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Abstract

In this work, we wish to denoise HARDI (High Angular Resolution Diffusion Imaging) data
arising in medical brain imaging. Diffusion imaging is a relatively new and powerful method to
measure the three-dimensional profile of water diffusion at each point in the brain. These images
can be used to reconstruct fiber directions and pathways in the living brain, providing detailed
maps of fiber integrity and connectivity. HARDI data is a powerful new extension of diffusion
imaging, which goes beyond the diffusion tensor imaging (DTI) model: mathematically, intensity
data is given at every voxel and at any direction on the sphere. Unfortunately, HARDI data is
usually highly contaminated with noise, depending on the b-value which is a tuning parameter
pre-selected to collect the data. Larger b-values help to collect more accurate information in
terms of measuring diffusivity, but more noise is generated by many factors as well. So large
b-values are preferred, if we can satisfactorily reduce the noise without losing the data structure.
Here we propose two variational methods to denoise HARDI data. The first one directly denoises
the collected data S, while the second one denoises the so-called sADC (spherical Apparent
Diffusion Coefficient), a field of radial functions derived from the data. These two quantities are
related by an equation of the form S = S0 exp (−b · sADC) (in the noise-free case). By applying
these two different models, we will be able to determine which quantity will most accurately
preserve data structure after denoising. The theoretical analysis of the proposed models is
presented, together with experimental results and comparisons for denoising synthetic and real
HARDI data.

1 Introduction to the HARDI data

Currently, HARDI data is used to map cerebral connectivity through fiber tractography in the
brain. HARDI is a type of diffusion MRI, which was introduced in the mid-1980s by Le Bihan et
al. [27, 28, 29] and Merboldt et al. [35]. It is based on the idea that the magnetic resonance signal,
which forms the basis of MRI, is attenuated when water diffuses out of a voxel, and the degree of
attenuation can be used to measure the rate of water diffusion in any arbitrary three-dimensional
direction, via the Stejskal-Tanner equation [42]. Water diffusion occurs preferentially in directions
that are aligned with axonal fiber pathways, and is hindered in orthogonal directions by the myelin
sheaths that coat the axons. Because of this diffusion anisotropy, initial approaches to assess fiber
directions modeled the three-dimensional diffusion profile at each point as a single tensor (Beaulieu
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et al. [6]), in which the principal eigenvector of the diffusion tensor can be used to recover the
dominant fiber pathway at that voxel. The diffusion tensor model (Basser et al. [5]) describes the
anisotropic nature of water diffusion in tissues (inside a typical 1-3mm sized voxel) by estimating,
from a set of K diffusion-sensitized images, the 3x3 covariance matrix of a Gaussian distribution
(Beaulieu et al. [6]). Each voxel’s signal intensity in the k-th image is decreased, by water diffusion,
according to the Stejskal-Tanner equation [42]:

Sk = S0 exp [−bgTkDgk],

where S0 is the non-diffusion weighted signal intensity, D is the 3x3 diffusion tensor, gk is the
direction of the diffusion gradient and b is Le Bihan’s factor with information on the pulse sequence,
gradient strength, and physical constants.

Unfortunately, although it is widely used, the diffusion tensor model breaks down for voxels in
which fiber pathways cross or mix together, and these are ubiquitous in the brain which is highly
interconnected. More advanced image acquisition techniques, such as HARDI (Tuch et al. [47, 48])
or diffusion spectrum imaging (also called q-ball imaging; Tuch et al. [49]), have been introduced
in the past 5 years - this type of data recovers the local microstructure of water diffusion more
accurately than standard DTI data (diffusion tensor imaging). HARDI, DTI and other similar
modalities permit non-invasive quantification of the water diffusion in living tissues. The tissue
structure will affect the Brownian motion of the water molecules which will lead to an anisotropic
diffusion. By imaging diffusion in an arbitrary number of directions (often 100 or more), HARDI
overcomes the limited accuracy of the tensor model in resolving the highly complex fiber structure
of the brain, particularly in regions with fiber crossings.

HARDI data makes it possible to compute the orientation diffusion function over a sphere of
possible directions. Tuch [46, 48] developed the first HARDI acquisition and processing methods,
and later Frank [19] used spherical harmonic expansions for processing HARDI data sets. A very
active area of research has grown up in processing the HARDI signals, leading to methods for
HARDI denoising, segmentation, and registration using metrics on spherical functions (Lenglet et
al. [30]). Most of these signal processing methods still model the diffusion signal as a tensor, rather
than exploiting the full information in the spherical harmonic expansion. For example, Khurd et
al. [25] used isometric mapping and manifold learning (eigendecomposition of the distance matrix)
to directly fit a manifold to the tensors, compute its dimensionality, and distinguish groups using
Hotelling’s T 2 statistics. Initial image processing on the full HARDI signal has focused on fitting a
discrete mixture of k distinct tensors to the signal, and later on fitting a continuous mixture model
for modeling the MR signal decay and multi-fiber reconstruction (Jian et al. [21], [22]), or fitting
a continuous mixture of tensors using a unit-mass distribution on the symmetric positive definite
tensor manifold (Leow et al. [31]).

Initial work on the nonlinear (fluid) matching of HARDI images has taken a more non-parametric
approach, and has used the Kullback-Leibler divergence to measure the discrepancy between ODF
(Orientation Distribution Function) fields (Chiang et al. [11, 12]), using a 3D fluid transform
to minimize the discrepancy between two fields of ODFs. As information theory can be used to
measure the overlap between diffusion probability density functions, there is much promising work
using metrics derived from information theory (e.g., the Fisher-Rao metric, von Mises-Fisher dis-
tribution, etc.; McGraw et al. [34]; Srivastava et al. [41]; Chiang et al. [12]). Other work has
modeled the HARDI signal as high-order tensors (Barmpoutis et al. [4]) or as a stratification (a
mixture of manifolds with different dimensions; Haro et al. [20]).
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The HARDI data is the MRI signal attenuation information after time t > 0 modeled by

St(x, θ, φ) = S0(x) exp(−b · dt(x, θ, φ)),

where Ω is a bounded open subset of R3, x ∈ Ω and θ ∈ [0, 2π), φ ∈ [0, π). S0 is the MRI signal
that is obtained when no diffusion gradient vector is applied and this is considered to be a reference
image, relative to which the diffusion-attenuated signal is measured. The function dt(x, θ, φ) is
called the spherical Apparent Diffusion Coefficient (sADC), which measures how much the water
molecules diffuse in the given direction

(cos(θ) sin(φ), sin(θ) sin(φ), cos(φ)),

and b is a parameter pre-selected to collect the data.
We note that, in our work, the sADC is a function that takes values on the unit sphere, whereas

in diffusion imaging ADC is sometimes used to refer to a scalar field derived from the diffusion
images.

In reality, in experimental data, a higher b-value (e.g., 3000 s/mm2) tends to lead to a smaller
SNR (Signal-to-Noise-Ratio) in the obtained images, thus more noise, [13]. Hence, we are led to
consider the following simplified degradation model

St(x, θ, φ) = S0(x) exp(−b · dt(x, θ, φ)) + noise(x , θ, φ). (1)

We may say that the baseline signal collected without any diffusion gradient applied, which
is S0, may also be contaminated by noise, but here we assume that this can be neglected, or we
just consider the last noise term in (1) to encompass all types of noise, which we do not know
exactly. This is a reasonable approximation, because in practice, it is common to collect several
non-diffusion weighted images (several S0 images) whose average may be used as a reference signal
S0 (see, e.g. Zhan et al. [51]). If we let S̃t(x, θ, φ) be a denoised dataset, then we expect that for
all x, φ, θ,

0 ≤ S̃t(x, θ, φ) ≤ S0(x). (2)

As already mentioned, the data has to be first denoised before extracting the fibers, or before
registration. Although HARDI is a relatively recent type of data acquisition, several HARDI
processing methods have already been processed: we mention just a few. In McGraw et al. [33]
and Jonasson et al. [23], curve evolution techniques are applied for the segmentation of HARDI
data. Descoteaux, Deriche and collaborators, among others, have also proposed methods to segment
HARDI data [15], for estimation of the sADC [16], and for mapping of neuronal fiber crossings [17].
The work Delputte et al. [14] deals with denoising and regularization of fields of ODFs.

The prior work most relevant to ours is by McGraw et al. [32]: the noisy data S = St(x, θ, φ)
is regularized to remove noise in a functional minimization approach; a standard L2 data fidelity
term is used, combined with a weighted version of vectorial total variation regularization in space,
and H1 regularization of data at every voxel with respect to direction. At every voxel, the data
is mapped into 2-dimensional space plane using spherical coordinates and then discretized using
finite elements. Denoising results for synthetic and real HARDI data are presented in [32]. In our
proposed work, we also use vectorial total variation for the regularization. However, in our first
model we also impose the constraint (2). Our second proposed model differs even more from the
one in [32], since we faithfully follow the signal degradation model (1) and we denoise d instead of
S.
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The outline of the paper is as follows. In Section 2 we recall the logarithmic barrier func-
tion for general optimization problems with inequality constraints. In Section 3 we introduce two
variational models for HARDI denoising, together with theoretical results, the associated Euler-
Lagrange equations, and the numerical approximations. Finally, in Section 4 we present several
numerical results of denoising synthetic and real HARDI data obtained using the proposed models,
error assessment and comparisons.

We would like to mention that a preliminary version of this work has been presented and
published in IPMI 2009 [26].

2 Logarithmic barrier functions

In this section, we will briefly recall the logarithmic barrier method for optimization problems with
inequality constraints, one of the barrier function methods used to force the unknown variables
of interest to remain feasible. Suppose that we have the following optimization problem: let
ϕ : Rn → R and c : Rn → Rm be smooth functions with c = (c1, . . . , cm),

min
x
ϕ(x), subject to ci(x) ≥ 0 for i = 1, . . . ,m. (3)

Let O be the feasible domain, i.e.,

O = {x ∈ Rn | ci(x) ≥ 0 for i = 1, . . . ,m}.

We also assume that the first and second-order sufficient conditions hold at a point x∗ so that
x∗ is a strict local solution of (3). Then the logarithmic barrier function for (3) is the unconstrained
optimization problem [37]

min
x
P (x;µ) = ϕ(x)− µ

m∑
i=1

log(ci(x)). (4)

This method appears in many works on optimization and applications. An initial guess x0 in
the interior of the feasible set, i.e. ci(x0) > 0, i = 1, ...,m, is chosen. Then an iterative method
is applied (such as gradient descent) for fixed, small µ0 > 0, to obtain x1 in the interior of the
feasible set, that minimizes P (x;µ0). Then µ1 is selected, such that 0 < µ1 < µ0, and x2 is the
minimizer of P (x;µ1) in the interior of the feasible set, etc. Thus the basic idea of the method is
the computation of the minimizers xk of P (·;µk) for a sequence of values µk ↓ 0, with the goal that
xk converges to x∗.

The authors of [18] and [37] present general results about the existence of minimizers of the
logarithmic barrier functions in the vicinity of x∗ and the convergence of the sequence of minimizers
to x∗ as µk ↓ 0.

3 Variational denoising models

We propose here two variational denoising methods: one recovers a denoised S, while the other
method recovers a denoised d. Again, we let Ω be a bounded open subset of R3. The HARDI
data is a collection of intensity values at uniformly pre-selected directions on the sphere, to which
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the electromagnetic field is applied, that is, at each position x ∈ Ω ⊂ R3, we measure values at
different directions. We note briefly that the actual set of directions is typically computed using
an electrostatic repulsion PDE to optimize the sampling of a spherical signal using a finite set of
observations (see Tuch et al. [49] for a discussion of spherical sampling schemes).

In the continuous setting, we obtain a function defined on a manifold Ω × S2, where Ω is the
spatial domain and the sphere S2 is the space of gradient directions. However, it is not easy to
work with the entire domain Ω×S2 for computational purposes. Instead, we will use a discretized
version S2

d of S2, where
S2
d = {si ∈ S2 | i = 1, . . . , n}

and the directions si ∈ S2 are uniformly chosen. Then the function that we obtain has the form

f = (f1, . . . , fn)

where each fi : Ω → R corresponds to the direction si. We will also use a function representation
f0 : Ω → R for the data S0 which has only spatial information (assumed to be given also). Note
that what is important in this model is to measure the correct diffusivity along each direction at
each position which is based on the difference between the noisy data S and the reference data
S0, thus our main concern is to deal with nonnegative differences. To impose the right amount of
smoothness and discontinuity on the denoised data, we will use the space BV (Ω; Rn), which is the
n-dimensional version of BV (Ω), defined as follows.

Definition 1. Let u = (u1, . . . , un) ∈ L1(Ω; Rn). We define

|Du|(Ω) = sup
{ n∑
i=1

∫
Ω
uidiv(ψi)

∣∣∣ ψ = (ψ1, . . . , ψn) and ψi ∈ C1
c (Ω; R3), ‖ψ‖∞ ≤ 1

}
.

The space of functions of bounded variation BV (Ω; Rn) is defined by

BV (Ω; Rn) =
{
u ∈ L1(Ω; Rn)

∣∣∣ |Du|(Ω) <∞
}
.

Note that Du is a n × 3 matrix of Radon measures with Ω ⊂ R3. If u is differentiable or if
u ∈W 1,1(Ω,Rn), then Du = ∇u = ( ∂ui

∂xk
)i=1,...,n,k=1,2,3 in the distributional sense, and

|Du|(Ω) =
∫

Ω

√√√√ n∑
i=1

|∇ui(x)|2dx.

The total variation has been successfully introduced and used in image restoration for gray-
scale images by Rudin, Osher, Fatemi [39]. The vectorial total variation for color images has been
analyzed in Blomgren-Chan [8] and the PhD thesis manuscripts of Blomgren [7] and Tschumperlé
[43], together with other regularizations for vector-valued data, such as regularizations based on
the structure tensor (see also work by Tschumperlé and Deriche [44], [45]).

5



3.1 The first model

In this model we will denoise the collected data St in (1). In what follows, we will drop the
subscript t and denote the data by S and f will be its corresponding function notation. The
functional that we want to minimize is the following: given f0 ≥ 0, f0 ∈ L1(Ω), and f ∈ L1(Ω; Rn),
for u = (u1, . . . , un),

inf
u
F (u) = |Du|(Ω) + λ

∫
Ω

n∑
i=1

|fi(x)− ui(x)|dx, (5)

subject to the constraints

0 ≤ ui(x) ≤ f0(x), x ∈ Ω, i = 1, . . . , n.

A more general regularization The regularization that we use in (5) is mathematically well
studied and has the property of allowing discontinuities along hypersurfaces. The vectorial total
variation regularization is a particular case of the following regularization for vector-valued data
which utilizes eigenvalues, inspired from [43]. For a given u = (u1, . . . , un), we define gu(x) to be
the matrix

gu(x) =
n∑
i=1

|∇ui(x)|2si · sTi =
n∑
i=1

|∇ui(x)|2
s1

i

s2
i

s3
i

 · (s1
i s2

i s3
i

)

=
n∑
i=1

|∇ui(x)|2
(s1

i )
2 s1

i s
2
i s1

i s
3
i

s1
i s

2
i (s2

i )
2 s2

i s
3
i

s1
i s

3
i s2

i s
3
i (s3

i )
2

 ,

where ui is the intensity value corresponding to the spherical vector si as before and

si =

s1
i

s2
i

s3
i

 ∈ S2
d .

The matrix gu(x) is different from the usual structure tensor
∑n

i=1∇ui(x)∇ui(x)T [43] (the struc-
ture tensor would not depend on the spherical directions si). Here, gu(x) was chosen so that it
would be a measure of intensity variation along the corresponding direction si, at each point x. As
the structure tensor, the matrix gu(x) is symmetric and positive semi-definite and we can define

µgu(x) = (µ1(x), µ2(x), µ3(x))

where µ1(x) ≥ µ2(x) ≥ µ3(x) ≥ 0 are the three eigenvalues of the matrix gu(x). Let Φ be a function
from {(a, b, c) ∈ (R+∪{0})3 : a ≥ b ≥ c} to (R+∪{0}) such that Φ is nondecreasing in each variable
and tends to infinity when the first variable tends to infinity. For instance, if Φ(a, b, c) = a, then
Φ(µgu(x)) = largest eigenvalue of the matrix gu(x). If Φ(a, b, c) = c, then Φ(µgu(x)) = smallest
eigenvalue of the matirx gu(x). If Φ(a, b, c) = a+ b+ c, then Φ(µgu(x)) = trace of the matrix gu(x).
Now we formulate the following general functional

inf
{
F (u) =

∫
Ω

Φ(µgu(x))dx+ λ

∫
Ω×S2

|f(x, τ)− u(x, τ)|dxdA(τ)

≈
∫

Ω
Φ(µgu(x))dx+ λ

∫
Ω

∑
si∈S2

d

|fi(x)− ui(x)|dx
}
,

6



where the function f and the set S2
d are given as before. The models proposed here use Φ(µ1, µ2, µ3) =√

µ1 + µ2 + µ3 in which case we have

Φ(µgu(x)) =
√
tr(gu(x)) =

√√√√ n∑
i=1

|∇ui(x)|2,

which realizes the total variation of the n-dimensional vector function u(x) = (u1(x), . . . , un(x))
(but independent of the spherical directions si). Note that, in two spatial dimensions, it would be
easy to consider other examples of integrands Φ as in [43] (such as Φ(µ) =

∑√
µi, with dependence

on the directions si), however this becomes very cumbersome in three dimensions in practice, when
the eigenvalues no longer have such simple explicit expressions.

The L1 fidelity term that we use in (5) is different from the more standard L2 term from [39],
that would correspond to additive Gaussian noise. Since the type of noise in MRI data is more
complex (usually Rician noise), we think that the L1 norm is more appropriate in this case instead
of the L2 norm, while easier to implement instead of directly imposing the Rician noise model.
For total variation based denoising models with L1 fidelity term, we refer to [1], [2], [3] in one
dimension, and more recently to [40], [36], [10], [9] in the case of planar images, among other work.

In what follows, we will consider an unconstrained version of the first model (5), using the
logarithmic barrier method to remove the constraints. The unconstrained version that we will
minimize is the following:

inf
u
F (u) = |Du|(Ω) + λ

∫
Ω

n∑
i=1

|fi(x)− ui(x)|dx− µ
∫

Ω

n∑
i=1

log(f0(x)− ui(x))dx. (6)

Note that the last soft constraint term does not incorporate the non-negativity constraint in
(5). We prove that if the function f already satisfies f = (f1, . . . , fn) ≥ 0 everywhere, then the
minimizer umin, if it exists, it also satisfies umin ≥ 0, due to a maximum principle for our associated
diffusion equation.

To simplify this model further, we will require a minor change in the last term of (6). Instead
of the integrand given in the last term of (6), we will use

n∑
i=1

H(fi(x), f0(x)) · log(f0(x)− ui(x)).

This function H depends only on the two data f and f0, so the computations will not become
more complicated. Our choice of the function H is

H(a, b) =

{
0 if a ≤ b,
1 if a > b.

(7)

If we use this weight H, then we only penalize the terms at those points x ∈ Ω with fi(x) −
f0(x) > 0 which violate the constraint (2). Therefore, the first minimization problem that we are
interested in is

inf
u
F (u) = |Du|(Ω) + λ

∫
Ω

n∑
i=1

|fi(x)− ui(x)|dx− µ
∫

Ω

n∑
i=1

H(fi(x), f0(x)) · log(f0(x)− ui(x))dx. (8)
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We can prove existence of minimizers for the constrained problem (5) and for the unconstrained
problem (8). In what follows, we will use for i = 1, . . . , n,

Ωi = {x ∈ Ω|H(fi(x), f0(x)) > 0},

and since we assume that f ∈ L1(Ω; Rn) and f0 ∈ L1(Ω), we know that Ωi and Ω\Ωi are measurable
sets.

Theorem 1. Assume that f = (f1, . . . , fn) ∈ L1(Ω; Rn) and f0 ∈ L1(Ω) with f > 0, f0 > 0,
−∞ <

∫
Ωi

log f0 < ∞ and λ, µ > 0. The constrained problem (5) and the unconstrained problem
(8) both have minimizers.

Proof. It is standard to prove the existence of a minimizer for (5) since the functional is bounded
from below by 0. Let {uk = (uk1, . . . , u

k
n)} be a minimizing sequence of (5). The boundedness of

the domain Ω and the constraints 0 ≤ uki ≤ f0 for i = 1, . . . , n and for k = 1, . . . guarantee that
uk ∈ L1(Ω; Rn) for all k. Since F (uk) ≤ M for all k = 1, 2, ..., for some positive constant M , we
deduce that for all k ≥ 1,

n∑
i=1

‖uki ‖L1(Ω) ≤
n∑
i=1

‖fi‖L1(Ω) +
n∑
i=1

‖fi − uki ‖L1(Ω) ≤M.

Hence, the sequence is bounded in BV (Ω; Rn), and we can have a subsequence (still denoted uk)
and u ∈ BV (Ω; Rn) such that uk → u strongly in L1(Ω; Rn) and Duk converges to Du weakly in
the sense of measures. Based on the lower-semicontinuity of the total variation, we deduce that
F (u) ≤ lim infk→∞ F (uk). Moreover, u must satisfy the constraints 0 ≤ ui ≤ f0 a.e. x ∈ Ω due
to the strong convergence of the subsequence uk to u in L1(Ω; Rn), thus u is a minimizer of the
constrained problem (5).

Almost the same steps can be applied to (8), except that we have to make sure that the
functional is bounded from below. We have

F (u) =|Du|(Ω) + λ
n∑
i=1

∫
Ω\Ωi

|fi(x)− ui(x)|dx+
n∑
i=1

∫
Ωi

[
λ|fi(x)− ui(x)| − µ log(f0(x)− ui(x))

]
dx.

≥|Du|(Ω) + λ
n∑
i=1

∫
Ω\Ωi

|fi(x)− ui(x)|dx+
n∑
i=1

∫
Ωi

[
λ(f0(x)− ui(x))− µ log(f0(x)− ui(x))

]
dx.

(9)

Note that for z > 0,
λ

µ
z − log(z) ≥ 1− log

(µ
λ

)
.

Hence, we can bound the last term of (9) from below:

n∑
i=1

∫
Ωi

λ(f0(x)−ui(x))−µ log(f0(x)−ui(x))dx ≥
n∑
i=1

µ|Ωi|
(

1− log
(µ
λ

))
≥ −nµ|Ω|

∣∣∣1− log
(µ
λ

)∣∣∣.
Therefore for any λ, µ > 0,

inf
u
F (u) > −∞
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and we can take a minimizing sequence {uk}. There exists 0 < M < ∞ such that F (uk) ≤ M for
all k. Then the above inequalities show that if we let

C =

{
M + nµ|Ω|

∣∣∣1− log
(
µ
λ

)∣∣∣ if 0 < λ/µ < e−1,

M if e−1 ≤ λ/µ,

then

sup
k

{
|Duk|(Ω) + λ

n∑
i=1

∫
Ω\Ωi

|fi(x)− uki (x)|dx
}
≤ C <∞.

It is enough to show that the sequence is bounded in L1(Ω; Rn). It is obvious that for each i,

sup
k

∫
Ω\Ωi

|uki (x)|dx <∞.

What remains to prove is that for each i,

sup
k

∫
Ωi

|uki (x)|dx <∞.

Let vki (x) = f0(x)− uki (x). Then vki > 0 on Ωi. Note that∫
Ωi

[
λvki (x)− µ log(vki (x))

]
dx ≤ C <∞.

Suppose that for some i,
sup
k
‖vki ‖L1(Ωi) =∞.

Since the function z 7→ λz − µ log(z) is convex for z > 0, Jensen’s inequality implies

∞ = lim sup
k→∞

{
λ
‖vki ‖L1(Ωi)

|Ωi|
− µ log

(‖vki ‖L1(Ωi)

|Ωi|

)}
≤ lim sup

k→∞

{ 1
|Ωi|

∫
Ωi

[
λvki (x)− µ log(vki (x))

]
dx
}
≤ C

|Ωi|
<∞.

This is a contradiction. Hence, {uk} is bounded in BV (Ω; Rn) and there exists u ∈ BV (Ω; Rn)
such that (up to a subsequence) uk → u in L1(Ω; Rn) and

|Du|(Ω) ≤ lim inf
k→∞

|Duk|(Ω),

thus
F (u) = inf

v
F (v).

The purpose of the function H is to impose as few constraints as possible to minimize the effect
caused by the logarithmic functions. The following theorem ensures that the function H does the
job.
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Theorem 2. Let λ, µ > 0, such that λ/µ ≥ e−1 and let f > 0, f0 ≥ µ/λ. Then any minimizer u of
(8) satisfies u ≥ 0. In particular, if we replace the function H in (8) by H ≡ 1, then (8) becomes
(6) and any minimizer u of (6) satisfies 0 ≤ u ≤ f0.

Proof. Let u be a minimizer of (8). Let v = max(u, 0). We claim that

F (v) ≤ F (u).

It is easy to see that

|Dv|(Ω) ≤ |Du|(Ω) and
∫

Ω\Ωi

|fi(x)− vi(x)|dx ≤
∫

Ω\Ωi

|fi(x)− ui(x)|dx.

What remains to prove is that∫
Ωi

λ|fi(x)− vi(x)| − µ log(f0(x)− vi(x))dx ≤
∫

Ωi

λ|fi(x)− ui(x)| − µ log(f0(x)− ui(x))dx.

Let g(z) = (λ/µ)z − log(z) for z > 0. By the assumption, g(z) ≥ 0 and g is increasing on
{z ≥ µ/λ}, which implies on Ωi

λ|fi(x)− vi(x)| − µ log(f0(x)− vi(x)) = λ(fi(x)− f0(x)) + µg(f0(x)− vi(x))
≤ λ(fi(x)− f0(x)) + µg(f0(x)− ui(x))
= λ|fi(x)− ui(x)| − µ log(f0(x)− ui(x)).

Therefore, F (v) ≤ F (u) which implies that v is also a minimizer. Since F (v) = F (u), so all
the inequalities above become equalities and we have v = u a.e., that is, any minimizer u satisfies
u ≥ 0.

In particular, if we take H ≡ 1, then (8) is the same as (6) and Ωi = Ω for all i. The logarithmic
term in (6) guarantees that any minimizer u has to satisfy u ≤ f0. Therefore, any minimizer u of
(6) satisfies 0 ≤ u ≤ f0.

3.1.1 Euler-Lagrange equations and a numerical algorithm

The Euler-Lagrange equations associated with the minimization (8) are:

−∇ · ∇ui(x)√∑n
j=1 |∇uj(x)|2

− λ fi(x)− ui(x)
|fi(x)− ui(x)|

+ µ
H(fi(x), f0(x))
f0(x)− ui(x)

= 0 for i = 1, . . . , n. (10)

To find a minimizer numerically, we impose Neumann boundary conditions and use the gradient
descent method and the finite difference scheme to solve the evolution PDEs for i = 1, . . . , n, where
∇ and ∇· refer to the spatial gradient and divergence, respectively:

∂ui
∂t

(t, x) = ∇ · ∇ui(t, x)√∑n
j=1 |∇uj(t, x)|2

+ λ
fi(x)− ui(t, x)
|fi(x)− ui(t, x)|

− µH(fi(x), f0(x))
f0(x)− ui(t, x)

. (11)

For 1 ≤ α ≤ p, 1 ≤ β ≤ q and 1 ≤ γ ≤ r, where the dimension of the domain is p× q × r, let

∇uki (α, β, γ) =

uki (α+ 1, β, γ)− uki (α, β, γ)
uki (α, β + 1, γ)− uki (α, β, γ)
uki (α, β, γ + 1)− uki (α, β, γ)

 .
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For simplicity, we define ck1, c
k
2, c

k
3, c

k
4 by

ck1(α, β, γ) =

√√√√√ n∑
j=1

 (ukj (α+ 1, β, γ)− ukj (α, β, γ))2

+(ukj (α, β + 1, γ)− ukj (α, β, γ))2

+(ukj (α, β, γ + 1)− ukj (α, β, γ))2

,

ck2(α, β, γ) =

√√√√√ n∑
j=1

 (ukj (α, β, γ)− ukj (α− 1, β, γ))2

+(ukj (α− 1, β + 1, γ)− ukj (α− 1, β, γ))2

+(ukj (α− 1, β, γ + 1)− ukj (α− 1, β, γ))2

,

ck3(α, β, γ) =

√√√√√ n∑
j=1

 (ukj (α+ 1, β − 1, γ)− ukj (α, β − 1, γ))2

+(ukj (α, β, γ)− ukj (α, β − 1, γ))2

+(ukj (α, β − 1, γ + 1)− ukj (α, β − 1, γ))2

,

ck4(α, β, γ) =

√√√√√ n∑
j=1

 (ukj (α+ 1, β, γ − 1)− ukj (α, β, γ − 1))2

+(ukj (α, β + 1, γ − 1)− ukj (α, β, γ − 1))2

+(ukj (α, β, γ)− ukj (α, β, γ − 1))2

.
For the divergence term, we use the forward and backward difference and we will employ an

explicit scheme to obtain

uk+1
i (α, β, γ)− uki (α, β, γ)

dt
=
uki (α+ 1, β, γ)− uki (α, β, γ)

ck1(α, β, γ)
− uki (α, β, γ)− uki (α− 1, β, γ)

ck2(α, β, γ)

+
uki (α, β + 1, γ)− uki (α, β, γ)

ck1(α, β, γ)
− uki (α, β, γ)− uki (α, β − 1, γ)

ck3(α, β, γ)

+
uki (α, β, γ + 1)− uki (α, β, γ)

ck1(α, β, γ)
− uki (α, β, γ)− uki (α, β, γ − 1)

ck4(α, β, γ)

+ λ · sign(fi(α, β, γ)− uki (α, β, γ))− µ · H(fi(α, β, γ), f0(α, β, γ))
f0(α, β, γ)− uki (α, β, γ)

.

Experimental results using this discrete model 1 for HARDI denoising will be shown in Section 4.

3.2 The second model

In this model, we will denoise the sADC (spherical Apparent Diffusion Coefficient) dt in (1). In
what follows, we will also drop the subscript t and denote the sADC by d and will borrow the same
notations f, f0 from the previous section. In this section, we also assume, for theoretical purposes,
that there exist 0 < c1, c2 <∞ such that

c1 ≤ f ≤ c2, c1 ≤ f0 ≤ c2.

Our proposed second minimization problem is,

inf
d
G(d) = |Dd|(Ω) + λ

∫
Ω

n∑
i=1

|fi(x)− f0(x) exp(−di(x))|dx (12)

11



subject to the constraints
di ≥ 0, i = 1, . . . , n.

Note that d in (12) realizes b · d in (1) and this is not a modification since b is a constant. Also
note from the HARDI data model (1) that knowing the true S is equivalent to knowing the true d,
which lead us to consider the problem of denoising d instead of denoising S. However, this model
seems to have some advantages over the first model. First of all, d is being used as an exponent
of the exponential function, which says that the range of the values of d in (12) is much smaller
than that of u in (5) so that when we minimize the two functionals F and G, G does not seem to
smooth out d as much as F does to u. Secondly, we directly impose the assumed image formation
model. Thirdly, the constraints in (12) are simpler than those in (5). Hence, if we look at an
unconstrained version of the second model obtained in the same way as in the first model, then we
end up minimizing

inf
d
G(d) = |Dd|(Ω) + λ

∫
Ω

n∑
i=1

|fi(x)− f0(x) exp(−di(x))|dx

− µ

∫
Ω

n∑
i=1

H(fi(x), f0(x)) · log(di(x))dx. (13)

Unfortunately, the problem (13) has no global minimizer since for any d ∈ BV (Ω; Rn) with
G(d) <∞, if |Ωi| > 0 for some i, then

lim
c→∞

G(d+ c) = −∞.

To prevent this unboundedness, a slight modification is needed, which is the following. We modify
G with the function H defined in (7) by

inf
d
G(d) = |Dd|(Ω) + λ

∫
Ω

n∑
i=1

|fi(x)− f0(x) exp(−di(x))|dx

− µ

∫
Ω

n∑
i=1

H(fi(x), f0(x)) · log(di(x))
di(x)

dx. (14)

An advantage of the function −µ log(z)/z is that on one hand, unlike the logarithmic function
−µ log(z), it rather spreads uniform weights on {z > ε} for ε > 0 when µ > 0 is small. On the
other hand, −µ log(z)/z generates more repelling force from z = 0 than −µ log(z). In this sense,
−µ log(z)/z realizes the constraints in (12) better than −µ log(z) does.

A discretized version GD will be

GD(d) =
∑
x∈Ω

√√√√ n∑
i=1

|∇di(x)|2 + λ
∑
x∈Ω

n∑
i=1

|fi(x)− f0(x) exp(−di(x))|

− µ
∑
x∈Ω

n∑
i=1

H(fi(x), f0(x)) · log(di(x))
di(x)

, (15)

12



where Ω is the spatial domain, x = (x1, x2, x3), and

|∇di(x)|2 = (di(x1 + 1, x2, x3)− di(x1, x2, x3))2 + (di(x1, x2 + 1, x3)− di(x1, x2, x3))2

+ (di(x1, x2, x3 + 1)− di(x1, x2, x3))2.

First of all, we can prove that there is a minimizer of the constrained problem (12).

Theorem 3. The constrained problem (12) has a minimizer d ∈ BV (Ω; Rn).

Proof. In the proof we assume for simplicity that a sequence and its subsequence have the same
notations. Let {dk} be a minimizing sequence. Note that dk ≥ 0. It is enough to show that for
each i, there exists di ∈ L1(Ω) with

|Ddi|(Ω) = sup
{∫

Ω
didiv(ψ) : ψ ∈ C1

c (Ω,R3), |ψ| ≤ 1
}
<∞,

and for d = (d1, . . . , dn),
G(d) = lim

k→∞
G(dk).

Since {dk} is a minimizing sequence, there exists M <∞ such that G(dk) ≤M for all k. Based
on Poincaré-Wirtinger inequality, each dki satisfies∣∣∣‖dki ‖L2(Ω) − ‖dki ‖L1(Ω)

∣∣∣ ≤ ‖dki − (dki )Ω‖L2(Ω) . |Ddki |(Ω) ≤M (16)

where dki ≥ 0 and (dki )Ω = 1
|Ω|
∫

Ω d
k
i (x)dx.

Let d̃ki = min(dki , log(c2/c1)) for each i. Then d̃k ≥ 0, supk ‖d̃k‖∞ ≤
√
n log(c2/c1), and

|Dd̃k|(Ω) ≤ |Ddk|(Ω).

If dki (x) > log(c2/c1) = d̃ki (x), then

f0(x)
( fi(x)
f0(x)

− exp(−dki (x))
)

> f0(x)
( fi(x)
f0(x)

− exp(−d̃ki (x))
)

= f0(x)
( fi(x)
f0(x)

− exp(− log(c2/c1))
)

≥ f0(x)
( fi(x)
f0(x)

− c1

c2

)
≥ 0.

That is,
|fi(x)− f0(x) exp(−d̃ki (x))| ≤ |fi(x)− f0(x) exp(−dki (x))|,

which finally implies that
G(d̃k) ≤ G(dk).

Hence, the sequence {d̃k} is also a minimizing sequence which is uniformly bounded in L1(Ω; Rn).
In other words, the sequence {d̃ki } is bounded in BV (Ω). Therefore, there exists di ∈ BV (Ω) for
each i such that

d̃ki → di in L1(Ω) and |Ddi|(Ω) ≤ lim inf
k→∞

|Dd̃ki |(Ω).

13



Note that d = (d1, . . . , dn) ≥ 0.
In addition to the strong L1 convergence of the sequence {d̃ki }, we may say that dki → di

pointwise a.e. since the domain Ω is finite, which guarantees the convergence of the fidelity term
in the functional,

λ

∫
Ω

n∑
i=1

|fi(x)− f0(x) exp(−di(x))|dx.

Therefore, d is a minimizer.

The purpose of imposing the logarithmic constraint to problem (14) is to insure that d ≥ 0 is
satisfied. It turns out that it is sufficient to impose the constraint on a partial domain Ωi = {x ∈
Ω : H(fi(x), f0(x)) > 0}. Now we prove the existence of a minimizer for (14).

Theorem 4. The unconstrained problem (14) has a minimizer d ∈ BV (Ω; Rn). Moreover, any
minimizer h of (14) satisfies h ≥ 0.

Proof. We prove first that the functional G in (14) is bounded from below. It suffices to prove that
there exists −∞ < C < 0 such that for each i,

−
∫

Ωi

log(di(x))
di(x)

dx > C.

Let g(z) = − log(z)/z for z > 0. Then g(z) ≥ −1
e . Hence, if we let C = −|Ω|/e, then

−
∫

Ωi

log(di(x))
di(x)

dx ≥ −|Ωi|
e
≥ C.

Next, we may assume that log(c2/c1) ≥ e. Otherwise, we can always choose c0 > 0 so that
c0 < c1 ≤ f ≤ c2, c0 < c1 ≤ f0 ≤ c2 and log(c2/c0) ≥ e. Then we set c1 to be c0. Now we choose a
minimizing sequence {dk}. Let d̃k = min(dk, log(c2/c1)). As was shown in Theorem 3,

|Dd̃k|(Ω) ≤ |Ddk|(Ω) and |fi(x)− f0(x) exp(−d̃ki (x))| ≤ |fi(x)− f0(x) exp(−dki (x))|.

If, in addition, dki (x) > d̃ki (x) = log(c2/c1) ≥ e for some x ∈ Ωi, then

g(dki (x)) > g(d̃ki (x)) = g(log(c2/c1))

since g(z) is increasing on {z ≥ e}.
Also if we let vk = max(d̃k, 0), then |Dvk|(Ω) ≤ |Dd̃k|(Ω) and for x ∈ Ω \ Ωi,

|fi(x)− f0(x) exp(−vki (x))| ≤ |fi(x)− f0(x) exp(−d̃ki (x))|.

Therefore, G(vk) ≤ G(d̃k) ≤ G(dk). Since {vk} is also a minimizing sequence which is uniformly
bounded above and below on a bounded set Ω, the same argument as in Theorem 3 guarantees
the existence of a minimizer d ∈ BV (Ω; Rn) with d ≥ 0. Let h be any minimizer of (14). Then
h̃ = max(h, 0) is also a minimizer as shown above and it is easy to see that h̃ = h a.e. Hence, any
minimizer h satisfies h ≥ 0.
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3.2.1 Euler-Lagrange equations and a numerical algorithm

The Euler-Lagrange equations for the model (14) are similar to those found in the previous section,
which are for i = 1, . . . , n,

−∇ ·
( ∇di(x)√∑n

j=1 |∇dj(x)|2

)
+

λ · f0(x) exp (−di(x))(fi(x)− f0(x) exp (−di(x)))
|fi(x)− f0(x) exp (−di(x))|

− µ
H(fi(x), f0(x))(1− log(di(x)))

di(x)2
= 0

with Neumann boundary conditions. We end up solving the following PDEs for i = i, . . . , n,

∂di
∂t

(t, x) = ∇ ·
( ∇di(t, x)√∑n

j=1 |∇dj(t, x)|2

)
− λf0(x) exp (−di(t, x))(fi(x)− f0(x) exp (−di(t, x)))

|fi(x)− f0(x) exp (−di(t, x))|

+µ
H(fi(x), f0(x))(1− log(di(t, x)))

di(t, x)2

= ∇ ·
( ∇di(t, x)√∑n

j=1 |∇dj(t, x)|2

)
− λ · f0(x) exp (−di(t, x)) · sign(fi(x)− f0(x) exp (−di(t, x)))

+µ
H(fi(x), f0(x))(1− log(di(t, x)))

di(t, x)2
(17)

based on the gradient descent method.
As before, we use finite differences to discretize the PDE’s. We implement an explicit scheme for

the divergence term. With the same notations as in Subsection 3.1.1, we can obtain the following:

dk+1
i (α, β, γ)− dki (α, β, γ)

dt
=
dki (α+ 1, β, γ)− dki (α, β, γ)

ck1(α, β, γ)
− dki (α, β, γ)− dki (α− 1, β, γ)

ck2(α, β, γ)

+
dki (α, β + 1, γ)− dki (α, β, γ)

ck1(α, β, γ)
− dki (α, β, γ)− dki (α, β − 1, γ)

ck3(α, β, γ)

+
dki (α, β, γ + 1)− dki (α, β, γ)

ck1(α, β, γ)
− dki (α, β, γ)− dki (α, β, γ − 1)

ck4(α, β, γ)

− λ · f0(α, β, γ) exp(−dki (α, β, γ)) · Sgki (α, β, γ)

+ µ · H(fi(α, β, γ), f0(α, β, γ))(1− log(dki (α, β, γ)))
dki (α, β, γ)2

,

where Sgki (α, β, γ) = sign(fi(α, β, γ) − f0(α, β, γ) exp(−dki (α, β, γ))). Experimental results using
this HARDI denoising model 2 will be shown in the next section.
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4 Numerical results

We recall that in practice, we work with a decreasing sequence of values {µk}k=1,2,... and find
minimizers u∗k or d∗k (depending on the choice of a functional between Fk and Gk), where

Fk(u) = |Du|(Ω) + λ

∫
Ω

n∑
i=1

|fi(x)− ui(x)|dx

− µk

∫
Ω

n∑
i=1

H(fi(x), f0(x)) · log(f0(x)− ui(x))dx,

Gk(d) = |Dd|(Ω) + λ

∫
Ω

n∑
i=1

|fi(x)− f0(x) exp(−di(x))|dx

− µk

∫
Ω

n∑
i=1

H(fi(x), f0(x)) · log(di(x))
di(x)

dx.

The initial values µ0 ∼ 0.000001 and µ0 ∼ 0.00000001 were chosen for each case respectively,
and the iterations were performed until µk reaches 10−6µ0 with µk+1 = 10−1µk or until we reached
a possible steady state. We would like to mention that, even though the denoised data obtained
from the second model minimizing the functional G is the function d, we use the computed data

(f0 exp (−d1), . . . , f0 exp (−dn))

to visualize the results and to compute the root-mean-square-error (RMSE) values and the sKL
distance, to be explained below. For visualization, we show both the raw HARDI plots, and also
the ODF plots obtained by postprocessing. The ODFs are computed from the raw HARDI data
using a truncated spherical harmonic series.

Since the functionals (8) and (14) are obviously nonconvex, there might be many local minima,
which might cause visibly unsatisfying results or some computational instability. We thus need to
choose an appropriate initial guess at t = 0. We notice that the feasible domain for (8) contains
the set

{u ∈ BV (Ω) : 0 ≤ u < f0}

that might contain a minimizer u∗ of (8) and the feasible domain for (14) contains the set

{d ∈ BV (Ω) : 0 ≤ d}

that contains a minimizer d∗ of (14). Numerical results show that the computed minimizer u∗ of
(8) also satisfies

0 ≤ u∗ ≤ f0.

This led us to choose the initial guess u0 for (8) and the initial guess d0 for (14) defined by

(u0)i(x) =


0.8× f0(x) on Ωi,

1.1× fi(x) on Ω \ Ωi if 1.1× fi(x) < f0(x),
fi(x) on Ω \ Ωi if 1.1× fi(x) ≥ f0(x).
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and

(d0)i(x) =

{
0.005 on Ωi,

− log(fi(x)/f0(x)) + 0.1 on Ω \ Ωi.

We first show denoising results on a synthetic data set that was kindly provided to us by the
authors of [32] who generated the data set using the technique described in [38]. The authors of
[32] proposed the following variational principle for smoothing the data f

min
u
E(u) = µ

∫
Ω

∫
S2

|u(x, θ, φ)− f(x, θ, φ)|2dS(θ, φ)dx

+
∫
S2

‖∇(θ,φ)u‖2dS(θ, φ) +
∫

Ω
g(x)‖∇xu‖dx

and approached this model with a membrane-spline deformation energy minimization method.
They used the finite element method (FEM method) for smoothing the spherical information at
each voxel. For spatial smoothing, the following variational principle (TV method) was used

min
u
E(u) =

∫
Ω

(
g(x)

n∑
i=1

‖∇ui(x)‖dx+
µ

2

n∑
i=1

|ui(x)− fi(x)|2
)
dx (18)

where n is the number of the gradient directions as in our proposed models. In (18), the coupling
between different directions is introduced not through the vectorial total variation, but through the
function g that is defined by

g(x) =
1

1 +GA(x)

where GA is the generalized anisotropy defined in [38]. The authors of [32] also kindly provided
us with their two denoising results, one obtained by the FEM method only and the other one
obtained by the combination of FEM and TV methods. These are shown in Figure 7 and Figure
8 for comparison with our denoising results. Table 1 shows the RMSE values for each model. The
RMSE formula is presented in (19).

The size of the synthetic data set is 16× 16× 81, which is a set of 81 2D-images of size 16× 16.
That is, there are 81 gradient directions. In Figure 1 and Figure 2, we show two different angle
views of the synthetic, noise-free raw HARDI data and its noisy version. In Figure 3 and Figure
4, we show the same angle views obtained from the denoised raw HARDI data using the proposed
two models. All the results shown in Figures 1 to 10 were obtained from the 16× 16× 81 synthetic
data; however, we visualize only 1/3 of the whole volume in Figures 1 - 8, to better see the finer
details. Figure 9 shows the ODF (Orientation Distribution Function) visualization of the whole
volume of the data and Figure 10 is a magnified view of Figure 9.

One way to measure the difference between two data sets uses RMSE (Root Mean Square Error).
We compute the RMSE values between the noise-free data and the noisy data, and between the
noise free data an the denoised data. The RMSE values corresponding to the synthetic experimental
results are shown in Table 1. Since the intensity values in the data range between 0 and 1,
we multiplied all the intensity values by 255 and then we computed the RMSE values in the
following way: let S2

d = {s1, s2, . . . , sn} be the discrete set of gradient spherical directions and let
Ω = {x1, x2, . . . , xN} be a subset of R2 or R3, a discrete version of the spatial domain. Then the
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Figure 1: Two different angle views of noise-free raw synthetic HARDI data.

Figure 2: Two different angle views of noisy raw synthetic HARDI data.
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Figure 3: Two different angle views of denoised raw synthetic HARDI data by our first model using
F .

Figure 4: Two different angle views of denoised raw synthetic HARDI data by our second model
using G.
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Figure 5: Comparison between models F and G. Top row, left to right: noise-free synthetic raw
HARDI data, noisy synthetic raw HARDI data. Bottom row, left to right: denoised synthetic raw
HARDI data using model F , denoised synthetic raw HARDI data using model G.
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Figure 6: Comparison between models F and G. Top row, left to right: noise-free synthetic raw
HARDI data, noisy synthetic raw HARDI data. Bottom row, left to right: denoised synthetic raw
HARDI data using model F , denoised synthetic raw HARDI data using model G (different view).
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Figure 7: Comparison between models F , G, FEM [32] and FEM+TV [32] on the synthetic data.
Top row, left to right: denoised raw HARDI data using F , denoised raw HARDI data using G.
Bottom row, left to right: denoised raw HARDI data using only FEM in [32], denoised raw HARDI
data using FEM+TV in [32].
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Figure 8: Comparison between models F , G, FEM [32] and FEM+TV [32] on the synthetic data.
Top row, left to right: denoised raw HARDI data using F , denoised raw HARDI data using G.
Bottom row, left to right: denoised raw HARDI data using only FEM in [32], denoised raw HARDI
data using FEM+TV in [32] (different view).
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noise-free data, the noisy data, and the denoised data are functions on the discrete domain Ω×S2
d .

If f1 : Ω× S2
d → R and f2 : Ω× S2

d → R are two images, then

RMSE(f1, f2) =

√√√√ 1
N · n

N∑
i=1

n∑
j=1

(f1(xi, sj)− f2(xi, sj))2. (19)

RMSE
Noisy data 17.7079

Our denoised data using F 5.8991
Our denoised data using G 7.6081
Denoised data FEM in [32] 11.9964

Denoised data FEM+TV in [32] 7.6367

Table 1: RMSE between the mentioned synthetic data and the noise-free synthetic data.

Additionally, to assess the accuracy of our results in the synthetic experiments, and since we
obtain the ODFs by postprocessing, we can compute the sKL distance between two probability
density functions, which is defined by (for two probability densities p(x), q(x)),

sKL(p, q) =
1
2

∫
Ω

{
p(x) log

(p(x)
q(x)

)
+ q(x) log

(q(x)
p(x)

)}
dx. (20)

Let q be the ODF of the noise free data and in each case, let p be the ODF of either the noisy
data or the denoised data. As it can be seen from (20), smaller sKL value implies more similarity
between the two probability density functions. We obtain and show the sKL values in Table 2.
The visualization of ODFs and the calculation of sKL distances were kindly done by Liang Zhan,
Laboratory Of Neuro Imaging. Table 2 needs more explanation. Note that the two noisy data which
appear in Table 2 are the same, which means that their sKL distances have to be theoretically
the same. However, due to the differences in discretizations, we could not recover the same sKL
distance value 1.0409 of the noisy data presented in [32]. Hence, we also look at the ratio between
the sKL distance of denoised data and that of noisy data for our results and for the results in [32].
Table 3 presents those ratios. Smaller ratios mean better denoised results.

sKL distance
Noisy data 4.2206

Our denoised data using F 1.8243
Our denoised data using G 1.8143

Noisy data 1.0409
Denoised data by FEM in [32] 0.9088

Denoised data by FEM+TV in [32] 0.6576

Table 2: sKL distances for the synthetic ODF data.
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Ratio between the sKL distances
Our denoised data using F

Noisy data 0.4322
Our denoised data using G

Noisy data 0.4299

Denoised data by FEM in [32]
Noisy data 0.8730

Denoised data by FEM in [32]
Noisy data 0.6318

Table 3: Ratios between the sKL distances of ODFs, for the synthetic data.

Figure 9: Top row, left to right: ODFs of noise-free synthetic HARDI data, ODFs of the noisy
version. Bottom row, left to right: ODFs of denoised HARDI data using the functional F , ODFs
of denoised HARDI data using the functional G.
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Figure 10: Magnified views of Figure 9. Top row, left to right: ODFs of noise-free synthetic HARDI
data, ODFs of the noisy version. Bottom row, left to right: ODFs of denoised HARDI data using
the functional F , ODFs of denoised HARDI data using the functional G.
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Next we apply the proposed models to the denoising of two real HARDI brain data sets (one of
30 directions, artifficially noisy by Rician noise, for which we have the original clean ground truth;
another one of 94 directions, for which we do not have the ground truth).

Since in general the real data sets do not provide us with the true noise-free data, we need to
obtain a noise-free “real” data set to make sure that our denoised methods actually improve the
data quality. For this purpose, we fit sixth order spherical harmonics to the real HARDI data sets
with 95 gradient directions. Then we sample a new set of 30 unit vectors uniformly distributed on
a unit sphere at which we evaluate the spherical harmonics expansions. We consider these data sets
as noise-free real HARDI data sets with 30 diffusion-sensitized gradient directions. This procedure
was done by J. Eugenio Iglesias from Medical Imaging Informatics, UCLA. We still use the same
11 baseline images for f0. It is now easy to corrupt these data sets with Rician noise, which is
described below. Figures 11 - 17 show this noise-free data and their noisy and denoised versions.

Figure 11: Noise-free real HARDI data with 30 diffusion-sensitized gradient directions.
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Figure 12: Noisy real HARDI data with 30 diffusion-sensitized gradient directions, artifficially
corrupted by Rician noise.
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Figure 13: Denoised real HARDI data with 30 diffusion-sensitized gradient directions by the second
model using G.
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Let N (ν, σ2) be noise of Gaussian distribution with mean ν and variance σ2. Then a random
variable R has a Rician distribution R(ν, σ) if for some θ,

R =
√
N2

1 +N2
2

where N1 ∼ N (ν cos θ, σ2) and N2 ∼ N (ν sin θ, σ2), and N1, N2 are independent. The probability
density function of R(ν, σ) is

f(x|ν, σ) =
x

σ2
exp

(
− x2 + ν2

2σ2

)
I0

(xν
σ

)
which is independent of the θ value. We choose one θ value in [0, 2π] at each position x ∈ Ω and
generate two functions N1 and N2 having normal distributions N (f̃(x) cos θ, σ2),N (f̃(x) sin θ, σ2)
respectively, where f̃ is the noise-free data set obtained earlier by the spherical harmonics technique.
Or simply we choose θ = 0 at all the positions. The noisy data set in Figure 12 was generated with
θ = 0, σ = 15.

Since skull-stripping was done before to remove non-brain regions from the image, the back-
ground was automatically set to zero (black). Thus, we restrict the calculations only inside the
brain region, combined with homogeneous Dirichlet boundary conditions along the xy plane. We
used only 3 slices from the whole volume to reduce the computational cost and we imposed Neu-
mann boundary conditions along the z-axis, and we visualize results from the middle slice. Figures
11, 12, 13 show all 30 direction images of original noise-free data, noisy data, and denoised data
using the second model G.

Since we also have the noise-free data for the HARDI brain data experiment, it is possible to
compute the RMSEs of the noisy data and the denoised data. Table 4 shows those RMSE values.
We observed that the first model using F worked quite well with the synthetic data provided by
the authors of [32] that has a rather simple structure; however, model 1 was not suitable for the
real noisy HARDI data with 30 directions, and thus we only show results with the second model
using G for the real noisy HARDI data (with 30 directions).

Noisy data Denoised data using G
RMSE 10.5448 4.7268

Table 4: RMSEs: the noisy real data with 30 diffusion-sensitized gradient directions and the
denoised version using model G.

Finally, we present a denoised result of a noisy real HARDI data with 94 diffusion-sensitized
gradient directions. We tested our models on real HARDI datasets with 94 diffusion-sensitized
gradient directions, which means that the number n is 94. Briefly, we used the same data as in
[31] in which 3D structural brain MRI scans and DT-MRI scans were acquired from healthy young
adults on a 4 Tesla Bruker Medspec MRI scanner using an optimized diffusion tensor sequence.
Imaging parameters were: TE/TR 92.3/8250 ms, 55 x 2mm contiguous slices, FOV = 23 cm. 105
directional gradients were applied: 11 baseline (S0) images with no diffusion sensitization (i.e.,
T2-weighted images) and 94 diffusion-weighted images (b-value 1159 s/mm2 in-plane resolution)
in which gradient directions were evenly distributed on the hemisphere [24]. The reconstruction
matrix was 128 x 128, yielding a 1.8x1.8 mm2 in-plane resolution. The total scan time was 14.5
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Figure 14: Small part of the noise-free real HARDI data with 30 diffusion-sensitized gradient
directions.
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Figure 15: Small part of the noisy real HARDI data with 30 diffusion-sensitized gradient directions.
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Figure 16: Small part of the denoised real HARDI data with 30 diffusion-sensitized gradient direc-
tions using model G.
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Figure 17: ODF visualization. Left to right : noise-free real HARDI data, noisy real HARDI data,
denoised real HARDI data using model G, with 30 diffusion-sensitized gradient directions.
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minutes. We set f0 = S0 to be the average of the 11 baseline images. Figure 19 shows the slices
of one of the actual datasets used in our numerical calculations, together with the denoised results
obtained using model G, and Figure 18 shows the corresponding non-diffusion weighted image
S0 = f0.

Figure 18: 19th slice of f0 = S0.

Next we visualize ODFs of the data and compare the ODFs of the noisy data with the ODFs of
the denoised data. Notice that calculating ODF of a noisy dataset means that we perform a process
of smoothing the data. Since the original noisy data usually violates the constraints we had in the
models, if we want to visualize the ODF of the noisy data, then there has to be a pre-processing step
to adjust those violating values, which may not involve solid consistency to the fundamental model.
To see the difference between the ODFs of the noisy data and the denoised data, we consider some
parts of the whole brain image and magnify them especially in regions where fibers are crossing.
The data and denoised results obtained using models F and G are shown in Figures 19-21.

Figure 19: 19th slice of the real brain data with 94 gradient directions. Only 16 randomly picked
directions out of 94 directions corresponding to the 19th slice of the noisy and the denoised (using
G) HARDI data are shown here.
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Figure 20: ODF: 19th slice of the real brain data with 94 gradient directions.
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Figure 21: ODF visualization for real brain data with 94 gradient directions. Left to right: ODFs
of noisy data, denoised result using the first model F , denoised result using the second model G.

5 Conclusion

We proposed two slightly different models to denoise HARDI data. The difficulty in dealing with
the data lies in the nature of its complex structure. One model denoises the signal itself by the
standard TV +L1 method combined with the logarithmic barrier function to realize the constraints
that arise naturally from the acquisition model. The other model uses the acquisition formula

S = S0 exp(−d) + noise
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and we denoise d instead of denoising S. Similarly, we denoise d by TV + L1 method combined
with the logarithmic barrier function, adapting the data fidelity term from the image formation
model. As we have seen through the numerical computations, our model for denoising d is more
stable and gives more satisfactory results for real HARDI data. We also compared our denoising
methods with the methods described in [32]. Our proposed models outperformed the models in
[32] providing smaller RMSE values, and also our denoised data is visually more similar to the
noise-free data.
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[44] D. Tschumperlé, R. Deriche, Anisotropic Diffusion Partial Differential Equations in Multi-
Channel Image Processing: Framework and Applications, book chapter in Advances in Imaging
and Electron Physics (AIEP), Academic Press, 2007.
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