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Abstract The linearly constrained matrix rank minimization problem is widely applicable in many fields such as
control, signal processing and system identification. The tightest convex relaxation of this problem is the linearly
constrained nuclear norm minimization. Although the latter can be cast as a semidefinite programming problem,
such an approach is computationally expensive to solve when the matrices are large. In this paper, we propose
fixed point and Bregman iterative algorithms for solving the nuclear norm minimization problem and prove conver-
gence of the first of these algorithms. By using a homotopy approach together with an approximate singular value
decomposition procedure, we get a very fast, robust and powerful algorithm, which we call FPCA (Fixed Point Con-
tinuation with Approximate SVD), that can solve very large matrix rank minimization problems 1. Our numerical
results on randomly generated and real matrix completion problems demonstrate that this algorithm is much faster
and provides much better recoverability than semidefinite programming solvers such as SDPT3. For example, our
algorithm can recover 1000× 1000 matrices of rank 50 with a relative error of 10−5 in about 3 minutes by sam-
pling only 20 percent of the elements. We know of no other method that achieves as good recoverability. Numerical
experiments on online recommendation, DNA microarray data set and image inpainting problems demonstrate the
effectiveness of our algorithms.

Keywords Matrix Rank Minimization · Matrix Completion Problem · Nuclear Norm Minimization · Fixed Point
Iterative Method · Bregman Distances · Singular Value Decomposition
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1 Introduction

The matrix rank minimization problem can be written as

min rank(X)
s.t. X ∈ C ,
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where X ∈ Rm×n and C is a convex set. This model has many applications such as determining a low-order con-
troller for a plant [21] and a minimum order linear system realization [19], and solving low-dimensional Euclidean
embedding problems [28].

In this paper, we are interested in methods for solving the affinely constrained matrix rank minimization problem

min rank(X)
s.t. A (X) = b,

(1.1)

where X ∈ Rm×n is the decision variable, and the linear map A : Rm×n → Rp and vector b ∈ Rp are given.
The matrix completion problem

min rank(X)
s.t. Xi j = Mi j,(i, j) ∈Ω

(1.2)

is a special case of (1.1), where X and M are both m× n matrices and Ω is a subset of index pairs (i, j). The so
called collaborative filtering problem [33; 36] can be cast as a matrix completion problem. Suppose users in an
online survey provide ratings of some movies. This yields a matrix M with users as rows and movies as columns
whose (i, j)-th entry Mi j is the rating given by the i-th user to the j-th movie. Since most users rate only a small
portion of the movies, we typically only know a small subset {Mi j|(i, j) ∈ Ω} of the entries. Based on the known
ratings of a user, we want to predict the user’s ratings of the movies that the user did not rate; i.e., we want to fill in
the missing entries of the matrix. It is commonly believed that only a few factors contribute to an individual’s tastes
or preferences for movies. Thus the rating matrix M is likely to be of numerical low rank in the sense that relatively
few of the top singular values account for most of the sum of all of the singular values. Finding such a low-rank
matrix M corresponds to solving the matrix completion problem (1.2).

1.1 Connections to compressed sensing

When the matrix X is diagonal, problem (1.1) reduces to the cardinality minimization problem

min ‖x‖0

s.t. Ax = b,
(1.3)

where x ∈ Rn,A ∈ Rm×n,b ∈ Rm and ‖x‖0 denotes the number of nonzeros in the vector x. This problem finds
the sparsest solution to an underdetermined system of equations and has a wide range of applications in signal
processing. This problem is NP-hard [30]. To get a more computationally tractable problem, we can replace ‖x‖0

by its convex envelope.
Definition 1 The convex envelope of a function f : C → R is defined as the largest convex function g such that
g(x)≤ f (x) for all x ∈ C (see e.g., [25]).

It is well known that the convex envelope of ‖x‖0 is ‖x‖1, the `1 norm of x, which is the sum of the absolute
values of all components of x. Replacing the objective function ‖x‖0 in (1.3) by ‖x‖1 yields the so-called basis
pursuit problem

min ‖x‖1

s.t. Ax = b.
(1.4)

The basis pursuit problem has received an increasing amount of attention since the emergence of the field of com-
pressed sensing (CS) [11; 14]. Compressed sensing theories connect the NP-hard problem (1.3) to the convex and
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computationally tractable problem (1.4) and provide guarantees for when an optimal solution to (1.4) gives an op-
timal solution to (1.3). In the cardinality minimization and basis pursuit problems (1.3) and (1.4), b is a vector of
measurements of the signal x obtained using the sampling matrix A. The main result of compressed sensing is that
when the signal x is sparse, i.e., k := ‖x‖0 ¿ n, we can recover the signal by solving (1.4) with a very limited num-
ber of measurements, i.e., m¿ n, when A is a Gaussian random matrix or when it corresponds to a partial Fourier
transformation. Note that if b is contaminated by noise, the constraint Ax = b in (1.4) must be relaxed, resulting in
either the problem

min ‖x‖1

s.t. ‖Ax−b‖2 ≤ θ
(1.5)

or its Lagrangian version

min µ‖x‖1 +
1
2
‖Ax−b‖2

2, (1.6)

where θ and µ are parameters and ‖x‖2 denotes the Euclidean norm of a vector x.. Algorithms for solving (1.4)
and its variants (1.5) and (1.6) have been widely investigated and many algorithms have been suggested including
convex optimization methods ([2; 10; 20; 24; 27]) and heuristic methods ([13; 15; 16; 39; 40]).

1.2 Nuclear norm minimization

The rank of a matrix is the number of its positive singular values. The matrix rank minimization (1.1) is NP-hard
in general due to the combinational nature of the function rank(·). Similar to the cardinality function ‖x‖0, we can
replace rank(X) by its convex envelope to get a convex and more computationally tractable approximation to (1.1).
It turns out that the convex envelope of rank(X) on the set {X ∈ Rm×n : ‖X‖2 ≤ 1} is the nuclear norm ‖X‖∗ [18],
i.e., the nuclear norm is the best convex approximation of the rank function over the unit ball of matrices with norm
less than one, where ‖X‖2 is the operator norm of X . The nuclear norm and operator norm are defined as follows.
Definition 2 Nuclear norm and Operator norm. Assume that the matrix X has r positive singular values of σ1 ≥
σ2 ≥ . . .≥ σr > 0. The nuclear norm of X is defined as the sum of its singular values, i.e.,

‖X‖∗ :=
r

∑
i=1

σi(X).

The operator norm of matrix X is defined as the largest singular value of X , i.e.,

‖X‖2 := σ1(X).

The nuclear norm is also known as Schatten 1-norm or Ky Fan norm. Using it as an approximation to rank(X)
in (1.1) yields the nuclear norm minimization problem

min ‖X‖∗
s.t. A (X) = b.

(1.7)

As in the basis pursuit problem, if b is contaminated by noise, the constraint A (X) = b must be relaxed, resulting
in either the problem

min ‖X‖∗
s.t. ‖A (X)−b‖2 ≤ θ
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or its Lagrangian version

min µ‖X‖∗+
1
2
‖A (X)−b‖2

2, (1.8)

where θ and µ are parameters.

Note that if we write X in vector form by stacking the columns of X in a single vector vec(X) ∈ Rmn, then we
get the following equivalent formation of (1.7):

min ‖X‖∗
s.t. A vec(X) = b,

(1.9)

where A ∈ Rp×mn is the matrix corresponding to the linear map A . An important question is: when will an optimal
solution to the nuclear norm minimization problem (1.7) give an optimal solution to matrix rank minimization
problem (1.1). In response to this question, Recht et al. [32] proved that if the entries of A are suitably random,
e.g., i.i.d. Gaussian, then with very high probability, most m× n matrices of rank r can be recovered by solving
the nuclear norm minimization (1.7) or equivalently, (1.9), whenever p≥Cr(m+n) log(mn), where C is a positive
constant.

For the matrix completion problem (1.2), the corresponding nuclear norm minimization problem is

min ‖X‖∗
s.t. Xi j = Mi j,(i, j) ∈Ω .

(1.10)

Candès et al. [9] proved the following result.

Theorem 1 Let M be an n1×n2 matrix of rank r with SVD

M =
r

∑
k=1

σkukv>k ,

where the family {uk}1≤k≤r is selected uniformly at random among all families of r orthonormal vectors, and
similarly for the family {vk}1≤k≤r. Let n = max(n1,n2). Suppose we observe m entries of M with locations sampled
uniformly at random. Then there are constants C and c such that if

m≥Cn5/4r logn,

the minimizer to the problem (1.10) is unique and equal to M with probability at least 1− cn−3. In addition, if
r ≤ n1/5, then the recovery is exact with probability at least 1− cn−3 provided that

m≥Cn6/5r logn.

This theorem states that a surprisingly small number of entries are sufficient to complete a low-rank matrix with
high probability.

Recently, this result was strengthened by Candès and Tao in [12], where it is proved that under certain incoher-
ence conditions, the number of samples m that are required is only O(nr logn).

The dual problem corresponding to the nuclear norm minimization problem (1.7) is

max b>z
s.t. ‖A ∗(z)‖2 ≤ 1,

(1.11)
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where A ∗ is the adjoint operator of A . Both (1.7) and (1.11) can be rewritten as equivalent semidefinite program-
ming (SDP) problems. The SDP formulation of (1.7) is:

min
X ,W1,W2

1
2 (Tr(W1)+Tr(W2))

s.t.

[
W1 X
X> W2

]
º 0

A (X) = b,

(1.12)

where Tr(X) denotes the trace of the square matrix X . The SDP formulation of (1.11) is:

max
z

b>z

s.t.

[
Im A ∗(z)

A ∗(z)> In

]
º 0.

(1.13)

Thus to solve (1.12) and (1.13), we can use SDP solvers such as SeDuMi [38] and SDPT3 [42] to solve (1.12)
and (1.13). Note that the number of variables in (1.12) is 1

2 (m + n)(m + n + 1). SDP solvers cannot usually solve a
problem when m and n are both much larger than 100.

Recently, Liu and Vandenberghe [29] proposed an interior-point method for another nuclear norm approximation
problem

min‖A (x)−B‖∗, (1.14)

where B ∈ Rm×n and
A (x) = x1A1 + x2A2 + · · ·+ xpAp

is a linear mapping from Rp to Rm×n. The equivalent SDP formulation of (1.14) is

min
x,W1,W2

1
2 (Tr(W1)+Tr(W2))

s.t.

[
W1 (A (x)−B)>

A (x)−B W2

]
º 0.

(1.15)

Liu and Vandenberghe [29] proposed a customized method for computing the scaling direction in an interior point
method for solving the SDP (1.15). The complexity of each iteration in their method was reduced from O(p6) to
O(p4) when m = O(p) and n = O(p); thus they were able to solve problems up to dimension m = n = 350.

Another algorithm for solving (1.7) is due to Burer and Monteiro [6; 7], (see also Rennie and Srebro [33; 36]).
This algorithm uses the low-rank factorization X = LR> of the matrix X ∈ Rm×n, where L ∈ Rm×r,R ∈ Rn×r,r ≤
min{m,n}, and solves the optimization problem

min
L,R

1
2 (‖L‖2

F +‖R‖2
F)

s.t. A (LR>) = b,
(1.16)

where ‖X‖F denotes the Frobenius norm of the matrix X :

‖X‖F := (
r

∑
i=1

σ2
i )1/2 = (∑

i, j
X2

i j)
1/2 = (Tr(XX>))1/2.

It is known that as long as r is chosen to be sufficiently larger than the rank of the optimal solution matrix of
the nuclear norm problem (1.7), this low-rank factorization problem is equivalent to the nuclear norm problem (1.7)
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(see e.g., [32]). The advantage of this low-rank factorization formulation is that both the objective function and the
constraints are differentiable. Thus gradient-based optimization algorithms such as conjugate gradient algorithms
and augmented Lagrangian algorithms can be used to solve this problem. However, the constraints in this problem
are nonconvex, so one can only be assured of obtaining a local minimizer. Also, how to choose r is still an open
question.

One very interesting algorithm is the so called singular value thresholding algorithm (SVT) [8] which appeared
almost simultaneously with our work. SVT is inspired by the linearized Bregman algorithms for compressed sensing
and `1-regularized problems. In [8] it is shown that SVT is efficient for large matrix completion problems. However,
SVT only works well for very low rank matrix completion problems. For problems where the matrices are not of
very low rank, SVT is slow and not robust therefore often fails.

Our algorithms have some similarity with the SVT algorithm in that they make use of matrix shrinkage (see
Section 2). However, other than that, they are greatly different. All of our methods are based on a fixed point
continuation (FPC) algorithm which uses an operator splitting technique for solving (1.8). By adopting a Monte
Carlo approximate SVD in the FPC, we get an algorithm, which we call FPCA (Fixed Point Continuation with
Approximate SVD), that usually gets the optimal solution to (1.1) even if the condition of Theorem 1, or those for
the affine constrained case, are violated. Moreover, our algorithm is much faster than state-of-the-art SDP solvers
such as SDPT3 applied to (1.12). Also, FPCA can recover matrices of moderate rank that cannot be recovered by
SDPT3, SVT, etc. with the same amount of samples. For example, for matrices of size 1000× 1000 and rank 50,
FPCA can recover them with a relative error of 10−5 in about 3 minutes by sampling only 20 percent of the matrix
elements. As far as we know, there is no other method that has as good a recoverability property.

1.3 Outline and Notation

Outline. The rest of this paper is organized as follows. In Section 2 we review the fixed-point continuation
algorithm for `1-regularized problems. In Section 3 we give an analogous fixed-point iterative algorithm for the
nuclear norm minimization problem and prove that it converges to an optimal solution. In Section 4 we discuss
a continuation technique for accelerating the convergence of our algorithm. In Section 5 we propose a Bregman
iterative algorithm for nuclear norm minimization extending the approach in [44] for compressed sensing to the
rank minimization problem. In Section 6 we incorporate a Monte-Carlo approximate SVD procedure into our fixed-
point continuation algorithm to speed it up and improve its ability to recover low-rank matrices. Numerical results
for both synthesized matrices and real problems are given in Section 7. We give conclusions in Section 8.

Notation. Throughout this paper, we always assume that the singular values are arranged in nonincreasing
order, i.e., σ1 ≥ σ2 ≥ . . . ≥ σr > 0 = σr+1 = . . . = σmin{m,n}. ∂ f denotes the subdifferential of the function f and
gk = g(Xk) = A ∗(A (Xk)− b)) is the gradient of function 1

2‖A (X)− b‖2
2 at the point Xk. Diag(s) denotes the

diagonal matrix whose diagonal elements are the elements of the vector s. sgn(t) is the signum function of t ∈ R,
i.e.,

sgn(t) :=





+1 if t > 0,

0 if t = 0,

−1 if t < 0,

while the signum multifunction of t ∈ R is

SGN(t) := ∂ |t|=





{+1} if t > 0,

[−1,1] if t = 0,

{−1} if t < 0.
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We use a¯b to denote the elementwise multiplication of two vectors a and b. We use X(k : l) to denote the submatrix
of X consisting of the k-th to l-th column of X . We use Rn

+ to denote the nonnegative orthant in Rn.

2 Fixed point iterative algorithm

Our fixed point iterative algorithm for solving (1.8) is the following simple two-line algorithm:
{

Y k = Xk− τg(Xk)
Xk+1 = Sτµ(Y k),

(2.1)

where Sν(·) is the matrix shrinkage operator which will be defined later.

Our algorithm (2.1) is inspired by the fixed point iterative algorithm proposed in [24] for the `1-regularized
problem (1.6). The idea behind this algorithm is an operator splitting technique. Note that x∗ is an optimal solution
to (1.6) if and only if

0 ∈ µSGN(x∗)+g∗, (2.2)

where g∗ = A>(Ax∗−b). For any τ > 0, (2.2) is equivalent to

0 ∈ τµSGN(x∗)+ τg(x∗). (2.3)

Note that the operator T (·) := τµSGN(·)+ τg(·) on the right hand side of (2.3) can be split into two parts: T (·) =
T1(·)−T2(·), where T1(·) = τµSGN(·)+ I(·) and T2(·) = I(·)− τg(·).

Letting y = T2(x∗) = x∗− τA>(Ax∗−b), (2.3) is equivalent to

0 ∈ T1(x∗)− y = τµSGN(x∗)+ x∗− y. (2.4)

Note that (2.4) is actually the optimality conditions for the following convex problem

min
x∗

τµ‖x∗‖1 +
1
2
‖x∗− y‖2

2. (2.5)

This problem has a closed form optimal solution given by the so called shrinkage operator:

x∗ = s̃ν(y),

where ν = τµ , and shrinkage operator s̃ν(·) is given by

s̃ν(·) = sgn(·)¯max{| · |−ν ,0}. (2.6)

Thus, the fixed point iterative algorithm is given by

xk+1 = s̃τµ(xk− τgk). (2.7)

Hale et al. [24] proved global and finite convergence of this algorithm to the optimal solution of the `1-regularized
problem (1.6).

Motivated by this work, we develop a fixed point iterative algorithm for (1.8). Since the objective function in
(1.8) is convex, X∗ is the optimal solution to (1.8) if and only if

0 ∈ µ∂‖X∗‖∗+g(X∗), (2.8)
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where g(X∗) = A ∗(A (X∗)−b). Note that if the Singular Value Decomposition (SVD) of X is X = UΣV>, where
U ∈ Rm×r,Σ = Diag(σ) ∈ Rr×r,V ∈ Rn×r, then (see e.g., [1; 4])

∂‖X‖∗ = {UV>+W : U>W = 0,WV = 0,‖W‖ ≤ 1}.

Hence, we get the following optimality conditions for (1.8):

Theorem 2 The matrix X ∈ Rm×n with singular value decomposition X = UΣV>, U ∈ Rm×r,Σ = Diag(σ) ∈
Rr×r,V ∈ Rn×r, is optimal for the problem (1.8) if and only if there exists a matrix W ∈ Rm×n such that

µ(UV>+W )+g(X) = 0, (2.9a)

U>W = 0,WV = 0,‖W‖2 ≤ 1. (2.9b)

Now based on the optimality conditions (2.8), we can develop a fixed point iterative scheme for solving (1.8) by
adopting the operator splitting technique described at the beginning of this section. Note that (2.8) is equivalent to

0 ∈ τµ∂‖X∗‖∗+X∗− (X∗− τg(X∗)) (2.10)

for any τ > 0. If we let

Y ∗ = X∗− τg(X∗),

then (2.10) is reduced to

0 ∈ τµ∂‖X∗‖∗+X∗−Y ∗, (2.11)

i.e., X∗ is the optimal solution to

min
X∈Rm×n

τµ‖X‖∗+
1
2
‖X−Y ∗‖2

F (2.12)

In the following we will prove that the matrix shrinkage operator applied to Y ∗ gives the optimal solution to
(2.12). First, we need the following definitions.

Definition 3 (Nonnegative Vector Shrinkage Operator) Assume x ∈ Rn
+. For any ν > 0, the nonnegative vector

shrinkage operator sν(·) is defined as

sν(x) := x̄, with x̄i =

{
xi−ν , if xi−ν > 0
0, o.w.

Definition 4 (Matrix Shrinkage Operator) Assume X ∈ Rm×n and the SVD of X is given by X = UDiag(σ)V>,
U ∈ Rm×r,σ ∈ Rr

+,V ∈ Rn×r. For any ν > 0, the matrix shrinkage operator Sν(·) is defined as

Sν(X) := UDiag(σ̄)V>, with σ̄ = sν(σ).

Theorem 3 Given a matrix Y ∈ Rm×n with rank(Y ) = t, let its Singular Value Decomposition (SVD) be Y =
UY Diag(γ)V>

Y , where UY ∈ Rm×t ,γ ∈ Rt
+,VY ∈ Rn×t , and a scalar ν > 0. Then

X := Sν(Y ) = UY Diag(sν(γ))V>
Y (2.13)
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is an optimal solution of the problem

min
X∈Rm×n

f (X) := ν‖X‖∗+
1
2
‖X−Y‖2

F . (2.14)

Proof Without loss of generality, we assume m≤ n. Suppose that the solution X ∈ Rm×n to problem (2.14) has the
SVD X = UDiag(σ)V>, where U ∈ Rm×r,σ ∈ Rr

+,V ∈ Rn×r. Hence, X must satisfy the optimality conditions for
(2.14) which are

0 ∈ ν∂‖X‖∗+X−Y ;

i.e., there exists a matrix
W = Ū

[
Diag(σ̄) 0

]
V̄>,

where Ū ∈Rm×(m−r),V̄ ∈Rn×(n−r), σ̄ ∈Rm−r
+ , ‖σ̄‖∞ ≤ 1 and both Û = [U,Ū ] and V̂ = [V,V̄ ] are orthogonal matri-

ces, such that

0 = ν(UV>+W )+X−Y. (2.15)

Hence,

Û

[
νI +Diag(σ) 0 0

0 νDiag(σ̄) 0

]
V̂>−UY Diag(γ)V>

Y = 0. (2.16)

To verify that (2.13) satisfies (2.16), consider the following two cases:

Case 1: γ1 ≥ γ2 ≥ . . .≥ γt > ν . In this case, choosing X as above, with r = t,U = UY ,V = VY and σ = sν(γ) =
γ−νe, where e is a vector of r ones, and choosing σ̄ = 0 (i.e., W = 0) satisfies (2.16).

Case 2: γ1 ≥ γ2 ≥ . . . ≥ γk > ν ≥ γk+1 ≥ . . . ≥ γt . In this case, by choosing r = k,Û(1 : t) = UY ,V̂ (1 : t) =
VY ,σ = sν((γ1, . . . ,γk)) and σ̄1 = γk+1/ν , . . . , σ̄t−k = γt/ν , σ̄t−k+1 = . . . = σ̄m−r = 0, X and W satisfy (2.16).

Note that in both cases, X can be written as the form in (2.13) based on the way we construct X . ut
Based on the above we obtain the fixed point iterative scheme (2.1) stated at the beginning of this section for

solving problem (1.8).

Moreover, from the discussion following Theorem 2 we have

Corollary 1 X∗ is an optimal solution to problem (1.8) if and only if X∗ = Sτµ(h(X∗)), where h(·) = I(·)− τg(·).

3 Convergence results

In this section, we analyze the convergence properties of the fixed point iterative scheme (2.1). Before we prove the
main convergence result, we need some lemmas.

Lemma 1 The shrinkage operator Sν is non-expansive, i.e., for any Y1 and Y2 ∈ Rm×n,

‖Sν(Y1)−Sν(Y2)‖F ≤ ‖Y1−Y2‖F . (3.1)

Moreover,

‖Y1−Y2‖F = ‖Sν(Y1)−Sν(Y2)‖F ⇐⇒ Y1−Y2 = Sν(Y1)−Sν(Y2). (3.2)
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Proof Without loss of generality, we assume m≤ n. Assume SVDs of Y1 and Y2 are Y1 = U1ΣV>
1 and Y2 = U2ΓV>

2 ,
respectively, where

Σ =

(
Diag(σ) 0

0 0

)
∈ Rm×n,Γ =

(
Diag(γ) 0

0 0

)
∈ Rm×n,

σ = (σ1, . . . ,σs),σ1 ≥ . . .≥ σs > 0 and γ = (γ1, . . . ,γt),γ1 ≥ . . .≥ γt > 0. Note that here U1,V1,U2 and V2 are (full)
orthogonal matrices; Σ ,Γ ∈ Rm×n. Suppose that σ1 ≥ . . . ≥ σk ≥ ν > σk+1 ≥ . . . ≥ σs and γ1 ≥ . . . ≥ γl ≥ ν >

γl+1 ≥ . . .≥ γt , then
Ȳ1 := Sν(Y1) = U1Σ̄V>

1 ,Ȳ2 := Sν(Y2) = U2Γ̄V>
2 ,

where

Σ̄ =

(
Diag(σ̄) 0

0 0

)
∈ Rm×n,Γ̄ =

(
Diag(γ̄) 0

0 0

)
∈ Rm×n,

σ̄ = (σ1−ν , . . . ,σk−ν) and γ̄ = (γ1−ν , . . . ,γl −ν). Thus,

‖Y1−Y2‖2
F −‖Ȳ1− Ȳ2‖2

F = Tr((Y1−Y2)>(Y1−Y2))−Tr((Ȳ1− Ȳ2)>(Ȳ1− Ȳ2))
= Tr(Y>1 Y1− Ȳ>1 Ȳ1 +Y>2 Y2− Ȳ>2 Ȳ2)−2Tr(Y>1 Y2− Ȳ>1 Ȳ2)

=
s

∑
i=1

σ2
i −

k

∑
i=1

(σi−ν)2 +
t

∑
i=1

γ2
i −

l

∑
i=1

(γi−ν)2−2Tr(Y>1 Y2− Ȳ>1 Ȳ2)

We note that

Tr(Y>1 Y2− Ȳ>1 Ȳ2) = Tr((Y1− Ȳ1)>(Y2− Ȳ2)+(Y1− Ȳ1)>Ȳ2 + Ȳ1
>(Y2− Ȳ2))

= Tr(V1(Σ − Σ̄)>U>
1 U2(Γ − Γ̄ )V>

2 +V1(Σ − Σ̄)>U>
1 U2Γ̄V>

2 +V1Σ̄>U>
1 U2(Γ − Γ̄ )V>

2
= Tr((Σ − Σ̄)>U(Γ − Γ̄ )V>+(Σ − Σ̄)>UΓ̄V>+ Σ̄>U(Γ − Γ̄ )V>),

where U = U>
1 U2,V = V>

1 V2 are clearly orthogonal matrices. Now let us derive an upper bound for Tr(Y>1 Y2 −
Ȳ>1 Ȳ2). It is known that an orthogonal matrix U is a maximizing matrix for the problem

max{Tr(AU) : U is orthogonal}

if and only if AU is positive semidefinite matrix (see 7.4.9 in [26]). It is also known that when AB is positive
semidefinite,

Tr(AB) = ∑
i

σi(AB)≤∑
i

σi(A)σi(B). (3.3)

Thus, Tr((Σ− Σ̄)>U(Γ −Γ̄ )V>), Tr((Σ− Σ̄)>UΓ̄V>) and Tr(Σ̄U(Γ −Γ̄ )V>) achieve their maximum, if and only
if (Σ − Σ̄)>U(Γ − Γ̄ )V>, (Σ − Σ̄)>UΓ̄V> and Σ̄U(Γ − Γ̄ )V> are all positive semidefinite. Applying (3.3) to these
three terms, we get Tr((Σ− Σ̄)>U(Γ −Γ̄ )V>)≤∑i σi(Σ− Σ̄)σi(Γ −Γ̄ ), Tr((Σ− Σ̄)>UΓ̄V>)≤∑i σi(Σ− Σ̄)σi(Γ̄ )
and Tr(Σ̄U(Γ − Γ̄ )V>)≤ ∑i σi(Σ̄)σi(Γ − Γ̄ ). Thus, without loss of generality, assuming k ≤ l ≤ s≤ t, we have,

‖Y1−Y2‖2
F −‖Sν(Y1)−Sν(Y2)‖2

F

≥
s

∑
i=1

σ2
i −

k

∑
i=1

(σi−ν)2 +
t

∑
i=1

γ2
i −

l

∑
i=1

(γi−ν)2−2(
l

∑
i=1

σiν +
s

∑
i=l+1

σiγi +
k

∑
i=1

(γi−ν)ν +
l

∑
i=k+1

σi(γi−ν))

=
l

∑
i=k+1

(2γiν−ν2 +σ2
i −2σiγi)+(

s

∑
i=l+1

σ2
i +

t

∑
i=l+1

γ2
i −

s

∑
i=l+1

2σiγi).
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Now
s

∑
i=l+1

σ2
i +

t

∑
i=l+1

γ2
i −

s

∑
i=l+1

2σiγi ≥ 0

since t ≥ s and σ2
i + γ2

i −2σiγi ≥ 0. Also, since the function f (x) := 2γix− x2 is monotonely increasing in (−∞,γi]
and σi < ν ≤ γi, i = k +1, . . . , l,

2γiν−ν2 +σ2
i −2σiγi > 0, i = k +1, . . . , l.

Thus we get

D(Y1,Y2) := ‖Y1−Y2‖2
F −‖Sν(Y1)−Sν(Y2)‖2

F ≥ 0;

i.e., (3.1) holds.
Also, D(Y1,Y2) achieves its minimum value if and only if Tr((Σ − Σ̄)>U(Γ − Γ̄ )V>), Tr((Σ − Σ̄)>UΓ̄V>) and

Tr(Σ̄U(Γ − Γ̄ )V>) achieve their maximum values simultaneously.
Furthermore, if equality in (3.1) holds, i.e., D(Y1,Y2) achieves its minimum, and its minimum is zero, then k = l,

s = t, and σi = γi, i = k+1, . . . ,s, which further implies Σ − Σ̄ = Γ − Γ̄ and Tr((Σ − Σ̄)>U(Γ − Γ̄ )V>) achieves its
maximum. By applying the result 7.4.13 in [26], we get

Σ − Σ̄ = U(Γ − Γ̄ )V>,

which further implies that
Y1−Y2 = Sν(Y1)−Sν(Y2). (3.4)

To conclude, clearly ‖Sν(Y1)−Sν(Y2)‖F = ‖Y1−Y2‖F if (3.4) holds. ut
The following two lemmas and theorem and their proofs are analogous to results and their proofs in Hale et al.

[24].

Lemma 2 Let A X = Avec(X) and assume that τ ∈ (0,2/λmax(A>A)). Then the operator h(·) = I(·)−τg(·) is non-
expansive, i.e., ‖h(X)−h(X ′)‖F ≤ ‖X −X ′‖F . Moreover, h(X)−h(X ′) = X −X ′ if and only if ‖h(X)−h(X ′)‖F =
‖X−X ′‖F .

Proof First, we note that since τ ∈ (0,2/λmax(A>A)), −1 < λi(I− τA>A) ≤ 1,∀i, where λi(I− τA>A) is the i-th
eigenvalue of I− τA>A. Hence,

‖h(X)−h(X ′)‖F = ‖(I− τA>A)(vec(X)−vec(X ′))‖2 ≤ ‖I− τA>A‖2‖vec(X)−vec(X ′)‖2

≤ ‖vec(X)−vec(X ′)‖2 = ‖X−X ′‖F .

Moreover, ‖h(X)−h(X ′)‖F = ‖X −X ′‖F if and only if the inequalities above are equalities, which happens if and
only if

(I− τA>A)(vec(X)−vec(X ′)) = vec(X)−vec(X ′),

i.e., if and only if h(X)−h(X ′) = X−X ′. ut

Lemma 3 Let X∗ be an optimal solution to problem (1.8), τ ∈ (0,2/λmax(A>A)) and ν = τµ . Then X is also an
optimal solution to problem (1.8) if and only if

‖Sν(h(X))−Sν(h(X∗))‖F ≡ ‖Sν(h(X))−X∗‖F = ‖X−X∗‖F . (3.5)
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Proof The “only if” part is an immediate consequence of Corollary 1. For the “if” part, from Lemmas 1 and 2,

‖X−X∗‖F = ‖Sν(h(X))−Sν(h(X∗))‖F ≤ ‖h(X)−h(X∗)‖F ≤ ‖X−X∗‖F .

Hence, both inequalities hold with equality. Therefore, first using Lemma 1 and then Lemma 2 we obtain

Sν(h(X))−Sν(h(X∗)) = h(X)−h(X∗) = X−X∗,

which implies Sν(h(X)) = X since Sν(h(X∗)) = X∗. It then follows from Corollary 1 that X is an optimal solution
to problem (1.8). ut

We now claim that the fixed-point iterations (2.1) converge to an optimal solution of problem (1.8).

Theorem 4 The sequence {Xk} generated by the fixed point iterations with τ ∈ (0,2/λmax(A>A)) converges to
some X∗ ∈X ∗, where X ∗ is the set of optimal solutions of problem (1.8).

Proof Since both Sν(·) and h(·) are non-expansive, Sν(h(·)) is also non-expansive. Therefore, {Xk} lies in a compact
set and must have a limit point, say X̄ = lim j→∞ Xk j . Also, for any X∗ ∈X ∗,

‖Xk+1−X∗‖F = ‖Sν(h(Xk))−Sν(h(X∗))‖F ≤ ‖h(Xk)−h(X∗)‖F ≤ ‖Xk−X∗‖F ,

which means that the sequence {‖Xk−X∗‖F} is monotonically non-increasing. Therefore,

lim
k→∞

‖Xk−X∗‖F = ‖X̄−X∗‖F , (3.6)

where X̄ can be any limit point of {Xk}. By the continuity of Sν(h(·)), the image of X̄ ,

Sν(h(X̄)) = lim
j→∞

Sν(h(Xk j)) = lim
j→∞

Xk j+1,

is also a limit point of {Xk}. Therefore, we have

‖Sν(h(X̄))−Sν(h(X∗))‖F = ‖Sν(h(X̄))−X∗‖F = ‖X̄−X∗‖F ,

which allows us to apply Lemma 3 to get that X̄ is an optimal solution to problem (1.8).
Finally, by setting X∗ = X̄ ∈X ∗ in (3.6), we get that

lim
k→∞

‖Xk− X̄‖F = lim
j→∞

‖Xk j − X̄‖F = 0,

i.e., {Xk} converges to its unique limit point X̄ . ut

4 Fixed point continuation

In this section, we discuss a continuation technique (i.e., homotopy approach) for accelerating the convergence of
the fixed point iterative algorithm (2.1).

4.1 Continuation

Inspired by the work of Hale et al. [24], we first describe a continuation technique to accelerate the convergence
of the fixed point iteration (2.1). Our fixed point continuation (FPC) iterative scheme for solving (1.8) is outlined
below. The parameter ηµ determines the rate of reduction of the consecutive µk, i.e.,
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Fixed Point Continuation (FPC)

– Initialize: Given X0, µ̄ > 0. Select µ1 > µ2 > · · ·> µL = µ̄ > 0. Set X = X0.
– for µ = µ1,µ2, . . . ,µL, do

– while NOT converged, do
• select τ > 0
• compute Y = X− τA ∗(A (X)−b), and SVD of Y , Y = UDiag(σ)V>

• compute X = UDiag(sτµ(σ))V>
– end while

end for

µk+1 = max{µkηµ , µ̄}, k = 1, . . . ,L−1

4.2 Stopping criteria for inner iterations

Note that in the fixed point continuation algorithm, in the k-th inner iteration we solve problem (1.8) for a fixed
µ = µk. There are several ways to determine when to stop this inner iteration, decrease µ and go to the next inner
iteration. The optimality conditions for (1.8) is given by (2.9a) and (2.9b). Thus we can use the following condition
as a stopping criterion:

‖UkV>
k +gk/µ‖2−1 < gtol, (4.1)

where gtol is a small positive parameter. However, the expense of computing the largest singular value of a large
matrix greatly decreases the speed of the algorithm. Hence, we do not use this criterion as a stopping rule for large
matrices. Instead, we use the criterion

‖Xk+1−Xk‖F

max{1,‖Xk‖F} < xtol, (4.2)

where xtol is a small positive number, since when Xk gets close to an optimal solution X∗, the distance between Xk

and Xk+1 should become very small.

4.3 Debiasing

Debiasing is another technique that can improve the performance of FPC. Debiasing has been used in compressed
sensing algorithms for solving (1.4) and its variants, where debiasing is performed after a support set I has been
tentatively identified. Debiasing is the process of solving a least squares problem restricted to the support set I ,
i.e., we solve

min ‖AI xI −b‖2, (4.3)

where AI is a submatrix of A whose columns correspond to the support index set I , and xI is a subvector of x
corresponding to I .

Our debiasing procedure for the matrix completion problem differs from the procedure used in compressed
sensing since the concept of a support set is not applicable. When we do debiasing, we fix the matrices Uk and V k

in the singular value decomposition of Xk and then solve a least squares problem to determine the correct singular
values σ ∈ Rr

+; i.e., we solve

min
σ≥0

‖A (UkDiag(σ)V k>)−b‖2, (4.4)
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where r is the rank of current matrix Xk. Because debiasing can be costly, we use a rule proposed in [43] to decide
when to do it. In the continuation framework, we know that in each subproblem with a fixed µ , ‖Xk+1 −Xk‖F

converges to zero, and ‖g‖2 converges to µ when Xk converges to the optimal solution of the subproblem. We
therefore choose to do debiasing when ‖g‖2/‖Xk+1−Xk‖F becomes large because this indicates that the change
between two consecutive iterates is relatively small. Specifically, we call for debiasing in the solver FPC3 (see
Section 7) when ‖g‖2/‖Xk+1−Xk‖F > 10.

5 Bregman iterative algorithm

Algorithm FPC is designed to solve (1.8), an optimal solution of which approaches an optimal solution of the
nuclear norm minimization problem (1.7) as µ goes to zero. However, by incorporating FPC into a Bregman iterative
technique, we can solve (1.7) by solving a limited number of instances of (1.8), each corresponding to a different b.

Given a convex function J(·), the Bregman distance [5] of the point u from the point v is defined as

Dp
J (u,v) := J(u)− J(v)−< p,u− v >, (5.1)

where p ∈ ∂J(v) is some subgradient in the subdifferential of J at the point v.

Bregman iterative regularization was introduced by Osher et al. in the context of image processing [31]. Specif-
ically, in [31], the Rudin-Osher-Fatemi [34] model

u = argminuµ
∫
|∇u|+ 1

2
‖u−b‖2

2 (5.2)

was extended to an iterative regularization model by replacing the total variation functional

J(u) = µTV (u) = µ
∫
|∇u|,

by the Bregman distance with respect to J(u). This Bregman iterative regularization procedure recursively solves

uk+1 ←min
u

Dpk

J (u,uk)+
1
2
‖u−b‖2

2 (5.3)

for k = 0,1, . . . starting with u0 = 0 and p0 = 0. Since (5.3) is a convex programming problem, the optimality
conditions are given by 0 ∈ ∂J(uk+1)− pk +uk+1−b, from which we get the update formula for pk+1 :

pk+1 := pk +b−uk+1. (5.4)

Therefore, the Bregman iterative scheme is given by




uk+1 ←minu Dpk

J (u,uk)+
1
2
‖u−b‖2

2

pk+1 = pk +b−uk+1.
(5.5)

Interestingly, this turns out to be equivalent to the iterative process




bk+1 = b+(bk−uk)

uk+1 ←minu J(u)+
1
2
‖u−bk+1‖2

2,
(5.6)

which can be easily implemented using existing algorithms for (5.2) with different inputs b.
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Subsequently, Yin et al. [44] proposed solving the basis pursuit problem (1.4) by applying the Bregman iterative
regularization algorithm to

min
x

J(x)+
1
2
‖Ax−b‖2

2 (5.7)

for J(x) = µ‖x‖1, and obtained the following two equivalent iterative schemes analogous to (5.5) and (5.6), respec-
tively:

– Version 1:
– x0 ← 0, p0 ← 0,

– for k = 0,1, . . . do

– xk+1 ← argminxDpk

J (x,xk)+
1
2
‖Ax−b‖2

2

– pk+1 ← pk−A>(Axk+1−b)
– Version 2:

– b0 ← 0,x0 ← 0,

– for k = 0,1, . . . do
– bk+1 ← b+(bk−Axk)

– xk+1 ← argminxJ(x)+
1
2
‖Ax−bk+1‖2

2.

One can also use the Bregman iterative regularization algorithm applied to the unconstrained problem (1.8) to
solve the nuclear norm minimization problem (1.7). That is, one iteratively solves (1.8) by

Xk+1 ←min
X

Dpk

J (X ,Xk)+
1
2
‖A (X)−b‖2

2, (5.8)

and updates the subgradient pk+1 by

pk+1 := pk−A ∗(A(Xk+1)−b), (5.9)

where J(X) = µ‖X‖∗.
Equivalently, one can also use the following iterative scheme:





bk+1 ← b+(bk−A (Xk))

Xk+1 ← argminX µ‖X‖∗+
1
2
‖A (X)−bk+1‖2

2.
(5.10)

Thus, our Bregman iterative algorithm for nuclear norm minimization (1.7) can be outlined as follows. The last

Bregman Iterative Algorithm

– b0 ← 0,X0 ← 0,
– for k = 0,1, . . . do
– bk+1 ← b+(bk−A (Xk)),

– Xk+1 ← argminX µ‖X‖∗+
1
2
‖A (X)−bk+1‖2

2.

step can be solved by Algorithm FPC.
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6 An approximate SVD based FPC algorithm: FPCA

Computing singular value decompositions is the main computational cost in Algorithm FPC. Consequently, instead
of computing the full SVD of the matrix Y in each iteration, we implemented a variant of algorithm FPC in which
we compute only a rank-r approximation to Y , where r is a predetermined parameter. We call this approximate SVD
based FPC algorithm (FPCA). This approach greatly reduces the computational effort required by the algorithm.
Specifically, we compute an approximate SVD by a fast Monte Carlo algorithm: the Linear Time SVD algorithm
developed by Drineas et al. [17]. For a given matrix A ∈ Rm×n, and parameters cs,ks ∈ Z+ with 1 ≤ ks ≤ cs ≤
n and {pi}n

i=1, pi ≥ 0,∑n
i=1 pi = 1, this algorithm returns an approximation to the largest ks singular values and

corresponding left singular vectors of the matrix A in linear O(m + n) time. The Linear Time SVD Algorithm is
outlined below.

Linear Time Approximate SVD Algorithm[17]

– Input: A ∈ Rm×n, cs,ks ∈ Z+ s.t.1≤ ks ≤ cs ≤ n, {pi}n
i=1 s.t.pi ≥ 0,∑n

i=1 pi = 1.
– Output: Hk ∈ Rm×ks and σt(C), t = 1, . . . ,ks.

– For t = 1 to cs,
• Pick it ∈ 1, . . . ,n with Pr[it = α] = pα ,α = 1, . . . ,n.

• Set C(t) = A(it )/
√cs pit .

– Compute C>C and its SVD; say C>C = ∑cs
t=1 σ2

t (C)ytyt>.
– Compute ht = Cyt/σt(C) for t = 1, . . . ,ks.

– Return Hks , where H(t)
ks

= ht , and σt(C), t = 1, . . . ,ks.

The outputs σt(C), t = 1, . . . ,ks are approximations to the largest ks singular values and H(t)
ks

, t = 1, . . . ,k are
approximations to the corresponding left singular vectors of the matrix A. Thus, the SVD of A is approximated by

A≈ Aks := HksDiag(σ(C))(A>HksDiag(1/σ(C))>.

Drineas et al. [17] prove that with high probability, the following estimate holds for both ξ = 2 and ξ = F :

‖A−Aks‖2
ξ ≤ min

D:rank(D)≤ks

‖A−D‖2
ξ + poly(ks,1/cs)‖A‖2

F , (6.1)

where poly(ks,1/cs) is a polynomial in ks and 1/cs. Thus, Aks is a approximation to the best rank-ks approximation
to A. (For any matrix M ∈ Rm×n with SVD M = ∑r

i=1 σiuiv>i , where σ1 ≥ . . . ≥ σr > 0,ui ∈ Rm,vi ∈ Rn, the best
rank-k approximation to M is given by M̄ = ∑k

i=1 σiuiv>i ).
Note that in this algorithm, we compute an exact SVD of a smaller matrix C>C ∈Rcs×cs . Thus, cs determines the

speed of this algorithm. If we choose a large cs, we need more time to compute the SVD of C>C. However, the larger
cs is, the more likely are the σt(C), t = 1, . . . ,ks to be close to the largest ks singular values of the matrix A since the
second term in the right hand side of (6.1) is smaller. In our numerical experiments, we found that we could choose
a relatively small cs so that the computational time was reduced without significantly degrading the accuracy. In our
tests, we obtained very good results by choosing cs = 2rm−2, where rm = b(m+n−

√
(m+n)2−4p)/2c is, for a

given number of entries sampled, the largest rank of m×n matrices for which the matrix completion problem has a
unique solution.

There are many ways to choose the probabilities pi. In our numerical experiments in Section 7, we used the
simplest one, i.e., we set all pi equal to 1/n. For other choices of pi, see [17] and the references therein.

In our numerical experiments, we set ks using the following procedure. In the k-th iteration, when computing
the approximate SVD of Y k = Xk− τgk, we set ks equal to the number of components in s̄k−1 that are no less than
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εks max{s̄k−1}, where εks is a small positive number and max{s̄k−1} is the largest component in the vector s̄k−1 used
to form Xk = Uk−1Diag(s̄k−1)V k−1>. Note that ks is non-increasing in this procedure. However, if ks is too small at
some iteration, the non-expansive property (3.1) of the shrinkage operator Sν may be violated since the approximate
SVD is not a valid approximation when ks is too small. Thus, in algorithm FPCA, if (3.1) is violated 10 times, we
increase ks by 1. Our numerical experience indicates that this technique makes our algorithm very robust.

Our numerical results in Section 7 show that this approximate SVD based FPC algorithm: FPCA, is very fast,
robust, and significantly outperforms other solvers (such as SDPT3) in recovering low-rank matrices. This result is
not surprising. One reason for this is that in the approximate SVD algorithm, we compute a low-rank approximation
to the original matrix. Hence, the iterative matrices produced by our algorithm are more likely to be of low-rank
than an exact solution to the nuclear norm minimization problem (1.10), or equivalently, to the SDP (1.12), which
is exactly what we want. Some convergence/recoverability properties of a variant of FPCA, which uses a truncated
SVD rather than a randomized SVD at each step, are discussed in [23].

7 Numerical results

In this section, we report on the application of our FPC, FPCA and Bregman iterative algorithms to a series of matrix
completion problems of the form (1.2) to demonstrate the ability of these algorithms to efficiently recover low-rank
matrices.

To illustrate the performance of our algorithmic approach combined with exact and approximate SVD algo-
rithms, different stopping rules, and with or without debiasing, we tested the following solvers.

– FPC1. Exact SVD, no debiasing, stopping rule: (4.2).
– FPC2. Exact SVD, no debiasing, stopping rule: (4.1) and (4.2).
– FPC3. Exact SVD with debiasing, stopping rule: (4.2).
– FPCA. Approximate SVD, no debiasing, stopping rule: (4.2).
– Bregman. Bregman iterative method using FPC2 to solve the subproblems.

7.1 FPC and Bregman iterative algorithms for random matrices

In our first series of tests, we created random matrices M ∈ Rm×n with rank r by the following procedure: we first
generated random matrices ML ∈ Rm×r and MR ∈ Rn×r with i.i.d. Gaussian entries and then set M = MLM>

R . We
then sampled a subset Ω of p entries uniformly at random. For each problem with m× n matrix M, measurement
number p and rank r, we solved 50 randomly created matrix completion problems. We use SR = p/(mn), i.e., the
number of measurements divided by the number of entries of the matrix, to denote the sampling ratio. We also list
FR = r(m+n− r)/p, i.e. the dimension of the set of rank r matrices divided by the number of measurements, in the
tables. Note that if FR > 1, then there is always an infinite number of matrices with rank r with the given entries, so
we cannot hope to recover the matrix in this situation. We use rm to denote the largest rank such that FR ≤ 1, i.e.,
rm = b(m+n−

√
(m+n)2−4p)/2c. We use NS to denote the number of matrices that are recovered successfully.

We use AT to denote the average time (seconds) for the examples that are successfully solved.
We used the relative error

rel.err. :=
‖Xopt −M‖F

‖M‖F

to estimate the closeness of Xopt to M, where Xopt is the “optimal” solution to (1.10) produced by our algorithms.
We declared M to be recovered if the relative error was less than 10−3, which is the criterion used in [32] and [9].
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We use RA,RU,RL to denote the average, largest and smallest relative error of the successfully recovered matrices,
respectively.

We summarize the parameter settings used by the algorithms in Table 1. We use Im to denote the maximum
number of iterations allowed for solving each subproblem in FPC, i.e., if the stopping rules (4.2) (and (4.1)) are not
satisfied after Im iterations, we terminate the subproblem and decrease µ to start the next subproblem.

Table 1 Parameters in Algorithm FPC

FPC µ̄ = 10−8,ηµ = 1/4,µ1 = ηµ‖A ∗b‖2,τ = 1,xtol = 10−10,gtol = 10−4, Im = 500,X0 = 0
Approx SVD cs = 2rm−2,εks = 10−2, pi = 1/n,∀i

All numerical experiments were run in MATLAB 7.3.0 on a Dell Precision 670 workstation with an Intel
Xeon(TM) 3.4GHZ CPU and 6GB of RAM.

The comparisons between FPC1, FPC2, FPC3 and SDPT3 for small matrix completion problems are presented
in Table 2. From Table 2 we can see that FPC1 and FPC2 achieve almost the same recoverability and relative error,
which means that as long as we set xtol to be very small (like 10−10 ), we only need to use (4.2) as the stopping
rule for the inner iterations. That is, use of stopping rule (4.1) does not affect the performance of the algorithm. Of
course FPC2 costs more time than FPC1 since more iterations are sometimes needed to satisfy the stopping rules in
FPC2. While FPC3 can improve the recoverability, it costs more time for performing debiasing. SDPT3 seems to
obtain more accurate solutions than FPC1, FPC2 or FPC3.

Table 2 Comparisons of FPC1, FPC2, FPC3 and SDPT3 for randomly created small matrix completion problems (m=n=40, p=800,
SR=0.5)

r FR Solver NS AT RA RU RL
1 0.0988 FPC1 50 1.81 1.67e-9 1.22e-8 6.06e-10

FPC2 50 3.61 1.32e-9 1.20e-8 2.55e-10
FPC3 50 16.81 1.06e-9 2.22e-9 5.68e-10

SDPT3 50 1.81 6.30e-10 3.46e-9 8.72e-11
2 0.1950 FPC1 42 3.05 1.01e-6 4.23e-5 8.36e-10

FPC2 42 17.97 1.01e-6 4.23e-5 2.78e-10
FPC3 49 16.86 1.26e-5 3.53e-4 7.62e-10

SDPT3 44 1.90 1.50e-9 7.18e-9 1.82e-10
3 0.2888 FPC1 35 5.50 9.72e-9 2.85e-8 1.93e-9

FPC2 35 20.33 2.17e-9 1.41e-8 3.88e-10
FPC3 42 16.87 3.58e-5 7.40e-4 1.34e-9

SDPT3 37 1.95 2.66e-9 1.58e-8 3.08e-10
4 0.3800 FPC1 22 9.08 7.91e-5 5.46e-4 3.57e-9

FPC2 22 18.43 7.91e-5 5.46e-4 4.87e-10
FPC3 29 16.95 3.83e-5 6.18e-4 2.57e-9

SDPT3 29 2.09 1.18e-8 7.03e-8 7.97e-10
5 0.4688 FPC1 1 10.41 2.10e-8 2.10e-8 2.10e-8

FPC2 1 17.88 2.70e-9 2.70e-9 2.70e-9
FPC3 5 16.70 1.78e-4 6.73e-4 6.33e-9

SDPT3 8 2.26 1.83e-7 8.12e-7 2.56e-9
6 0.5550 FPC1 0 — — — —

FPC2 0 — — — —
FPC3 0 — — — —

SDPT3 1 2.87 6.58e-7 6.58e-7 6.58e-7
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To illustrate the performance of our Bregman iterative algorithm, we compare the results of using it versus using
FPC2 in Table 3. From our numerical experience, for those problems for which the Bregman iterative algorithm
greatly improves the recoverability, the Bregman iterative algorithm usually takes 2 to 3 iterations. Thus, in our
numerical tests, we fixed the number of subproblems solved by our Bregman algorithm to 3. Since our Bregman
algorithm achieves as good a relative error as the FPC algorithm, we only report how many of the examples that
are successfully recovered by FPC, are improved greatly by using our Bregman iterative algorithm. In Table 3,
NIM is the number of examples that the Bregman iterative algorithm outperformed FPC2 greatly (the relative errors
obtained from FPC2 were at least 104 times larger than those obtained by the Bregman algorithm). From Table 3 we
can see that for more than half of the examples successfully recovered by FPC2, the Bregman iterative algorithm
improved the relative errors greatly (from [10−10, 10−9] to [10−16, 10−15]). Of course the run times for the Bregman
iterative algorithm were about three times that for algorithm FPC2, since the former calls the latter three times to
solve the subproblems.

Table 3 Numerical results for the Bregman iterative method for small matrix completion problems (m=n=40, p=800, SR=0.5)

Problem FPC2 Bregman
r FR NIM (NS) RU RL RU RL
1 0.0988 32 (50) 2.22e-9 2.55e-10 1.87e-15 3.35e-16
2 0.1950 29 (42) 5.01e-9 2.80e-10 2.96e-15 6.83e-16
3 0.2888 24 (35) 2.77e-9 3.88e-10 2.93e-15 1.00e-15
4 0.3800 10 (22) 5.51e-9 4.87e-10 3.11e-15 1.30e-15

In the following, we discuss the numerical results obtained by our approximate SVD based FPC algorithm
(FPCA). We will see from these numerical results that FPCA achieves much better recoverability and is much faster
than any of the solvers FPC1, FPC2, FPC3 or SDPT3.

We present the numerical results of FPCA for small (m=n=40) and medium (m=n=100) problems in Tables 4,
and 5 respectively. Since we found that xtol = 10−6 is small enough to guarantee very good recoverability, we set
xtol = 10−6 in algorithm FPCA and used only (4.2) as stopping rule for the inner iterations. From these tables,
we can see that our FPCA algorithm is much more powerful than SDPT3 for randomly created matrix completion
problems. When m = n = 40 and p = 800, and the rank r was less than or equal to 8, FPCA recovered the matrices
in all 50 examples. When rank r = 9, it failed on only one example. Even for rank r = 10, which is almost the
largest rank that satisfies FR ≤ 1, FPCA still recovered the solution in more than 60% of the examples. However,
SDPT3 started to fail to recover the matrices when the rank r = 2. When r = 6, there was only one example out of 50
where the correct solution matrix was recovered. When r ≥ 7, none of the 50 examples could be recovered. For the
medium sized matrices (m = n = 100) we used p = 2000, which is only a 20% measurement rate, FPCA recovered
the matrices in all 50 examples when r ≤ 6. For r = 7, FPCA recovered the matrices in most of the examples (49
out of 50). When r = 8, more than 60% of the matrices were recovered successfully by FPCA. Even when r = 9,

FPCA still recovered 1 matrices. However, SDPT3 could not recover all of the matrices even when the rank r = 1
and none of the matrices were recovered when r ≥ 4. When we increased the number of measurements to 3000,
we recovered the matrices in all 50 examples up to rank r = 12. When r = 13,14, we still recovered most of them.
However, SDPT3 started to fail for some matrices when r = 3. When r ≥ 8, SDPT3 failed to recover any of the
matrices. We can also see that for the medium sized problems, FPCA was much faster than SDPT3.
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Table 4 Numerical results for FPCA and SDPT3 for randomly created small matrix completion problems (m=n=40, p=800, SR=0.5)

Problems FPCA SDPT3
r FR NS AT RA RU RL NS AT RA RU RL
1 0.0988 50 3.49 3.92e-7 1.43e-6 2.72e-7 50 1.84 6.30e-10 3.46e-9 8.70e-11
2 0.1950 50 3.60 1.44e-6 7.16e-6 4.41e-7 44 1.93 1.50e-9 7.18e-9 1.82e-10
3 0.2888 50 3.97 1.91e-6 4.07e-6 9.28e-7 37 1.99 2.66e-9 1.58e-8 3.10e-10
4 0.3800 50 4.03 2.64e-6 8.14e-6 1.54e-6 29 2.12 1.18e-8 7.03e-8 8.00e-10
5 0.4688 50 4.16 3.40e-6 7.62e-6 1.52e-6 8 2.30 1.83e-7 8.12e-7 2.60e-9
6 0.5550 50 4.45 4.08e-6 7.62e-6 2.26e-6 1 2.89 6.58e-7 6.58e-7 6.58e-7
7 0.6388 50 4.78 6.04e-6 1.57e-5 2.52e-6 0 — — — —
8 0.7200 50 4.99 8.48e-6 5.72e-5 3.72e-6 0 — — — —
9 0.7987 49 5.73 2.58e-5 5.94e-4 5.94e-6 0 — — — —

10 0.8750 30 7.20 8.64e-5 6.04e-4 8.48e-6 0 — — — —
11 0.9487 0 — — — — 0 — — — —

Table 5 Numerical results for FPCA and SDPT3 for randomly created medium matrix completion problems (m=n=100)

Problems FPCA SDPT3
p r SR FR NS AT RA RU RL NS AT RA RU RL

2000 1 0.2 0.0995 50 4.93 5.80e-6 1.53e-5 2.86e-6 47 15.10 1.55e-9 1.83e-8 1.40e-10
2000 2 0.2 0.1980 50 5.26 6.10e-6 9.36e-6 4.06e-6 31 16.02 7.95e-9 8.69e-8 5.20e-10
2000 3 0.2 0.2955 50 5.80 7.48e-6 1.70e-5 4.75e-6 13 19.23 1.05e-4 9.70e-4 9.08e-10
2000 4 0.2 0.3920 50 9.33 1.09e-5 5.14e-5 6.79e-6 0 — — — —
2000 5 0.2 0.4875 50 5.42 1.61e-5 8.95e-5 8.12e-6 0 — — — —
2000 6 0.2 0.5820 50 7.02 2.62e-5 7.07e-5 8.72e-6 0 — — — —
2000 7 0.2 0.6755 49 8.69 7.69e-5 5.53e-4 1.11e-5 0 — — — —
2000 8 0.2 0.7680 32 10.94 1.97e-4 8.15e-4 2.29e-5 0 — — — —
2000 9 0.2 0.8595 1 11.75 4.38e-4 4.38e-4 4.38e-4 0 — — — —
2000 10 0.2 0.9500 0 — — — — 0 — — — —
3000 1 0.3 0.0663 50 7.73 1.97e-6 3.15e-6 1.22e-6 50 36.68 2.01e-10 9.64e-10 7.52e-11
3000 2 0.3 0.1320 50 7.85 2.68e-6 8.41e-6 1.44e-6 50 36.50 1.13e-9 2.97e-9 1.77e-10
3000 3 0.3 0.1970 50 8.10 2.82e-6 4.38e-6 1.83e-6 46 38.50 1.28e-5 5.89e-4 2.10e-10
3000 4 0.3 0.2613 50 8.94 3.57e-6 5.62e-6 2.64e-6 42 41.28 4.60e-6 1.21e-4 4.53e-10
3000 5 0.3 0.3250 50 9.12 4.06e-6 8.41e-6 2.78e-6 32 43.92 7.82e-8 1.50e-6 1.23e-9
3000 6 0.3 0.3880 50 9.24 4.84e-6 9.14e-6 3.71e-6 17 49.60 3.44e-7 4.29e-6 3.68e-9
3000 7 0.3 0.4503 50 9.41 5.72e-6 1.09e-5 3.96e-6 3 59.18 1.43e-4 4.28e-4 1.57e-7
3000 8 0.3 0.5120 50 9.62 6.37e-6 1.90e-5 4.43e-6 0 — — — —
3000 9 0.3 0.5730 50 10.35 6.32e-6 1.60e-5 4.56e-6 0 — — — —
3000 10 0.3 0.6333 50 10.93 8.45e-6 3.79e-5 5.59e-6 0 — — — —
3000 11 0.3 0.6930 50 11.58 1.41e-5 6.84e-5 6.99e-6 0 — — — —
3000 12 0.3 0.7520 50 12.17 1.84e-5 1.46e-4 8.84e-6 0 — — — —
3000 13 0.3 0.8103 48 15.24 5.12e-5 6.91e-4 1.25e-5 0 — — — —
3000 14 0.3 0.8680 39 18.85 2.35e-4 9.92e-4 2.05e-5 0 — — — —
3000 15 0.3 0.9250 0 — — — — 0 — — — —
3000 16 0.3 0.9813 0 — — — — 0 — — — —

7.2 Comparison of FPCA and SVT

In this subsection we compare our FPCA algorithm against the SVT algorithm proposed in [8]. The SVT code
is downloaded from http://svt.caltech.edu. We constructed two sets of test problems. One set contained “easy”
problems. These problems are “easy” because the matrices are of very low-rank compared to the matrix size and the
number of samples, and hence they are easy to recover. For all problems in this set, FR was less than 0.34. The other
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set contained “hard” problems, i.e., problems that are very challenging. These problems involved matrices that are
not of very low rank and for which sampled a very limited number of entries. For this set of problems, FR ranged
from 0.40 to 0.87. The maximum iteration number in SVT was set to be 1000. All other parameters were set to
their default values in SVT. The parameters of FPCA were set somewhat loosely for easy problems. Specifically, we
set µ̄ = 10−4,xtol = 10−4,τ = 2, Im = 10 and all other parameters were set to the values given in Table 1. Relative
errors and times were averaged over 5 runs. In this subsection, all test matrices were square, i.e., m = n.

Table 6 Comparison of FPCA and SVT on easy problems

Problems FPCA SVT
n r p SR FR rel.err. time rel.err. time

100 10 5666 0.57 0.34 4.27e-5 0.39 1.64e-3 30.40
200 10 15665 0.39 0.25 6.40e-5 1.38 1.90e-4 9.33
500 10 49471 0.20 0.20 2.48e-4 8.01 1.88e-4 23.77
1000 10 119406 0.12 0.17 5.04e-4 18.49 1.68e-4 41.81
1000 50 389852 0.39 0.25 3.13e-5 120.64 1.63e-4 228.79
1000 100 569900 0.57 0.33 2.26e-5 177.17 1.71e-4 635.15
5000 10 597973 0.02 0.17 1.58e-3 1037.12 1.73e-4 121.39
5000 50 2486747 0.10 0.20 5.39e-4 1252.70 1.59e-4 1375.33
5000 100 3957533 0.16 0.25 2.90e-4 2347.41 1.74e-4 5369.76

From Table 6, we can see that for the easy problems except for one problem which is exceptionally sparse as
well as having low rank, FPCA was much faster and usually provided more accurate solutions than SVT.

For hard problems, all parameters of FPCA were set to the values given in Table 1, except that we set xtol = 10−6

since this value is small enough to guarantee very good recoverability. Also, for small problems ( i.e., max{m,n}<

1000 ), we set Im = 500; and for large problems ( i.e., max{m,n} ≥ 1000 ), we set Im = 20. We use “—” to indicate
that the algorithm either diverges or does not terminate in one hour. Relative errors and times were averaged over 5
runs.

Table 7 Comparison of FPCA and SVT on hard problems

Problems FPCA SVT
n r SR FR rel.err. time rel.err. time

40 9 0.5 0.80 1.21e-5 5.72 5.01e-1 3.05
100 14 0.3 0.87 1.32e-4 19.00 8.31e-1 316.90

1000 20 0.1 0.40 2.46e-5 116.15 — —
1000 30 0.1 0.59 2.00e-3 128.30 — —
1000 50 0.2 0.49 1.04e-5 183.67 — —

From Table 7, we can see that for the hard problems, SVT either diverged or did not solve the problems in less
than one hour, or it yielded a very inaccurate solution. In contrast, FPCA always provided a very good solution
efficiently.

We can also see that FPCA was able to efficiently solve large problems (m = n = 1000) that could not be solved
by SDPT3 due to the large size of the matrices and the large number of constraints.
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7.3 Results for real data matrices

In this section, we consider matrix completion problems based on two real data sets: the Jester joke data set [22]
and the DNA data set [35]. The Jester joke data set contains 4.1 million ratings for 100 jokes from 73,421 users
and is available on the website http://www.ieor.berkeley.edu/˜Egoldberg/jester-data/. Since the number of jokes is
only 100, but the number of users is quite large, we randomly selected nu users to get a modestly sized matrix for
testing purpose. As in [37], we randomly held out two ratings for each user. Since some entries in the matrix are
missing, we cannot compute the relative error as we did for the randomly created matrices. Instead, we computed
the Normalized Mean Absolute Error (NMAE) as in [22] and [37]. The Mean Absolute Error (MAE) is defined as

MAE =
1

2N

N

∑
i=1
|r̂i

i1 − ri
i1 |+ |r̂i

i2 − ri
i2 |, (7.1)

where ri
j and r̂i

j are the withheld and predicted ratings of movie j by user i, respectively, for j = i1, i2. NMAE is
defined as

NMAE =
MAE

rmax− rmin
, (7.2)

where rmin and rmax are lower and upper bounds for the ratings. Since all ratings are scaled to the range [−10,+10],
we have rmin =−10 and rmax = 10.

The numerical results for the Jester data set using FPC1 and FPCA are presented in Tables 8 and 9, respectively.
In these two tables, σmax and σmin are the largest and smallest positive singular values of the recovered matrices,
and rank is the rank of the recovered matrices. The distributions of the singular values of the recovered matrices are
shown in Figures 1 and 2. From Tables 8 and 9 we can see that by using FPC1 and FPCA to recover these matrices,
we can get relatively low NMAEs, which are comparable to the results shown in [37] and [22].

Table 8 Numerical results for FPC1 for the Jester joke data set

num.user num.samp samp.ratio rank σmax σmin NMAE Time
100 7172 0.7172 79 285.65 3.49e-4 0.1727 34.30
1000 71152 0.7115 100 786.37 38.43 0.1667 304.81
2000 140691 0.7035 100 1.1242e+3 65.06 0.1582 661.66

Table 9 Numerical results for FPCA for the Jester joke data set (cs is the number of rows we picked for the approximate SVD)

num.user num.samp samp.ratio εks cs rank σmax σmin NMAE Time
100 7172 0.7172 10−2 25 20 295.14 32.68 0.1627 26.73
1000 71152 0.7115 10−2 100 85 859.27 48.04 0.2008 808.52
1000 71152 0.7115 10−4 100 90 859.46 44.62 0.2101 778.56
2000 140691 0.7035 10−4 200 100 1.1518e+3 63.52 0.1564 1.1345e+3

We also used two data sets of DNA microarrays from [35]. These data sets are available on the website http://cellcycle-
www.stanford.edu/. The first microarray data set is a matrix that represents the expression of 6178 genes in 14 ex-
periments based on the Elutriation data set in [35]. The second microarray data set is based on the Cdc15 data set in
[35], and represents the expression of 6178 genes in 24 experiments. However, some entries in these two matrices
are missing. For evaluating our algorithms, we created complete matrices by deleted all rows containing missing
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Fig. 1 Distribution of the singular values of the recovered matrices for the Jester data set using FPC1. Left:100 users, Middle: 1000
users, Right: 2000 users
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Fig. 2 Distribution of the singular values of the recovered matrices for the Jester data set using FPCA. Upper Left: 100 users, εks =
10−2,cs = 25; Upper Right: 1000 users, εks = 10−2,cs = 100; Bottom Left: 1000 users, εks = 10−4,cs = 100; Bottom Right: 2000 users,
εks = 10−4,cs = 200

values. This is similar to how the DNA microarray data set was preprocessed in [41]. The resulting complete matrix
for the Elutriation data set was 5766×14. The complete matrix for the Cdc15 data set was 4381×24. We must point
out that these DNA microarray matrices are neither low-rank nor even approximately low-rank although such claims
have been made in some papers. The distributions of the singular values of these two matrices are shown in Figure
3. From this figure we can see that in each microarray matrix, only one singular value is close to zero, while the
others are far away from zero. Thus there is no way to claim that the rank of the Elutriation matrix is less than 13, or
the rank of the Cdc15 matrix is less than 23. Since these matrices are not low-rank, we cannot expect our algorithms
to recover these matrices by sampling only a small portion of their entries. Thus we needed to further modify the
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Fig. 3 Distribution of the singular values of the matrices in the original DNA microarray data sets. Left: Elutriation matrix; Right:
Cdc15 matrix.

data sets to yield low-rank matrices. Specifically, we used the best rank-2 approximation to the Elutriation matrix
as the new complete Elutriation matrix and the best rank-5 approximation to the Cdc15 matrix as the new complete
Cdc15 matrix. The numerical results for FPCA for recovering these two matrices are presented in Table 10. In the
FPCA algorithm, we set εks = 10−2 and xtol = 10−6. For the Elutriation matrix, we set cs = 115 and for the Cdc15
matrix, we set cs = 88. The observed entries were randomly sampled. From Table 10 we can see that by taking 60%
of the entries of the matrices, our FPCA algorithm can recover these matrices very well, yielding relative errors as
low as 10−5 and 10−6, which is promising for practical use.

Table 10 Numerical results of FPCA for DNA microarray data sets

Matrix m n p rank SR FR rel.err Time
Elutriation 5766 14 48434 2 0.6 0.2386 1.83e-5 218.01

Cdc15 4381 24 63086 5 0.6 0.3487 7.95e-6 189.32

To graphically illustrate the effectiveness of FPCA, we applied it to image inpainting [3]. Grayscale images and
color images can be expressed as matrices and tensors, respectively. In grayscale image inpainting, the grayscale
value of some of the pixels of the image are missing, and we want to fill in these missing values. If the image is
of low-rank, or of numerical low-rank, we can solve the image inpainting problem as a matrix completion problem
(1.2). In our test we applied SVD to the 512× 512 image in Figure 4(a), and truncated this decomposition to get
the rank-40 image which is shown in Figure 4(b). Figure 4(c) is a masked version of the image in Figure 4(a),
where one half of the pixels in Figure 4(a) were masked uniformly at random. Figure 4(d) is the image obtained
from Figure 4(c) by applying FPCA. Figure 4(d) is a low-rank approximation to Figure 4(a) with a relative error of
8.41e− 2. Figure 4(e) is a masked version of the image in Figure 4(b), where one half of the pixels in Figure 4(b)
were masked uniformly at random. Figure 4(f) is the image obtained from Figure 4(e) by applying FPCA. Figure
4(f) is an approximation to Figure 4(b) with a relative error of 3.61e− 2. Figure 4(g) is another masked image
obtained from Figure 4(b), where 4 percent of the pixels were masked in a non-random fashion. Figure 4(h) is the
image obtained from Figure 4(g) by applying FPCA. Figure 4(g) is an approximation to Figure 4(b) with a relative
error of 1.70e−2.
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Fig. 4 (a): Original 512×512 image with full rank; (b): Original image truncated to be of rank 40; (c): 50% randomly masked original
image; (d): Recovered image from 50% randomly masked original image (rel.err = 8.41e− 2); (e): 50% randomly masked rank 40
image; (f): Recovered image from 50% randomly masked rank 40 image (rel.err = 3.61e− 2); (g): Deterministically masked rank 40
image (SR = 0.96); (h): Recovered image from deterministically masked rank 40 image (rel.err = 1.70e−2).
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8 Conclusions and discussions

In this paper, we derived a fixed point continuation algorithm and a Bregman iterative algorithm for solving the
linearly constrained nuclear norm minimization problem, which is a convex relaxation of the NP-hard linearly
constrained matrix rank minimization problem. The convergence of the fixed point iterative scheme was established.
By adopting an approximate SVD technique, we obtained a very powerful algorithm (FPCA) for the matrix rank
minimization problem. On matrix completion problems, FPCA greatly outperforms SDP solvers such as SDPT3 in
both speed and recoverability of low-rank matrices. Further study is needed to prove the convergence of algorithm
FPCA.

Acknowledgements We would like to thank two anonymous referees for their helpful comments. The first author thanks Junzhou
Huang from Rutgers University for fruitful discussions on image inpainting.

References

1. Bach, F.R.: Consistency of trace norm minimization. Journal of Machine Learning Research 9(Jun), 1019–1048 (2008)
2. van den Berg, E., Friedlander, M.P.: Probing the Pareto frontier for basis pursuit solutions. Preprint available at Optimization

Online: 2008.01.1889 (2008)
3. Bertalmı́o, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. Proceedings of SIGGRAPH 2000, New Orleans, USA

(2000)
4. Borwein, J.M., Lewis, A.S.: Convex Analysis and Nonlinear Optimization. Springer-Verlag (2003)
5. Bregman, L.: The relaxation method of finding the common points of convex sets and its application to the solution of problems in

convex programming. USSR Computational Mathematics and Mathematical Physics 7, 200–217 (1967)
6. Burer, S., Monteiro, R.D.C.: A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization.

Mathematical Programming (Series B) 95, 329–357 (2003)
7. Burer, S., Monteiro, R.D.C.: Local mimima and convergence in low-rank semidefinite programming. Mathematical Programming

103(3), 427–444 (2005)
8. Cai, J., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. submitted for publication (2008)
9. Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Submitted (2008)

10. Candès, E.J., Romberg, J.: `1-MAGIC: Recovery of sparse signals via convex programming. Tech. rep., Caltech (2005)
11. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency

information. IEEE Transactions on Information Theory 52, 489–509 (2006)
12. Candès, E.J., Tao, T.: The power of convex relaxation: near-optimal matrix completion. preprint (2009)
13. Dai, W., Milenkovic, O.: Subspace pursuit for compressive sensing: closing the gap between performance and complexity. Preprint

available at arXiv: 0803.0811 (2008)
14. Donoho, D.: Compressed sensing. IEEE Transactions on Information Theory 52, 1289–1306 (2006)
15. Donoho, D., Tsaig, Y., Drori, I., Starck, J.C.: Sparse solution of underdetermined linear equations by stagewise orthogonal matching

pursuit. Submitted to IEEE Trransactions on Information Theory (2006)
16. Donoho, D.L., Tsaig, Y.: Fast solution of `1-norm minimization problems when the solution may be sparse. Tech. rep., Department

of Statistics, Stanford University (2006)
17. Drineas, P., Kannan, R., Mahoney, M.W.: Fast Monte Carlo algorithms for matrices ii: Computing low-rank approximations to a

matrix. SIAM J. Computing 36, 132–157 (2006)
18. Fazel, M.: Matrix rank minimization with applications. Ph.D. thesis, Stanford University (2002)
19. Fazel, M., Hindi, H., Boyd, S.: A rank minimization heuristic with application to minimum order system approximation. In:

Proceedings of the American Control Conference (2001)
20. Figueiredo, M.A.T., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction: Application to compressed sensing

and other inverse problems. IEEE Journal on Selected Topics in Signal Processing 1(4) (2007)
21. Ghaoui, L.E., Gahinet, P.: Rank minimization under LMI constraints: A framework for output feedback problems. In: Proceedings

of the European Control Conference (1993)
22. Goldberg, K., Roeder, T., Gupta, D., Perkins, C.: Eigentaste: A constant time collaborative filtering algorithm. Information Retrieval

4(2), 133–151 (2001)
23. Goldfarb, D., Ma, S.: Convergence of fixed point continuation algorithms for matrix rank minimization. Tech. rep., Department of

IEOR, Columbia University (2009)



Fixed point and Bregman iterative methods for matrix rank minimization 27

24. Hale, E.T., Yin, W., Zhang, Y.: A fixed-point continuation method for `1-regularized minimization with applications to compressed
sensing. Tech. rep., CAAM TR07-07 (2007)
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