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Abstract In this work, we consider the segmentation of im-
ages as the minimization of an energy involving a region-
based data fidelity term and a regularization term, as the
Chan and Vese model. We focus on two aspects of the prob-
lem: optimization and fusion of the information provided by
several sources. A first contribution consists in correcting
the multi-phase level-set based approach proposed by Chan
and Vese from the so-called “hidden phase problem”. We
later compare it to the Iterated Conditional Mode (ICM) and
the Simulated Annealing (SA) algorithms. Our second con-
tribution is the extension of the multi-phase model to the
multi-channel case, which we study from a semantic point
of view, allowing only relevant combinations of the differ-
ent channels’ data. Experiments on real MRI brain data, for
normal patients and for pathological cases, show that ICM
is faster and more accurate than the level sets and that multi-
protocol MR images can be used in our multi-phase and
multi-channel model to segment both normal and patholog-
ical structures.

Keywords Segmentation · Optimization · Mumford-Shah
functional · Multi-channel fusion · Multi-phase level sets ·
Brain imaging

1 Introduction

Image segmentation is an early vision problem that has been
intensively studied. A standard approach consists in mini-
mizing an energy that is a weighted combination of a data
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fidelity term which measures the closeness of the segmen-
tation to the observed data and a regularization term which
embeds prior knowledge about the solution. This approach
was originally proposed in (Geman and Geman, 1984). In
this seminal work, the authors formalize the problem in a
discrete optimization framework and more precisely as a
Markov Random Field (MRF). They use the famous Ising
(binary labelling) and Potts (multi-label) models to penalize
discontinuities of labels in the solution. Another approach
consists in using Minimum Description Length (MDL) as
proposed in (Leclerc, 1989) to model the prior. Note that
the latter is not necessarily Markovian and is thus different
from the approach of Geman and Geman. In (Mumford and
Shah, 1989), Mumford and Shah introduced their acclaimed
model, which can be seen as a continuous version of the
work of Geman and Geman. Contrary to the discrete formal-
ism, this continuous approach allows a better understanding
of the model as well as to study more easily the nature of the
minimizers (although the analysis and computation of min-
imizers for the generic model remains quite challenging),
see (Aubert and Kornprobst, 2006) for instance and (David,
2005) for a full theoretical study. In (Zhu and Yuille, 1996),
the authors proposed a framework that combines these ap-
proaches in a unifying segmentation framework. Research
works exploiting these approaches for image segmentation
have mainly focused on the regularization part, and the in-
troduction of prior models (e.g. shape models), while using
data-specific fidelity terms, which depend on the applica-
tion.

These models generally lead to difficult optimization prob-
lems either with discrete or continuous approaches. A generic
discrete optimization approach for minimizing discrete en-
ergies, that has been originally proposed in (Geman and Ge-
man, 1984), consists in defining a sampler that explores the
solution space and embedding it into a Simulated Annealing
(SA) process which is characterized by a dynamic tempera-
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ture parameter. Several sampling strategies can be adopted,
including the well known Gibbs and the Metropolis sam-
plers. This approach is known to converge towards a global
minimizer of the energy, provided the decrease of temper-
ature is sufficiently slow. We refer the reader to (Winkler,
2006) for a full presentation and studies of these discrete op-
timization approaches. Although SA approaches have good
theoretical properties they are generally computationally con-
suming. To alleviate this constraint, Besag proposed in (Be-
sag, 1986) the Iterated Conditional Mode (ICM) approach
that mainly consists in setting the temperature parameter to
zero in the SA approach. This strategy does not guarantee
anymore the convergence towards a global minimizer but
drastically improves the computational burden. For the case
of binary segmentation, related to the Ising model, Marko-
vian energies can be globally optimized using a standard
graph-based approach as described in (Boykov et al, 2001;
Picard and Ratlif, 1975) for instance. We also note the nice
approximation property of the graph-based approach of (Boykov
et al, 2001) for the Potts model.

In (Zhu and Yuille, 1996), the authors considered a hy-
brid scheme in which the energy is iteratively minimized, by
introducing random seed points, moving the boundaries of
competing regions and then by performing a greedy reduc-
tion of the number of regions.

From a continuous point of view, the most popular op-
timization approach relies on the use of the level-set frame-
work (Osher and Sethian, 1988) to perform interface evolu-
tion. It is well known that the main advantage of this frame-
work over the traditional snake approach (Kass et al, 1988)
is that it naturally copes with the change of topology. This
technique has been used in the Active Contour Without Edges
(ACWE) model of (Chan and Vese, 2001) for the case of bi-
nary segmentation, and in (Vese and Chan, 2002) for the
multi-label (i.e. multi-phase) case. Note that the two lat-
ter can be seen as continuous versions of the discrete Ising
and Potts models, respectively. In this paper we consider the
multi-phase segmentation and a continuous or discrete point
of view is adopted depending on the considered optimiza-
tion technique.

Regarding the data fidelity term, most studies consider
scalar images and focus on the regularization model. How-
ever, the evolution of technology now provides researchers
with many different imaging modalities to study a given
scene or object. This is especially true of living organisms,
for which different types of waves and interactions are used
to obtain images of various physiological properties, through
MRI, X-ray scanner or scintigraphy (PET and SPECT) for
example. For a given modality, various acquisition protocols
provide the physician with a large and diverse set of infor-
mation regarding organs or anatomical structures. Examples
include the use of different T1 and T2 weightings in MRI,
contrast agents, or many different radiotracers in scintigra-

(a) (b)

Fig. 1 T1-weighted (a) and T2-weighted (b) images of a brain with tu-
mor and edema. While the pathological area, defined as the tumor and
the edema, appears as one single region, very contrasted from the other
tissues in the T2-weighted image (in white), the same area decomposes
in the T1-weighted image into the tumor (dark gray) and the surround-
ing edema (lighter gray, hardly distinguishable from gray matter).

phy. Multi-modality imaging provides more information but
also leads to a dramatic change as to how we are to under-
stand what constitutes an object, since a given structure may
appear with varying shape or contrast in the different im-
ages.

In the more general context of multi-channel imaging,
image interpretation needs to combine different types of in-
formation from a given scene. In this context, the segmenta-
tion problem can become non-univocal, given the different -
and somehow contradictory - information that is provided by
the different modalities corresponding to different channels.
Hence, in MRI pathological brain imaging for example, a tu-
mor will appear as an homogeneous region in T1-weighted
images, distinguishable from the surrounding edema, while
in T2-weighted images, the tumor and edema constitute a
single region, very contrasted from the rest of the brain (see
Figure 1). One can therefore decide to focus on the segmen-
tation of the tumor solely and choose to take the edema away
from the segmented object. However, one can also decide to
group both the tumor and edema in a single region that rep-
resents the pathological area. These two strategies formally
correspond to two possible combinations of visual informa-
tion given by the two channels regarding the tumoral region,
namely intersection and union.

Yet, the motivation for using multi-channel or multi-modality
images is that one obtains complementary information con-
cerning possibly many different objects of the image. In the
example of pathological brain MRI that we are primarily
interested in, a possible gain of using multi-protocols over
single-protocol MRI is to extract the information provided
by T1-weighted images to separate white matter (WM) from
gray matter (GM), while demarcating the edema from GM
by making use of the contrast available in the T2-weighted
images.

Working in the framework of energy minimization for
multi-phase segmentation, the choice of the data fidelity term
should be based on its simplicity, generality and its applica-
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bility to multiple objects. This last requirement eliminates
gradient-based data terms, which use derivatives and there-
fore ignore actual values of the image inside different con-
nected components defined by the set of discontinuities. Hence,
gradient information can be used to find borders of several
objects but cannot assign different labels on them. For this
reason, we chose a region-based energy functional, which
characterizes homogeneous regions through their average
intensity values, combined with a regularization term. For
a given image u0 defined in Ω, the model consists in find-
ing P regions Rj such that ∪Pj=1Rj = Ω, with associated
contours ∂Rj and means cj , minimizing the energy:

E =
P∑
j=1

∫
Rj

(u0 − cj)2dx+ ν · Length(∂Rj), (1)

which is the functional associated to the “minimal partition
problem” proposed in (Mumford and Shah, 1989), and is a
restriction of the general Mumford and Shah functional to
the piecewise constant case.

Our goal in this paper will therefore be to develop a ro-
bust multi-region (called “multi-phase” in the level set frame-
work) segmentation method based on the minimization of
this energy and to later study the possibilities to extend it to
the multi-channel case, in order to find distinct objects in the
whole scene, according to the information given by at least
two registered images of this scene.

A first contribution of this work is to identify and solve
an issue with the multi-phase ACWE (the so-called hidden
phase problem), related to a specific kind of local minimum
in the level sets framework. We also provide a comparison
of the corrected multi-phase ACWE with the ICM algorithm
(discrete framework), and demonstrate that the latter method
can achieve similar or even better energy minimization re-
sults, but a lot faster, and with more flexibility on the num-
ber of phases. Finally, we study the possibilities to extend
any of these two multi-phase segmentation frameworks to
the multi-channel case and propose a fusion rule that is as-
sociated with a clear semantics, namely an intersection rule
applied in all the regions.

The remainder of this paper is as follows: In Section
2, we review works that are related to either the optimiza-
tion problem, in both continuous and discrete approaches,
or multi-channel segmentation. In Section 3, we describe the
two aforementioned methods to find a minimum to equation
(1): the multi-phase ACWE, free of the hidden phase prob-
lem and the ICM algorithm and show a comparison between
the two, in terms of qualitative and quantitative results on
brain MRI and computation times. In Section 4, we pro-
pose an extension of multi-phase segmentation framework
to the multi-channel case. This extension is used in Section
5 to perform multi-phase and multi-channel segmentation

on pathological brain MRIs with T1 and T2 weighted proto-
cols. Finally, we draw some conclusions in Section 6.

2 Related works

In order to perform the minimization of the energy defined
in Equation (1), we propose to compare two classes of meth-
ods, which have both been largely described in the literature,
and which are based respectively on a continuous and dis-
crete formulation of the energy (1).

1. In its continuous formulation, Equation (1) can be mini-
mized by a variational method in the level-set formalism
(Osher and Sethian, 1988), which guarantees topologi-
cal flexibility of the contours. Only after Euler-Lagrange
evolution equations have been derived do we discretize
the system. Here, we follow the work of Chan and Vese,
with particular regard to the multi-phase extension (Vese
and Chan, 2002) of their Active Contours Without Edges
(ACWE) method (Chan and Vese, 2001). We point out
here that for the piece-wise constant Mumford-Shah en-
ergy functional, corresponding to the ACWE framework,
a minimizer exists for a finite number of regions. Re-
garding level-set based multiphase segmentation frame-
works, related to the ACWE energy functional, three fam-
ilies of approaches have been studied: (1) multiple in-
dependent level set functions (i.e. N functions for N
phases) as in (Samson et al, 2000), (Zhao et al, 1995) (2)
joint level set functions (i.e.N functions for 2N phases),
as in (Vese and Chan, 2002), (Cremers et al, 2006) (3)
a single multilayers level set function (i.e. 1 level set
function for N phases) as in (Chung and Vese, 2005).
The multilayer approach benefits from a smaller com-
putational cost than the original multi-phase ACWE but
forces a nested structure of the segmented regions. Since
we wish to remain as general as possible in this work, we
did not employ this method, but, as stated by the authors,
a nested structure can be useful in many applications.
We follow the formulation of Chan and Vese, defining
2N phases as the intersection of the positive and neg-
ative parts of N level set functions which permits one
to automatically cope with the problem of vacuum and
overlap, since one obtains a partition of the image.

2. In its discrete formulation, the energy (1) can be mini-
mized by a clustering algorithm similar to the k-means,
with an additional regularization process as proposed by
the Iterated Conditional Mode (ICM) algorithm (Besag,
1986). Since no deterministic algorithm is known to pro-
vide a global minimum for the multi-phase energy (1)
in polynomial time, we also ran a Metropolis sampler
(Winkler, 2006) into a simulated annealing algorithm
(Kirkpatrick et al, 1983; Kirkpatrick, 1984), which is
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known to provide an accurate order of magnitude of the
energy level of the global minimum.

A recent study has compared continuous versus discrete op-
timization methods for multiphase segmentation in (Szeliski
et al, 2008). Our work adds up to this study, comparing the
performance of several algorithms in terms of their capacity
to decrease the energy associated with a particular multi-
phase model.

From an application point of view, we report several
works which use an energy based approach for brain and/or
brain tumor segmentation. Parametric deformable models or
snakes, proposed in (Kass et al, 1988) have been widely
used, but are limited to the detection of a single object. The
segmented object can have several connected components,
although the method only handles such cases with difficulty,
but it is not possible to decompose an image into more than
two parts (object and background) from the information given
by gradients only. Hence, snakes have been used for the seg-
mentation of brain tumors in (Luo et al, 2003) and (Jiang
et al, 2004) among others. Level set based geometric de-
formable models avoid the burden of parameterization, there-
fore handling topological changes automatically. They are
used in (Droske et al, 2001), (Cates et al, 2004), (Lefohn
et al, 2003) and (Xie et al, 2005) for brain tumor segmenta-
tion.

Among the few recent works which have explored multi-
phase segmentation of brain MRI data, based on the mini-
mization of the Mumford-Shah energy, we report the work
of (Jeon et al, 2005), in which multi-phase segmentation
is achieved by successively applying the 2-phase ACWE
in subregions of the original image. The second class of
methods for energy minimization, based on Markov Ran-
dom Fields, has been used in the work of (Shen et al, 2003),
in pathological brain imaging, where pixels are classified
into ten clusters which are later merged into four classes.
These classes correspond to CSF, GM, WM and the tumor.
(Held et al, 1997) have taken a similar approach for use in
brain MR images. Five classes, corresponding to the back-
ground, WM, GM, CSF and scalp-bone and other non-brain
tissue are segmented according to a model that also takes
signal inhomogeneities into account. Simulated annealing
and ICM algorithms were used in this work and the former
method shows better results, but with significantly longer
computation times. Multi-phase brain tissue segmentation,
was evaluated in several recent works, including (Cheng et al,
2005), which combines both region and gradient informa-
tion in ACWE model, (Angelini et al, 2007b) where the
ACWE performance was compared to other segmentation
methods and in (Angelini et al, 2006) where different homo-
geneity measures were evaluated for the brain segmentation
task.

Regarding vectorial or multi-channel extensions, two re-
cent methods have been proposed for the binary (2-phase)

case. The first model (ACWE for vector valued images, (Chan
et al, 2001)) simply proposes to average the heterogene-
ity measure over the channels, but this model presents a
risk of oscillation between several equally good solutions
and highly depends on the initialization. The second model
(the logic framework, (Sandberg and Chan, 2005)) fixes this
problem by defining complementary rules of fusion inside
and outside the contour, leading to a clear and flexible method
that permits one to obtain the union or intersection of sev-
eral observations of a same object in different channels. It
remains to see how this work can be extended to the multi-
phase case, where the exterior of a contour is not to be con-
sidered as a single region. We note, however, that the ap-
proach of Jeon et al. permits one to directly extend this multi-
channel segmentation method to the multi-phase case, by
making use of their binary hierarchical scheme. Other at-
tempts to integrate several modalities in the segmentation
process can be found in (Wasserman and Acharya, 1995).
This paper adds a region term (the so-called local region in-
fluence (LRI)) to the external force acting upon a deformable
model (snake). Fusion is achieved by summing the LRIs
over the channels, which is also the approach taken in (Chan
et al, 2001). Although an improvement is demonstrated over
single-channel segmentation, this work suffers from the same
risk of oscillation as the vector valued model of Chan et al.
and the snake approach cannot be easily extended to the
multi-phase case. A multi-channel approach has also been
found to enhance the discrimination between different tis-
sue classes in the work of (Rajapakse et al, 1996), based on
a statistical approach. In the work of (Wu et al, 2006), the k-
nearest neighbor classification algorithm is extended to han-
dle three-channel data, combining proton density-, T2- and
contrast enhanced T1-weighted brain images. The method
was found to increase intra-class correlation coefficients, as
well as identification and segmentation accuracy of three
subtypes of lesions over two-channel segmentation, where
the intensity vector from the third channel (T1) was removed.
Here, the fusion between the channels is performed by con-
sidering the Euclidean distance to a class in respectively
three- and two-dimensional spaces. This corresponds to an
average of the information carried by the channels, mean-
ing that a point can be classified in a given phase even if its
gray level intensity differs greatly in one channel, so long as
the difference is small in the other channel(s). For a review
of other works related to multi-protocol MRI brain tumor
segmentation, see also (Angelini et al, 2007a; Khotanlou,
2008).

3 Optimization for the multi-phase case

In this work, we consider the problem of minimizing the en-
ergy (1) for a fixed number of regions P . We detail now two
methods: the multi-phase ACWE and the ICM algorithm.
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3.1 Level Set based formulation: the multi-phase ACWE

The multi-phase ACWE is an extension of the 2-phase ACWE,
in which a simplified form of Equation (1) is minimized.
The 2-phase ACWE intends to approximate a signal with
another one that can only take two values c1 and c2 while
enforcing the smoothness of the boundaries. Formally, let Ω
be a bounded subset of Rn, n = 2, 3, with ∂Ω its bound-
ary and Ω̄ its closure, then, for a given image u0 : Ω̄ → R
and a curve or surface C in Ω, the energy to minimize for
the evolving curve to fit an object in the image writes (for
n = 2) as follows:

F (c1, c2, C) = ν · Length(C) + µ ·Area(inside(C))

+
∫
inside(C)

| u0(x)− c1 |2 dx

+
∫
outside(C)

| u0(x)− c2 |2 dx ,

(2)

where c1 and c2 are two real numbers. The level set formula-
tion of this minimization problem has now become standard
and leads to a gradient descent algorithm parameterized by
an artificial time t ≥ 0, derived from the Euler-Lagrange
equations. At each step, c1 and c2 are computed as the av-
erage value respectively inside and outside the contour C,
which is now represented by the zero level of a Lipschitz
scalar function Φ defined onΩ. The evolution of the contour
is then implicitly defined by the evolution of Φ, according to

∂Φ

∂t
= δε

{
νdiv

(
∇Φ
| ∇Φ |

)
− µ

−(u0 − c1)2 + (u0 − c2)2
}

(3)

where δε is a regularized version of the Dirac function.
The multi-phase ACWE is a straightforward generaliza-

tion of the 2-phase model of (Vese and Chan, 2002). The
basic idea is to evolve N level set functions instead of one,
which defines up to 2N phases, when considering the possi-
ble intersections of all positive and negative regions of each
level set function. This way to proceed shows several good
properties. The first one is to be computationally efficient
since only three level set functions are needed to define up
to eight phases for example. The second one is that exactly
the same formalism as for the 2-phase model is used, with
hardly any further sophistication. Finally, defining phases by
the intersection of the positive and negative regions asso-
ciated with the level set functions permits one to keep the
valuable property of obtaining a partition of the image, with
no vacuum or overlap.

The drawback of this formulation is that phases are de-
fined implicitly, from the intersections of the level set func-
tions being manipulated. Therefore, a global change on one

of these functions may affect all phases. Reciprocally, chang-
ing one phase in a certain way may require that we evolve
several level set functions.

One first difficulty that arises from the fact that phases
are defined implicitly in the multi-phase model of Chan and
Vese is that the length term is hard to compute. This prob-
lem has been pointed out by the authors in (Chan and Vese,
2001), who proposed to change the length of the contour of
the phases by the sum of the length of the zero-level sets,
and stated that this does not affect the quality of the results.

The formulation of the multi-phase energy, for four phases,
is defined with two level set functions Φ = (φ1, φ2) (we will
later propose a general formulation for an arbitrary number
of level set functions). The average values c = ci,j are de-
fined for i, j = 0, 1, according to the sign of resp. φ1 and
φ2. Then, the energy writes

F (c, Φ) =
∫∫

Ω

(u0(x)− c1,1)2H(φ1)H(φ2)dx

+
∫∫

Ω

(u0(x)− c1,0)2H(φ1)(1−H(φ2))dx

+
∫∫

Ω

(u0(x)− c0,1)2(1−H(φ1))H(φ2)dx

+
∫∫

Ω

(u0(x)− c0,0)2(1−H(φ1))(1−H(φ2))dx

+ ν

∫∫
Ω

| ∇H(φ1) | + | ∇H(φ2) | dx.

(4)

Iterative minimization of this energy is performed by alter-
nating between the computation of the vector c, whose com-
ponents are the average values on the different phases, and
the evolution of the two level set functions φ1 and φ2 via
their associated Euler-Lagrange equations:

∂φ1

∂t
=δε(φ1)

{
νdiv

(
∇φ1

| ∇φ1 |

)
− [((u0 − c1,1)2 − (u0 − c0,1)2)H(φ2)

+ ((u0 − c1,0)2 − (u0 − c0,0)2)(1−H(φ2))]
}
,

∂φ2

∂t
=δε(φ2)

{
νdiv

(
∇φ2

| ∇φ2 |

)
− [((u0 − c1,1)2 − (u0 − c1,0)2)H(φ1)

+ ((u0 − c0,1)2 − (u0 − c0,0)2)(1−H(φ1))]
}
.

(5)

Formulation of the energy functional as well as evolution
equations become tedious to write in this form when more
than two level set functions are used. In order to generalize
those formulas to the 2N -phase case, we need to introduce
new notations. This will also be useful to implement a code
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in which N can be chosen arbitrarily. The idea of these no-
tations is to establish a correspondence between the signs
of the level set functions, represented by 1 (positive) or 0
(negative) and binary representation of numbers.

Generalization to 2N phases In the multi-phase model with
N level set functions, each phase j = 0, . . . , 2N − 1 is de-
fined by the intersection between N sets, each of which cor-
responding either to the positive or negative part of a level
set function. Defining a phase therefore amounts knowing
what the sign of each level set function is. For that matter, as
well as to shorten the notations, we need to introduce three
definitions. The first one establishes the correspondence be-
tween the index of a phase and the sign of the N level set
functions. For instance, ifN = 3 and the considered phase is
j = 5, considering its binary representation j = 101 gives
a clear rule to define the signs of the 3 level set functions,
namely φ1 > 0, φ2 < 0 and φ3 > 0. Then, the second def-
inition is aimed at combining the right characteristic func-
tions χjl for phase j, according to the sign of each level set
function l. Finally, the third definition does the same job as
the second one, but for the sake of the dynamical scheme,
where a level set function φl evolves according to the dif-
ference between heterogeneity measures inside and outside
{φl > 0}, in all the phases defined by the signs of the other
level set functions h1 = 1, . . . , l−1 and h2 = l+ 1, . . . , N .
We now formally state the three definitions.

Definition 1 For a positive integer N , let the integer j ∈
[0, 2N − 1]. For each 1 ≤ m ≤ N , let Bj(m) the mth

bit (binary digit) of j, so that the vector Bj can be iden-
tified to a binary representation of j. Reciprocally, given
a binary vector B of length N , we write B̂, the number
B(N)× 2(N−1) + . . .+Bj(1)× 20.

Definition 2 Given a positive integer N , for all 0 ≤ j ≤
2N − 1, we define the vectors Bj in {0, 1}N according to
Definition 1. For N functions Φl : Ω 7→ R, 1 ≤ l ≤ N , let

χjl =
{
H(φl) if Bj(l) = 1
1−H(φl) if Bj(l) = 0

(6)

Then we define

χj =
∏

1≤l≤N

χjl (7)

Definition 3 Given a positive integer N , for all 1 ≤ l ≤ N ,
let h1 ∈ [0, 2l−1 − 1] and h2 ∈ [0, 2N−l − 1] and, respec-
tively, the vectors Bh1 and Bh2 of length l − 1 and N − l
as in Definition 1. For N functions φl : Ω 7→ R and for
1 ≤ p ≤ N , if p < l, let

χp =
{
H(φp) if Bh1(p) = 1
1−H(φp) if Bh1(p) = 0

(8)

and if p > l, let

χp =
{
H(φp) if Bh2(p) = 1
1−H(φp) if Bh2(p) = 0

(9)

Then define the product :

χ̂l,h1,h2 =
∏

1≤p≤N,k 6=l

χp. (10)

For a fixed l, each of these products (with respect to h1 and
h2) is aimed at defining the positive phase Bl,h

1,h2

+ =

[Bh1 , 1, Bh2 ] and the negative phaseBl,h
1,h2

− = [Bh1 , 0, Bh2 ],
where [., .] is the concatenation operator.

Although these definitions are tedious to write, they provide
a convenient notation for implementing a variable number
of level set functions in a code. Similar notations have been
proposed recently by Bertelli et al (2008).

With these notations, we write the energy that will be
minimized in the multi-phase and multi-channel framework.
When N level set functions φl are used, 1 ≤ l ≤ N , let Φ =
(φ1, . . . , φN ) and suppose that the heterogeneity measure
associated to phase j (0 ≤ j ≤ 2N − 1) is defined by

zj =
(u0 − cj)2

K(u0)2
(11)

whereK(u0) = maxy∈Ω u0(y)−miny∈Ω u0(y) is the con-
trast of u0 and permits us to have zj ∈ [0, 1] and cj is the
mean of phase j. Let also z = (z1, . . . , z(2N−1)), then the
energy writes:

F (z, Φ) = ν

N∑
l=1

∫
Ω

| ∇H(φl) | dx+
2N−1∑
j=0

∫
Ω

zjχjdx

(12)

To minimize this expression, we embed the Euler-Lagrange
equations in a dynamical scheme with artificial time. Given
the initial functions φl(O, x) for 1 ≤ l ≤ N and x ∈ Ω, we
compute z and update φl as follows:

∂φl
∂t

= δε

{
νdiv

(
∇φl
| ∇φl |

)
−∑

0≤h1≤2l−1−1

0≤h2≤2N−l−1

[
z(B̂l,h1,h2

+ )− z(B̂l,h1,h2
− )

]
χ̂l,h1,h2

}
(13)

However, a close look at the form of these evolution
equations indicates a problem that needs to be fixed: for each
level set function, the decision to increase or decrease its
value at a given point is taken under the assumption that the
sign of the other functions remains unchanged at this point.
This results in only one alternative phase being explored for
each level set function, which covers all the cases in the 2-
phase model, but not in the multi-phase model. Hence, for a
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Ω

φ2 ≥ 0

φ2 ≥ 0
φ1 ≥ 0

φ1 ≥ 0 φ1 < 0

φ1 < 0
φ2 < 0

φ2 < 0

•P

Fig. 2 Current evolution of the contours corresponding to the zero
level of two functions φ1 (green) and φ2 (red), which aims at segment-
ing the objects of the image (disk and triangle).

(1,0) (1,1)

(0,1)(0,0)

Fig. 3 Diagram of phase transition in the 4-phase model.

point that currently belongs to a given phase, only N alter-
native phases are explored (one per level set function) out of
the 2N − 1 other phases. As a consequence, a pixel which is
not currently classified in the optimal phase cannot always
be moved to the best phase (i.e. the phase whose associated
mean value is the closest to the value of the pixel).

An illustration is provided in Figure 2, where the point
P , at the top of the triangle is currently in the phase {φ1 ≥
0, φ2 < 0} (that we will denote phase (1, 0) to simplify the
notations) and should ultimately be part of the phase (0, 1),
which currently best approximates the triangle. However,
since P is in {φ2 < 0}, the algorithm based on Equation
(5) only chooses between the current phase (1, 0) and the
phase (0, 0), which may not lead to the optimal partition.

A symmetrical situation is likely to occur with the evo-
lution of φ2, which fixes φ1. Therefore, the algorithm can
only drive the evolution of φ2 at point P to the phases (1, 0)
and (1, 1). The only possibility for the point P to be part of
phase (0, 1) is that one of the phases (0, 0) or (1, 1) leads
to a lower energy compared to the current phase (1, 0), and
therefore may serve as a temporary non-optimal solution,
but this cannot be expected in general.

The diagram of Figure 3 summarizes the possible evolu-
tions that drive points from one phase to the others. An ar-
row between two phases indicates that a point can be moved
between the two phases, so long as this decreases the global
energy. Thus, in the 4-phase case, each phase only “sees”
two out of the three other phases and 2-step transitions are
only authorized in case the first transition decreases the en-
ergy, which is not guaranteed. The 8-phase model suffers
even more severely from this problem. For a point that is

(1,0,0) (1,1,0)

(0,1,0)(0,0,0)

(1,0,1) (1,1,1)

(0,1,1)(0,0,1)

Fig. 4 Diagram of phase transition in the 8-phase model.

(a) (b) (c)

Fig. 5 Single channel test image with eight distinct regions with arti-
ficial colors (a). Segmentation obtained by minimization of the energy
with the dynamical scheme derived from Euler-Lagrange equations (b).
Zero-level of initial level set functions (c). The patterns in the segmen-
tation correspond to pixels of the initial configuration which could not
be moved because of the “hidden phase” problem.

currently part of a given phase, the evolution of the level
set functions can only drive this point to three other phases,
leaving four phases not directly accessible. Hence the dia-
gram of phase transitions for eight phases takes the form of
Figure 4. In this case, evolving the level set functions so as
to pass a point from one phase to another may require up to
three steps, which must all successively decrease the energy.
The existence of such a path between the phases becomes
very unlikely and the final segmentation highly depends on
the initialization.

The consequence of the “hidden phase” problem is the
presence of patterns in the final segmentation, created by the
points which could not be moved to the appropriate phase,
like in Figure 5. These patterns are reminiscent of the ini-
tialization, since they are formed of pixels which could not
be correctly classified from the very beginning of the iter-
ations. The solution that consists in increasing the regular-
ization parameter to get rid of those disks is not acceptable
because it would likely erase small objects from the segmen-
tation (see for example the blue disk inside the triangle).
Therefore, we need to find ways to authorize more transi-
tions between phases to avoid this type of local minima.

3.2 Solutions for the hidden phase problem

The previous analysis demonstrates that the evolution of the
level set functions at a given point, which is determined ac-
cording to the comparison of heterogeneity measures in dif-
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ferent phases, should rely on a comparison of all phases.
The only work that we have found so far, discussing this
problem, is the Ph.D. thesis (Hernandez, 2004). We will first
expose this solution to the problem and later propose an al-
ternative solution.

3.2.1 Direct choice of the best phase

In Appendix A.3 of his Ph.D thesis, Hernandez has identi-
fied the aforementioned problem of “hidden phase” and pro-
posed that the whole set of phases be compared to decide
for the evolution of the level set functions at a given point
x, instead of only a subset of phases. In the case M = 2 (4-
phase segmentation), the data force of the original scheme
takes the form

∂φ1

∂t
(x) =

− [((u0(x)− c1,1)2 − (u0(x)− c0,1)2)H(φ2(x))

+ ((u0(x)− c1,0)2 − (u0(x)− c0,0)2)(1−H(φ2(x)))],
∂φ2

∂t
(x) =

− [((u0(x)− c1,1)2 − (u0(x)− c1,0)2)H(φ1(x))

+ ((u0(x)− c0,1)2 − (u0(x)− c0,0)2)(1−H(φ1(x)))]
(14)

which relies on the comparison of only two terms, once it
has been decided whether the point x belongs to the set of
points that verify H(φ2) = 1 (resp. H(φ1) = 1) or to 1 −
H(φ2) = 1 (resp. 1−H(φ1) = 1).

The idea is then to explore all the phases and to drive
the level set functions to the one whose associated mean is
closest to the value u0(x). Hence, equation (14) becomes

∂φ1

∂t
(x) = min{(u0(x)− c0,0)2, (u0(x)− c0,1)2}

−min{(u0(x)− c1,0)2, (u0(x)− c1,1)2},
∂φ2

∂t
(x) = min{(u0(x)− c0,0)2, (u0(x)− c1,0)2}

−min{(u0(x)− c0,1)2, (u0(x)− c1,1)2}
(15)

As before, each evolution equation explores the possibil-
ity to increase or decrease the value of the level set function,
but this time, all the phases are taken into account to make
the decision. The scheme then permits to solve the “hidden
phase” problem, for it forces the evolution of the level set
function so as to reach the same sign it has in the best phase.
Indeed, results indicate that no patterns related to the initial-
ization are present in the final segmentation anymore. How-
ever, this method falls in another trap, due to the fact that
these possible moves take place in a level set framework.

More specifically, we are not in presence of a method of de-
scent anymore. If a pixel goes from one phase to another
one, this transition is accomplished by locally changing one
or several level set functions until their signs correspond to
the best phase. However, if two or more level set functions
are meant to change sign, these changes do not generally oc-
cur at the same time and the pixel may be directed to a non-
optimal phase, at least temporarily. Therefore, in order to
avoid misclassification, which may occur even in the phase
associated with the largest heterogeneity measure, it is espe-
cially important that convergence is reached at the end of the
iterations. Unfortunately, these temporary errors also change
the mean of the phases, thus provoking new changes in the
system and, in turn, potential new temporary misclassifica-
tions. This implies that convergence is hard to reach and that
there usually remain a few points of the image that are visi-
bly misclassified.

Since in the original method, based on the Euler-Lagrange
descent, any further iteration can only decrease the energy,
we can now see how to combine this property, which is very
important in the level set framework, with the possibility to
‘see’ all the phases over the course of the iterations.

3.2.2 Permutations of the phases

In the original multi-phase ACWE, we stated in Section 2.1
that the number of phases in which a pixel can be moved is
exactly equal to the number N of level set functions. Any
other move may be impossible if none of the N accessible
phases decreases the energy. However, we have some lat-
itude regarding what combination of positive and negative
parts of the level set functions is used to define a given phase.
If we look at the scheme of Figure 3, we see that transitions
of pixels from phases (0, 0) to (1, 1) and from phases (1, 0)
to (0, 1) may be impossible. The idea is then to permute any
couple of phases which are in direct relation with each other,
e.g. (1, 1) and (0, 1). Here, we change the sign of φ1 only in
the region {φ2 ≥ 0} so as to perform the permutation. In
order to keep smooth level set functions, the permutation is
immediately followed by a reinitialization of both level set
functions.

Permutation is applied after a fixed number of iterations
S. During the first S iterations, the original multi-phase ACWE
iteration is performed, until the contours have evolved enough
to let patterns due to the “hidden phase” problem appear.
This generally does not take more than a few iterations (less
than ten), and this parameter, that we will call a cycle of per-
mutation, is denoted by S in this work. Then, we perform
the permutation and reinitialization and carry on the ACWE
optimization for another S iterations. In the 4-phase model,
there is generally no need to compute other iterations and
perform other cycles of permutations because all the tran-
sitions that were impossible during the first S iterations are
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Fig. 6 Energy evolution over 10 cycles of 10 iterations and permuta-
tions for the segmentation of a brain MRI image.

realized during the next S iterations, after permutation of
two of the phases. However, we performed two cycles of
the permutation σ, which permutes the phases (1, 1) and
(0, 1), specifically by applying σ two times along 30 iter-
ations (S = 10).

The advantage of the proposed permutation method is
that we remain in the exact same framework as the orig-
inal multi-phase ACWE, except that the solution obtained
before permutation is considered as the initialization for the
next S iterations, which are computed after permutation and
reinitialization. This implies that at each iteration, we are
guaranteed to decrease the energy, meaning that a pixel can
never be classified, even temporarily, in a phase whose as-
sociated mean value is worst than before. This property is
illustrated experimentally in Figure 6 for the segmentation
of a brain MRI with the plot of a measure of convergence
corresponding to energy differences between iterations.

Therefore, after a few dozens iterations, there will not
be any risk of gross misclassification, as it is the case with
the previous method of Hernandez. The reinitialization is
only performed every S iterations, which does not add sig-
nificant computation burdens. Yet reinitialization helps for
the flexibility of the phases, which can change more eas-
ily and quickly. Finally, we think that the somewhat slower
process of classification of pixels in phases than in Hernan-
dez’ method helps the minimization process investigate the
histogram of the image. Empirically, we obtained relevant
phases with our method, even when the ‘direct choice of best
phase’ method of Hernandez gave poor results (see Figure 7
for results).

The proposed permutation method can be implemented
for eight phases as well, though it becomes a little more
complex. Again, with N = 3 level set functions, a given
pixel can only be moved in three other phases. There remain
four other phases, that can be reached by applying different
permutations. A possible way to have each phase “see” any
of the other in the course of the iterations is detailed now.

First, in the diagram of Figure 4, we optimize the in-
ner and outer squares separately, as in the 4-phase case, by
permuting phases (1, 1, 0) and (0, 1, 0) for the inner square

and (1, 1, 1) and (0, 1, 1) for the outer square. At this point,
after S iterations performed before the permutation and S
iterations performed after, all the transitions between phases
(·, ·, 0) and between phases (·, ·, 1) are performed and there
only remains to establish links between the first and second
set of phases (inner and outer square).

For a phase of the inner square, there is only one phase
of the outer square that is currently accessible. Therefore,
applying a circular permutation on inner square phases will
permit all of the inner phases to be directly linked to another
outer phase and if we apply the same circular permutation
three times, all outer phases will have been “seen” by any
of the inner phases. Therefore, we need 3S iterations to per-
form those three circular permutations and the total amount
for the whole set of permutations needed in this case is 5S.
In our experiments we observed that S can be lowered to
three without any significant loss in comparison to S = 10
in the 4-phase case. The total number of iterations is thus
unchanged compared to the 4-phase case, with 30 iterations
(we applied two cycles of permutations, that is 2 × 5S it-
erations). Overall, the total number of iterations with the
proposed permutation method is not significantly different
from the number of iterations required with the original im-
plementation of Chan and Vese that suffers from the “hidden
phase” problem.

The proposed permutation method could be generalized
forN > 3 but we do not detail it, since eight phases are gen-
erally sufficient for most multi-object segmentation tasks, as
in brain imaging.

3.3 ICM

We now briefly describe the ICM-based approach. The idea
is to replace the level-set technique of the previous section
by the ICM algorithm, which locally minimizes the energy,
yielding a partition of minimal energy when the mean val-
ues c1, . . . , cP are fixed. The means are then updated like
in the level set approach. Note that contrary to the level-set
approach, P is not required to be a power of 2. The ICM
has been originally presented in the seminal work of (Be-
sag, 1986). This algorithms relies on a Markovian discrete
framework (Winkler, 2006). In other words, unlike the ap-
proach that consists in discretizing the Euler-Lagrange equa-
tion, one directly considers a discrete version of the energy (1).
We first introduce this Markovian point of view (Winkler,
2006) before presenting the ICM algorithm.

We assume that images are defined on a discrete regular
grid V that should be seen as a spatial sampling of the con-
tinuous domain Ω . Any site s ∈ V corresponds to a point
in Rn. Instead of looking for a separation curve to define
the labeling, we consider an image u that takes value in a
discrete set of labels, which we identify with the set of the
current means of the computed regions L = {c1, . . . , cP } .
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In other words, each pixel is assigned to one possible label,
which in turn corresponds to a mean value. We denote by
u(s) the value of the label image u at the site s ∈ V .

For an image u0, we represent the first term that corre-
sponds to the homogeneous term of (1), i.e.,

∑P
j=1

∫
Rj

(u0−
cj)2dx. Since we consider a discrete framework, the integra-
tion over a continuous region is replaced by a discrete sum
over the sites. For j = 1, . . . , P , let Vj = {s|u(s) = cj}.
Thus this term rewrites as the following:

P∑
j=0

∑
s∈Vj

‖u0(s)− u(s)‖2 . (16)

We now need to define a discrete version of the regulariza-
tion term that consists of a weighted perimeter of the dis-
continuities. This regularization is known as the Potts prior
in the Markovian community (Winkler, 2006). For this pur-
pose, the grid is endowed with a neighborhood system de-
noted by · ∼ ·. In this paper, we only consider pairwise
interactions, i.e., interactions of the form (s, t) with s ∼ t.
We denote by E the set of all interactions. The regularization
term is a sum of adjacent pixels that have different values,
i.e., we have:

1
2

∑
(s,t)∈E

wstR(u(s), u(t)) , (17)

where the coefficients wst are some non-negative coeffi-
cients and where R(u(s), u(t)) = 0 if u(s) = u(t) and 1
otherwise. The coefficient 1

2 comes from the fact that a dis-
continuity is counted twice.

In this paper, the 8-connectivity, i.e., the nearest and sec-
ond nearest neighbors, is considered for the 2D case and the
weights wst are set to 1 for the nearest neighbors and to 1√

2
for the diagonal ones (second nearest ones). In 3D, the 26-
connectivity is considered and the weights wst are respec-
tively set to 1, 1/

√
2 and 1/

√
3 for the first, second and third

nearest neighbors. We also refer to (Chambolle and Darbon,
2008) for other definitions of discrete perimeter of disconti-
nuities.

We now need to optimize for u an energy of the follow-
ing form that is the sum of the homogeneous term given by
(16) and the regularization term given by (17), the influence
of which can be set with a parameter ν:

E(u) =
P∑
j=0

∑
s∈Vj

‖u0(s)−u(s)‖2+
ν

2

∑
(s,t)∈E

wstR(u(s), u(t))

(18)

For this purpose, we describe the ICM algorithm (Besag,
1986). It is a deterministic iterative procedure that decreases
the energy by modifying a given current solution one pixel
at a time. Given one current solution u and a site s ∈ V ,

let us define the conditional local energy Es which is the
restriction of the original energy Es(l) to the site s, where
l ∈ {c1, . . . , cP }, all the other variables t ∈ V \ {s} being
fixed, i.e.:

Es(l) = ‖u0(s)− l‖2 +
ν

2

∑
t|(s,t)∈E

wstR(u(s), u(t)) . (19)

The ICM picks randomly a site s and then changes the label
u(s) to the one that minimizesEs . This operation is iterated
until there is no possible label that decreases the energy. The
ICM algorithm is described below:

1. Start with a current guess u
2. Traverse all sites s ∈ V

(a) Set u(s) = argmin
l∈L

Es(l)

3. If no change occurred in the last sweeping of the image
(or if it is this number is small enough) return u, other-
wise go to 2.

In our implementation, the value of the means are updated
after one sweep, i.e., all pixels have been updated once, and
the ICM is relaunched again with these new parameters. The
global process stops when the means values do not signifi-
cantly change over two consecutive runs, which takes about
20 iterations.

The ICM procedure decreases the energy at each itera-
tion. It is known that the obtained solution is not necessarily
optimal and depends on the initial guess (which will be dis-
cussed later on). Since it aims at changing the label of a site
so as to minimize the energy, the ICM does not suffer from
the hidden phase problem identified in Section 2.1. By pick-
ing the best label in terms of energy, it is close to the algo-
rithm proposed by Hernandez (see Section 2.2.1). However,
avoiding the level set framework permits us to remain with
a descent method, which guarantees convergence, unlike the
approach of Hernandez.

3.4 Results and comparison

We propose several criteria to compare the segmentation re-
sults from the multi-phase ACWE and the ICM: computa-
tional times, relevance of the segmented regions (qualitative
analysis) and the value of the energy, that should be as low
as possible. We implemented both algorithms with Matlab,
in a matrix implementation which is much faster than iter-
ating on the pixels. The multi-phase ACWE took about 3
minutes for one image (for 30 iterations, see Section 2.2)
while the ICM algorithm took about 5 seconds. This large
difference can be explained by the simplicity of the latter al-
gorithm and the fact that more iterations must be computed
with the multi-phase ACWE to solve the hidden phase prob-
lem with permutations. The initalization used with the multi-
phase ACWE consists ofN set of cylinders which define the
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zero level of each of the N level set functions. A distance
function is then applied to determine a value for the level
set function at each point of the image. This type of inital-
ization is strongly recommended in (Vese and Chan, 2002).
For the ICM algorithm, we used an initialization based on
the histogram. We first determine the minimum and maxi-
mum of the image u0 and decompose the obtained interval
into P classes which all contain the same number of pixels.
We point out here two facts regarding the influence of the
initialization on the ICM:

– For brain MRI segmentation, the ICM converges to sim-
ilar results when initialized with average values derived
from the proposed histogram-based method and from
the cylinders used with the ACWE method (correspond-
ing to almost identical average intensity values for each
phase). Initialization with the histogram based method
remains more natural and straightforward to implement
for the ICM.

– If initializing the ICM with the average intensity values
identified with the ACWE segmentation result, the ICM
converges to a segmentation similar to the ACWE rather
than to the result obtained with the two other initializa-
tion methods. This confirms the influence of the initial-
ization on the ICM result but also emphasizes the fact
that both ICM and ACWE converge to different local
minima.

From a qualitative point of view, we expect a segmen-
tation method based on a region data term to yield phases
whose associated means are representative of the means of
the perceived objects. Results presented in Figure 7 for one
T1-weighted MR image compare the segmentations obtained
with the multi-phase ACWE (top row) and the ICM (bottom
row). Each column is associated to a different regularization
parameter ν, changing the energy of Equation (1), which we
try to minimize with these two methods.

Regarding the ACWE results, we observed a remaining
drawback in the lack of flexibility concerning phase evolu-
tion. Indeed, once a given structure is represented by sev-
eral phases, or once phases become empty, it becomes ex-
tremely unlikely that these phases will evolve so as to rep-
resent another structure. Hence, for each segmentation per-
formed with the multi-phase ACWE, only six phases are ac-
tually used to represent the brain and the skull. For some
cases, one phase is not used at all and for others, two phases
are used to represent the background. This fact is observed
in Figure 7, on the top row, where white matter is repre-
sented by the same phase as the small hyperintense area
present in the original image, corresponding to a blood ves-
sel injected with gadolinium. This vessel structure is recov-
ered in a single phase with the ICM, leading to a qualita-
tively better segmentation of the image (bottom row). We
also applied the two methods to a brain dataset taken from

ν = 0.003

ν = 0.003

ν = 0.005

ν = 0.005

ν = 0.01

ν = 0.01

ν = 0.1

ν = 0.1

T1 data

C−V

ICM

Label  1  2  3  4  5  6  7  8

Fig. 7 2D segmentations obtained for one slice of T1-weighted brain
MRI (SPGR). Top row shows results obtained with the multi-phase
ACWE (eight phases) of Chan and Vese, free of the hidden phase prob-
lem, for different values of the regularization parameter. Bottom row
shows the same results, obtained with the ICM, also with eight phases.
The same colormap is used for all segmentations, from black for the
label corresponding to the lowest mean value (label one) to white for
the label corresponding to the highest mean value (label eight).

the Internet Brain Segmentation Repository1. While no sig-
nificant differences between the results provided by the ICM
and the multi-phase ACWE could be observed when pro-
cessing one or only few slices, the ICM demonstrated bet-
ter sensitivity when the whole MRI volume (116 slices) was
processed. In particular, all of the gray nuclei were still iden-
tified individually on ICM segmentations with six and eight
phases, whereas the putamen could not be detected by the
multi-phase ACWE (see Figure 8). Our method therefore
improves the limitation observed in a statistical framework
by (Rajapakse and Kruggel, 1998), who reported that some
of the subcortical gray structures were missed with their al-
gorithm based on the ICM. Hence, ICM provides us with a
good overall segmentation, which could be further refined
by introducing gradient information or spatial relationships
to work on one or several specific structures.

In addition, the multi-phase ACWE and the ICM can be
compared on the basis of the final energy level, to judge the
performance of the optimization processes. Table 1 provides
final energy values for all experiments presented in Figure 7.
These results indicate that for small regularization weights,
the two methods yield equally good results, with a small
difference in favor of the ICM. For larger weight values,
the regularization obtained with the ICM achieves better en-
ergy minimization, as can also be seen on the precision of
anatomical segmentation in Figure 7.

1 The MR brain data sets and their manual segmenta-
tions were provided by the Center for Morphometric Anal-
ysis at Massachusetts General Hospital and are available at
http://www.cma.mgh.harvard.edu/ibsr/ .
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(a) (b)

(c) (d)

putamen

Fig. 8 Original data taken from IBSR (a) and 3D segmentations ob-
tained with the multi-phase ACWE with eight phases (b), ICM with
eight phases (c) and ICM with six phases (d). The whole volume (116
slices) was processed here.

Since both methods are known to only converge to a
local minimum, we also have implemented the Metropolis
sampler embedded into a simulated annealing algorithm. We
do not detail the Metropolis sampler with SA here since it
only differs from the ICM in that new labels are generated
randomly and the transition is accepted if the energy is de-
creased. If the energy does not decrease, the transition can
still be accepted with a probability exp −∆ET , where T is the
temperature parameter. We refer the reader to (Geman and
Geman, 1984; Kirkpatrick et al, 1983; Winkler, 2006) for
further details. In our implementation, T was initially set to
0.1 and multiplied at each iteration by a constant set to 0.99.
Note that this geometric scheme for temperature does not
guarantee the convergence of the process towards a global
minimizer anymore (see (Winkler, 2006) for further details)
but can at least give an approximation of the global solu-
tion. We stopped after 5000 iterations, which took about one
hour, also for eight phases. Although the computational cost
of this algorithm makes it hard to use in practice, it provides
a good estimate with regard to the global minimum of the
energy. An example of whole brain segmentation performed
with SA on Brainweb2 data is shown in Figure 9 . From
this comparison, we find that the multi-phase ACWE and
ICM perform well, as they reach local minima whose en-
ergy is close to that computed with SA, especially when the
regularization parameter ν is low. For ν = 0.1, which corre-
sponds to a highly regularized segmentation, the multi-phase
ACWE performs poorly, notably by decomposing the back-
ground in two phases in Figure 7. Although we obtain sig-

2 The Brainweb data sets are available at
http://www.bic.mni.mcgill.ca/brainweb/ .

(a) (b)

Fig. 9 Brainweb data set (a) with 5% SNR and segmentation, per-
formed by optimizing the energy of (Eq.1) with the simulated anneal-
ing algorithm.

ν = 0.003 ν = 0.005 ν = 0.01 ν = 0.1

ACWE 50.03 65.20 111.27 721
ICM 42.66 57.94 96.12 589
SA 42.64 57.83 94.06 516.89

Table 1 Comparison of the values of the energy (12) for the optimiza-
tion processes obtained with the multi-phase ACWE, the ICM algo-
rithm and the simulated annealing (SA) algorithm.

nificantly higher energy with ICM than with SA in this case,
compared to the cases with smaller ν, the energy computed
with ICM is still only 14% larger than the final energy level
computed with SA. This comparison therefore demonstrates
that, in spite of poor performances in other applications (see
the recent paper of (Szeliski et al, 2008) for energy mini-
mization benchmarks in stereo, image stitching, interactive
segmentation, and denoising), ICM can be successfully used
in multi-phase segmentation based on the Mumford-Shah
energy.

From these results, it appears that the minimization of
energy (12) can be best performed with the discrete approach
proposed by the ICM algorithm, rather than by the continu-
ous approach of the level set based ACWE.

4 Extension to the multi-channel case

At this point, we evaluated two methods to minimize the en-
ergy (1) and to obtain a relevant multi-phase segmentation
of an image. We are now interested in the problem of find-
ing objects according to the information provided by several
channels. For this purpose, we will first justify our choice
for a fusion operator on heterogeneity measures, consider-
ing logic-based rules to fuse information from different im-
age channels. We will then present the logic framework pro-
posed in (Sandberg and Chan, 2005), in the binary (2-phase)
case. Finally, we will extend our multi-phase segmentation
model to integrate multi-channel information. One of the
main difficulties for doing so is to avoid conflictive objec-
tives, which lead to contingent results. We will therefore
discuss the possible rules of fusion from a semantic point
of view.
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4.1 Fusion operators for merging heterogeneity measures

The first question to be addressed is the selection of the most
relevant level for fusing information from different chan-
nels. These possible levels of fusion can be classified into
three categories: the data (fusion of the different channels),
the segmentation (fusion of segmentations obtained inde-
pendently for the different channels) and the fusion of a
quantity that is used during the segmentation process. Ar-
guments against the first two possibilities can be found in
(Sandberg and Chan, 2005), and it is therefore suggested to
achieve the fusion on the heterogeneity measures, which are
defined for each point x ∈ Ω by:

zji (x) =
| ui0(x)− cji |2

K(ui0)2
(20)

where i = 1, . . . ,M denotes the channel, K(ui0) is the con-
trast of ui0 (see Equation (11)) and j denotes the phase.

Since we have to combine heterogeneity measures de-
fined as values in [0, 1], we propose to rely on the fuzzy
fusion framework for choosing the most appropriate fusion
operators. Indeed, fuzzy sets and possibility theory offer a
large spectrum of combination operators (Dubois and Prade,
1985; Yager, 1991), with well established properties and be-
haviors, and that allow adapting the operator to each partic-
ular problem at hand. Among the main operators, we find
t-norms, t-conorm, mean operators, symmetrical sums, and
operators taking into account conflict between sources or re-
liability of the sources. A synthesis can be found in (Bloch,
1996; Dubois et al, 1999; Bloch, 2008). Moreover, criteria
for choosing an operator have been described in the litera-
ture and are of great help when facing a concrete segmenta-
tion task.

A classification of these operators with respect to their
behavior (conjunctive, disjunctive, or compromise), the pos-
sible control of this behavior, their properties and their deci-
siveness has been proposed in (Bloch, 1996) and proved to
be useful for several applications in image processing. The
first class consists of operators which have always the same
behavior, whatever the values to be combined. This class can
be further refined into:

– conjunctive operators, i.e. that provide a result always
smaller than each of the values to be combined. Typical
examples are t-norms (that extend intersection to fuzzy
sets), which are commutative, associative and monotonous
operators, and have 1 as unit element; the most used ones
are the minimum, the product, or Lukasiewicz t-norm
(t(z1, z2) = max(0, z1 + z2 − 1));

– disjunctive operators, that provide a result larger than
each of the values to be combined. A representative class
is composed of t-conorms (fuzzy union), which are com-
mutative, associative and monotonous operators, and have
0 as unit element; the most used ones are the maximum,

the algebraic sum, or Lukasiewicz t-conorm (T (z1, z2) =
min(1, z1 + z2));

– compromise operators, that provide a result comprised
between the minimum and the maximum of the values
to be combined, a typical example being the arithmeti-
cal mean, or more generally mean operators of the form
( z
α
1 +zα2

2 )1/α. The parameterα is used to tune the strength
of the operator, which tends towards the minimum for
α = −∞ and towards the maximum for α = +∞ (the
value α = 1 provides the classical arithmetical mean).
These operators are not associative but they have the
strong property of being idempotent.

The idempotence property for the fusion operator f (i.e.
f(x, x) = x) is important when sources are considered as
being independent, i.e. there is no reason to reinforce the in-
formation they provide (Dubois et al, 1999) (as would be
the case with most t-norms, which weaken the combined
values, or t-conorms, which augment them). An interesting
parallel can be drawn with the statistical independence prop-
erty, which leads to express the conditional probabilities as
a product over the sources (i.e. a sum when taking the loga-
rithm to provide an energy function).

For multi-phase segmentation, conjunctive combinations
of heterogeneity measures on a phase j will perform a union
of observations. In this case, the fused heterogeneity mea-
sure is lower than the minimal heterogeneity measure on the
different channels, which guarantees that any area homoge-
neous with the current average value of phase j, in at least
one channel, can be attached to the phase. On the other hand,
disjunctive combinations applied to a phase j favor the inter-
section of the observations of an object across the channels.
In this case, all heterogeneity measures must be low to attach
a point to the phase j.

If idempotence is besides required, then the only pos-
sible choice is the minimum t-norm or maximum t-conorm
(the only idempotent operators in these classes).

Another class that could be of interest consists of oper-
ators that have a variable behavior, depending on the val-
ues to be combined. This is the case for some symmetrical
sums for instance, such as σ0(z1, z2) = z1z2

1−z1−z2+2z1z2
or

σ+(z1, z2) = z1+z2−z1z2
1+z1+z2−2z1z2

. For instance σ0 behaves dis-
junctively for high values (z1 ≥ 1/2 and z2 ≥ 1/2), con-
junctively for small values (z1 ≤ 1/2 and z2 ≤ 1/2) and
as a compromise otherwise. This leads to an increase in the
dynamics of the combined values. On the contrary, σ+ tends
to decrease the dynamics.

Finally the third class consists of operators depending
also on some global information such as reliability of each
source, or conflict between sources. This can be useful when
sources cannot be considered as equivalent, for instance be-
cause one image is more reliable than another one, either
globally or for specific classes or structures.
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In the present work, we mostly discuss applications in
MRI imaging, for which sources can be considered equiva-
lent. Since we are looking for fusion rules that can be easily
interpreted from a semantic point of view, we will only use
conjunctive and disjunctive operators (i.e. union and inter-
section operators). For the specific choice of the operator,
the idempotence property is also adapted to our case and we
will therefore focus on the maximum operator for hetero-
geneity measures, to enforce intersection of channels infor-
mation and on the minimum operator, to achieve the union.

4.2 The binary case

The logic framework of (Sandberg and Chan, 2005) was de-
signed to catch an object in a 2-phase framework, according
to several possible set operations, applied on multiple chan-
nels. For two channels, if O1 and B1 are the observations
of the object and the background in the first channel, and
O2 and B2, are the observations of the object and the back-
ground in the second channel, the final region of the object
O can be defined as either O1 ∪O2 or O1 ∩O2.

The fusion of the zji with respect to the different chan-
nels can be defined with a union function, that considers that
a point belongs to a given phase as long as the heterogeneity
measure is low in at least one channel. An example of such
union function (given here for only two channels) is:

f∪ = (zj1 · z
j
2)1/2. (21)

An intersection function can be defined as well, that con-
siders that a point belongs to a given phase only when all
heterogeneity measures are low. The intersection function
proposed in (Sandberg and Chan, 2005) is:

f∩ = 1− ((1− zj1)(1− zj2))1/2. (22)

It should be noted, however, that the operators proposed
in Equations (21) and (22) are actually compromise oper-
ators, according to the classification of Section (3.1). For
instance f∪ is a mean operator obtained for α = 0 (geo-
metrical mean). Although it provides a value that is smaller
than the arithmetical mean, it is still not a true conjunctive
operator.

Depending on the type of segmentation to perform, dif-
ferent combinations of the two fusion rules are proposed.
For example, the union of all observations of an object A
can be obtained by applying a union function (conjunctive
operator) on the heterogeneity measures associated to the
phase that contains A (say phase 1) while the heterogeneity
measures associated to the other phase are fused according
to the intersection rule (disjunctive operator). Here, the dif-
ferent possibilities rely upon De Morgan’s law, which states

that for two sets A1 and A2, (A1 ∩A2)c = Ac1 ∪ Ac2. En-
forcing this law is required to avoid conflictive objective in
the segmentation.

In the level set ACWE formulation, the objective func-
tion corresponding to the union of all observations applied
on phase 1 (and therefore the intersection of all observations
applied on phase 2) writes

F (c1, c2, φ) =ν
∫
Ω

δ(φ) | ∇φ | dx

+
∫
Ω

f∪(z1
1 , z

1
2)H(φ)dx

+
∫
Ω

f∩(z2
1 , z

2
2)(1−H(φ))dx.

(23)

Other combinations can be derived to obtain the segmen-
tation of the intersection or union of all observations Ai of a
given object or other possible bitwise logic operations, such
as A1 ∩ ¬A2.

Therefore, this framework can handle the problem of
multi-channel segmentation in a 2-phase framework, in the
sense that conflictive objective are avoided, but needs to be
adapted to the multi-phase case. We now present and discuss
possible rules of fusion from a semantic point of view.

4.3 Multi-phase case

In order to obtain a relevant multi-phase segmentation of a
multi-channel image, several elements must be taken into
account. First, as in the 2-phase case, conflictive objective
must be eliminated. Therefore, we must avoid assigning a
point to several phases at the same time or, reciprocally, a
point to be put away of all the existing phases. This con-
straint of avoiding conflictive objective is fundamentally re-
lated to the fact that our segmentation method ultimately re-
sults in a partition of the image: no hole or overlap is possi-
ble and an arbitrary decision is made automatically, in case
of conflictive objective that would cause a hole or overlap
otherwise. In the 2-phase case, we have seen that conflictive
objectives are avoided by assigning to the two phases differ-
ent fusion operators, namely a conjunctive and a disjunctive
operator. In the multi-phase case, we need to explore what
the possibilities are to assign a given type of fusion opera-
tor to a phase. It is clear for example that having two phases
segmented with a union fusion rule between heterogeneity
measures is likely to lead to a conflictive objective, even if
intersection fusion rules are used on all other phases. This
is illustrated in Figure 10, where two objects and a back-
ground appear with a different shape in the two channels.
Three phases (at least) are required here, two for the objects
and one for the background. While the conflicts between the
objects and the background would be solved by the dual-
ity of the union and intersection fusion rules (respectively
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Figure 6: Two-channel image illustrating the possible
conflict created by the various appearances of the objects
1 and 2 in the two channels. Some parts of the image
(point x for example) are inside object 1 in the first chan-
nel (left) and inside object 2 in the second channel (right).
If both objects are segmented as a union through the chan-
nels, no clear decision is made regarding the conflictive
part and a somewhat arbitrary decision will be taken to
respect the partition constraint.

mostly background. We then use a union fusion rule for
the phase dedicated to the object (phase 1) and an intersec-
tion rule for the phase dedicated to the background (phase
2), following the recommendation of Sandberg et al. We
then expect that the phase dedicated to the object will ex-
pand, due to new areas which are homogeneous with the
current phase 1 in at least one channel, and become stable.

However, surprisingly, all these strategies invariably
lead to the same result, shown in Figure 7 (b). Although,
in the course of the iterations, the part (0,0) has been clas-
sified in phase 1, it is ultimately part of the background, in
phase 2. This phenomenon has a clear explanation, in that
using a union fusion rule permits one to combine very het-
erogeneous parts of the image in the same phase, therefore
leading to means which are not representative of any of
the actual parts of the phases. Since our classification re-
lies on a distance with the mean of the segmented regions,
changes can occur when the mean is too distorted, as is the
case in our synthetic example. Unfortunately, this makes
the interpretation of the segmentation very hard. Indeed,
we would not expect that parts that have been added to
a phase, segmented with an union fusion rule, could be
later put into another phase. When we initialize phase 1
with the points of values (100,0), it is puzzling that the
final result attaches the part (0,100) rather than (0,0), the
latter being homogeneous with the initial phase 1 in one

(a) (b)

Figure 7: (a): Two-channel test image (first and second
row) and image with the four distinct regions (third row).
White is 100, black is 0 and gray is 10. (b): Results of 2-
phase segmentation with various initialization and union
fusion rule inside the contour (phase 1), intersection fu-
sion rule outside the contour (phase 2).

channel and not the former. Our conclusion is that union
fusion rules lack stability by letting the possibility to in-
troduce great changes in the mean of a phase in a channel,
which result in new and rather impredictible movements.

We now see that the two constraints of the partition and
the semantic relevance lead to contradictory conclusions:
while the first prescribes to use intersection fusion rules
in combination with union fusion rules, relying on De
Morgan’s law, the second suggests to abandon any use of
union fusion rule at all. Indeed, using intersection fusion
rule for all the phases leads to a great stability of the mean
within the phases but by doing so, we do not explicitly
decide how to classify conflictive parts and therefore, in-
troduce contingency in our results. However, one decisive
advantage of the multi-phase case over the 2-phase case is
that one can decide the appropriate number of phases. In
the case of our test image, we have seen that four regions
can be distinguished by their value in each channel. Since
an intersection fusion rule is employed in the segmenta-
tion process to seek for regions which are homogeneous
in all the channels, we need four phases to completely
decompose the original multi-channel image into objects
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Figure 6: Two-channel image illustrating the possible
conflict created by the various appearances of the objects
1 and 2 in the two channels. Some parts of the image
(point x for example) are inside object 1 in the first chan-
nel (left) and inside object 2 in the second channel (right).
If both objects are segmented as a union through the chan-
nels, no clear decision is made regarding the conflictive
part and a somewhat arbitrary decision will be taken to
respect the partition constraint.

mostly background. We then use a union fusion rule for
the phase dedicated to the object (phase 1) and an intersec-
tion rule for the phase dedicated to the background (phase
2), following the recommendation of Sandberg et al. We
then expect that the phase dedicated to the object will ex-
pand, due to new areas which are homogeneous with the
current phase 1 in at least one channel, and become stable.

However, surprisingly, all these strategies invariably
lead to the same result, shown in Figure 7 (b). Although,
in the course of the iterations, the part (0,0) has been clas-
sified in phase 1, it is ultimately part of the background, in
phase 2. This phenomenon has a clear explanation, in that
using a union fusion rule permits one to combine very het-
erogeneous parts of the image in the same phase, therefore
leading to means which are not representative of any of
the actual parts of the phases. Since our classification re-
lies on a distance with the mean of the segmented regions,
changes can occur when the mean is too distorted, as is the
case in our synthetic example. Unfortunately, this makes
the interpretation of the segmentation very hard. Indeed,
we would not expect that parts that have been added to
a phase, segmented with an union fusion rule, could be
later put into another phase. When we initialize phase 1
with the points of values (100,0), it is puzzling that the
final result attaches the part (0,100) rather than (0,0), the
latter being homogeneous with the initial phase 1 in one
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Figure 7: (a): Two-channel test image (first and second
row) and image with the four distinct regions (third row).
White is 100, black is 0 and gray is 10. (b): Results of 2-
phase segmentation with various initialization and union
fusion rule inside the contour (phase 1), intersection fu-
sion rule outside the contour (phase 2).

channel and not the former. Our conclusion is that union
fusion rules lack stability by letting the possibility to in-
troduce great changes in the mean of a phase in a channel,
which result in new and rather impredictible movements.

We now see that the two constraints of the partition and
the semantic relevance lead to contradictory conclusions:
while the first prescribes to use intersection fusion rules
in combination with union fusion rules, relying on De
Morgan’s law, the second suggests to abandon any use of
union fusion rule at all. Indeed, using intersection fusion
rule for all the phases leads to a great stability of the mean
within the phases but by doing so, we do not explicitly
decide how to classify conflictive parts and therefore, in-
troduce contingency in our results. However, one decisive
advantage of the multi-phase case over the 2-phase case is
that one can decide the appropriate number of phases. In
the case of our test image, we have seen that four regions
can be distinguished by their value in each channel. Since
an intersection fusion rule is employed in the segmenta-
tion process to seek for regions which are homogeneous
in all the channels, we need four phases to completely
decompose the original multi-channel image into objects
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Fig. 10 Two-channel image illustrating the possible conflict created
by the various appearances of the objects 1 and 2 in the two channels.
Some parts of the image (point x for example) are inside object 1 in
the first channel (left) and inside object 2 in the second channel (right).
If both objects are segmented as a union through the channels, no clear
decision is made regarding the conflictive part and a somewhat arbi-
trary decision will be taken to enforce partition constraint.

for the two objects and for the background), the conflict be-
tween the two objects is not resolved. Here, the two phases
dedicated to the objects would both tend to take the con-
flictive part in charge but the partition constraint would not
allow this. An arbitrary decision is then made, which may,
or may not, serve a given purpose.

A second element that must be taken into account is
the semantic relevance of the segmentation. In addition to
obtaining results that are not contingent (i.e. strongly rely-
ing on initialization, or on small differences in gray levels),
we expect the segmentation to be easily interpretable and
to isolate objects that can be perceived or easily predicted
when we look at the data. This semantic relevance element
leads to a surprisingly drastic conclusion, namely that we
should completely avoid union fusion rules (conjunctive op-
erators). To illustrate this point, we propose a synthetic ex-
ample in Figure 11 (a). The multi-channel image is com-
posed of three distinct regions in each channel, with a com-
mon background and the central rectangle that decomposes
into two sub-objects in the two channels. Formally, we can
distinguish four regions according to their values in channel
1 and 2 (written as a couple): (10, 10), (0, 100), (0, 0) and
(100, 0) (see Figure 11 (a), bottom row). In a 2-phase seg-
mentation, we tried different initializations to take different
parts of the central rectangle in charge in phase 1, the sec-
ond phase being mostly background. We used a union fusion
rule for the phase dedicated to the object (phase 1) and an
intersection rule for the phase dedicated to the background
(phase 2), following the recommendation of (Sandberg and
Chan, 2005). We then expect that the phase dedicated to
the object will expand, due to new areas which are homo-
geneous with the current phase 1 in at least one channel, and
become stable.

However, surprisingly, all these strategies invariably lead
to the same result, shown in Figure 11 (b). Although, in the
course of the iterations, the part (0,0) has been classified in
phase 1, it is ultimately part of the background, in phase
2. This phenomenon has a clear explanation, in that using

(a) (b)

Init Results

Fig. 11 (a): Two-channel test image (first and second row) and im-
age with the four distinct regions (third row). White is 100, black is
0 and gray is 10. (b): Results of 2-phase segmentation with different
initializations and a union fusion rule inside the contour (phase 1), in-
tersection fusion rule outside the contour (phase 2).

a union fusion rule permits one to combine very heteroge-
neous parts of the image in the same phase, therefore leading
to means which are not representative of any of the actual
parts of the phases. Since our classification relies on a dis-
tance with the mean of the segmented regions, changes can
occur when the mean is too distorted, as is the case in our
synthetic example. Unfortunately, this makes the interpreta-
tion of the combined multi-phase multi-channel segmenta-
tion very hard. Indeed, we would not expect that parts that
have been added to a phase, segmented with a union fusion
rule, could be later put into another phase. When we initial-
ize phase 1 with the points of values (100,0), it is puzzling
that the final result attaches the part (0,100) rather than (0,0),
the latter being homogeneous with the initial phase 1 in one
channel and not the former. Our conclusion is that union fu-
sion rules lack stability by letting the possibility to introduce
great changes in the mean of a phase in a channel, which re-
sults in rather unpredictable segmentation results.

We now see that the two constraints on the segmenta-
tion process to provide a partition of the image data and
to enforce semantic relevance lead to contradictory conclu-
sions: while the first one prescribes to use intersection fusion
rules in combination with union fusion rules, relying on De
Morgan’s law, the second one suggests to avoid the use of
union fusion rule. Indeed, using intersection fusion rule for
all the phases leads to a greater stability of the average val-
ues within the phases. At the same time, by doing so, we
do not explicitly decide how to classify conflictive parts of
the image data and therefore, introduce contingency in our
results. However, one decisive advantage of the multi-phase
case over the 2-phase case is that one can decide the ap-
propriate number of phases. In the case of our test image,
we have seen that four regions can be distinguished by their
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value in each channel. Employing intersection fusion rules
in the segmentation process to identify regions that are ho-
mogeneous in all the channels, we need four phases to com-
pletely decompose the original multi-channel image into ob-
jects that are homogeneous in all the channels.

Contrary to the use of union fusion rules, which does not
lead to a clear interpretation of the segmented regions (one
clear interpretation could be that we segment “regions that
are homogeneous in at least one channel”, but we have seen
with our test image that such a naive interpretation is not ap-
plicable), applying an intersection fusion rule in all phases
does lead to a clear interpretation, namely, that we segment
regions which are homogeneous in all the channels. As in
the multi-phase and single-channel case, we must decide on
the number of phases that is required for a given problem,
but the additional difficulty in the multi-channel case is that
this choice is based on what we think is the number of re-
gions that are distinguishable from all the channels. We will
discuss the specific example of pathological brain MRI in
the next section. For the moment, we formalize our multi-
phase and multi-channel segmentation method for a fixed
number of phases Rj , j = 1, . . . , P with ∪Pj=1Rj = Ω.

The multi-phase segmentation model, posed as a mini-
mization problem in Equation (1), is straightforwardly ex-
tended to the multi-channel case, by fusing heterogeneity
measures with a disjunctive fusion operator. Using the max-
imum as fusion operator, the energy to minimize is:

E =
P∑
j=1

∫
Rj

max
i=1,...,M

(zji (x))dx+ ν · Length(∂Rj), (24)

where ∂Rj denotes the contour of the phase Rj and M is
the number of channels. The heterogeneity measure zji is
defined for each channel i with respect to the phase j as in
Equation (20).

Finding a minimum for this energy can be achieved by
any of the methods discussed in Section 2: the level-set ACWE,
the ICM algorithm or the simulated annealing (or any other
optimization algorithm that is used to minimize (1)). How-
ever, here again, the level-set implementation discussed im-
poses a number of phases of the form P = 2N , where N is
the number of level set functions.

5 Segmentation of pathological brain datasets

In this section, we present some experiments to validate the
proposed model of multi-phase and multi-channel segmen-
tation on pathological brain dataset. This model relies on
the energy of Equation (24), solved with the ICM algorithm,
for the reasons presented in Section 2.4. Three parameters
need to be set, namely the number of iterations, the regu-
larization parameter and the number of phases. While the
first two parameters could be fixed to 20 iterations and ν =

0.005, we used only five phases in single-channel FLAIR
(T2-weighted) segmentation and seven phases in single-channel
SPGR (T1-weighted) as well as for combined multi-channel
(FLAIR, SPGR) segmentation.

In single-channel image segmentation, T1-weighted MR
images have sufficient contrast to extract normal anatomical
structures such as WM, GM, CSF and gray nuclei. How-
ever, they provide very low contrast between pathological
structures (tumor, edema) and GM. On the other hand, while
T2-weighted MR images do not permit to clearly distin-
guish between normal anatomical structures, they provide
very good contrast on the tumoral region. We tested both
single- and two-channel images, for two clinical cases with
a brain tumor (low-grade glioma). Results in Figure 12, for
one case, show that the multi-channel segmentation is able
to extract the most relevant information from the two MRI
protocols: the tumoral region (tumor and edema) is essen-
tially segmented from the FLAIR image while segmentation
of the normal brain structures is derived from the SPGR im-
age. Manual segmentation of the tumor on the FLAIR and
SPGR data was performed by an expert neurosurgeon, to
compare with our automated segmentation results as illus-
trated in Figure 14 (a) and (c) for single-channel segmen-
tation and in Figure 14 (b) and (d) for multi-channel seg-
mentation. We observed that the contours obtained in the
latter case are most similar to the manual contours. Post-
processing of the overall segmentation result was applied to
extract the tumoral region, consisting in selecting the con-
nected component corresponding to the tumor and filling
holes in it. Hence, the different parts of the red contour in
Figure 14(b-d) are actually connected in 3D. Figure 13 and
Figure 15 present the same type of results for another pa-
tient. The same post-processing was used in Table 2, where
we have evaluated our different segmentations of the tumor
by comparing them to the manual segmentations in terms
of true positive (TP), false positive (FP), similarity index
(SI) and Jaccard index (JI)3. This evaluation was performed
for the whole tumor in 3D and does not necessarily cor-
respond to what can be seen in the slice displayed in Fig-
ure 14. An additional comparison with the method proposed
in (Khotanlou, 2008) indicates that our model can compare
with a dedicated method which makes use of symmetry anal-
ysis and spatial relations, since our SI is only lower than that
obtained by Khotanlou by approximately 5%.

Manual segmentations of normal brain structures were
not available but we can observe that the segmentation of
these structures corresponds to areas which are well differ-
entiated in the SPGR image and that a strong correspon-

3 We recall that for two sets A and M , which correspond here to the
automatic and manual segmentations, we denote by | A | the cardinal
of A (i.e. the number of voxels) and have the following definitions:
TP =

|A∩M|
|M| , FP =

|A|−|A∩M|
|A| , SI = 2

|A∩M|
|A|+|M| and JI =

|A∩M|
|A∪M| .
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(a) (b)

(e)
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(tranche 63 vol/26 tumeur)
Fig. 12 One slice of SPGR dataset (a) and FLAIR dataset for Case
1 (c). Multi-phase segmentation (ICM) of the SPGR data with seven
phases (b) and of the FLAIR data with five phases (d). Multi-phase
and multi-channel segmentation with seven phases (e).

(tranche 55 vol/35 tumeur)

(a) (b)

(e)

(c) (d)

Fig. 13 One slice of SPGR dataset (a) and FLAIR dataset for Case
2 (c). Multi-phase segmentation (ICM) of the SPGR data with seven
phases (b) and of the FLAIR data with five phases (d). Multi-phase
and multi-channel segmentation with seven phases (e).

dence exists between the single- and multi-channel segmen-
tations. Direct comparison between the two phases that rep-
resent WM in 3D (no post-processing was performed and
we did not fuse several phases) gives a similarity index of
84%.

It is interesting to notice that, in Figure 12 (e), the tumor
has been segmented according to what seems to be more
like the union of the observations of the pathological area
through the channels than the intersection (the similarity
index with the intersection of the manual segmentations is
73% and increases to 81% with the union of the manual seg-
mentation). However, this does not contradict what has been
exposed in Section 3.3 concerning the semantic relevance of

(a) (b)

(c) (d)

Fig. 14 Contour of the tumor of Case 1 in single-channel SPGR seg-
mentation in red, compared to the manual SPGR contour in blue (a);
contour of the tumor in multi-channel segmentation in red, compared
to the manual SPGR contour in blue and the manual FLAIR contour in
green, registered on SPGR image (b); contour of the tumor in FLAIR
segmentation in red, compared to the manual FLAIR contour in green
(c); contour of the tumor in multi-channel segmentation in red, com-
pared to the manual SPGR contour in blue and the manual FLAIR
contour in green, registered on FLAIR image (a).

TP FP SI JI
CASE 1

SC SPGR/SPGR 72 21 75 60
SC FLAIR/FLAIR 81 9.5 85 75

MC/SPGR 76 27 74 59
MC/FLAIR 77 6 84 73

HK SC FLAIR/FLAIR 84.5 4.6 89.6 81.2
CASE 2

SC SPGR/SPGR 38 77 28 16.6
SC FLAIR/FLAIR 76 0.5 86 75

MC/SPGR 68 1.45 80 67
MC/FLAIR 83.6 2.6 88 79

HK SC FLAIR/FLAIR 92.2 5.3 93.4 87.6

Table 2 Evaluation of tumor segmentations for two cases, compared
to manual segmentations in SPGR and in FLAIR. True positive (TP),
false positive (FP), similarity index (SI) and Jaccard index (JI) are
all given in percent. Single-channel (SC) segmentations of SPGR and
FLAIR data are compared to the manual segmentation of the same im-
age. Multi-channel (MC) segmentations are compared to both SPGR
and FLAIR manual segmentations. We also provide a comparison with
the work of Hassan Khotanlou (HK SC FLAIR/FLAIR) with a dedi-
cated method applied on the same cases in FLAIR.
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(a) (b)

(c) (d)

Fig. 15 Contour of the tumor of Case 2 in single-channel SPGR seg-
mentation in red, compared to the manual SPGR contour in blue (a);
contour of the tumor in multi-channel segmentation in red, compared
to the manual SPGR contour in blue and the manual FLAIR contour in
green, registered on SPGR image (b); contour of the tumor in FLAIR
segmentation in red, compared to the manual FLAIR contour in green
(c); contour of the tumor in multi-channel segmentation in red, com-
pared to the manual SPGR contour in blue and the manual FLAIR
contour in green, registered on FLAIR image (a).

the segmentation. Our segmentation can still be interpreted
in terms of regions that are homogeneous in all the chan-
nels but this notion of homogeneity is relative and depends
on two parameters: the regularization coefficient (if intensity
differences are small enough, we tend to decompose the im-
age in as few regions as possible) and the number of phases
(if we have more phases, we become more sensitive to small
variations of intensity). Hence, in the case of the tumor,
given the relatively low number of phases used in the multi-
channel segmentation (seven, which is the same as in the
SPGR segmentation), the intersection fusion rule between
heterogeneity measures has led to a tumor phase which is
relatively homogeneous in all the channels, although it does
not correspond to the intersection of the tumor phases ob-
tained in single-channel segmentations in SPGR and FLAIR.
This means that we cannot think of the process of fusion
in purely geometric terms from what is obtained in single-
channel segmentations.

6 Conclusion

We have based our segmentation method on an energy min-
imization model (Mumford-Shah) that permits to obtain ho-
mogeneous regions. In order to minimize this energy, we
have improved the level set method proposed by Chan and
Vese, implemented the ICM algorithm with a regularization
based on the Potts prior and compared the energy with that
obtained with simulated annealing. Different experiments
demonstrated the superiority of the ICM algorithm in terms
of relevance of the segmented regions, energy minimization
and speed ratio.

Our multi-channel extension is based upon a simple fu-
sion rule that consists in considering the maximum of het-
erogeneity measures through the channels. We have demon-
strated that this rule is part of the only class that carries out a
segmentation which can be easily interpreted, and that cor-
responds to the intersection of the observations of a same
object through the channels. In other words, the process re-
sults in phases that are relatively homogeneous in all the
channels. Finally, we applied our method to multi-protocol
(T1 and T2) MRI data with brain tumors, and observed that
the most relevant information was used from both proto-
cols, namely, that the SPGR image was used to segment the
normal structure, while the FLAIR image serves to delin-
eate the tumor. By comparing our multi-phase and multi-
channel segmentation of the tumor to manual segmentations,
we found similarity indices which were only a bit lower
than those obtained with a dedicated method (by about 5%).
However, our method leaves us with much more information
regarding the rest of the structures of the brain.

By restricting this work to one of the simplest models,
we aimed at giving an understanding of the possibilities to
fuse multiple sources of information in segmentation. Fu-
ture works will focus on specific tasks for which prior infor-
mation such as spatial relations or contrast between struc-
tures could be used to constrain the evolution of the phases
(see (Colliot et al, 2006) for example). Another interesting
question copes with the automation of the decision regard-
ing the number of phases, recently discussed in (Sandberg
et al, 2008) or in (Brox and Weickert, 2004), which could
still decrease the number of parameters decided by the user.
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