mumford-Shah energy as in [50]. [6] also proposed a fast numerical
scheme to compute the global minimum, which is much faster than using the level set
method.

Let us now extend the continuous global minimization approach introduced in [10, 6]
to any active contour model, defined by (1). The level set formulation of (1) is:

ELSM (φ) =

∫

Ω

gb|∇H(φ)| + λ

∫

Ω

gin
r H(φ) + λ

∫

Ω

gout
r (1 − H(φ)), φ : Ω → R(2)

where φ is the level set function, defined positive inside in its zero level set representing
the contour C. As we already noticed, energy (2) is equal to (1) since the first term
∫

Ω
gb|∇H(φ)| =

∫

Ω
gb|∇φ|δ(φ) =

∫

C
gbds is the weighted length of C and the second term

is equal to
∫

Cin
gin

r dx +
∫

Cout
gout

r dx since Cin, Cout are respectively defined by H(φ), 1−
H(φ). The Euler-Lagrange (EL) equation of (2) is given by:

(

∇ · (gb
∇φ

|∇φ| ) + λ(gin
r − gout

r )
)

δ(φ) = 0.(3)

We notice that the region term gin
r − gout

r used in this approach is the one defined in
the context of region competition as introduced by Zhu and Yuille in [55], where two
regions fights to maximize a region statistic criterium (such as the intensity mean in the
CV model). However, we could have also considered a simplied region term gr instead
of gin

r − gout
r that can encode other feature such as a shape prior like in [12]. We do not

change the steady state when we multiply an EL equation by a positive function, then (3)

have the same steady state as ∇ · (gb
∇φ
|∇φ| ) + λ(gin

r − gout
r ) = 0.

If we regularize H, δ such that they do not vanish over the whole image domain Ω then
the energy of ∇ · (gb

∇φ
|∇φ| ) + λ(gin

r − gout
r ) = 0 is equal to

∫

Ω
gb|∇φ| + λ(gin

r − gout
r )φ.

However, the previous energy is homogeneous of degree 1 in φ. This means that this
evolution equation does not have a stationary solution if the minimization of φ is not
restricted such as [0, 1]. Thus, the following variational model is proposed to globally
minimized the general active contour energy (1):

EGMAC(u) =

∫

Ω

gb|∇u| + λ

∫

Ω

gin
r u + λ

∫

Ω

gout
r (1 − u), u : Ω → [0, 1],(4)

where GMAC stands for global minimization of active contour models. Before introducing
the global minimization theorem. We would like to emphasize the connection between the
level set energy (2) and the standard level set method. Usually, there are two approaches
with the level set method in the literature. The first one is based on a level set energy (2)
and the second is based on an evolution flow such as [41]:

φt +
(

∇ · (gb
∇φ

|∇φ| ) + λ(gin
r − gout

r )
)

|∇φ| = 0(5)

This evolution flow is well-posed since there exists a viscosity solution [14]. Besides, the
previous flow also solves the following active contour evolution flow:

Ct + (gbκ + λ(gin
r − gout

r ))N = 0,(6)
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when C is embedded in φ as its zero level set. The steady state solution of (5) is the same
as (3) and thus it is directly connected with the new energy (4).

The following theorem states the existence of global minima for any active contour model
defined by (1) (no initial condition is needed).
Theorem 2.1.1: Suppose that gb : Ω → R+, for any given gin

r , gout
r : Ω → R and λ ∈ R+,

if u⋆ is any minimizer of EGMAC , then for almost every ν ∈ R we have that the charac-
teristic/indicator function of sets ΩC(ν) := {x ∈ Ω : u(x) > ν} (where C is the boundary
of the set ΩC) is a global minimizer of EGMAC and EAC defined in (4) and (1).
Proof. See annex.

A global minimizer of (4) also provides a global minimizer for the active contour energy
(1). The relation is given through a characteristic function of a set ΩC : EGMAC(u =
χΩC

) =
∫

C
gbds + λ

∫

Cin
gin

r dx + λ
∫

Cout
gout

r dx = EAC(C). Hence, any characteristic

function of sets ΩΩ(ν) which globally minimizes EGMAC also globally minimizes the active
contour energy EAC . We sum up the previous ideas. Most of existing active contour
models can be defined through this variational model:

inf
C:γ→RN

EAC(C) =

∫

C

gbds + λ

∫

Cin

gin
r dx + λ

∫

Cout

gout
r dx.

The minimizing solution C can be given using the LSM (where the contour is embedded
into the zero level set C := φ−1(0)) given by the PDE:

φt =
[

∇ · (gb
∇φ

|∇φ| ) + λ(gin
r − gout

r )
]

|∇φ|

or the equivalent LSM is given by the variational model with its minimizing flow:






inf
φ:Ω→R

ELSM (φ) =
∫

Ω
gb|∇φ| + λH(φ)gin

r + λ(1 − H(φ))gout
r dx

φt =
[

∇ · (gb
∇φ
|∇φ| ) + λ(gin

r − gout
r )

]

δ(φ)

The minimization approach to globally minimize the active contour energy is given by:

inf
u:Ω→[0,1]

EGMAC(u) =

∫

Ω

gb|∇u| + λgin
r u + λgout

r (1 − u)dx

where the contour globally minimizing (1) is given by thresholding any minimizer of
EGMAC between [0, 1]. We notice that the proposed segmentation energy (4) that pro-
vides a global minimizing solution to the segmentation problem is convex in u, lower-
semicontinuous and composed of the weighted TV norm and a linear term in u (1st order
energy). We also observe that the minimization problem over contours C in (1) is a
non-convex problem, difficult to optimize. However, working with function u defined on
Ω makes the segmentation problem convex, which makes possible the computation of a
global minimum.

2.2. Relations with Level Set Method and Graph Cuts.

In this section, we enumerate the main advantages of the proposed segmentation energy
(4). We also compare this continuous global segmentation model with the level set method
(LSM) and the discrete (graph cut) model introduced by Boykov in [4].

Let us start with the main advantages of the LSM. The LSM uses an Eulerian/ non-
parametric representation of the contour, which can deal with natural changes of topology
without extra processes. The LSM is very flexible to introduce different kind of information
(boundary, region, shape) in the segmentation process, which makes it a very successful
algorithm to solve the image segmentation problem. The LSM can also be applied to
other various applications such as fluid dynamical flows, PDE on manifolds, etc. (see
[47, 42]). Numerical schemes to implement the LSM are based on hyperbolic conservation
laws and upwind implementations. These schemes are stable and can be highly accurate
(see WENO schemes [28]). The main limitations of the LSM are as follows. The LSM com-
putes a local minimum, which means that the initial condition is critical to get satisfactory
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segmentation results. The LSM needs to regularly re-distance the level set function as a
signed distance function (which means solving the Eikonal equation |∇φ| = 1) to guaranty
correct and smooth evolution of the zero level set embedding the contour (the LS function
cannot be too flat nor steep near the zero level set and cannot admit discontinuities in its
derivatives). Standard evolution schemes for LSM are slow. [32] proposed to use an AOS
scheme to speed up the PDE-based flow process but the proposed algorithm still computes
a local minimum and needs to re-distance the LS function. The proposed global minimiza-
tion approach introduced in Section 2.1 proposes to solve the limitations of the LSM in
the context of image segmentation. Indeed, the proposed global minimization computes
a global minimum, which makes the segmentation algorithm independent of the initial
condition. Besides, the global minimum also corresponds to a minimum of the standard
LSM. The proposed global minimization approach also uses an Eulerian/non-parametric
representation of the contour as the standard LSM, which allows different topology. The
proposed global minimization approach is also flexible to introduce different kind of in-
formation (boundary, region, shape) in the segmentation process. Besides computing a
global minimum, other advantages of the proposed segmentation model is the simplicity
of implementation (few lines of matlab) and the good computational speed for the mini-
mization task. There is also no need to re-distance the level set function in our approach.
Authors in [6] showed that the TV-based energy (4) can actually be quickly minimized
using any recent fast TV minimization technique. For example, [6] used Chambolle’s pro-
jection algorithm introduced in [9] for its good speed and easy implementation. New fast
algorithms can be also be used.

Recent discrete minimization models have been introduced to solve the image seg-
mentation problem [4]. These minimization algorithms, called graph cut algorithms, are
combinatorial models that minimize energies with discrete values. These algorithms are
very fast such as the parametric maximum flow/minimum cut introduced by Boykov
and Kolmogorov in [5] (linear time complexity). However, graph cut algorithms do not
have sub-pixel accuracy unlike continuous algorithms. Besides, graph cuts can only use
anisotropic operators such as the anisotropic gradient operator |∇u| = |∂xu| + |∂yu| in-

stead of the isotropic operator |∇u| =
√

|∂xu|2 + |∂yu|2. In the case of graph cuts, the
length of a contour needs successively finer grids to be correctly approximated. In fact, the
quality of the approximation highly depends on the order of connectivity of the defined
graph, and can lead to systematic metrification errors [45]. Continuous models do not
have these limitations of anisotropic scheme and metrification error. Unlike continuous
algorithms, graph cut algorithms do not have a stopping criteria for the minimization
task. Graph cuts are efficient discrete energy minimization techniques even though they
are more difficult to implement than continuous algorithms. However, recent continuous
minimization algorithms have been developed and compete in terms of speed with graph
cuts. For example, in the case of the ROF (TV-L2) minimization model [46], the Split-
Bregman algorithm [23] produces very fast computational times close to the graph cut
model [15]. Parallel implementations and GPU implementations of continuous PDEs are
also possible and lead to very fast minimization algorithms [49, 45].

Finally, we would like to point out the continuous global minimization approach [10, 6]
can also be used in other image processing problems. Other image segmentation models
based on the proposed global optimization approach [10, 6] have been proposed in the
literature, see [34, 38, 40, 26, 49]. Besides, Kolev, Klodt, Brox, Esedoglu and Cremers in
[31] and Zach, Pock and Bischof in [52] used a global optimization framework to define
global 3D surface reconstruction, independent of the initial condition. Finally, authors in
[51] proposed a video tracking algorithm also based on a continuous global minimization
framework.

3. Non-Local Image Segmentation Model based on Non-Local TV

3.1. Proposed Non-Local Variational Energy.



8 X. BRESSON AND T.F. CHAN

In this section, we extend the TV regularization part in energy (4) to the NL-TV
energy. This extension improves segmentation results for fine and small structures. In
the original model introduced in (4), the regularization process is based on minimizing
the TV norm of u, which is equivalent to smooth iso level sets using their curvature
(the higher the curvature of the level set is, the stronger the regularization is). Hence, the
standard TV norm limits the segmentation of small structures, which hold high curvature.
In the case where the regularization process is done using NL image information, then
the regularization will better preserve small structures which are repetitive in the image
domain (which is the case in natural images) while smoothing out the noise. Thus, the
”scale space” generated by the NL-TV is different form the scale space of TV. For TV,
the scale space based on curvature removes small structures with high curvature first,
then larger structures with lower curvature. In the case of the NL-TV, the scale space is
defined in a statistical way since structures that are not too repeated will be first removed,
then structures which are more repetitive. The cardinality of similar structures is thus
the feature of the NL scale space. Finally, we observe that the NL-TV energy uses prior
image information, unlike the standard TV.

The extended NL energy for image segmentation is as follows:

ENL
GMAC(u) =

∫

Ω

gb|∇NLu| + λgin
r u + λgout

r (1 − u)dx, u : Ω → [0, 1],(7)

where ∇NL is the NL gradient operator. As in the approach introduced in Section 2, the
segmentation result will be obtained by first computing the minimum of (7), then thresh-
olding it between [0, 1]. This segmentation procedure will be justified as follows. Firstly,
the minimization of (7) is global since the energy (7) is convex w.r.t. u. Secondly, it may
be possible to prove the limit of the NL-TV norm to a continuous TV norm on manifold
of image patches. Using the co-area formula on manifold, it is then possible to use The-
orem 2.1.1 in Section 2.1. Thus, for any minimizer of (7), a thresholded function of this
minimizer gives also a global minimum. Before studying the proposed NL segmentation
task, we introduce some notations and definitions on NL quantities.

3.2. Definitions and Notations.

The NL gradient operator is defined for the pair of points (x, y) ∈ Ω × Ω as in [54, 21]:

∇NLu(x, y) = (u(y) − u(x))
√

w(x, y) : Ω × Ω → R.

where w is the edge function of a graph. The NL gradient of u does not define a vector in
the standard sense since it is a mapping from Ω × Ω to R. However, we will speak of NL
vectors for mappings p : Ω × Ω → R such as ∇NLu. The inner product between two NL
vectors p1, p2 : Ω × Ω → R at point x ∈ Ω is defined as:

< p1, p2 > (x) =

∫

Ω

p1(x, y)p2(x, y)dy : Ω → R,

which gives the norm of a NL vector p : Ω × Ω → R at point x ∈ Ω as follows:

|p|(x) =

√

∫

Ω

p(x, y)2dy : Ω → R+.

Hence, the norm of the NL gradient of a function u : Ω → R at x ∈ Ω is defined as:

|∇NLu|(x) =

√

∫

Ω

(u(y) − u(x))2w(x, y)dy : Ω → R+.(8)

The NL divergence operator can be defined by the standard adjoint relation with the NL
gradient (generalized divergence theorem):

< ∇NLu, p >= − < u, divNL p >, ∀u : Ω → R, ∀p : Ω × Ω → R,

which defines the NL divergence of the NL vector p : Ω × Ω → R at x ∈ Ω:

divNL p(x) =

∫

Ω

(p(x, y) − p(y, x))
√

w(x, y)dy : Ω → R,



NON-LOCAL UNSUPERVISED VARIATIONAL IMAGE SEGMENTATION MODELS 9

3.3. Non-Local BV Space.

Smoothness of a function u on a graph can be measured using the Sobolev norm as
proposed in [48]:

‖u‖2
H1 = ‖u‖2

L2(Ω) +

∫

Ω

|∇NLu|2dx,(9)

where
∫

Ω
|∇NLu|2dx is the NL-Dirichlet energy, related with the graph Laplacian (through

the derivation of (9)). The graph Laplacian plays a fundamental role in many approaches
and applications. It allows to generalize the linear heat diffusion equation to graph repre-
sentation. In (9), the smaller ‖u‖H1 , the smoother is u on the graph. It is also interesting
to see how vary the function u on the graph. Let us introduce the space of graph-based
TV/NL-TV.
Definition 3.3.1: The graph-based TV/NL-TV norm of u ∈ L1(Ω) is defined by:

TVNL(u) =

∫

Ω

|∇NLu|dx

= sup
|p|≤1

∫

Ω

u divNL p dx,

where p : Ω × Ω → R. We define the graph-based BV space as the space of all functions
u ∈ L1(Ω) satisfying TVNL(u) < ∞. The graph/NL BV space is endowed with the norm:

‖u‖BVNL = ‖u‖L1(Ω) + TVNL(u)

The smaller ‖u‖BVNL
, the less variations have u on the graph.

3.4. Well-Posedness of the Proposed NL Segmentation Model.

The non-local segmentation model proposed in Section 3.1 is similar to Section 2. It
consists in minimizing a convex energy (7), then thresholding it between [0, 1] to get
the segmentation result. The only difference is the regularization process. (4) uses the
standard TV energy and (7) uses the NL-TV energy defined from the graph of image
patches. The graph of image patches actually defines a new image representation and the
NL segmentation task is done on this new representation. The objective of this section
is to show (under some assumptions) that the proposed segmentation task is well-defined
on the new image space representation.

Let us introduce this new space of image representation based on patches of image
intensity. The patch of intensity around a pixel located at x in the image domain defines
a point in a higher dimensional space, see Figure 1. For example, if the size of the patch is
5 × 5 then the space of all patches has n = 25 dimensions. We now make the assumption
that the set of patches in an image belongs to a compact differentiable submanifold M
of R

n, where the dimension of M is much smaller that the ambient space d < n. The
relevance of the existence of such a manifold M is an open issue, see [3, 27]. However,
we will assume in this work this manifold exists to show the well-posedness of our image
segmentation. Based on [3, 27], Coifman and Lafon in [13, 33] studied the convergence of
the graph Laplace operator defined on a graph to the Laplace-Beltrami operator defined
on a manifold (vertices of the graph are actually samples from a smooth manifold). We
use in this section the same arguments to show that the NL-TV norm defined on the graph
converges to the TV norm defined on a manifold M.

[ Figure 1. ]

Proposition 3.4.1: Let us assume that the set of patches in an image belongs to a compact
differentiable submanifold M ⊂ R

n, where the dimension of M is much smaller that the
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ambient space d < n. If u ∈ L1(M), then, the NL-TV norm converges to the TV norm
on M:

∫

Ω

1

ǫ
d+2
4

|∇NLǫu| →
ǫ→0

∫

M

|∇Mu|.

Proof. See Annex.

Hence, using the previous proposition, the NL energy (7) is equal at the limit ǫ → 0
to:

ENL
GMAC(u) =

∫

M

gb|∇Mu|(x̂) + λgin
r u(x̂) + λgout

r (1 − u(x̂))dx̂

Using the coarea formula on manifold M:
∫

M

|∇Mu|(x̂)dx̂ =

∫

ν

∫

M

|∇MχΩu(ν)|(x̂)dx̂dν,

we can extend Theorem 2.1.1 to the new image representation defined by the manifold
of intensity patches M. Thus, if u⋆ is any minimizer of ENL

GMAC , then for a.e. ν ∈ [0, 1]
we have that the characteristic function of sets ΩC(ν) := {x ∈ M : u(x) > ν} is also a
global minimizer of ENL

GMAC . Thresholding u⋆ in M leads to threshold u⋆ in Ω. Thus,
the segmentation algorithm is based on the same two steps of Section 2.1: minimizing a
convex energy (7) and thresholding it to get the minimizer. Thus, the proposed non-local
segmentation algorithm can be seen as carrying out the segmentation on the manifold of
image patches. We remind that the previous arguments are based on the existences of
a continuous manifold M. This question is still open even though some works tend to
justify the existence of manifolds from graphs [3, 27, 13, 33, 25].

3.5. Numerical Schemes.

3.5.1. Minimization by Dual/Projection Approach.

Energy (7) can be minimized using the approach proposed in [6]. This approach consists
in introducing a new function v : Ω → R and splitting (7) such that:

ENL
GMAC(u, v) =

∫

Ω

gb|∇NLu| + λ(gin
r − gout

r )v +
1

2θ
(u − v)2dx,(10)

where λ, θ > 0 are two constants (θ should be small). Since (10) is convex w.r.t. u, v,
then its minimizer can be computed by minimizing (10) w.r.t. u and v separately, and
iterating until convergence. Thus, the following minimization problems are considered:

(1) u being fixed, we search for a solution to:

inf
v∈[0,1]

∫

Ω

λ(gin
r − gout

r )v +
1

2θ
(u − v)2dx,

whose solution is given by v = min(max(u − λθ(gin
r − gout

r ), 0), 1).
(2) v being fixed, we search for a solution to:

inf
u

∫

Ω

gb|∇NLu| + 1

2θ
(u − v)2dx,(11)

whose solution is given by the minimum of the NL-ROF model.

An elegant way to minimize the NL-ROF model was proposed by Gilboa and Osher
in [21]. They extend the projection algorithm of Chambolle [9] define for the ROF model
to the NL-ROF (NL-TV+L2) model. Using the dual definition of NL-TV in Section 3.3,
minimizing (11) is equivalent to this min-max problem:

inf
u

sup
p≤gb

∫

Ω

u divNL p +
1

2θ
(u − v)2dx
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The inf and sup can be swapped according to the minimax theorem [16] which gives the
minimizing solution:

u(x) = v − θ divNL p⋆, x ∈ Ω

p⋆ is the solution of the max problem:

sup
|p|≤gb

∫

Ω

< ∇NLv, p > +
θ

2
| divNL p|2dx

which is given by the steady state of the following semi-implicit iterative scheme:

pn+1(x, y) =
pn + τ∇NL(divNL pn − v/θ)

1/gb + τ |∇NL(divNL pn − v/θ)| , (x, y) ∈ Ω × Ω, n > 0(12)

where τ < 1/(‖∇NL · ‖. maxΩ gb) guaranties the convergence of the iterative scheme.

The iterative scheme (12) is easy to implement. The NL gradient, divergence and norm
are discretized as follows (x is discretized by i and y by j):

(divNL p)i =
∑

j∈Ni

(pij − pji)
√

wij

(∇NLv)ij = (vj − vi)
√

wij

|p|i =

√

∑

j∈Ni

(pij)2.

which gives:

ui = vi − θ
∑

j∈Ni

(pij − pji)
√

wij ,

and

pn+1
ij =

pn
ij + τ

(

(divNL pj − divNL pi)
√

wij + (vj − vi)
√

wij/θ
)

1/gb + τ
√

∑

j∈Ni

(

(divNL pj − divNL pi)
√

wij + (vj − vi)
√

wij/θ
)2

.

Weights wij can be determined in many ways. We consider the standard weights as in [20].

Experimental results are presented in Figures 2, and 3. We compare our NL seg-
mentation model defined in (7) with the standard approach introduced in Section 2.
For both experiments, we use the Chan-Vese model [11] for comparison. This means
that we consider in (7) the edge detector gb = 1 and the region detector function as
gin

r −gout
r (x) = (µin −u0(x))2− (µout −u0(x))2, where µin, µout are the inside and outside

intensity mean defined by µin =
∫

Ω
Iu(x)dx

∫

Ω
u(x)dx

, µout =
∫

Ω
u0(1−u(x))dx

∫

Ω
(1−u(x))dx

. Figure 2 shows that

the proposed NL segmentation model performs better to segment fine and small structures
unlike the standard CV model. Figure 3 presents the segmentation of a real-world/medical
image. We observe on Figures 3(d) and 3(e) that the NL segmentation model gives better
segmentation results for finer structures than the CV model.

[ Figure 2. ]

[ Figure 3. ]

3.5.2. Minimization by Graph-Cut Approach.

In this section, we develop a numerical scheme based on graph cut techniques to mini-
mize a discrete version of (7). As we already said in Section 2.2, graph cut techniques are
limited by anisotropic scheme, metrification error and are not as easy to code as continuous
minimization schemes. However, these minimization techniques are very fast.

Unlike Section 2, we adopt in this section a discrete point of view. In the discrete
setting, segmentation (and other tasks s.a. denoising) can be formulated in a Bayesian
framework using Markov Random Fields (MRF) [19]. The MRF framework aims at finding
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the maximum a posteriori (MAP) probability of quantities (like intensity in image denois-
ing or binary function in image segmentation) using the Bayes principle. Bayes principle
states that the MAP is given by the product of the a priori probability of the unknowns
(data-based term) and the likelihood probability (regularization term). The MRF is com-
posed of several components. A set P = {1, ..., Np} of pixels p (analogue to an open set
Ω ⊂ R

N in the continuous framework), a neighborhood system N = {Np|p ∈ P}, where Np

is a subset of pixels in P describing the neighborhood of p and a field of random variables
U = {Up|p ∈ P} (analogue to the continuous function u : Ω → R in the continuous frame-
work). Each random variable Up takes a value up in some discrete set F = {f1, ..., fNf

}
of the possible labels (like intensity F = {0, ..., 255} in image denoising, corresponding to
F = R in the continuous framework). We abbreviate {U1 = u1, ...,UNp = uNp} with U = u
where u = {up|p ∈ P} is an outcome/configuration of U . An important and necessary
condition for U to be a MRF is that each random variable Up depends on the neighbor
random variable Pr(Up|UP−{p}) = Pr(Up|UNp), ∀p ∈ P, where UNp = {Uq|q ∈ Np}.
The fundamental result to make MRF practical is the Hammersley-Clifford theorem [19].
This theorem states that the probability of a particular configuration is the sum over all
cliques in the neighborhood system N , that is Pr(u) ∝ exp(−∑

C VC(u)). VC is a clique
potential, which gives the prior probability of a particular outcome of the elements of the
clique C. Most of current models restrict the MRF with clique potentials involving pairs of
neighboring pixels Pr(u) ∝ exp(−∑

p∈P,q∈Np
Vp,q(up, uq)). The field U cannot be directly

observed in the experiment. It has to be estimated based on some observations (such as the
noisy image in image denoising). The likelihood probability Pr(O|u) relates u with the ob-
servation O. It is usually assumed that noise is i.i.d. then Pr(O|u) =

∏

p∈P G(up, Op). If

G(up, Op) = exp(−D(up, Op)) then the likelihood is Pr(O|u) = exp(−∑

p∈P D(up, Op)).

We want to obtain the configuration u ∈ F × ... × F = FNp that maximizes the MAP
Pr(u|O). Bayes principle states that Pr(u|O) ∝ Pr(O|u)Pr(u). It follows that the MAP
estimate u should minimize the posterior energy function (using the log function):

E(u) =
∑

p∈P,q∈Np

Vp,q(up, uq) +
∑

p∈P

D(up, Op), u : P → F(13)

We specify functions Vp,q(up, uq) and D(up, Op) to formulate the equivalent discrete MRF
energy of (7) as follows:

EGC
GMAC(u) =

∑

p∈P,q∈Np

gbp,q · |up − uq| +(14)

λ
∑

p∈P

gin
r,pup + gout

r,p (1 − up), u : P → {0, 1}

where gbp,q can be interpreted as a cost of discontinuity between p and q. It is natural to
consider the clique potential in (14) as the length of discontinuity sets which represents
the contours between the two regions Cin and Cout. This also represents the discretization
of the TV norm in the case of graph cut approach such as [15]. The anisotropic property
of this discretized TV clearly appears here. We can also define a discrete edge detector
function as gbp,q = exp(−(Ip − Iq)

2/2σ2) ·1/|p− q|. Besides, the MRF analogue of the CV

model can be considered when we have D(up, Op = Ip) = up(µin−Ip)2+(1−up)(µout−Ip)2

(see also [17]). Other region detector functions can be defined such as histogram-based
terms. A shape prior can also be encoded with D(up, Op = Sp) = (up − Sp)

2. Actually
all continuous active contour can have their MRF analogues.

As we said, one of the main interests to use the graph cut framework is the speed of
minimization, most of time very fast. The way to minimize the MRF energy (14) is related
with combinatorial optimization algorithms. In the case of multi-phases (Potts model) the
problem is NP-hard. In the case of the Ising model (F = {0, 1}), fast algorithms have
been developed to compute the exact global minimum of (14) in linear time. The first
algorithm has been written by [24], who proposed a graph cut algorithm for binary image
denoising. Many other alogorithms have been proposed, see [5] for more references. All
these algorithms are based on the technique called parametric maximum flow/minimum
cut (max flow/min cut). The computation of the minimum cut is well-known as the graph
cut problem. The min cut, also known as a s-t cut, is an optimal cut in a certain graph
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defined for splitting the nodes belonging to the source from the nodes being in the sink.
There are many different ways to compute a globally minimum s-t cut [18, 22] but a recent
and efficient algorithm was proposed by [5], which outperform the standard combinatorial
optimization techniques. We use their algorithm in this paper, which available on-line.

The extension of the discrete MRF energy (14) to a non-local framework is as follows:

ENL,GC
GMAC (u) =

∑

p∈P,q∈NNL
p

wp,q · |up − uq| +(15)

λ
∑

p∈P

gin
r,pup + gout

r,p (1 − up), u : P → {0, 1},

where wp,q is the weight function of the graph of image patches (like in Section 3.5.1). In
this situation, the neighborhood NNL

p of p is a non-local neighborhood. The contour of
segmented objects are naturally given by the discontinuity set of the binary function u.

Experimental results are presented in Figures 4 and 5. We also observe that the min-
imization speed with the graph cut approach is at least twice faster than the continuous
approach.

[ Figure 4. ]

[ Figure 5. ]

4. Non-local Chan-Vese Model

4.1. Motivations.

In the previous section, we extend the regularization part of energy (4) to the NL-
TV. In this section, we will extend the data-based term of (4) to a NL term using the
Chan-Vese (CV) model [11]. The CV model, also called active contours without edges,
detects boundaries of objects lying in images based on the assumption that images are
composed of two homogeneous regions (like two regions with Gaussian distributions).
This model is more robust than standard snake models [29, 8, 30] which are based on
the detection of large image gradients. Precisely, the CV model determines the optimal
two-phase/binary piecewise constant approximation of an image, where the two regions
are approximated by the mean intensity values. The main limitation of the CV model is
with images with local intensity inhomogeneities or non-homogeneous images (Figure 7).
The proposed NL-CV model will be able to overcome this limitation using semi-local and
global image information. The integration of semi-local and global image information is
done with a specific graph, different from Section 3. Semi-local information is important
to segment objects that have non-homogeneous intensity. However, semi-local information
can lead to bad results depending on the initial position of the contour. This is why the
combination of both semi-local and global image information is important because global
image information introduce global consistency and thus avoid bad local segmentation.
We notice that the term ”non-local” for the NL-CV model can be confusing. Indeed, the
original CV model uses global image information (intensity means inside and outside the
evolving active contour). The original CV model is thus already ”non-local”. We decide
to keep the word non-local for the new CV model because we use a graph representation
(which defines non-local information) to integrate semi-local an global information at the
same time.

The NL-CV energy is defined from the following CV energy (4) in Section 2.1:

ECV (u, µin, µout) =

∫

Ω

|∇u| +(16)

λ(µin − u0(x))2u +

λ(µout − u0(x))2(1 − u)dx, u : Ω → [0, 1].
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where µin, µout ∈ R. The second term (data-based term) in (16) is then extended to a
non-local/graph formulation as follows:

ENL
CV (u, µin, µout) =

∫

Ω

|∇u| +(17)

λ

∫

Ω×Ω

(µin(y) − u0(x))2u(x)w(x, y) +

(µout(y) − u0(x))2(1 − u(x))w(x, y)dydx, u : Ω → [0, 1]

where u0 : Ω → R is the given image, µin, µout : Ω → R are two functions and w : Ω×Ω →
R+ is the edge function of a graph specifically designed for the NL-CV model, presented
in the next section. Finally, we notice that (17) is convex w.r.t. function u, µin, µout

individually but not w.r.t. functions u, µin, µout simultaneously. The minimization of u is
thus global for fixed µin, µout. However, we will need to update µin, µout to minimize (17)
and determine the optimal segmentation result. Since (17) is not globally convex to all
variables at the same time, the minimization result is dependent of the initial condition
of u. Fortunately, experiments will show good robustness w.r.t. different initial conditions.

4.2. Properties of the Non-Local Chan-Vese Model.

In energy (17), functions µin, µout represent respectively the inside and outside non-
local means of Buades, Coll and Morel in [7]. It is easy to show it using the Euler-Lagrange
equations of (17) w.r.t. µin, µout:

µin(y) =

∫

Ω
u0(x)u(x)w(x, y)dx
∫

Ω
u(x)w(x, y)dx

µout(y) =

∫

Ω
u0(x)(1 − u(x))w(x, y)dx
∫

Ω
(1 − u(x))w(x, y)dx

.

If one consider function u as a characteristic function of a set Cin (representing the inside
contour), then functions µin, µout are specifically the inside and outside non-local means
of a contour represented by the discontinuities of the characteristic function u:

µin(y) =

∫

Cin
u0(x)w(x, y)dx

∫

Cin
w(x, y)dx

(18)

µout(y) =

∫

Cout
u0(x)w(x, y)dx

∫

Cout
w(x, y)dx

.

Energy (17) is minimized w.r.t. u using the same technique as in [6]. We re-write (17) as
follows:

ENL
CV (u) =

∫

Ω

|∇u| + λV (x)u(x) + C,(19)

where V (x) =

∫

Ω

(

(µin(y) − u0(x))2 − (µout(y) − u0(x))2
)

w(x, y)dy.

where C is a constant independent of u, which is useless in the minimization process of
u. Then, we split the original energy into two simpler minimization tasks by introducing
a new function v : Ω → R as follows:

inf
v∈[0,1],u

ENL,2
CV (u, v) =

∫

Ω

|∇u| + λV v +
1

2θ
(u − v)2, u : Ω → R, v : Ω → [0, 1].(20)

The energy (20) is convex w.r.t u, v then the minimization is done alternatively w.r.t.
u, v. The minimization w.r.t. u is given by the minimizer of the ROF model and the
minimization w.r.t. v is given by v = min(max(u − λθV, 1), 0).
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4.3. Weight Function for Non-Local Chan-Vese Model.

The NL-CV model use different weights than the NL segmentation model introduced
in Section 3. In the case of Section 3, the weights were computed like in [20] as w(x, y) =

e−‖px−py‖2
2/h, where px, py are patches of image intensity centered at x, y and h is a

positive parameter which acts as a scale parameter. The weight function of Section 3 is
thus computed from the L2 distance between two image patches. We do not use these
weights (more specific to image regularization) in the NL-CV model.

The weights of the NL-CV model are defined as follows. We want to overcome the
problem of images with local intensity inhomogeneities. We thus need semi-local infor-
mation to accurately segment boundaries of non-homogeneous objects. And we also need
global image information to avoid a bad local minimum due to bad semi-local information.
A combination of both semi-local and global information leads to a graph defined e.g. by
these weights:

wNL-CV(x, y) =
1

Z

(

αSLe−‖x−y‖2/2h2
SL + αGe−‖x−y‖2/2h2

G

)

,(21)

where SL, G stand for semi-local and global, constants hSL ≪ hG because the first term
of wNL-CV is designed to capture local boundaries of non-homogeneous objects and the
second term captures global image information. Constants αSL, αG s.t. αSL + αG = 1
weight the contribution of semi-local information and global information. Constant Z
is the normalization factor. If we consider only the second part of (21), i.e. wNL-CV =

e−‖x−y‖2/2h2
G/

√

2h2
G and makes hG large (the weight function tends to a constant function

on the whole image domain) then the NL-CV model (17) converges to the original CV
model (16). Indeed, for hG → ∞ then µin(y) =

∫

Cin
u0(x)w(x, y)dx/

∫

Cin
w(x, y)dx →

∫

Cin
u0(x)dx/

∫

Cin
dx which is the mean value in Cin like in the CV model. We also have

∫

Ω

∫

Ω
(µin(y) − u0(x))2u(x)w(x, y)dydx → |Ω|

∫

Ω
(µin − u0(x))2u(x)dx, which is (up to a

constant) the second term in the CV model (16). If we now consider only the first part of

weights (21), i.e. wNL-CV(x, y) = e−‖x−y‖2/2h2
SL/

√

2h2
NL, then we can interpret µin, µout

as the semi-local means evaluated inside and outside the contour implicitly defined by the
discontinuity set of u. A current point of the contour is then classified to one phase or the
other by comparing the distance between the semi-local mean inside and outside the con-
tour with the current intensity of the point. Thus, the weights (21) are used to compute a
local mean value weighted by semi-local and global image information. Experiments show
that semi-local means or global means (original CV model) alone are not enough to give
a consistent segmentation result for the textured pictures. Global means are not able to
deal with non-homogenous objects. Semi-local means can produce some inconsistencies in
the segmentation task, that can be removed using global image information at the same
time, see Figure 6.

[ Figure 6. ]

4.4. Results.

A direct implementation of the NL-CV model with weights (21) can be time consuming.
However, since the choice of the graph is arbitrary, we discretize the weights by considering
only a small number of pixels in the computation of the non-local means (18). More
precisely, we consider two sets of points. The first set of points is for points close to x
(semi-local part) and the second set is for points far from x (global part). This allows to
decrease the computational time since we consider only a small portion of pixels in the
whole support of the image.

Experimental results are presented on Figures 7 and 8. They show that the NL-CV
model is able to improve the original CV model because it can deal with the local intensity
inhomogeneities in images.
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[ Figure 7. ]

[ Figure 8. ]

4.5. Discussion and Related Works.

The NL-CV model overcomes the standard limitation of the CV model, which cannot
deal with local intensity inhomogeneities. The weights defined for the NL-CV model in
(21) are able to integrate semi-local and global information in the same framework. This
allows to segment non-homogenous objects without getting stuck in a bad local minimum.
The idea to improve the CV model was already proposed by Vese and Chan in [50], where
authors minimized the two-phase piecewise-smooth original Mumford-Shah energy. This
segmentation model is able to deal with non-homogeneous smooth objects. However, since
the model does not use any global information, it is sensitive to bad local minima. Be-
sides, the model is based on a level set formulation and thus it does not produce a global
minimum for fixed functions µin, µout unlike our model. Another related work is [35, 36].
Authors produce very good segmentation results for non-homogeneous objects. However,
their model did not introduce global image information like in our model. Besides the
segmentation model is based on a level set formulation like in [50]. The proposed model is
thus less robust to local minima than our model and the computational time to minimize
their energy w.r.t. the level set function is higher than the minimization of our energy
w.r.t. function u. Mory and Ardon in [38] also introduced a segmentation to deal with
local inhomogeneities. They defined their algorithm based on the global minimization ap-
proach [10, 6], which allow them to determine a global minimum for a fixed region term.
However, they did not use any global image information, which can be useful to avoid bad
local minimum as we previously explained.

Another NL-CV model can be this one:

ENL,2
CV (u, µin, µout) =

∫

Ω

|∇u| +

λ

∫

Ω×Ω

|µin(y) − u0(x)|u(x)w(x, y) +

|µout(y) − u0(x)|(1 − u(x))w(x, y)dydx, u : Ω → [0, 1]

where µin, µout are in this case the weighted medians inside and outside the active con-
tour. Medians are related with contrast invariant filters, and are more robust to a change
of illumination. Finally, this model can also be combined with the segmentation model
introduced in Section 3 by changing the TV energy in (17) with the NL-TV energy.

5. Non-local Mumford-Shah Model

5.1. Motivations.

In Section 3, we extend the regularization term of energy (4) to the NL-TV. In Section
4, we extend the data-based term of energy (4) using the Chan-Vese Model. In this section,
we consider another data-term extension of (4) based on the well-known Mumford-Shah
(MS) energy [39]. The MS energy is defined as follows:

EMS(u, C) =

∫

Ω\C

|∇u|2 + λ

∫

Ω

(u − u0)
2 + β

∫

C

ds,(22)

where u0 : Ω → R is the original image, u : Ω → R is the regularized image, C : γ → R
2

is the contour between smooth intensity regions and
∫

C
ds is the length of C. The MS

energy (22) looks for the optimal pair (u, C) that represents the best piecewise smooth
approximation of the given image where C is the boundary between smooth regions lying
in the image. The existence of a minimizer for the MS energy is a difficult problem mainly
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because of the presence of the length term. Nevertheless, it has be shown that minimizing
solution lies in the space of functions with special bounded variation (SBV). See the book
[1] for more details. The MS energy (22) is an optimal segmentation and denoising models
for piecewise smooth images. However, this model fails to segment and denoise textured
images, which limits the model to work optimally with real-world images. The main
objective of this section is to extend the original MS model to define a piecewise regular
approximation of the given image. Regular approximation means constant, smooth or/and
textured approximation. The new MS energy (22) will use the non-local Dirichlet/H1

energy instead of the standard H1 energy
∫

|∇u|2:

ENL
MS(u, C) =

∫

Ω\C

|∇NLu|2 + λ

∫

Ω

(u − u0)
2 + β

∫

C

ds,(23)

where the NL-H1 is defined with (8) as:
∫

|∇NLu|2 =

∫∫

(u(y) − u(x))2w(x, y)dydx,

where w are the weights defined as in [20] and Section 3, which correspond to the L2

distance between patches of image intensity. The next section is focused on the imple-
mentation of the NL-MS energy (23).

5.2. Numerical Schemes for the Non-Local Mumford-Shah Model.

5.2.1. Numerical Scheme based on Energy (4).

A direct computation of the Euler-Lagrange equations of (22) is not possible because
the energy is not differentiable. There are two approaches to design a numerical scheme
for the MS implementation: Γ-convergence approach and level set method. In this section,
we investigate the approach based on the level set method as developed by Vese and Chan
in [50]. In this approach, the contour C is embedded in a level set function. Then, using
a regularized formulation of the length of C, authors in [50] differentiate the MS energy
and get the Euler-Lagrange equations.

The MS energy (22) is defined in the context of energy (4)) as follows:

EV C
MS(u, rin, rout) =

∫

Ω

|∇u| +(24)

γ
(

|∇rin|2 + λ(rin − u0)
2)u +

γ
(

|∇rout|2 + λ(rout − u0)
2)(1 − u)dx, u : Ω → [0, 1].

where u0 : Ω → R is the given image, rin, rout : Ω → R are two functions. Then, the
second term (data-based term) in (16) is then extended to a non-local/graph formulation
as follows:

EV C,NL
MS (u, rin, rout) =

∫

Ω

|∇u| +(25)

γ
(

|∇NLrin|2 + λ(rin − u0)
2)u +

γ
(

|∇NLrout|2 + λ(rout − u0)
2)(1 − u)dx, u : Ω → [0, 1].

Minimizing (25) w.r.t. functions rin:

inf
rin

∫

Ω

(

|∇NLrin|2 + λ(rin − u0)
2)udx,

∫

Ω×Ω

w(x, y)(rin(y) − rin(x))2u(x)dydx +

∫

Ω

λ(rin(x) − u0(x))2u(x)dx

provides the following Euler-Lagrange equations:
∫

Ω

w(x, y)(rin(x) − rin(y))(u(x) + u(y))dy + λ(rin(x) − u0(x))u(x) = 0
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which can be solved using a fixed point method:

rin(x) =
λu(x)u0(x) +

∫

Ω
w(x, y)rin(y)(u(x) + u(y))dy

λu(x) +
∫

Ω
w(x, y)(u(x) + u(y))dy

.

Equivalently, the minimizing solution w.r.t. function rout is:

rout(x) =
λ(1 − u(x))u0(x) +

∫

Ω
w(x, y)rout(y)(2 − u(x) − u(y))dy

λ(1 − u(x)) +
∫

Ω
w(x, y)(2 − u(x) − u(y))dy

.

As in Section 4.2, energy (25) is minimized w.r.t. u using the same technique as in [6].
We re-write (25) as follows:

EV C,NL
MS (u) =

∫

Ω

|∇u| + γV (x)u(x) + C,

where V (x) =
(

|∇NLrin|2 + λ(rin − u0)
2) −

(

|∇NLrout|2 + λ(rout − u0)
2),

where C is a constant independent of u, useless in the minimization process w.r.t. u.
Then, we split the original energy into two simpler minimization tasks by introducing a
new function v : Ω → R as follows:

inf
v∈[0,1],u

ENL,2
MS (u, v) =

∫

Ω

|∇u| + γV v +
1

2θ
(u − v)2, u : Ω → R, v : Ω → [0, 1].(26)

(26) is convex w.r.t u, v then the minimization is done alternatively w.r.t. u, v. The mini-
mization w.r.t. u is given by the minimizer of the ROF model and the minimization w.r.t.
v is given by v = min(max(u − γθV, 1), 0).

Figure 9 presents the segmentation of a textured square, which cannot be segmented
with the original Mumford-Shah model [39].

[ Figure 9. ]

5.2.2. Numerical Scheme based on Elliptic Approximation of Length.

In the previous section, we develop a numerical scheme for the NL-MS model based
on [50] and energy (4). As we previously said, there is another approach, based on the
Γ-convergence tool, to deal with the implementation of the MS energy. This approach con-
sists in approximating the MS energy by a sequence Eε

MS of regular functionals defined on
Sobolev spaces and prove the convergence of Eε

MS to EMS as ε → 0 in the Γ-convergence
framework. Several approximations of the MS energy has thus been introduced in the
literature. Our numerical scheme will be based on the elliptic approximation of the MS
energy as introduced in [2]. We will see that not only the NL-MS is able to segment
textured images unlike the original model, the NL-MS also also provides better denoising
results than the state-of-the-art. This is not surprising because a piecewise regular ap-
proximation of the MS energy is a more realistic model. The elliptic approximation of the
NL-MS energy is defined as follows:

ENL
MS,ε(u, v) =

∫

Ω

v2|∇NLu|2 +
λ

2

∫

Ω

(u − u0)
2 +

β

2

(

ε|∇v|2 +
(v − 1)2

4ε

)

,(27)

where u, v, u0 : Ω → R, w(x, y) : Ω × Ω → R+ and λ, β, ε > 0. The last term of (27)
approximates the length of the discontinuities between piecewise regular regions. Euler-
Lagrange equations of (27) lead to the minimizing flow for u:

ut = −
(

2 divNL(v2∇NLu) + λ(u − u0)
)

,(28)

= −
(

2

∫

Ω

(v2(x) + v2(y))w(x, y)(u(y) − u(x))dy + λ(u(x) − u0(x))
)

,
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and v:

vt = −
(

2v|∇NLu|2 + β
(

ε|∇v|2 +
(v − 1)2

4ε

))

,(29)

= −
(

2v(x)

∫

Ω

(u(y) − u(x))2w(x, y)dy + β
(

ε∆v(x) +
v(x) − 1

2ε

))

.

We observe that minimizing flows (28) and (29) are NL extensions of standard MS min-
imizing flows. The first term of (28) is like a non-local Perona-Malik term [44] which is
useful to stop the diffusion flow along edges between regular (textured) regions.

Figures 10 and 11 present our experiments. We observe that the NL-MS model is not
only able to segment textures but it simultaneously denoises images better than the stan-
dard model NL-H1 [20].

[ Figure 10. ]

[ Figure 11. ]

6. Conclusion

In this paper, we have proposed three unsupervised image segmentation models based
on non-local image information. These three non-local segmentation models are based on
the continuous global minimization approach for image segmentation recently introduced
in [10, 6]. Results show the improvements of standard segmentation algorithms in a ”non-
local” framework.

We remind in Section 2 the advantages of the continuous global minimization scheme
for image segmentation introduced in [10, 6]. Any active contour model, that are usually
solved by the level set method, can be solved in a efficient way with this new segmen-
tation approach. Besides, the minimization is global, i.e. no good initial condition are
needed to get a global solution and it can be efficiently implemented using fast continuous
minimization schemes. Section 3 has extended the Total Variation regularization term
of [10, 6] to the non-local Total Variation energy. We have seen that the regularization
process defined on a graph of image patches can segment fine and small structures better
than the standard Total Variation energy. We have presented a continuous minimization
algorithm and a fast graph cut minimization algorithm. Section 4 has extended the data-
based term of [10, 6] to a non-local term using the CV model. The proposed NL-CV model
has overcome the main limitation of the original CV model, that does not work with local
intensity inhomogeneities. Finally, Section 5 has extended the data-based term of [10, 6]
to a non-local term using the Mumford-Shah model. The original Mumford-Shah energy
is designed to work for piecewise smooth images only. Our proposed NL-MS is defined
for piecewise smooth or/and textured images. Two continuous numerical algorithms are
introduced. The first algorithm is based on a level set formulation of the original MS
energy. The second model is based on an elliptic approximation of the original energy.
The NL-MS model not only segments textured images but also produces better denoising
results than state-of-the-art.

We notice that the NL-TV regularization term used in Section 3 can also be used in
Sections 4 and 5 to improve the segmentation results. Future works will investigate the
improvements of the weight function (21) used in the NL-CV model. These weights do not
use any prior image information such as patches of image intensity. The computational
speed of the NL-CV and the NL-MS can also be improved.

7. Annex

7.1. Proof of Theorem 2.1.
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Theorem 2.1.1: Suppose that gb : Ω → R+, for any given gin
r , gout

r : Ω → R and
λ ∈ R+, if u⋆ is any minimizer of EGMAC , then for almost every ν ∈ R we have that the
characteristic/indicator function of sets ΩC(ν) := {x ∈ Ω : u(x) > ν} (where C is the
boundary of the set ΩC) is a global minimizer of EGMAC and EAC defined in (4) and (1).
Proof. The proof is based on [10, 6]. First, it consists in using the co-area formula to
decompose the weighted TV norm (using gr := gin

r − gout
r ):

inf
u

EGMAC(u) =

∫

Ω

gb|∇u| + λgrudx

=

∫

ν

(

∫

Ω

gb|χΩC(ν)| + λgrχΩC(ν)dx
)

dν

=

∫

ν

(

Pergb
(ΩC(ν)) + λAreagr (ΩC(ν))

)

dν.

Thus, the minimization consists in solving the geometric problem:

min
Ω

Pergb
(Ω) + λAreagr (Ω)(30)

for a.e. ν and Pergb
and Areagr are the weighted length and area of Ω. Theory of functions

with bounded variation always states the existence of a minimizer Ω̂, which implies:

Pergb
(Ωu⋆(ν)) + λAreagr (Ωu⋆(ν)) ≥ Pergb

(Ω̂) + λAreagr (Ω̂), ∀ν,(31)

where Ωu⋆(ν) := {x ∈ Ω : u⋆(x) > ν}. If we integrate w.r.t. ν then EGMAC(u⋆) ≥
EGMAC(χΩ̂). Thus, if Ω̂ is a minimizer of (30), then the characteristic function χΩ̂ is a
minimizer of EGMAC . However, we also have EGMAC(u⋆) ≤ EGMAC(χΩ̂) since u⋆ is also
a minimizer of EGMAC . Thus, EGMAC(u⋆) = EGMAC(χΩ̂) and the inequality in (31) is

actually an equality which implies Ω̂ = Ωu⋆(ν) for a.e. ν. Hence, Ωu⋆(ν) is a minimizer
of (30) for a.e. ν and the characteristic function χΩC(ν) is also a minimizer of EGMAC .
Finally, characteristic functions of sets ΩC(ν) globally minimized the AC energy (1) since
EGMAC(u = χΩC

) = EAC(C). 2

7.2. Proof of Proposition 3.4.1.

Proposition 3.4.1: Let us assume that the set of patches in an image belongs to a compact
differentiable submanifold M ⊂ R

n, where the dimension of M is much smaller that the
ambient space d < n. If u ∈ L1(M), then, the NL-TV norm converges to the TV norm
on M:

∫

Ω

1

ǫ
d+2
4

|∇NLǫu| →
ǫ→0

∫

M

|∇Mu|.

Proof. As we said, we made the assumption that the set of all patches {px|x ∈ Ω} are
samples from a d-dimensional submanifold M ⊂ R

n. We use the work of Coifman and
Lafon [13, 33, 3, 27] to show that the graph-based TV norm/NL-TV norm converges to the
TV norm on manifold. In [13, 33], authors prove that the graph Laplacian converges to
the Laplace-Beltrami operator on the manifold M. The square norm of the graph-based
gradient of function u at the point x ∈ Ω is by definition (8):

|∇NLǫu|2(x) =

∫

Ω

wǫ(x, y)(u(y) − u(x))2dy

The weight function wǫ(x, y) is defined by:

wǫ(x, y) = exp
(

− ‖px − py‖2
2

ǫ

)

= wǫ(px, py),(32)

where px, py are patches of intensity centered at x, y. (32) means that the weight function
wǫ for (x, y) has the same value for patches (px, py) (See Figure 1). Besides, function u at
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x has the same value for patch px. Thus, we can write:

|∇NLǫu|2(x) =

∫

Ω

wǫ(x, y)(u(y) − u(x))2dy

=

∫

M

wǫ(px, py)(u(py) − u(px))2dpy = |∇NLǫu|2(px),(33)

since it is assumed that the set of all patches {px|x ∈ Ω} are samples from M. We consider
the new notation x̂ = px, ŷ = py such that:

|∇NLǫu|2(x̂) =

∫

M

wǫ(x̂, ŷ)(u(ŷ) − u(x̂))2dŷ

with wǫ(x̂, ŷ) = h( ‖x̂−ŷ‖2

ǫ
) exponentially decays. For ŷ ∈ M, we consider the orthogonal

projection v of ŷ on Tx̂, the tangent plane to M at x̂. We can show that:

|∇ǫu|2(x̂) = ǫd/2(ǫm0|∇Mu|2(x̂) + O(ǫ3/2)
)

.(34)

The Taylor expansion of u around x̂ is given by:

u(ŷ) = u(x̂) +

d
∑

i=1

si
∂u

∂si
(x̂) + Higher order terms.

where si are the coordinate system along orthogonal geodesics on M. [13, 33] show that

if ŷ ∈ M is in an Euclidean ball of radius C
√

ǫ, then si = vi + O(ǫ3/2), which implies:

u(ŷ) = u(x̂) +
d

∑

i=1

vi
∂u

∂si
(x̂) + O(ǫ).(35)

[13, 33] also deduce that

‖ŷ(v)‖2 = ‖v‖2 + (
d

∑

i=1

aiv
2
i )2 + O(ǫ5/2)(36)

dŷ = (1 + 2
d

∑

i=1

a2
i v

2
i )dv + O(ǫ3/2)(37)

where ai is the curvature of the geodesic. Collecting (35), (36) and (37), we have

|∇NLǫu|2(x̂) =

∫

M

[

h(
‖v‖2

ǫ
) +

1

ǫ
(

d
∑

i=1

aiv
2
i )2h′(

‖v‖2

ǫ
)
]

×
[

u(x̂) +
d

∑

i=1

vi
∂u

∂si
(x̂) + O(ǫ) − u(x̂)

]2

×
[

1 + 2

d
∑

i=1

a2
i v

2
i

]

du + O(ǫ3/2)

=

d
∑

i=1

(
∂u

∂si
)2(x̂)

∫

M

v2
i h(

‖v‖2

ǫ
)dv + Higher order terms

= |∇Mu|2(x̂)

∫

Rd

v2h(
‖v‖2

ǫ
)dv + O(ǫ(d+3)/2),

since h quickly decays. This concludes the proof of (34) considering
∫

Rd v2h( ‖v‖2

ǫ
)dv =

ǫ
d+2
2

∫

Rd v2h(‖v‖2)dv = ǫ
d+2
2 m0. Thus, we define the graph-based norm of the gradient

operator as follows:

|∇Mǫu|(x̂) :=
1

ǫ
d+2
4

|∇NLǫu|(x̂)

which gives the norm of the gradient operator on the manifold M at the limit:

|∇Mǫu|(x̂) →
ǫ→0

|∇Mu|(x̂).
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Finally, we have
∫

Ω

1

ǫ
d+2
4

|∇NLǫu|(x)dx →
ǫ→0

∫

M

|∇Mu|(x̂)dx̂. 2
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24 Figures

Figure 1. Illustration of the new image space representation M ⊂ R
N

defined from image u in the spatial image domain Ω. Two points x, y
far away on Ω can be close on the space of image patches M if the
intensity patches px, py = x̂, ŷ are similar. The set of all image patches
are samples of M.
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(a) Synthetic Image. (b) Synthetic Image corrupted by
Gaussian Noise.

(c) Standard TV + CV’s Data Term.
Final Contour.

(d) Standard TV + CV’s Data
Term. Final function u.

(e) NL-TV + CV’s Data Term. Final
Contour.

(f) NL-TV + CV’s Data Term. Fi-
nal function u.

Figure 2. Non-local Segmentation model (7) with NL-TV + Chan-
Vese’s data term. We observe that the NL segmentation model can
segment fine structures (Figures (e-f)) unlike the standard model (Fig-
ures (c-d)). The minimization process is done by a continuous projection
algorithm, see Section 3.5.1. The image size is 128 × 128. The iterative
minimization process for continuous NL-TV+CV takes 120 iterations
and the computational time is 3.7 sec.
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(a) IRM Brain Image.

(b) Standard TV + CV’s Data Term.
Final Contour.

(c) NL-TV + CV’s Data Term. Fi-
nal Contour.

(d) Standard TV + CV’s Data Term
(Zoom In). Final Contour.

(e) NL-TV + CV’s Data Term.
(Zoom In). Final Contour.

Figure 3. Non-local Segmentation model (7) with NL-TV + Chan-
Vese’s data term. We observe that the NL segmentation model can
segment fine structures (Figures (c) and (e)) unlike the standard model
(Figures (b) and (d)). The minimization process is done by a continuous
projection algorithm, see Section 3.5.1. The image size is 210 × 210.
The iterative minimization process for continuous NL-TV+CV takes 30
iterations and the computational time is 1.8 sec.
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(a) Synthetic Image. (b) Synthetic Image corrupted by Gauss-
ian Noise.

(c) Standard TV + CV’s Data Term. Fi-
nal Contour.

(d) Standard TV + CV’s Data Term. Fi-
nal function u.

(e) NL-TV + CV’s Data Term. Final
Contour.

(f) NL-TV + CV’s Data Term. Final
function u.

Figure 4. Non-local Segmentation model (15) with NL-TV + Chan-
Vese’s data term. Unlike Figure 2, the minimization process is done with
a discrete/graph cut algorithm, see Section 3.5.2. The image size is 128×
128. The iterative minimization process for discrete NL-TV+CV takes
10 iterations (update of inside and outside intensity means + energy
minimization by graph cut) and the computational time is 0.5 sec. It
is faster than the continuous approach but the result does not have a
sub-pixel accuracy.
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(a) IRM Brain Image.

(b) Standard TV + CV’s Data Term. Fi-
nal Contour.

(c) NL-TV + CV’s Data Term. Final
Contour.

(d) Standard TV + CV’s Data Term
(Zoom In). Final Contour.

(e) NL-TV + CV’s Data Term. (Zoom
In). Final Contour.

Figure 5. Non-local Segmentation model (15) with NL-TV + Chan-
Vese’s data term. Unlike Figure 3, the minimization process is done with
a discrete/graph cut algorithm, see Section 3.5.2. The image size is 210×
210. The iterative minimization process for discrete NL-TV+CV takes
12 iterations (update of inside and outside intensity means + energy
minimization by graph cut) and the computational time is 0.96 sec. It
is faster than the continuous approach but the result does not have a
sub-pixel accuracy.
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(a) Synthetic Image. Initial Contour.

(b) NL-CV without Global Informa-
tion. Final Contour.

(c) NL-CV without Global Informa-
tion. Final function u.

(d) NL-CV with Global Information.
Final Contour.

(e) NL-CV with Global Information.
Final function u.

Figure 6. Non-local Chan-Vese model (17). The NL-CV using local
information only can produce some inconsistent segmentation results
(Figures (b-c)). These inconsistencies can be removed using global image
information at the same time (Figures (d-e)), avoiding bad local mini-
mum.
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(a) Synthetic Image.

(b) Standard CV Model. Final Con-
tour.

(c) Standard CV Model. Final func-
tion u.

(d) Non-local CV Model. Final Con-
tour.

(e) Non-local CV Model. Final func-
tion u.

Figure 7. Non-local Chan-Vese model (17). The NL-CV can segment
objects with non-homogeneous intensities (Figures (d-e)), unlike the
original CV model (Figures (b-c)). The image size is 183 × 183. The
iterative minimization process for the NL-CV takes 280 iterations and
the computational time is 71 sec.
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(a) Picture of Eye Blood Ves-
sels.

(b) Standard CV Model. Fi-
nal Contour.

(c) Standard CV Model. Fi-
nal function u.

(d) Non-local CV Model. Fi-
nal Contour.

(e) Non-local CV Model. Fi-
nal function u.

Figure 8. Non-local Chan-Vese model (17). Unlike the original CV
model (Figures (b-c)), the NL-CV can segment the eye blood vessels
that have intensity inhomogeneities (Figures (d-e)). The image size is
106× 145. The iterative minimization process for the NL-CV takes 130
iterations and the computational time is 28 sec.
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(a) Original image. (b) Noisy image u0.

(c) Initial Contour. (d) Initial Function u.

(e) Final Contour. (f) Final Function u.

Figure 9. Non-local Mumford-Shah model (25). The NL-MS model
can segment textures. The original MS model [39] is not able to seg-
ment the textured square because the mean value inside and outside the
boundary are the same. The image size is 64 × 64. The iterative mini-
mization process for NL-MS takes 90 iterations and the computational
time is 0.2 sec.
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(a) Original image. (b) Noisy image u0.

(c) NL-MS: Regular approximation u

of u0. SNR=24.79.
(d) NL-MS: Edge function v.

(e) NL-H1. SNR=23.13.

Figure 10. Non-local Mumford-Shah model (27). The NL-MS model
can segment textures unlike the original model [39]. Boundary between
textures are represented by function v with low values (dark part in
Figure (d)). Besides, the NL-MS model can denoise images (Figure (c))
better than the standard model NL-H1 [20] (Figure (e)). The image
size is 64 × 64. The iterative minimization process for NL-MS takes
1500 iterations and the computational time is 5.8 sec.
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(a) Original Image. (b) Noisy image u0.

(c) NL-MS: Regular approximation u of u0.
SNR=17.67.

(d) NL-MS: Edge function v.

(e) NL-H1. SNR=17.29.

Figure 11. Non-local Mumford-Shah model (27). Boundary between
textures are represented by function v with low values (dark part in
Figure (d)). The NL-MS better denoise images (Figure (c)) than the
standard model NL-H1 [20] (Figure (e)). The image size is 266 × 247.
The iterative minimization process for NL-MS takes 2650 iterations and
the computational time is 245 sec.


