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Abstract. We develop a simple algorithm for finding the minimizer of the function E(x)=∑n
i=1wi |x−ai|+F (x), when the wi are nonnegative and F is strictly convex. If F is also differen-

tiable and F ′ is bijective, we obtain an explicit formula in terms of a median. This enables us to
obtain approximate solutions to certain important variational problems arising in image denoising.
We also present a generalization with E(x)=J(x)+F (x) for J(x) a convex piecewise differentiable
function with a finite number of nondifferentiable points.
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1. Introduction Given a1,.. .,an∈R, it is well-known that

min
x∈R

n∑
i=1

|x−ai|α=


mean(ai) if α=2

median(ai) if α=1

mode(ai) if α=0.

More generally, the very early work of Barral [14] investigated

min
x∈R

n∑
i=1

wi|x−ai|α, wi≥0, α=0,1,2,∞.

Also, [15, 16] developed local M-estimator filters based on such minimizers.
This work was inspired by two variational problems arising in image research. One

is soft wavelet thresholding [2, 8] or basis pursuit [3] arising in compressed sensing.
The other is the Rudin-Osher-Fatemi (ROF) model [1] of TV-based image denoising
and generalizations. The first involves reducing E(x)=

∑n
i=1wi |x−ai|+F (x) to its

simplest terms: the scalar problem

min
x∈R

E(x)= |x|+λ(x−f)2, λ>0. (1.1)

The solution to (1.1) is obtained from a simple formula: xopt=shrink(f , 1
2λ ), where

the shrink operator is (refer to Figure 1.1)

shrink(f,µ)=

 f−µ, if f >µ;
0, if −µ≤f ≤µ;
f+µ, if f <−µ.
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Fig. 1.1. Shrinkage
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2 A New Median Formula

It turns out that

shrink(f, 1
2λ )=median

{
f− 1

2λ ,0,f+
1
2λ

}
. (1.2)

This seems (surprisingly) to be a new result. We generalize it below.
The ROF model [1] for image denoising is the following: find u satisfying

u=argmin
u

∫
Ω

|∇u|dx+λ‖f−u‖22 . (1.3)

Recently very fast methods for solving the discrete approximation were obtained using
graph cuts [6, 12] and split Bregman techniques [10]. If we take a discrete approxima-
tion to the anisotropic ROF model with |∇u|= |ux|+ |uy| (or similar generalizations),
and fix all the discrete values except one, then we are minimizing the function E(u)
which is defined as (2.1), where F (u)=λ(f−u)2. We will discuss this procedure
below.

2. The Main Theorem We consider the following minimization problem:

argmin
x∈R

E(x)=
n∑

i=1

wi|x−ui|+F (x). (2.1)

For notational convenience, denote by Wi the sums

Wi=−
i∑

j=1

wj+
n∑

j=i+1

wj , i=0,1,.. .,n

=(−w1−···−wi)+(wi+1+ ·· ·+wn).

Theorem 2.1. Suppose the wi are nonnegative, the ui are sorted as u1≤u2≤···≤
un, function F is strictly convex and differentiable, and F ′ is bijective. Then the
minimizer of (2.1) is a median:

xopt=median{u1,.. .,un,p0,. ..,pn}, (2.2)

where pi=(F ′)−1(Wi).
Proof. By the strict convexity of F , E is strictly convex and hence (2.1) has a

unique minimizer. Also by strict convexity, F ′ and (F ′)−1 are increasing. Therefore,
since Wn≤···≤W1≤W0, the pi satisfy

pn≤pn−1≤···≤pi≤pi−1≤···≤p0. (2.3)

We will prove the theorem by discussing the following two cases.
Case 1: Suppose that the minimizer xopt of (2.1) is in (ui,ui+1). Consider

Ẽ(x)=−Wix+F (x)+C, (2.4)

where C is a constant, then the associated Euler-Lagrange equation of (2.4) is

∂Ẽ=−Wi+F ′(x)=0. (2.5)

For x∈ (ui,ui+1), functions Ẽ and E are equivalent, so xopt is also a local minimizer

of Ẽ. But Ẽ is strictly convex, so xopt is necessarily the unique minimizer. Thus

xopt=(F ′)−1(Wi)=pi. (2.6)
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Case 1 Case 2

Fig. 2.1. The minimizer is the intersection of −F ′ and
∑

iwi sign(xopt−ui), and it is the
median (2.2).

Now we have ui<pi=xopt<ui+1. So

u1≤···≤ui︸ ︷︷ ︸
i numbers

<pi<ui+1≤···≤un︸ ︷︷ ︸
(n− i) numbers

. (2.7)

From the inequality (2.3), we have the ordering:

pn≤···≤pi+1︸ ︷︷ ︸
(n− i) numbers

≤pi≤pi−1≤···≤p0︸ ︷︷ ︸
i numbers

. (2.8)

Altogether, there are n numbers (u1,... ,ui and pn,... ,pi+1) less than or equal to pi and
n numbers (ui+1,... ,un and pi−1,. ..,p0) greater than or equal to pi, so the minimizer
pi is the median (2.2). Similarly, the same argument applies for xopt<u1 or xopt>un

with the notations u0=−∞ and un=+∞.
Case 2: Suppose that the minimizer xopt is equal to ui, where u values may repeat:

···ui−1<xopt=ui=ui+1= ·· ·=uj <uj+1 ···

Consider

Ẽ(x)=−Wjx+F (x)+C, (2.9)

then we obtain

argmin
x

Ẽ(x)=(F ′)−1(Wj)=pj .

If pj 6=uj , then both of uj and uj+1 are greater than pj or less than pj . Because

E(x)= Ẽ(x)whenx∈ [uj ,uj+1] and uj is the minimizer of E(x), we obtain Ẽ(uj)=

E(uj)<E(uj+1)= Ẽ(uj+1). Hence, we have

Ẽ(pj)<Ẽ(uj)<Ẽ(uj+1). (2.10)

So pj <uj <uj+1. Thus we have pj ≤uj <uj+1.
Similarly, we can prove ui−1<ui≤pi−1.
So we have

u1≤···≤ui−1︸ ︷︷ ︸
(i−1) numbers

≤ui=ui+1= ·· ·=uj <uj+1≤···≤un︸ ︷︷ ︸
(n− i) numbers

, (2.11)
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pn≤pn−1≤···≤pj ≤uj = ···=ui+1︸ ︷︷ ︸
(n− i+1) numbers

=ui≤pi−1≤···≤p0︸ ︷︷ ︸
i numbers

, (2.12)

There are (i−1)+(n− i+1)=n numbers less than or equal to and (n− i)+ i=n num-
bers greater than or equal to ui. Therefore, ui is the median (2.2).

Remark 1. We recently become aware of unpublished work of Adam Oberman [17],
which obtained special cases of our main theorem when F (x)=(x−u)2 and other
specifications. We will propose a median formula (2.15) in a more concise manner.

We now generalize Theorem 1 by replacing the `1 term with an arbitrary convex
piecewise differentiable function.
Theorem 2.2. Consider

min
x

J(x)+F (x). (2.13)

Suppose J is convex and piecewise differentiable with finitely-many nondifferentiable
points u1<u2< ···<un, and F is strictly convex. Then the unique solution to (2.13)
is a median, as defined in (2.15).

Define

J(x)=


J0(x), when x∈ (−∞,u1);

Ji(x), when x∈ (ui,ui+1);

Jn(x), when x∈ (un,∞),

(2.14)

Let J̃i be a differentiable and convex extension of Ji to the whole domain R such that
the J̃i satisfy J̃ ′

i ≤ J̃ ′
i+1. Denote pi=argminx∈R

(
J̃i(x)+F (x)

)
(here, pi is allowed to

be infinite), then the solution to (2.13) is

xopt=median{u1,u2,... ,un,p0,p1,.. .,pn}. (2.15)

Proof. There is a simple way to extend Ji to satisfy all the requirements. When x∈
(ui,ui+1), Ji is differentiable and convex, so J ′

i is continuous and increasing. Denote
a=limx→u+

i
J ′
i(x) and b=limx→u−

i+1
J ′
i(x), then define

J̃i=


ax+c, when x∈ (−∞,ui];

Ji, when x∈ (ui,ui+1);

bx+c′, when x∈ [ui+1,∞),

(2.16)

where c and c′ are computed as to ensure continuity of J . It is easy to show that J̃i
is convex and differentiable in R and

J̃ ′
i =


a, when x∈ (−∞,ui];

J ′
i , when x∈ (ui,ui+1);

b, when x∈ [ui+1,∞).

(2.17)

J ′(x) is increasing in R\S, so limx→u+
i
J ′(x)≤ limx→u+

i+1
J ′(x) and limx→u−

i
J ′(x)≤

limx→u−
i+1

J ′(x). Thus J̃ ′
i ≤ J̃ ′

i+1.
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If pi is the minimizer of (J̃i+F ), then (J̃ ′
i+F ′)(pi)=0. So (J̃ ′

i+1+F ′)(pi)≥
(J̃ ′

i+F ′)(pi)=0, then pi+1≤pi since the function (J̃ ′
i+1+F ′) is increasing. Thus we

have the following inequality:

pn≤pn−1≤···≤p1≤p0. (2.18)

The remainder of the proof is the same as in the previous theorem.
In numerical implementation, the bottleneck computation in formula (2.2) is sort-

ing the ui and finding the median value among all the numbers in the median formula.
We can make the computation cheaper by taking advantage of the structure of the
numbers in the median formula. In particular, we know that

p0≥p1≥···≥pn−1≥pn,

u1≤u2≤···≤un−1≤un.

Theorem 2.3. Suppose that the ui are sorted, then the following algorithm will find

xopt=median{u1,u2,.. .,un,p0,p1,. ..,pn}

with an additional 2n comparisons: Define T (p,q,u)=min
{
p,max{q,u}

}
and let T1=

T (p0,p1,u1) and Tm=T (Tm−1,pm,um), then

median{u1,... ,un,p0,.. .,pn}=Tn.

Proof. For n=1, since p1≤p0, we have

median{u1,p0,p1}=

p1 if u1≤p1
u1 if p1≤u1≤p0
p0 if p0≤u1

=T (p0,p1,u1)=T1.

Suppose that the formula holds for n=m, then we want to show it is true for n=
(m+1). Since pm+1≤pm≤···≤p0, then pm+1 is less than (m+1) numbers in the set
{u1,. ..,um,p0,.. .,pm}, necessarily

pm+1≤Tm=median{u1,... ,um,p0,... ,pm}.

Now we want to show that

median{u1,... ,um+1,p0,. ..,pm+1}
=median

{
median{u1,. ..,um,p0,.. .,pm},pm+1,um+1

}
=median{Tm,pm+1,um+1}.

We sort {u1,. ..,um,p0,. ..,pm} and denote its elements as s1≥···≥sm≥Tm≥ t1≥
···≥ tm. Consider the set

S={u1,... ,um+1,p0,.. .,pm+1}={s1,. ..,sm,Tm,t1,. ..,tm,um+1,pm+1},

we have tm≤um≤um+1, so tm is less than (m+1) elements in S. We also have
s1≥pm≥pm+1, so s1 is also bigger than (m+1) elements in S. Thus, in finding the
median of S, we can remove s1 and tm together,

median{u1,... ,um+1,p0,. ..,pm+1}=median{s2,. ..,sm,Tm,t1,. ..,um+1,pm+1.}
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Inductively, we can remove pairs {s2,tm−1},{s3,tm−2},... ,{sm,t1} without changing
the median of S. That means

median{u1,.. .,um+1,p0,... ,pm+1}=median{Tm,pm+1,um+1}
=T (Tm,pm+1,um+1)=Tm+1.

3. Applications
Remark 2. Adam Oberman proposed a similar scheme for TV denoising using 4 or
8 neighbors under anisotropic discretized form in [17].

3.1. Solving ROF Let F (x)=λ |x−f |α with α>1, λ>0, then the minimizer
of (2.1) is found as follow:

argmin
x

n∑
i=1

wi|x−ui|+λ|x−f |α

=median
{
u1, u2, . .., un, f+ |wn+wn−1+ ···+w1|pµ,

f+sign(wn+wn−1+ ···+w2−w1)|wn+wn−1+ ···+w2−w1|pµ,
f+sign(wn+wn−1+ ···+w3−w2−w1)|wn+wn−1+ ···+w3−w2−w1|pµ,
..., f+sign(wn−wn−1−···−w1)|wn−wn−1−···−w1|pµ,
f−|wn+wn−1+ ···+w1|pµ

}
, (3.1)

where p= 1
α−1 and µ=( 1

αλ )
p. A computational savings is that the pi do not depend

on the ui, so with all else fixed they only need to be computed once.
As λ↘0, we can replace µ by infinity, which gives us an expression for

xopt=argmin
x

n∑
i=1

wi|x−ui|. (3.2)

We get the solution by simply counting occurrences of +∞ and −∞ terms on the
right of (3.1) and arrange all terms in increasing order.

Formula (3.1) is very useful in certain denoising problems. For example, returning
to the anisotropic ROF model with |∇u|= |∇xu|+ |∇yu|, we can try to solve a discrete
approximation on a Cartesian grid point by point. Let the unknown value at a fixed
point be u, and its upper, lower, left and right values to be uu, ud, ul and ur (refer
to Figure 3.1). We fix all the pixel values except u and minimize:

min
u∈R

E(u)= |u−ul|+ |u−ur|+ |u−uu|+ |u−ud|+λ(u−f)2. (3.3)

We have

uopt=argmin
u∈R

E(u)=median{u`,ur,uu,ud,f+
2

λ
,f+

1

λ
,f,f− 1

λ
,f− 2

λ
}. (3.4)

We apply the median formula (3.4) pixel-by-pixel over the whole image until
convergence. During the iteration process, since a pixel directly affects only its four
neighbors, we can apply the median formula in parallel on multiple pixels at one time.
We divide the image into two groups in a checkerboard pattern such that pixels of
the same group are not neighbors (see Figure 3.2). Then we can update all pixels in
one group at one time while keeping the pixels in the other group constant.
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u` u ur

ud

uu

Fig. 3.1. ul,ur,uu,ud and u.
Fig. 3.2. After dividing pixels into two groups

by their color, pixels are in the same group are not
neighbors.

The algorithm is as follows:
while not converged:
apply (3.4) to pixels in the black pattern;
apply (3.4) to pixels in the white pattern.

For the numerical implementation, we use the difference between the current solution
and the last solution to test convergence.

Lemma 3.1. Consider function E(x)=
∑n

i=1 |x−ai|+λ(x−f)2, where x∈R, a1≤
a2≤···≤an. According to theorem 1,

xopt=argminE(x)=median{a1,a2,. ..,an,f+
n

2λ
,f+

n−2

2λ
,...,f− n

2λ
}, (3.5)

then, we claim E(x)−E(xopt)≥λ|x−xopt|2 for any x.

Proof. First, observe that

(x−f)2−(xopt−f)2=(x−xopt)
2+2(xopt−f)(x−xopt). (3.6)

Suppose ak≤xopt≤ak+1 (or similarly, xopt≤a1 or an≤xopt). Then xopt satisfies the
Euler-Lagrange equation

0∈
n∑

i=1

sign(xopt−ai)+2λ(xopt−f). (3.7)

Case 1: Suppose that ak<xopt<ak+1. Then sign(xopt−ai) can only be 1 or −1, so
we have

k−(n−k)+2λ(xopt−f)=0

2λ(xopt−f)=n−2k.
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Therefore, applying (3.6),

E(x)−E(xopt)

=λ(x−xopt)
2+2λ(xopt−f)(x−xopt)+

n∑
i=1

|x−ai|−
n∑

i=1

|xopt−ai|

=λ(x−xopt)
2+(n−2k)(x−xopt)+

n∑
i=1

|x−ai|−
k∑

i=1

(xopt−ai)+
n∑

i=k+1

(xopt−ai)

≥λ(x−xopt)
2+(n−2k)(x−xopt)+

k∑
i=1

{(x−ai)−(xopt−ai)}

+
n∑

i=k+1

{(ai−x)−(ai−xopt)}

=λ(x−xopt)
2+(n−2k)(x−xopt)+(k−(n−k))(x−xopt)

=λ(x−xopt)
2.

Case 2: If xopt is one ai, that is, it satisfies al<al+1= ···=am=xopt<am+1 (l<m),
then

sign(xopt−ai)=


1 if i≤ l;

[−1,1] if l+1≤ i≤m;

−1 if i>m.

(3.8)

According to the Euler-Lagrange equation, we have

0∈ l+(m− l)sign(xopt−am)−(n−m)+2λ(xopt−f). (3.9)

So for some p=sign(xopt−am)∈ [−1,1],

2λ(xopt−f)=(n−m− l)−(m− l)p.

F (x)−F (xopt)

=λ(x−xopt)
2+2λ(xopt−f)(x−xopt)+

n∑
i=1

|x−ai|−
n∑

i=1

|xopt−ai|

=λ(x−xopt)
2+

(
(n−m− l)−(m− l)p

)
(x−xopt)+

n∑
i=1

|x−ai|−
n∑

i=1

|xopt−ai|

≥λ(x−xopt)
2+

(
(n−m− l)−(m− l)p

)
(x−xopt)

+
l∑

i=1

[
(x−ai)−(xopt−ai)

]
+(m− l)|x−xopt|+

n∑
i=m+1

[
(ai−x)−(ai−xopt)

]
=λ(x−xopt)

2+(x−xopt)((n−m− l)−(m− l)p)+(l−(n−m))(x−xopt)

+(m− l)|x−xopt|
=λ(x−xopt)

2−(m− l)(x−xopt)p+(m− l)|x−xopt|
≥λ(x−xopt)

2 (since −1≤p≤1).
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Hence we conclude that F (x)−F (xopt)≥λ|x−xopt|2 for any x.

Theorem 3.2. The algorithm by repeatedly applying (3.4) converges, u
(k+1)
j =

argminuj∈RE
(k)(uj),

u(k)→argmin
u

E(u).

Proof. First, we denote the candidate solution at the kth step as u(k). At

the kth step, we update only the jth coordinate, u
(k)
j . From (3.4), we have

u
(k+1)
j =argminuj∈RE

(k)(uj), so E(k)(u
(k+1)
j )≤E(k)(u

(k)
j ). This implies that the en-

ergy over all pixels decreases, E(u(k+1))≤E(u(k)), and since it is also bounded from
below, the sequence

(
E(u(k))

)
converges. From Lemma 1, we have |u(k)−u(k+1)|∞≤

(E(u(k))−E(u(k+1)

λ )1/2, so (u(k)) converges.
Remark 3. The Lemma 1 can be easily generalized to E(x)=

∑n
i=1 wi|x−ai|+λ(x−

f)2, where wi≥0, so we have the convergence for the weighted TV denoising and non-
local median denoising algorithms, which will be introduced in the following sections.

Figure 3.3 compares the proposed algorithm with the graph-cuts method of Dar-
bon and Sigelle. The proposed method strictly decreases the energy function every
step, so it will definitely converge. However, it may stagnate at a nondifferentiable
point; the result obtained may not be a minimizer. The graph-cuts method does give
the exact minimizer. From the figure, we see the results from the proposed method
and graph-cuts are similar, though those with graph-cuts have slightly better SNR.
The two methods cost similar computational time in C++, but the proposed method is
much easier to code. If we use Matlab for the implementation, the proposed method
is as efficient as it is in C++. In contrast, implementation of the graph-cuts method
is much more challenging.1

Remark 4. The algorithm uses coordinate descent to approach the minimizer of ROF.
Combined with our median formula, it is very efficient. However, it is known that
the coordinate descent method can get stuck at a non-stationary point if the objective
function is nondifferentiable [9], which is the case for ROF. So the obtained denoising
result is not necessarily the optimal ROF solution. To remedy this problem, we can
add small perturbations or alternate with another descent method to overcome these
sticking points. Another solution is the multilevel approach of Tony Chan and Ke
Chen [7].

3.2. Solving ROF with More Neighbors The anisotropic discretized TV
term with only 4 nearest neighbors has metrification artifacts (see Figure 3.3). To
avoid those artifacts, a simple method is to use more neighbors, like adding the 4
diagonal neighbors, or using 16 weighted neighbors, see Figure 3.4. We will use
different sizes of neighbors to discretize |∇u| in the following.

We propose discretizing |∇u| by using 4 neighbors [12]:

|∇u|=
4∑

i=1

∣∣u−uwhite
i

∣∣ ; (3.10)

using 8 weighted neighbors [12]:

|∇u|=
4∑

i=1

∣∣u−uwhite
i

∣∣+ 1√
2

4∑
i=1

|u−ugray
i |; (3.11)

1The experiments are done in C++ on an AMD Athlon 64x2 Dual Core 5600+ and 2GB RAM.
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Input: SNR8.8 SNR13.2 (1.10s) SNR13.5 (1.15s)

Input: SNR3.1 SNR9.5 (1.30s) SNR10.3 (1.27s)

Fig. 3.3. ROF denoising using a median formula (3.4). The test image is a 512 by 512
Barbara. First column: inputs with different noise levels. Second column: The denoised results
using the proposed method. (Parameters: λ=0.061, 22 iterations in the top row; λ=0.026, 29
iterations in the bottom row.) Third column: The denoised results using the graph-cut algorithm
under the same λs.
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Fig. 3.4. This diagram shows how we choose different sizes of neighborhoods for discretizing |∇u|.

using 16 weighted neighbors [12, 4]:

|∇u|=0.26

4∑
i=1

∣∣u−uwhite
i

∣∣+0.19

4∑
i=1

|u−ugray
i |+0.06

8∑
i=1

∣∣u−ublack
i

∣∣ . (3.12)

With weights on the `1 terms in the energy function, the solution is still a median.
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Suppose that the wi are nonnegative, u1≤u2≤···≤un, and λ>0, then

argmin
x

∑
i

wi|x−ui|+λ(x−f)2 (3.13)

=median
{
u1, u2, ... , un, f+

1
2λ (wn+wn−1+ ·· ·+w1),

f+ 1
2λ (wn+wn−1+ ···+w2−w1),f+

1
2λ (wn+wn−1+ ···+w3−w2−w1),

... , f+ 1
2λ (wn−wn−1−···−w1),f+

1
2λ (−wn−wn−1−···−w1)

}
.

The formula still holds in the limit λ↘0. In this case, 1
λ goes to infinity.

argmin
x

∑
wi|x−ui|

=median
{
u1, u2, .. ., un, f+(wn+wn−1+ ···+w1)∞,

f+(wn+wn−1+ ·· ·+w2−w1)∞,f+(wn+wn−1+ ·· ·+w3−w2−w1)∞,

.. ., f+(wn−wn−1−···−w1)∞,f+(−wn−wn−1−···−w1)∞
}
.

From the equations, we can get the median formula for minimizing an energy
only containing weighted `1 terms. Now, we can use the median formula (3.13) to
implement the three different kinds of discretized TV method. We will compare the
numerical results in Figure 3.5.

4 neighbors SNR9.5(0.66s) 8 neighbors SNR9.7(2.0s) 16 neighbors SNR9.9(4.6s)

Fig. 3.5. Denoising with the median formula (3.13) using 4, 8, and 16 neighbors. The input is
the noisy Barbara with SNR 3.1 used in the previous experiment. Each experiment uses 10 iterations
(Parameters: λ=0.026).

3.3. Nonlocal Median The nonlocal mean method was introduced by Buades,
Coll and Morel [5]; the method works extremely well for image denoising. The idea
is to find similar patches inside the image, then average them to get rid of the noise.

We start by defining weights of any two pixels in the image f . Every two pixels
x and y have a weight w(x,y) used to evaluate the similarity of their patches. Define

w(x,y)=exp
(
− 1

h2

∫
Ω

Ga(t)|f(x+ t)−f(y+ t)|2 dt
)
, (3.14)

where Ga is a Gaussian with standard deviation a.
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For computational efficiency, the support of w(x,y) is often restricted to a “search
window” |x−y|∞≤R and set to zero outside.

The nonlocal denoising filter [5] is

NL(u)(x)=
1

c(x)

∫
Ω

w(x,y)f(y)dy, c(x)=

∫
Ω

w(x,y)dy. (3.15)

Here, we come up with the Nonlocal-ROF model as in [11],

argmin
u

E(u,f)=

∫
w(x,y)|u(x)−u(y)| dxdy+λ

∫
(u−f)2dx. (3.16)

In this objective function, we use the weighted `1 norm such that the result will
be sharper than using the weighted `2 norm, which is the nonlocal filter case. The
discrete version is

argmin
u

E(u,f)=
∑
i,j

wij |ui−uj |+λ
∑
i

(ui−fi)
2. (3.17)

We solve this by our weighted median formula and coordinate descent method.
Consider the optimization for uk with all other pixels ui(i 6=k) fixed, then (3.17)
reduces to the weighted subproblem (3.13), for which we have a median formula
for its solution. We call this the nonlocal median. We apply it pixel-by-pixel and
repeat for few times to get a denoised result. The numerical examples are shown in
Figure(3.6).

52 search window(SNR 10.4) 72 search window(SNR 10.8) 112 search window(SNR 10.9)

Fig. 3.6. Denoising by approximately solving (3.17) with a median formula (3.13) using differ-
ent search windows. The input is the noisy Barbara with SNR 3.1 used in the previous experiment.
Each experiment uses 2 iterations. The runtimes are 14s with the 5×5 search window and 20s with
the 7×7 search window and 34s with 11×11 search window. (Parameters: λ=5×10−3, a=1.25,
h=10.2.)

4. Numerical Results Figure 3.3 shows two denoising experiments with the
4-neighbor ROF median formula2. The first column is the clean image, the second
column is two noisy inputs with different noise levels, and the last column shows the
denoised results. Figure 3.5 shows the improvement by using more neighbors in the
TV discretization. The 4-neighbor method is the most efficient, but the 8-neighbor

2The experiments are done on an AMD Athlon 64x2 Dual Core 5600+ and 2GB RAM. Figure 3.3
and Figure 3.5 are run in C++, the others are in Matlab R2007b.
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and 16-neighbor methods produce better results. Figure 3.6 shows denoising results
using the nonlocal median (3.13) with different sizes of search windows. Again we
observe a trade off between computational efficiency and quality with the different
search window sizes.

5. Conclusion We have developed a simple and very general formula for find-
ing solutions to functions that arise in `1 minimization problems in image research
and elsewhere. The formula involves simple expressions using the median and leads
to interesting and fast denoising algorithms.

Acknowledgement Thanks to Pascal Getreuer for his helpful suggestions.
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