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Abstract

We propose a new numerical method for modeling motion of open curves in two
dimensions and open surfaces in three dimensions. Following the grid based particle
method we proposed in [15], we represent the open curve or the open surface by
meshless Lagrangian particles sampled according to an underlying fixed Eulerian
mesh. The underlying grid is used to provide a quasi-uniform sampling and neigh-
boring information for meshless particles. The key idea in the current paper is to
represent and to track end-points of the open curve and boundary points of the
open surface explicitly and consistently with interior particles. We apply our algo-
rithms to several applications including spiral crystal growth modeling and image
segmentation using active contours.
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1 Introduction

In a recent work [15], we proposed a novel grid based particle method to repre-
sent and track interface motion. In our approach the interface is represented by
meshless, i.e., no triangulation or parametrization, Lagrangian particles which
are associated to an underlying uniform or an adaptive Eulerian mesh. This
results in a quasi-uniform sampling of the interface. The motion of the inter-
face is tracked by these particles. The interface may be reconstructed locally
and also be resampled during the evolution. The underlying mesh provides
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local neighboring information for the meshless particles which is used for local
reconstruction by least square fitting in a local coordinate system. Adaptive
local sampling of the interface can be easily achieved by local adaptivity in the
underlying mesh. Moreover, the meshless representation allows one to control
topological changes easily by using both Lagrangian and Eulerian information
available. We have successfully applied this technique to different interface
motions such as the motion by an external velocity field and various geomet-
ric motions to demonstrate the efficiency, the accuracy and also the flexibility
of the approach.

The goal of this paper is to generalize the techniques in [15] to handle motions
of an open curve in 2D or an open surface in 3D. The key point is to explicitly
track the boundary (end-points of the open curve and a closed boundary curve
of the open surface) and then incorporate this boundary condition consistently
and accurately to confine the sampling and local reconstruction of interior
region of open curves or surfaces.

In many applications, it is useful to model slender objects as open curves and
to model thin sheets as open surfaces. For explicit Lagrangian tracking meth-
ods, open curves/surfaces do not pose extra challenges besides those usual
difficulties for tracking methods in dealing with general moving interfaces,
such as topological changes. For implicit Eulerian methods, there is no natu-
ral way to represent open curves and open surfaces since there is no distinction
of interior and exterior regions. Recently a few approaches have been proposed
for dealing with open curves/surfaces based on the level set method [18]. One
approach was the work of [20] for modeling spiral crystal growth. The author
used the intersection of two level set functions to represent the codimension-
two boundary of the open curve/surface. The curve/surface of interest was
implicitly defined as the zero level set of one signed distance function at which
another one was positive, i.e. S = {x : φ(x) = 0 and ψ(x) > 0}. However, one
has to define velocities for not only the level set function φ which represented
the curve/surface of interest, but also the level set functions ψ which was
used solely to define the codimension-two boundary. Moreover, the method
proposed in [20] worked only for fixed-end curve and it is not clear how to de-
fine the velocity for ψ so that the evolution of the boundary satisfied a given
motion law. A generalization to this approach was proposed in [21] for con-
structing open surfaces from point cloud data. The method incorporated the
method proposed in [4, 7] to allow motion of the boundary. Computationally,
all these methods were not efficient since they not only solved one PDE for the
level set function to get the implicit representation of the open curve/surface,
but the number of PDEs, i.e. the number of the level set functions, equals to
the the codimension of the object.

Directly applying the level set method, [2] in the content of image analysis im-
plicitly represented the open curves using the centerline of a level set function,
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i.e. the curve of interest is the zero level set. Numerically this is challenging
since the level set function gives almost no zero value. To overcome this issue
of numerical difficulties, the authors considered the µ-level set instead. But
then the curve can never be exactly recovered and there is always an O(µ)
smoothed zone near the interface.

Another approach was the vector distance function method [11] which ex-
tended the signed distance function of the level set method. The vector dis-
tance function was defined as φ(x) = x − y with y the closest point from
x to the interface. Therefore, this vector valued function embedded not only
the distance and the inside/outside information, but also the normal vector.
Unfortunately, this representation required solving the same number of PDE’s
as the dimension of the space where the object is living, independent of the
codimension of the object. In particular, the method required solving three
PDEs for modeling open/closed curves/surfaces in R3.

Similar to our representation in [15], the vector level set method [22] modeled
propagating crack using also closest points from an underlying fixed mesh.
However, their motion law was imposed only at the tip of an open curve. No
motion or reconstruction was considered elsewhere.

There are a few nice properties of our approach to open curves/surfaces. First,
the end-points/boundary-points of the open curve/surface are accurately and
explicitly tracked like usual tracking methods. This is important for many
physical applications. Moreover, the grid based particle method can naturally
handle both the viscosity solution and the multivalued solution using meshless
Lagrangian particles with an underlying Eulerian mesh. This gives a flexibil-
ity to control the change of topology in the solution. Adaptivity can also be
applied easily according to local dynamics and features by local mesh refine-
ment. The algorithm can be implemented easily and efficiently since no PDE
is involved on the underlying mesh.

This paper is organized as follows. In Section 2, we briefly review of the grid
based particle method and introduce important notions for the rest of the
paper. In Section 3, we generalize this approach to motion of an closed curve
in three dimensions. With that, we explain how to apply the method to model
motions of open curves/surfaces in Section 4. Various examples in both two
dimensions and three dimensions are given in Section 5 to demonstrate the
performance of our algorithm.
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2 Grid Based Particle Method

In this section, we give a brief summary of the grid based particle method
for the convenience of readers. For a complete and detailed description of the
algorithm, we refer the readers to [15].

In [15] and also in this paper, we represent the interface by meshless particles
which are associated to an underlying Eulerian mesh. In our current algorithm,
each sampling particle on the interface is chosen to be the closest point from
each underlying grid point in a small neighborhood of the interface. This one
to one correspondence gives each particle an Eulerian reference during the
evolution. The closest point to a grid point, x, and the corresponding shortest
distance can be found in different ways depending on the form in which the
interface is given.

At the first step, we define an initial computational tube for active grid points
and use their corresponding closest points as the sampling particles for the
interface. A grid point p is called active if its distance to the interface is
smaller than a given tube radius, γ, and we label the set containing all active
grids Γ. To each of these active grid points, we associate the corresponding
closest point on the interface, and denote this point by y. This particle is called
the foot-point associated to this active grid point. This link between the
active grid points and its foot-points is kept during the evolution. Furthermore,
we can also compute and store certain Lagrangian information of the interface
at the foot-points, including normal, curvature and parametrization, which will
be useful in various applications.

As a result of the interface sampling, the density of particles on the interface
will be roughly inversely proportional to the local grid size. This relation
provides an easy adaptive approach in the current grid based particle method.
In some regions where one wants to resolve the interface better by putting more
marker particles, one might simply locally refine the underlying Eulerian grid
and add the new foot-points accordingly.

This initial set-up is illustrated in figure 1. We plot the underlying mesh in
solid line, all active grids using small circles and their associated foot-points
using squares. On the left most sub-figure, we show the initial sampling of
the interface. To each grid point near the interface (blue circles), we associate
a foot-point on the interface (red squares). The relationship of each of these
pairs is shown by a solid line link.

To track the motion of the interface, we move all the sampling particles ac-
cording to a given motion law. This motion law can be very general. Suppose
the interface is moved under a velocity field u = u(y). One simply tracks the
particles just like all other particle-based tracking methods, which is simple
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Fig. 1. Grid Based Particle Method. From left to right: (a) Initial representa-
tion/sampling, (b) after motion, (c) after re-sampling, (d) after activating new grid
points with their foot-points, (e) after inactivating grid points with their foot points.
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and computationally efficient. In particular one can solve a set of ordinary
differential equations using high order schemes which gives accurate location
of the interface.

It should be noted that a foot-point y after motion may not be the closest
point on the interface from its associated active grid point p anymore. For
example, figure 1 (b) shows the location of all particles on the interface after
the constant motion u = (1, 1)T with a small time step. As we can see, these
particles on the interface are not the closest point from these active grid points
to the interface anymore. More importantly, the motion may cause those orig-
inal foot-points to become unevenly distributed along the interface. This may
introduce both stiffness, when particles are getting together, and large error,
when particles are getting apart. To maintain a quasi-uniform distribution of
particles, we need to resample the interface by recomputing the foot-points
and updating the set of active grid points (Γ) during the evolution. During this
resampling process, we locally reconstruct the interface, which involves com-
munications among different particles on the interface. This local reconstruc-
tion also provides geometric and Lagrangian information at the recomputed
foot-points on the interface.

The key step in this process is a least square approximation of the interface us-
ing polynomials at each particle in a local coordinate system, {(n′)⊥,n′} with
y as the origin, n′ is the normal vector associated to y before motion, and (n′)⊥

is the tangent vector, figure 2 (a). Using this local reconstruction, we find the
closest point from this active grid point to the local approximation of the inter-
face, figure 2 (b). This gives the new foot-point location. Further, we can also
compute and update any necessary geometric and Lagrangian information,
such as normal, curvature, and also possibly an updated parametrization of
the interface at this new foot-point. When different pieces of interface get close,
e.g. before merging or crossing, one can classify neighboring particles from dif-
ferent pieces into different groups according to Lagrangian information, such
as normal direction and/or some parametrization of the particles. This will
allow us to reconstruct different pieces without mixing. Due to the availabil-
ity of both Eulerian information, i.e., reference to the underlying mesh, and
Lagrangian information of particles, the meshless representation allows us to
detect collision of different interfaces and to control topological changes eas-
ily. For more details, we refer interested readers to [15] for each of the above
procedures.

To end this section, we summarize the algorithm.

Algorithm (Grid-Based Particle Method):
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(a) (b)

Fig. 2. (a) Definition of a local coordinates and (b) the way how we determine the
new foot-point using a local least-square reconstruction of the interface.
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(1) Initialization [Figure 1 (a)]. Collect all grid points in a small neighborhood
(computational tube) of the interface. From each of these grid points, com-
pute the closest point on the interface. We call these grid points active and
their corresponding particles on the interface foot-point.

(2) Motion [Figure 1 (b)]. Move all foot-points according to a given motion law.
(3) Re-Sampling [Figure 1 (c)]. For each active grid point, re-compute the closest

point to the interface reconstructed locally by those particles after the motion
in step 2.

(4) Updating the computational tube [Figure 1 (d-e)]. Activate any grid point
with an active neighboring grid point and find their corresponding foot-points.
Then, inactivate grid points which are far away from the interface.

(5) Adaptivity. Locally refine/coarse the underlying mesh if necessary.
(6) Iteration. Repeat steps 2-5 until the final computational time.

3 Closed Curves in 3D

As already discussed in [15] the grid based particle method can also model
motions of codimension two objects easily and efficiently. In this section we
give a more detailed description for closed curves in 3D which will be used
in tracking the boundary of open surfaces in next section. In the grid based
particle method one needs local construction of interface for sampling particles
as well as computing geometric quantities. For codimension one interfaces, the
normal and tangent plane is used as the local coordinate system. The key idea
is that in this local coordinate system, the interface can be represented as a
graph in the tangent plane and can be easily approximated by least square
fitting a collection of neighboring particles on the interface.

For a codimension two interface, such a curve in 3D, the representation is the
same. We use meshless particles sampled according to an underlying grid, e.g.,
particles that are closest points corresponding to grid points in the neighbor-
hood of the interface. However, the local reconstruction procedure is a little
different. Since a curve is of one dimension, we can parametrize it in the tan-
gent direction locally. For instance, assume we have already collected a set of
neighboring particles yi, i = 0, 1, 2 . . . around the particle y0 on the curve and
its tangent vector t at y0. For local construction of the curve, we translate y0

to the original and transform the local coordinates using the Householder re-
flector such that t becomes the (0, 0, 1)-axis. By doing so, the curve in 3D can
be expressed locally as a function of z, the third coordinate. Mathematically,
we locally represent the curve using (x(z), y(z), z). Next, we use least square
fitting to obtain x(z) and y(z) from the collected particles, respectively, using
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quadratic polynomials. We can compute the foot-point associated to an active
grid point p = (p1, p2, p3) expressed with respect to the local coordinates by
minimizing

min
z

{
[x(z)− p1]

2 + [y(z)− p2]
2 + [z − p3]

2
}

. (1)

In the current implementation, since we are using local quadratic polynomials
for both x(z) and y(z), the minimizer z∗ can be found explicitly by solving a
cubic equation. Other Lagrangian information including the tangent vector,
the normal and/or bi-normal vectors, the global parametrization, and etc. can
be obtained using the local reconstruction (x(z), y(z), z) and z∗ accordingly.

4 Open Curves and Open Surface

In this section, we will discuss how our algorithm models the motion of an
open curve (in 2 dimensions) or an open surface (in 3 dimensions). The main
idea is to explicitly keep track of the motion of the end-points of an open curve
or the closed boundary of an open surface, and then to enforce this boundary
condition in the local reconstruction and sampling step.

4.1 Representation

As defined before, any grid point which is in a γ-neighborhood of the interface
is called an active grid point. In figure 3, we demonstrate a typical scenario
near an end-point of an open curve. Given an open curve, we first collect active
grid points which are within the γ-neighborhood. Then, for each of these active
grid points we find the corresponding closest points on the open curve. In the
figure, we label the active grid points differently (using red diamonds, blue
triangles, and green squares) and their closest points differently (using red
circle and green sun-symbol) to distinguish their roles.

Away from the boundary-point (green sun-symbol), the set-up is exactly the
same as before. If an active grid point has a distance greater than γ away
from the boundary (green sun-symbol), we simply project the grid point (red
square) onto the surface locally reconstructed by the least square fitting. This
gives the associated foot-point (red circle) on the surface.

For a grid point within the γ-neighborhood of the boundary, we assign it with
two foot-points. One is again the closest point from the grid point to the open
surface, while the second one is the closest point from the active grid point to
the closed boundary and we will call this second foot-point the boundary-point.
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Fig. 3. Representation of the open surface and the boundary in the Grid-Based
Particle Method. Away from the boundary-point (the green sun-symbol), the rep-
resentation is the same as in [15]. Each active grid point (red diamonds) is asso-
ciated to its closest point on the interface (red circles). Near the boundary-point,
each active grid point (blue triangles and green squares) is associated to its closest
point (red circles or green sun-symbol) and also the closest boundary-point (green
sun-symbol).
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In two dimensions, the second foot-point is just the end-point itself, as shown
in figure 3. For three dimensions, the boundary-point is exactly the sampling
point we obtained in the previous section. There is no extra minimization
process required to determine this second foot-point. Such a grid point will be
used to sample and track both the interface and its boundary in the framework
of grid based particle method in a consistent way. We will describe this further
in the next subsection.

Note that these two foot-points could be the same or could be different. In
figure 3, we plot these special grid points using blue triangles or green squares.
Consider the blue triangles, one of their associated foot-points is still obtained
by local least square approximation of the interface, which is plotted using red
circles. Since these blue triangle active grid points are within γ from the end
point (green sun-symbol), their second foot-points are also activated which are
the closest boundary-points (the connectivity is plotted using a dotted line).
Figure 3 is showing the case in two dimensions. For three dimensions, these
boundary-points are in general different among different grid points. For some
other active grid points near the boundary, the closest point on the open curve
could just be the closest boundary-point itself. In this case, the two foot-points
associated to an active grid point coincide. In figure 3, we plot this type of
active grid points using green squares and the connectivity between the active
grid points and their foot-points using a dashed-dotted line.

4.2 Motion and Resampling

Now we discuss how our algorithm incorporates this boundary information in
the evolution step and the resampling step. As before, the motion phase of the
algorithm is relatively straight-forward. We simply move all sampling points
(including both the closest points and the boundary-points) as in the usual
Lagrangian type methods. The motion law of the closest-points can be very
general. We can naturally deal with the motion by an external velocity field or
geometrical motions such as motion by the mean or the Gaussian curvature.
The motion law imposed on boundary-points can be explicitly given or can be
determined by local geometry of the boundary/surface such as the curvature
or the torsion, which can be easily computed from local reconstruction of the
boundary/surface as described in the previous section.

We separate the reconstruction and sampling of the boundary-points from
that of the surface. For two dimensional cases, there is no need to resample
end-points of the open curve since they are just explicitly tracked points. For
three dimensions, we resample the boundary using only boundary-points as
described in Section 3.
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(a) (b)

Fig. 4. (a) In the original algorithm [15], any potential new foot-point (red triangle)
will be rejected if x∗ /∈ [xmin, xmax] = [min(xj),max(xj)]. (b) In the new algorithm,
we associate the new closest point to the closest boundary-point if the corresponding
active grid point is close to the boundary. In this plot, we associate the active grid
point (blue circle) to the particle corresponding to xmin (red triangle) assuming it
is a boundary-point.

Away from the boundary, the resembling step follows the procedures in stan-
dard grid based particle method. However, resampling of the open surface
near the boundary requires more care since we need to take into account the
boundary of the open surface.

The local reconstruction phase of the algorithm is similar as before. For each
of the active grid point p, we consider its neighboring active grids and collect
a set of their corresponding closest points and, if any, also a separate set of
their corresponding boundary-points. If p is close to the boundary of the open
surface, its neighboring active grid point might be assigned two foot-points
which might or might not be the same (the blue triangles and the green squares
in figure 3, respectively). We will distinguish these two types of foot-points in
this local reconstruction step.

If the set of boundary-points is empty, we will simply use the set of closest
points for local reconstruction, as in the original algorithm in [15]. Otherwise,
we will form a set of sampling points for local reconstruction using both the set
of closest points and also the set of boundary-points. These sampling points
have to satisfy the following two conditions. The first one is the same as what
we have proposed in [15] that any two sampling points should be separated on
the order of O(h), where h is the local mesh size. This removes redundancy
in the sampling which may cause degeneracy in the local reconstruction. The
second constraint is that boundary-points in the sampling set should define
at least parts of the boundary of Ω̃, where Ω̃ is the convex hull formed by
the projection of the sampling points on the tangent plane. This condition is
to enforce that sampling particles are confined by the boundary of the open
curve/surface and this is the first place where the boundary information is
incorporated in the local reconstruction.
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In two dimensions, here is the way to construct this sampling set from both
the closest points and the boundary-points. The set of the sampling point
starts with collection of a set of closest points that are well separated as in
[15]. Then we go through the set of neighboring boundary points. For each
boundary-point, we check if it is O(h) away from all of the already collected
sampling points or not. If not, then we will reject that particular boundary-
point and then repeat the procedure with the next boundary-point. Otherwise,
in the local coordinates system {(n′)⊥,n′} where we denote the boundary-
point by (x̂, ŷ) and the set of the accepted sampling points by (xj, yj), we
check if x̂ ∈ [min(xj), max(xj)]. If not, then we will add this boundary-point
to the list of the sampling point. Otherwise, we will use this boundary-point
to replace the sampling point corresponding to either min(xj) or max(xj),
whichever closer to x̂. If a boundary point is accepted it is involved in both
the local reconstruction and defining end points of the reconstruction interval.

Now, with these sampling points, we construct a local least square fitting and
we denote it by y = f(x). To determine the new closest point, we minimize
the distance from the grid point p to the function y = f(x). If the minimum
is attained at x∗ ∈ [min(xi), max(xi)], we follow the same procedure as in [15]
and determine the new closest point (x∗, f(x∗)), accordingly. In the previous
algorithm, we deactivated any grid point if this new foot-point leads to an
extrapolation, i.e. if x∗ /∈ [min(xi), max(xi)], figure 4 (a). For active points
near the boundary, we again enforce the boundary information at this step
of the algorithm. We now go back and check if the set of boundary-points is
non-empty, i.e. if any of the active grid points in the neighborhood is of the
blue triangle or the green square type as in figure 3. If so, we will assign x∗

to this boundary-point, for example x∗ = xmin as shown in figure 4 (b). Of
course, if the distance between the grid point p and the boundary point x∗ is
larger than γ, this association will be removed. On the other hand, if none of
the neighboring active grid points is associated to a boundary-point, we will
simply deactivate this active grid point as in [15].

For three dimensional cases, we follow a similar procedure. To determine the
set of sampling points, we combine the set of the closest points and the set of
the boundary-points, if any. When we are adding a boundary-point to the set of
the sampling point, the more complicated step is to check if a boundary-point
on the tangent plane is inside the convex hull formed by the projection of all
accepted sampling points. Assume we have collected a set of accepted sampling
points and translated them to the local coordinate system which aligns the
normal with z axis and the tangent plane with x − y plane as was done in
[15]. Denote (xi, yi) to be the x − y coordinates of those collected sampling
points. Let (x̂, ŷ) be the projection of the boundary-point on the tangent plane.
We propose the following O(m log m) algorithm which efficiently determines if
(x̂, ŷ) lies inside the convex hull Ω̃ constructed by the set (xi, yi), in the x− y
(tangent) plane, see figure 5 (a).
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(a) (b)

Fig. 5. (a) In the original algorithm [15], any potential new foot-point (red triangle)
will be rejected if x̃∗ /∈ Ω̃. (b) In the new algorithm, we associate the new closest
point to the closest boundary-point if the corresponding active grid point is close
to the boundary. In this plot, we associate the active grid point (blue circle) to the
particle corresponding to the red triangle assuming that corresponds to the closest
boundary-point.
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Fig. 6. Incorporating the boundary information in the resampling phase. For each
active grid point in the resampling step, we summarize the procedure to determine
how we assign new closest point or deactivate the corresponding grid point.

Algorithm (to check if (x̂, ŷ) ∈ Ω̃):

(1) Compute the angle θi made between (xi− x̂, yi− ŷ) and the positive x-axis.
(2) Sort θi in an ascending order.
(3) If the difference between any two adjacent θi’s is great than π, the point

(x̂, ŷ) lies outside Ω̃. Otherwise, (x̂, ŷ) lies inside the convex hull.

The proof of this algorithm is straight-forward. Without loss of generality,
we assume (x̂, ŷ) 6= (xi, yi) is the origin and θi’s have already been sorted in
the ascending order. If there exists I such that |θI − θI−1| > π, we rotate
the (x, y)-coordinates to make θ̃i ∈ (0, π), ∀i. This gives ỹi > 0 and therefore
0 /∈ Ω̃ = {(x, y) =

∑
i αi(xi, yi), αi ≥ 0,

∑
i αi = 1}.

Again, if the boundary-point is at least O(h) away from all sampling points
and (x̂, ŷ) /∈ Ω̃, we accept this particular boundary-point as a sampling point.
Otherwise, we will use this boundary-point to replace the sampling point cor-
responding to one of the (xi, yi) on the boundary of Ω̃, whichever closest to
(x̂, ŷ). This particular sampling point can be found by first sorting all sampling
points on the tangent place according to the distance to (x̂, ŷ) in an ascending
order and then determining the first one on the boundary of Ω̃.

The next step is to obtain the local reconstruction of the surface z = f(x, y) by
least square fitting. Let x∗ = (x∗, y∗, f(x∗, y∗)) be the closest point of the active
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grid point p. We again use the above O(m log m) algorithm to determine if
(x∗, y∗) lies inside the convex hull Ω̃ constructed by the set (xi, yi), i = 1, · · · ,m
in the x−y (tangent) plane, see figure 5 (a). If so, then we accept x∗ and assign
the corresponding point on the surface to be the new foot-point. Otherwise,
we again check if the set of boundary-points is non-empty, i.e. if any of them
is of the blue triangle or the green square type as in figure 3. If so, we will
associate it to the closest point on the boundary of the open surface, figure 5
(b). Otherwise, we will simply remove this particular active grid point from the
computational tube and will also delete the corresponding associated particle.

We have summarized the algorithm in the resampling phase in figure 6. All
other steps in our algorithm will be the same as described in [15]. We ap-
proximate any Lagrangian information associated to this particle using the
local reconstruction of the surface. For example, the normal vector at this
new foot-point is approximated by the normal vector of the local reconstruc-
tion at x∗. The curvature and the global parametrization can also be updated
accordingly.

5 Examples

Unless otherwise specified, we will be using the computational tube with radius
γ = 1.1h, where h is the local grid size. We use quadratic polynomials for
the least square fitting in local reconstruction, which uses 6 particles in two
dimensions and 10 particles in three dimensions. The time integration is done
using the TVD-RK2 scheme with time step equals 0.75hmin, where hmin is the
smallest grid size of the underlying mesh.

Since our sampling particles are unconnected on the interface, we simply plot
the solution (interface location) using unconnected dots which shows the foot-
point locations. For some examples in 3D, to better visualize the solution, we
convert our computed solution to an implicit representation, i.e. a level set
representation using

φ(x) = n · (y− x) , (2)

and then plot the zero level set {φ = 0} using the MATLAB functions isosur-
face and patch.

16



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Fig. 7. Rotation of an upper half circle using an underlining uniform mesh of res-
olution 1292. The second row shows the solution at the final time t = π with the
exact endpoint locations plotted in red circle.
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Fig. 8. Normal motion of an upper half circle using an underlining uniform mesh
of resolution 1292. The half circle first expands in the outward normal direction for
t = 0.25 and then collapses in the inward normal direction for t = 0.25. The second
row shows the solution at the final time t = 0.5 with the exact endpoint locations
plotted in red circle.

5.1 Open Curve

5.1.1 Rigid Body Rotation

In the first example, we consider an upper half of a circle of radius 0.15 moving
under the rigid body rotation given by

u = 1− 2y

v = 2x− 1 . (3)

The curve will rotate around the point (0.5,0.5) in a period of π. Solutions at
t = mπ/5 for m = 1, · · · , 5 are shown on the top row in figure 7. On the second
row, we consider the solution at the final time t = π. The end-points of the
open curve are tracked explicitly using the TVD-RK2 scheme and are plotted
using a red circle. As we can see from this solution, end-points locations from
our algorithm matches with the exact locations very well.

5.1.2 Motion in the Normal Direction

A slightly more complicated example is the motion in the normal direction.
We consider the inward normal motion of an upper hemisphere of a circle with
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Fig. 9. Normal motion of an upper half circle using an underlining uniform mesh of
resolution 1292. The second row shows the change in the mean distance from the
center (0.5, 0.5). The solid line is the exact distance, the blue circle is the computed
solution.

radius 0.35. Figure 8 shows the solutions at t = 0.5m for m = 1, · · · , 5. The
solution at the final time are plotted on the second row. Like the previous ex-
ample, we also show using red circles the location of the end-points computed
by explicitly tracking them using an ODE solver.

5.1.3 Motion by Mean Curvature

We next consider the motion by mean curvature of an upper half circle of
radius 0.4 centered at (xc, yc) = (0.5, 0.5). We solve the evolutions of these
two interfaces up to t = 0.08 using the time step restriction ∆t = 0.5∆x2.
Away from the end-points of the open curve, the radius of the circle can be
analytically calculated and it is given by r(t) =

√
0.42 − 2t. At the end-points,

on the other hand, the curvature is not well-defined. Instead, we explicitly
impose the motion at the two-ends by

v(y) = −n(y)/|x− xc| . (4)

The solutions at various times are shown in figures 9. Figure 9 uses an un-
derlying mesh of 129 grids in each direction. On the second row, we plot the
change in both the total number of particles and also the mean radius of the
circle. The computed mean radius (the circles) matches with the exact solution
(solid line) very well.
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Fig. 10. Motion of a step-line at t = 25 with λ = 0.2 using an underlining uniform
mesh of resolution 1292. The approximate solution in [5] is plotted in solid line,
while our computed solution is shown by red circles.

5.1.4 Spiral Crystal Growth

As an interesting application of the proposed algorithm, we follow [20] and
compute the motion of a slip-line in the spiral crystal growth. Proposed in
[5], the slip-line is initially a straight segment and its motion is in the normal
direction with the normal velocity related to the curvature κ given by

v = (1− λκ)n , (5)

with the initial normal pointing downward.

In figure 10, we consider the motion of a single screw dislocation, i.e. only one
of the end-point is fixed while the other end-point is allowed to freely move.
The initial slip-line is the straight line joining the origin and the point (10,0).
We fix the end-point at the origin. Assuming that the slip-line is almost a
straight line (κ ' 0) near the other end-point, we impose the motion law
(u, v) = (0, 1) on this moving end. The critical radius λ equals 0.2. Figure
10 shows the computed solution (red circles) at t = 25 together with an
approximate solution (blue solid line) stated in [5, 20]

θ =

√
3

2(1 +
√

3)

[
r

λ
+ log

(
1 +

r

λ
√

3

)]
+ θ0(t) . (6)

These two solutions match very well.

Two other examples are also taken from [20]. The first example uses an initial
line segment of length 8 with λ = 0.1. The solutions at various time up to
t = 10 are plotted in figure 11. Another set-up uses a line segment of length
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Fig. 11. Motion of a step-line with λ = 0.1 and an initial length equals 8 using an
underlining uniform mesh of resolution 2572.
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Fig. 12. Motion of a step-line with λ = 0.2 and an initial length equals 2 using an
underlining uniform mesh of resolution 2572.
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2 with λ = 0.2, figure 12. Topological change in these solutions are nicely
captured using an underlying uniform mesh of only 257 grids in each direction.

5.1.5 Active Contour for Image Segmentation

Segmentation is one of many fundamental tasks in image processing. Since
[13], extensive research have been done on applying variational approach to
detect boundaries of objects in an image. In [13], the author proposed the
so-called snake model, or the active contour model, in where the boundary of
an object is detected by a piecewise C1 curve. Starting from an initial guess
in the class

C = {c : [a, b] → Ω, c piecewise C1}, (7)

the snake evolves to minimize the functional

Ẽ(c) =

b∫

a

|c′(q)|2dq + β

b∫

a

|c′′(q)|2dq + λ

b∫

a

g2[|G ∗ ∇u0(c(q))|]dq , (8)

with the observed image u0 : Ω = [0, 256]2 → [0, 1] for some edge detection
function

g(ξ) =
1

1 + |ξ|2 . (9)

Numerically, one usually discretizes the curve by particles, which corresponds
to the Lagrangian description. The implementation is fast since one solves only
ODE for these marker particles. Unfortunately, this energy is not intrinsic in
the sense that the minimizer depends on the parametrization. Moreover, this
formulation does not allow topological change of the boundary and, in fact,
this approach can detect only one single object.

One of many very important improvements is the geodesic active contour
model [6] in which one minimizes the energy

E(c) =

b∫

a

g(|G ∗ ∇u0(c(q))|)|c′(q)|dq . (10)

The resulting evolution equation is given by

∂c

∂t
= [κg − n · ∇g]n . (11)
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Fig. 13. Evolution of the active contour (red curve) for detecting edges. Two end–
points are fixed in the motion.

To handle topological change, the authors in [6] modeled the evolution using
the level set method. However, this so-called geodesic active contour method
mainly compute closed boundaries and it does not incorporate with any con-
strain on the curve such as the curve has to pass through certain location. For
more details about the formulation, we refer interested readers to [19, 17, 1].

In this paper, we follow [6] and evolve the contour according to

vn = κg − n · ∇g . (12)

Unlike the usual geodesic active contour, we do not implicitly define the curve
using the level set method. Moreover, we are considering an open curve with
both end-point fixed. Various active contour models could deal with open
curves [10, 9], but all open curves were discretized in the Lagrangian formu-
lation. It is therefore not easy to handle topological change of the solution.

In figure 13, we consider an image consists of line segments. The initial curve
(red circles) is the lower hemisphere of a circle. As this open curve evolves,
it will eventually stop once it comes to the boundary of an object (the black
curve in this case).

When we flip the image upside down, as shown in figure 14, the curve is
trapped in a local minimizer in which our open curve joins different parts in
the image by a straight line segment. This is a typical situation in most active
contour models. Since the minimization problem is not convex, the energy has
many local minimizers and the solution might very easily get stuck in one of
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Fig. 14. Evolution of the active contour (red curve) for detecting edges. Two end–
points are fixed in the motion.
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Fig. 15. Evolution of the active contour (red curve) for detecting edges. Two end–
points are fixed in the motion.

them. Global minimizer of active contour models can be found using different
approaches [14, 3], but these approaches are not being studied in the current
paper.

Now we slightly modify the image by removing two segments, as shown in
figure 15. By doing this, the two fixed end-points do not coincide with the
boundary of the object anymore. On the boundary of the object, the edge
function g closes to zero and that particular part of the curve does not con-
tribute to the energy. Away from the boundary of the object, the energy will
mimic the curve to minimize |c′|. Therefore, the interpretation of this segmen-
tation is to find a path joining the two end-points so that it coincides with
the boundary as much as possible. This result cannot be obtained directly
using typical geodesic active contours since there is no mechanism to impose
the end-point conditions. Again, since the minimization problem is not con-
vex, the curve is trapped in a local minimizer and the segmentation result
depends highly on the initial guess. Indeed, the global minimizer for this ex-
ample should be the path going from the upper route taking only piecewise
horizonal and vertical segments.

Next we consider an image for which we have a topological change in the
evolution of the active contour. Figures 16 and 17 use a clean image and a noisy
image, respectively, consist of a top black region, a disconnected black circle
and a light background. Two end-points of the initial curve (red circles) are
chosen such that they touch the boundary of the rectangular dark region. As
the curve shrinks, it wraps up the disjoint dark circle and the curve splits into
two disconnected pieces. One surrounds the circle and the other one connects
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Fig. 16. Evolution of the active contour (red curve) for detecting edges. Two end–
points are fixed in the motion. Topological change can be naturally incorporated in
the model.

Fig. 17. Evolution of the active contour (red curve) for detecting edges in an noisy
image. Two end-points are fixed in the motion. Topological change can be naturally
incorporated in the model.
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the two fixed end-points detecting the boundary of the dark region on the
top.

5.2 Open Surface

The motion of an open surface is more interesting and challenging. In the first
example, we will consider the simple rotation of an upper hemisphere of a
sphere of radius 0.15 initially centered at (0.5, 0.75, 0.5) for t = π under the
velocity field

u = 1− 2y

v = 2x− 1

w = 0 . (13)

The boundary of the upper hemisphere is a circle centered at (0.5, 0.75) with
radius 0.15 on the plane z = 0.5. Its evolution is computed by the approach
proposed in Section 3 and the solutions at various times are shown in figure
18. The whole rotation of the upper hemisphere is plotted in figure 19, where
the solutions in figure 18 are drawn using red circle. As we can see, the extra
condition on the boundary location described in Section 4 are satisfied very
well. There is no sampling particle lying outside the open surface.

A much more complicated motion is the single vortex flow proposed in [8]
where the velocity field is given by

u1(x, y, z) = 2 sin2(πx) sin(2πy) sin(2πz)

u2(x, y, z) =− sin(2πx) sin2(πy) sin(2πz)

u3(x, y, z) =− sin(2πx) sin(2πy) sin2(πz) . (14)

The original set-up of this test is to model the evolution of a closed sphere
centered at (0.35, 0.35, 0.35) with radius 0.15. In the current paper, we will
consider the motion of only the upper hemisphere. Like [8, 12, 16], we consider
the flow with reverse motion by multiplying the above velocity field by a
factor of cos(πt/T ). At the final time t = T , the solution should go back
to the original configuration. In figure 20, we plotted the evolutions of only
the boundary of this upper hemisphere using 151 grids in each direction. At
t = 0, this closed curve is given analytically by (x, y, z) = (r cos θ, r sin θ, 0).
In figure 21, we show the motion of the whole upper hemisphere with the
boundary points from figure 20 shown by red circles.
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Fig. 18. Motion of the boundary of an upper hemisphere under the rigid body
rotation and an underlining uniform mesh of resolution 1513.
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Fig. 19. Motion of an upper hemisphere under the rigid body rotation using an
uniform mesh of resolution 1513. The boundary of the surface is shown using red
circle.
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Fig. 20. Motion of the boundary of an upper hemisphere under the vortex motion
with rewind motion using T = 1.5 and an underlying uniform mesh of resolution
1513.
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Fig. 21. Motion of an upper hemisphere under the vortex motion with rewind motion
using T = 1.5 and an underlying uniform mesh of resolution 1513. The boundary of
the surface is shown using red circle.
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