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Abstract—The k g-flats algorithm is a generalization of the
popular k-means algorithm, where £k different g-dimensional
affine spaces are considered, instead of points, as proto-
types. A new modification of the k-g-flats algorithm for
pattern classification is introduced in this work. The ba-
sic idea is to replace the original reconstruction only en-
ergy, which is optimized to obtain the k affine spaces, by a
new one that incorporates discriminative terms. The pre-
sentation of the proposed framework is complemented with
experimental results, showing that the method is computa-
tionally very efficient and gives excellent results on standard
supervised learning benchmarks.

Index Terms—Multi space Karhunen Loeve, local factor
analysis, k-g-flats, k-g-planes, supervised learning.

The k g¢-flats algorithm, [KL93], [Man98], [Tse99],
[CMMO1], is a generalization of the k-means algorithm
where we take ¢g-dimensional affine spaces (“flats”) instead
of points as prototypes. Thus, given a set of m points
X € R?, we wish to find k g-dimensional flats {F},..., Fi}
and a partition of X into {Kj,..., K}, minimizing the
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where Pp;x is the projection of the point x onto the plane
F;. The minimization can be done using Lloyd’s algorithm
(EM), or the online method, both of which are guaranteed
to converge to a local minimum.

We can consider the k-g-flats algorithm for supervised
learning by training a set planes for each class. Given
the set X C R? consisting of n points with labels 41, ...i,,
(m classes of objects), the supervised k-q flat algorithm
associates planes F; ; to each class, minimizing the energy

D llz— Pzl (-2)

where F, = F;_ ;. is the nearest flat to  which has been
associated to the points with label i,, and where Prx is
projection of a point = onto the corresponding g-flat F.
Given a new point to classify, we assign it to the class
associated to its nearest flat.

On many data sets, this simple algorithm gives excellent
classification results, especially relative to its speed and
the simplicity of the approach (the entire code can be writ-
ten in just a few lines in Matlab). However, there is much
room for improvement. The k ¢-flats algorithm is represen-
tational (reconstructive), it does not explicitly encodes the
differences between the classes. In [Sz108] it was suggested
to change the reconstructive energy functional (.1) to pun-
ish configurations of the flats passing through one class
that get too close to points in another class. A method
was proposed that improved the accuracy of k-q flats but
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at the cost of speed, the method was too slow to be rea-
sonably tested on large benchmarks like the MNIST digits.
In this short note, which is an continuation of [Sz108], this
deficiency is rectified with a much more efficient algorithm
for designing discriminative k-q flats.

I. A DISCRIMINATIVE k-g-FLATS FRAMEWORK

The energy in Equation .2 does not explicitly see any
information about the differences between the classes; it
strictly measures representation errors. If we want to use
flats for classification, we should modify this energy so that
it penalizes classification errors. In this note we consider
the following energy:
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and p (the margin) is a parameter. More generally one
might use an energy of the form
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where g is some (increasing) function. This is an analog for
k-q flats of the energy in [MBP08] for the discriminative
extension of sparse dictionary learning via K-SVD; in that
case, g is a smoothed step function. Note that if « =1 and
£ =0, this is the standard k-q flats energy.

The use of planes and the margin in the energy 1.1 re-
calls SVM’s. However, in this framework, the planes in
question are not separating hyperplanes between classes;
rather, they are exemplars of a class, chosen so that the dis-
tance from a class to its set of planes is as small as possible,
while keeping those planes far away from the other classes.
For planes (in general position) of dimension greater than
one in ambient dimension larger than three, the decision
boundaries are not linear, or even piecewise linear. On
the other hand, in the zero dimensional case, where the
F; ; are just points, and the algorithm is a discriminative
version of k-means, the decision boundaries are piecewise
linear. In this special case, the F' can be considered a con-
venient device for parameterizing the decision boundary
of an SVM-like classifier where the margin is specified in
advance, rather than optimized.



II. COMPUTING THE DISCRIMINATIVE k-q FLATS

To minimize the functional 1.1, we use a stochastic gra-
dient projection. In all the experiments presented below,
the version of the algorithm where all planes pass through
the origin is used. In this case, the square distance of a
point = to a plane F' is given by
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where here and for the rest of this note, F' refers to both
the ¢-plane and a set of ¢ vectors spanning the g¢-plane
written as rows.

For each point x and a set of Fj j, set

I(x):={i,j s.t. i # i, and

|z = Pp,a|* = [lo = Pr, , ()[]* + 1 > 0}.

Then the gradient of the energy 1.1 with respect to a given
plane is given by
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This suggests the following stochastic gradient descent
with projections:

1. Choose parameters pu, dt, k, and q.

2. Initialize k-g planes for each class (with the original
k-q flats algorithm, without discriminative term, for
example).

3. Pick an = at random.

4. Update the F; ; by

o Fyrs O(F, +dt-|I|- FpaxT),

. Fi,j — O(Fx +dt - Fi’jl'{ET% {Z,]} el,
where O(A) is an orthonormal basis for the columns
of A.

5. Repeat from 2.

Here “projections” refers to the re-orthonormalizations
of each F after its modification by a point x. In fact, as we
will see below, this step is sometimes unnecessary. Skip-
ping it changes the functional, but on some data sets the
change not only speeds-up the algorithm, but sometimes
even improves the classification accuracy.

Note that the algorithm could be easily parallelized by
sending the computations dependent on different = to dif-
ferent cores.

III. EXPERIMENTAL RESULTS

We test the discriminative k-q flats algorithm on three
standard machine learning datasets:

o The MNIST digits, consisting of 70000 28 x 28 im-
ages of handwritten digits divided into 60000 training
examples and 10000 test examples. The data is pre-
processed by projection onto the first 300 principal
components.

o The 20-newsgroups dataset, consisting of 18477 doc-
uments from one of 20 newsgroups represented by its
tf-idf normalized term document matrix. This data
is projected onto 500 principal components and then
randomly divided into 16000 training examples and
2774 test examples.

e The ISOLET datset, consiting of 200 speakers saying
each letter of the alphabet twice. 617 audio features
have been extracted from each sample. The data is
divided into a standard training set of the first 150
speakers, and a test set of the last 50, and prepro-
cessed by projection onto its first 300 principal com-
ponents.

All three datasets are then projected onto the unit

sphere.
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Fig. 1. Misclassification on the MNIST dataset, averaged over ten
runs with the standard 10000/60000 test/train split. Each mark on
the x axis corresponds to 10,000 iterations, while the y axis repre-
sents the classification error. The blue curve represents proposed
the algorithm with orthonormalized F', and the red represents the
algorithm with non-orthonormalized F. Here k = 20, q¢ = 40, and
w=.2. For comparisson, SVM misclassification rate is .014 with-
out image dependent regularization, and .011 with deskewing (see
http : // yann . lecun . com/ exdb/ mnist/). This is comparable
with our results.

Figures 1, 2, and 3 display the results of running the
algorithm on the various datasets (with and without or-
thogonalizations of the F’s). In each case, the classifica-
tion error of the orthogonalized algorithm approaches but
does not surpass that of SVM’s. In the ISOLET and 20
newsgroups, not orthogonalizing does not hurt classifica-
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Fig. 2.  Misclassification on the 20 newsgroups dataset, averaged
over ten runs with random splits into 2000/16774 test/train. The
blue curve represents the proposed algorithm with orthonormalized
F, and the red represents the algorithm with non-orthonormalized
F. The x azis is iterations (each mark is 10,000), and the y azis is
classification error. Here k=2, ¢ =80, and p=.4. SVM misclassi-
fication (taken from [WBS06]) is .124.

tion error, and in fact improves it on the 20 newsgroups.

Figure 4 shows the timings for the various datasets. All
the code has been written in Matlab; there should be sub-
stantial gains simply from writing in a compiled language.
On the other hand, note that to get good results using the
non-orthonormalized version of the algorithm on the news-
groups takes less than 15 minutes of training time, and less
than a minute for ISOLET.

IV. CONCLUSIONS AND FUTURE WORK

This note presents a discriminative version of the k-q
flats algorithm for supervised classification problems. This
method gives near state of the art error rates on some
standard benchmarks, and is fast enough to be reasonably
applied to datasets with hundreds of thousands of points
in hundreds of dimensions on a desktop computer.

However, there is still much to be done. For example,
the algorithm presented for minimizing energy 1.1 is rela-
tively primitive, and could be greatly sped-up with some
care. Following the analogy with SVM’s, the margin « in
the energy should be optimized for the data rather than
taken as a parameter. Kernelization could possibly be use-
ful. Finally, we are currently developing a semi-supervised
version of the proposed framework. Due to the computa-
tional efficiency of the algorithm, this will open the door
to the use of very large available datasets, such as image
collections from flickr.com.
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Fig. 3. Misclassification on the ISOLET dataset, averaged over ten
runs with the standard 25%/75% test/train split. The blue curve
represents the proposed algorithm with orthonormalized F', and the
red represents the algorithm with non-orthonormalized F'. The x axis
is iterations (each mark is 10,000), and the y axis is classification
error. Here k=1, ¢ =40, and p=.2. SVM misclassification (taken
from [WBS06]) is .033.
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Fig. 4. Timings per iteration in seconds. The timings were run on
an Intel core duo @Q2.4 gigaherz with 2 gigabytes of ram.
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