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Abstract

We address the problem of detecting deformities on elastic surfaces. This is of great importance for shape

analysis, with applications such as detecting abnormalities in biological shapes (e.g., brain structures). We propose

an effective algorithm to detect abnormal deformations by generating quasi-conformal maps between the original

and deformed surfaces. We firstly flatten the 3D surfaces conformally onto 2D rectangles using the discrete Yamabe

flow and use them to compute a quasi-conformal map that matches internal features lying within the surfaces. The

deformities on the elastic surface are formulated as non-conformal deformations, whereas normal deformations that

preserve local geometry are formulated as conformal deformations. We then detect abnormalities by computing

the Beltrami coefficient associated uniquely with the quasi-conformal map. The Beltrami coefficient is a complex-

valued function defined on the surface. It describes the deviation of the deformation from conformality at each

point. By considering the norm of the Beltrami coefficient, we can effectively segment the regions of abnormal

changes, which are invariant under normal (non-rigid) deformations that preserve local geometry. Furthermore,

by considering the argument of the Beltrami coefficient, we can capture abnormalities induced by local rotational

changes. We tested the algorithm by detecting abnormalities on synthetic surfaces, 3D human face data and MRI-

derived brain surfaces. Experimental results show that our algorithm can effectively detect abnormalities and capture

local rotational alterations. Our method is also more effective than other existing methods, such as the isometric

indicator, for locating abnormalities.

I. INTRODUCTION

Detecting abnormal changes on surfaces is a central problem in shape analysis, especially in medical

research. For example, neuroscientists commonly aim to identify abnormal deformations of cortical and

subcortical structures in the brain in order to detect systematic patterns of alterations in brain diseases. In

cardiac imaging and oncology, physicians commonly need to track changes or abnormalities in biological

organs or tumors, to evaluate the effectiveness of different treatments, or monitor disease progression.

Detecting and examining abnormalities with the human eye is inefficient and often inaccurate, especially

on complicated surfaces such as the cerebral cortex of the brain. Therefore, it is of great importance to

develop automatic methods to detect abnormalities and track abnormal geometric changes over time.
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In this paper, we propose a framework for detecting abnormal changes on elastic surfaces using quasi-

conformal geometry. Two issues arise in solving this problem. First, we want to find good registrations

between surfaces with enforced landmark-correspondences. Second, we want to define a robust measure of

deformity, which is invariant under normal (non-rigid) deformations that preserve local geometry, so that

quantitative analysis can be carried out. These goals are related, since good registrations allow accurate

detection of abnormalities, while good measures of deformity can be used to set criteria for desirable

registrations.

We propose to model deformities between elastic shapes as non-conformal deformations, whereas

normal deformations that preserve the local geometry are formulated as conformal deformations. This

is a generalization of existing work by Lord et al. and Unal et al. [9] [19], which modeled deformities

between shapes as non-isometric diffeomorphisms. Using the isometric indicator, the authors proposed to

detect abnormalities that are invariant under rigid transformations. Our proposed method is an extension

of their approaches, in that we are trying to detect deformities on elastic surfaces that are invariant under

non-rigid normal deformations. This is a more general and accurate definition in some situations. For

example, we may consider the growth processes of the human body, which is a key area of study in

medical imaging and face recognition. As a person grows, different parts of the human body grow locally

and the growth rate is somewhat uniform locally [17]. The same organs of two healthy individuals tend

to have similar shapes, although they may not be exactly isometric to each other. In other words, local

geometry is well preserved under the normal growth process. Conformal maps are well-known to preserve

local geometry. Therefore, a good registration between two organs of the same or different individuals

should not be far from conformal. This motivates us to define good registrations as conformal registrations,

and measure deformities as regions of non-conformality.

The key contribution in this paper is the use of Beltrami coefficient to detect shape abnormalities.

Suppose we are given a registration between a normal and a deformed surface of the same or different

subjects. We can compute the Beltrami coefficient of the registration map, which is a complex-valued

function measuring the non-conformal deformation at each point of the map. In our examples, we show

that the Beltrami coefficient is an effective measure of shape deformities on elastic surfaces.

To complete our framework for the automatic detection of shape deformities, we propose the following

registration algorithm. We first generate a quasi-conformal map between the original 3D surface and the

surface to be compared with it. The surfaces are first conformally flattened onto 2D rectangles using

a novel Yamabe flow method, which computes accurate conformal parameterizations of surfaces. Then,

a quasi-conformal map is computed to match landmark features between both flattened surfaces. By

formulating abnormal changes as non-conformal deformations, we detect abnormalities by computing

the Beltrami coefficient, which is uniquely associated with the quasi-conformal map. By considering the

norm of the Beltrami coefficient, we detect regions with abnormal changes, which are invariant under

conformal deformation. Furthermore, by considering the argument of the Beltrami coefficient, we can

capture abnormalities induced by local rotational changes. We propose a quantity called the Beltrami

index, which allows us to quantitatively describe the degree of abnormality in each region. Experiments
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applying our algorithm to synthetic surfaces, 3D human face data and real MRI-derived brain surfaces

show that our algorithm can effectively detect abnormalities and capture local rotational alterations. The

algorithm is also robust under added noise, and it is successful in detecting altered gyrification patterns on

cortical surfaces. Quantitative comparisons of the size of abnormality with the Beltrami index show that

the detected sizes of abnormalities correspond positively with the sizes of abnormalities. A comparison

of the Beltrami coefficient with other commonly used measures like the isometric indicator and gradient

show that these measures are not as effective as Beltrami coefficient and may tend to give misleading

results when the compared surfaces undergo normal changes that preserve the local geometry.

Our paper is organized as follows: prior work on related topics is presented in section 2. The basic

mathematical theory is discussed in section 3. In Section 4, the details of our proposed model are discussed.

In Section 5, our computer algorithm is summarized. Experimental results are discussed in Section 6, and

some conclusions and future work are discussed in section 7.

II. PREVIOUS WORK

Many different approaches have been proposed to detect changes in shapes. Most of them take into

account properties that depend on the embedding of the shape in space. Tosun et al. [18] proposed the

use of three different shape measures – the shape index, curvedness, and L2 norm of mean curvature –

to quantify cortical gyrification and complexity. While the curvature measure is an important geometric

measure of surface properties, it is also affected by healthy changes like normal growth, which increases

surface size and decreases curvature. Moreover, since the curvature is a second order geometric measure,

it is more sensitive to noise in data, especially in triangular meshes. Extra preprocessing is required to

guarantee the robustness of the measure. In contrast, the Beltrami coefficient we use in this paper is a first

order geometric measure. This leads to less perturbation due to noise. By computing surface Jacobian and

applying statistical inference via random field theory on cortical surfaces processed by diffusion smoothing,

Chung et al. [2] studied changes in cortical surface area, thickness, and curvature, as well as the change

of the total gray matter volume over time. While surface Jacobian can detect area changes caused by

abnormalities, it can also be affected by healthy deformations like normal growth, which also causes area

changes of surface registrations. By looking at the Beltrami coefficients, we are able to minimize the

effects caused by such changes. We are also able to detect rotational distortions caused by abnormalities.

Shi et al. [15] suggested the use of Hamilton-Jacobi skeletons on cortical surfaces to study gyrification

patterns in Williams syndrome. In this approach, the degree of gyrification is measured by the number

of branches in the Hamilton-Jacobi skeleton. While this method is easily computable and gives a fast

measure of complexity of the cortical surface, subtle changes could occur within a branch of the cortical

surface, which require a finer measure to detect. To overcome this problem, our approach provides an

local and intrinsic measure of surface distortion to detect such changes.

Registration is broadly used in medical imaging and face recognition. It aims to produce a desirable

registration for obtaining good correspondences or performing further analysis. Grenander et al. [4]

surveyed existing methods of computational anatomy and proposed a framework to compute deformation
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maps and empirical probability laws for disease testing. Early work such as Gaser et al. [3] compute

an initial correspondence field between surfaces to ease the detection of abnormalities. Such applications

often involve models of the human face or organs of the human body. Some existing methods model

deformities between shapes in terms of nonrigid or non-isometric diffeomorphisms [9] [19]. This may

make their algorithms classify normal growth in living organisms as abnormal. This motivates us to model

abnormalities as non-conformal diffeomorphisms, and good registrations as ones that are as conformal as

possible. We support our view with the following points. First, normal changes such as growth in humans

tend to preserve local geometry well, and hence are conformal. Second, by modeling good registrations

as those that are conformal, we are still able to get a correct registration when the proper registration is

indeed isometric.

In most methods for detecting shape changes, an accurate registration between two shapes has to be

computed. The area has been extensively studied. Unal et al. [19] proposed the use of coupled PDEs for

joint segmentation and registration. However, technique does not support the matching of user-defined

landmarks. Pohl et al. [14] proposed an expectation maximization-based method to solve the problem,

which takes into account of image artifacts, anatomical labelmaps, and a structure-dependent hierarchical

mapping from the atlas to the image space. This allows some controls over the matched areas, but user-

defined landmark constraints may not be matched. Lord et al. [9] [8] proposed to match hippocampal

surfaces by finding maps minimizing the deviation from isometry under the constraints of piecewise

deformation homogeneity, with local asymmetry quantified. The authors defined asymmetries between

paired shapes as non-rigid diffeomorphisms between shapes. However, under normal conditions, like

growth, non-rigid shape changes naturally occur. In one of our examples, it is shown that the maps of

a correctly matched pair of surfaces can be non-isometric in normal as well as abnormal regions. Such

occasions call for a more flexible definition of shape abnormality.

It has become increasingly popular to study shape changes by computing diffeomorphisms with desired

properties, as they give one-to-one correspondences of shapes for local comparisons. Using control theory

and large-deformation continuum mechanics, variational metrics have been developed on the space of

diffeomorphisms [4] [20]. In computing diffeomorphisms, one of the goals is to preserve local geometry

as far as possible while consistently aligning important anatomical features lying within a surface. Gu et

al. [6] proposed to find an optimal Möbius transformation between two surfaces to minimize a landmark

mismatch error. Wang et al. [21][11] defined a new energy functional based on harmonic energy to

optimize the conformal parameterization of cortical surfaces, while fixing landmark correspondences. The

harmonic energy method was applied by Shi et al. [16] to match implicitly-defined surfaces by solving

PDEs on them using level set methods. Using integral flows of smooth vector fields, Lui et al. [10] further

proposed to compute a landmark-matching diffeomorphism with shape-based correspondences between

landmark curves.

Recently, conformal geometry has been used for 3D non-rigid surface matching and registration.

Harmonic maps have been used to track non-rigid motions of 3D surfaces, which requires tracking of

boundary correspondences. This challenge was addressed in [23][25], where different conformal mappings
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induced by different holomorphic differentials were combined to achieve accurate and robust matching

results. Even so, holomorphic differentials cannot handle surfaces with complicated topology; the Ricci

flow method is much more flexible and general. The surface-based Ricci flow was introduced in [7]. The

theory of discrete surface Ricci flow was introduced in [1]. Euclidean Ricci flow has been applied to

3D shape analysis in [5], where all the Gaussian curvatures of the surface are concentrated on several

singularities. To remove these singularities, the discrete hyperbolic Ricci flow was introduced in [22],

which improves the accuracy and robustness of the matching and registration. In practice, the Ricci flow

method imposes constraints on the triangulation of the discrete surface, whereas the discrete Yamabe flow

can handle much more general triangulations. Furthermore, the Yamabe flow can achieve a higher level

of conformality than the Ricci flow. The theory of discrete Yamabe flow is established in [12], where the

existence, uniqueness and stability of the solution is rigorously proven.

III. MATHEMATICAL BACKGROUND

In this section, we describe some basic mathematical concepts relevant to describing our algorithm.

A surface S with a conformal structure is called a Riemann surface. Given two Riemann surfaces M and

N , a map f : M → N is conformal if it preserves the surface metric, up to a multiplicative factor called

the conformal factor. An immediate consequence is that every conformal map preserves angles. With

the angle-preserving property, a conformal map effectively preserves the local geometry of the surface

structure.

A generalization of conformal map is called the quasi-conformal map which is an orientation-preserving

homeomorphism between Riemann surfaces with bounded conformality distortion, in the sense that the

first order approximation of the quasi-conformal homeomorphism takes small circles to small ellipses of

bounded eccentricity. Thus, a conformal homeomorphism that maps a small circle to a small circle can

also be regarded as quasi-conformal. Mathematically, f is quasi-conformal provided that it satisfies the

Beltrami’s equation:
∂f

∂z
= µ(z)

∂f

∂z
(1)

for some complex-valued Lebesgue-measurable µ satisfying |µ|∞ < 1. In terms of the metric tensor,

consider the effect of the pullback under f of the usual Euclidean metric ds2E; the resulting metric is

given by:

f ∗(ds2E) = |∂f
∂z

|2|dz + µ(z)dz)|2 (2)

which, relative to the background Euclidean metric dz and dz, has eigenvalues (1+|µ|)2 ∂f
∂z

and (1−|µ|)2 ∂f
∂z

.

µ is called the Beltrami coefficient, which is a measure of conformality. In particular, the map f is

conformal around a small neighborhood of p when µ(p) = 0. Also, the gradient and the Beltrami coefficient

of the map are closely related. Suppose f = (f1, f2) under the conformal parameter domains. The Jacobian

matrix J of f can be written as (∇f1,∇f2) which is a 2 × 2 matrix. The Jacobian is closely related to

|µf |. Mathematically,

det(J) = (1− |µf |2)(|∇f1|2 + |∇f2|2 + det(J))/4
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Fig. 1. Illustration of how Beltrami coefficient µ measures the distortion by a quasi-conformal mapping that maps a small circle to an

ellipse with dilation K.

While | det(J)| gives us information about the area distortion under the map f , |µf | gives us information

about the conformality distortion. In other words, |µf | measures the regions of deformations that do not

preserve local geometry.
Infinitesimally, around a point p, f may be expressed with respect to its local parameter as follows:

f(z) = f(p) + fz(p)z + fz(p)z

= f(p) + fz(p)(z + µ(p)z)
(3)

Obviously, f is not conformal if and only if µ(p) ̸= 0. Inside the local parameter domain, f may be

considered as a map composed of a translation of f(p) together with a stretch map S(z) = z + µ(p)z,

which is postcomposed by a multiplication of fz(p) which is conformal. All the conformal distortion of

S(z) is caused by µ(p). S(z) is the map that causes f to map a small circle to a small ellipse. From µ(p),

we can determine the angles of the directions of maximal magnification as well as the amount of maximal

magnification and maximal shrinking. Specifically, the angle of maximal magnification is argµ(p)/2 with

magnifying factor 1 + |µ(p)|; the angle of maximal shrinking is the orthogonal angle (argµ(p) − π)/2

with shrinking factor 1− |µ(p)|. The distortion or dilation is given by:

K =
1 + |µ(p)|
1− |µ(p)|

(4)

Thus, the Beltrami coefficient µ gives us all the information about the conformaity of the map (See Figure

1). This motivates its use as a measure of abnormal deformation, as abnormalities tend to cause significant

distortions in the conformality of the deformation map.
It is often convenient to conformally map 3D surfaces to planar domains, to simplify subsequent

computations. Yamabe flow offers a rigorous and efficient way to do this. Suppose S is a surface embedded

in the 3D Euclidean space R3, then it has the induced Euclidean metric denoted by g = (gij). Let

u : S → R be a function on S, then ḡ = e2ug is another Riemannian metric of S, which is conformal to

g. If the Gaussian curvatures induced by g and ḡ are K and K̄, then they are related by the following

Yamabe equation

K̄ = e2u(−∆gu+K), (5)

where ∆g is the Laplace-Beltrami operator under the original metric g.
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It is fundamentally important to design a Riemannian metric ḡ with a prescribed curvature K̄, which

is equivalent to solving the Yamabe equation. The surface Yamabe flow (or equivalently the Ricci flow)

is a powerful tool for solving it. Intuitively, the surface Yamabe flow deforms the metric in proportion to

the Gaussian curvature, such that the Gaussian curvature evolves according to a heat diffusion process.
dgij
dt

= (K̄ −K)gij. (6)

It has been proven [12] that if K̄ ≡ 0 everywhere and the total area is preserved during the flow, the

Yamabe flow converges and leads to a metric with constant Gaussian curvature. Note that, for higher-

dimensional Riemannian manifolds, the Ricci flow and Yamabe flow are different. On discrete surfaces,

the discrete Yamabe flow produces better conformality than the discrete Ricci flow.

IV. OUR PROPOSED MODEL

In our method, we propose to use the Beltrami coefficient to detect abnormalities on surfaces. This

is done by formulating abnormal changes as non-conformal deformations. Conversely, a conformal de-

formation is considered as normal. This definition is based on the fact that the local geometries of

shape are well-preserved under normal changes, such as biological shape deformations. Conformal maps

are well known to preserve local geometry and thus it is plausible to use them to characterize normal

deformation. When shapes undergo abnormal changes, significant local distortions in conformality are

often observed. This motivates us to consider the Beltrami coefficient, which measures the degree of

conformality distortion, for abnormality detection. Our proposed algorithm has three main steps. First, the

original 3D surface and the deformed surface are conformally parameterized onto 2D rectangles using

the Yamabe flow method. This simplifies the problem by transforming the 3D surface problem into a 2D

problem. Second, a quasi-conformal map is obtained between the two surfaces by computing a harmonic

map between their conformal parameter domains, which also accommodates constraints to match internal

landmarks based on their shapes. This gives a one-to-one correspondence (registration) between the two

surfaces. Finally, the Beltrami coefficient associated with the quasi-conformal map is computed as an

index of abnormal changes. We describe each step in detail next.

A. Conformal parameterization using the Yamabe Flow

To detect regions with abnormalities, the first step is to find a one-to-one correspondence (registration)

between the original and deformed surfaces. With this registration, we can detect the distortion in confor-

mality of the deformation at each point by computing the associated Beltrami coefficient. Computing the

surface registration directly on surfaces is difficult, especially on complicated surfaces such as the cortical

surface of the brain. Therefore, it is advantageous for us to first parameterize the surfaces conformally

onto the 2D parameter domain. This simplifies the process by transforming the surface problem into a 2D

problem. Under the conformal parameterizations, determining conformality distortion between surfaces is

equivalent to determining it between their conformal parameter domains. Of course, the computation of

conformal parameterizations has to be accurate in order to effectively detect changes in conformality. The

Yamabe flow (6) provides us with an efficient and accurate way to compute these conformal maps.
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In practice, all surfaces are approximated by piecewise linear triangular meshes M(V,E, F ), where V ,

E and F represent the vertex, edge and face set of the mesh. We use vi to denote the i-th vertex, [vi, vj]

the edge connecting vi and vj , [vi, vj, vk] the face connecting vi, vj, vk. The discrete metric is the edge

length function ℓ : E → R+ satisfying triangle inequality. The vertex discrete curvature is defined as

angle deficiency,

Ki =

{
2π −

∑
[vi,vj ,vk]∈F θjki vi ̸∈ ∂M

π −
∑

[vi,vj ,vk]∈F θjki vi ∈ ∂M

where θjki is the corner angle at vi in the face [vi, vj, vk], ∂M is the boundary of M . Let u : V → R be

the discrete conformal factor. The edge length of [vi, vj] is defined as

ℓij := exp(ui) exp(uj)ℓ
0
ij,

where ℓ0ij is the original edge length in R3. The discrete Yamabe flow is defined as

dui

dt
= K̄i −Ki,

with the constraint
∑

i ui = 0. The discrete Yamabe flow converges, and the final discrete metric induces

the prescribed curvature; a detailed proof can be found in [12]. The discrete Yamabe flow is the negative

gradient flow of the following Yamabe energy,

E(u) =

∫ u

u0

∑
i

(K̄i −Ki)dui,

where u0 = (0, 0, · · · , 0). This energy is convex and has a unique global minimum, which corresponds

to the desired metric. Using Newton’s method, the Yamabe energy can be optimized very efficiently. The

Hessian matrix H = (hij) of the Yamabe energy has an explicit form. If [vi, vj] is an edge on the mesh,

[vi, vj, vk] and [vj, vi, vl] are the two faces adjacent to [vi, vj], then hij = cot θijk +cot θijl , θijk is the corner

angle at vk in the face [vi, vj, vk]. The diagonal element hii equals to
∑

j ̸=i hij .

To compute a conformal mapping of a simply connected surface S, we set the target curvature to be

zeros for all interior vertices, and the total curvature of boundary vertices to be 2π. For example, in order

to map a human face surface to a rectangle, we select four corner vertices, and set their target curvatures

to be π
2
. The target curvatures for all other vertices are zeros. Using the Yamabe flow, we can obtain the

desired metric. Then we flatten the mesh isometrically face by face using the resulting metric. Figure

2 shows two examples of conformal surface mappings using Yamabe flow method. The conformality is

demonstrated using checkerboard texture mapping.

B. Quasi-conformal Map between Surfaces

After parameterizing the surfaces conformally, the next step is to determine a quasi-conformal reg-

istration between the conformal parameter domains. There may be important curves on the surfaces

representing landmark features[24], so we look for the optimized harmonic diffeomorphism that exactly

matches landmark features via a variational approach. However, minimizing the energy functional over the

search space of landmark-matching surface diffeomorphisms is difficult. Following [10], we formulate our
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Fig. 2. Conformal mappings of a real human face and a real brain cortical surface, using Yamabe flow method. Four corners are picked,

whose target curvatures are set to be π
2

, and the target curvatures are set to be zeros everywhere.

problem as a variational energy defined on a search space of smooth vector fields
−→
V . The diffeomorphism

may then be generated through the integral flow of
−→
V .

−→
V are restricted only to those that do not flow

across the landmark curves (to enforce exact landmark correspondence). Our energy has 2 terms: (1) a

harmonic energy term to optimize the harmonicity of the parametrization maps; (2) a smoothness energy

term to ensure the smoothness of the vector field.
Denote the conformal parameter domains of S1 and S2 by D1 and D2 respectively. We look for harmonic

diffeomorphisms f̃1 : D1 → Ω and f̃2 : D2 → Ω that match landmark curves to a consistent location C.

The composition map f̃−1
2 ◦ f̃1 is a landmark-matching harmonic diffeomorphism from D1 to D2. To start

with, we compute any arbitrary maps f01 : D1 → Ω and f02 : D2 → Ω. We then iteratively look for the

smooth vector field X⃗i on Ω such that the composition map f̃i = ΦX⃗i ◦ f0i : Di → Ω is the landmark

matching harmonic diffeomorphism (i = 1, 2). Here, ΦX⃗i : Ω → Ω is the time-1 integral flow of the vector

field Y⃗i = PCX⃗i satisfying the integral flow equation:

∂Φ

∂t

X⃗i

(x, t) = X⃗i(Φ
X⃗i(x, t)),

ΦX⃗i(x, 0) = x.

Y⃗ is the projection of the vector field X⃗i such that it is tangential to C. This ensures the exact landmark

matching property of f̃i.
The vector fields X⃗i = ai

∂
∂x

+ bi
∂
∂y

minimizes the following energy functional:

J [ai, bi] =

∫
Ω

|∇f̃1|2 + |∇f̃2|2 dx+ λ

∫
C

(
κ1(f̃1)− κ2(f̃2)

)2
dsD (7)

+β

∫
Ω

|∇X⃗1|2 + |∇X⃗2|2 dx

The variational problem is then formulated to be defined over the space of C1 smooth vector fields on Ω.
The last integral in the energy is the smoothness term for the vector fields X⃗i. The first two integrals are
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Fig. 3. How quasi-conformal registration is constructed between two surfaces.

Fig. 4. (A) shows the vector field defined on the domain. The vector field on the landmark is tangential to the curve. (B) shows the grid

lines on the domain. Several points are labeled on the landmark to visualize its displacement under the integral flow. (C) shows the result of

the integral flow of the vector field. A diffeomorphism with exact landmark matching is obtained. Note that points slide along the landmark

curve, instead of flowing across the curve.
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Fig. 5. Illustration of the result of matching the cortical surfaces with several sulcal landmarks. (A) shows brain surface 1. It is mapped to

brain surface 2 under the conformal parameterization as shown in (B). (C) shows the result of matching under our proposed parameterization.

the harmonic terms, which aim to preserve the harmonicity of the parameterization as much as possible.
The second term is a symmetric shape term defined as an arc length integral, where the shape measure is
defined according to the curvature. The proposed energy functional can be minimized by modifying the
vector field iteratively according to the following Euler-Lagrange equation:

dai
dt

=

∫ 1

0

Bi(ϕ
Y⃗i
s ) Ψi(ϕ

Y⃗i
s , 1) Ψ−1

i (ϕY⃗i
s , s) PC e⃗1 |DϕY⃗i

s | ds− β∆ai (8)

dbi
dt

=

∫ 1

0

Bi(ϕ
Y⃗i
s ) Ψi(ϕ

Y⃗i
s , 1) Ψ−1

i (ϕY⃗i
s , s) PC e⃗2 |DϕY⃗i

s | ds− β∆bi, (9)

where:
Bi := −∆f̃i Df0,i + λχA

(
(−1)i−1

(
κ1(f̃1)−κ2(f̃2)

)
∇κi−∇·Ci

)
Df0,i |∇H(ϕ)|; Ψi is the orthogonal

fundamental matrix for the homogeneous system of
∂

∂t
Pi(x, t) = ηPC e⃗1 (ΦY⃗i(x, t)) +DY⃗i(Φ

Y⃗i(x, t)) Pi(x, t),

Pi(x, 0) = 0.

Figure 3 shows a schematic diagram of our quasi-conformal map construction. Figure 4 shows how the

constraint vector field can be used to obtain the desired registration with exact landmark matching based

on the shape information. Figure Figure 5 illustrates the matching results for cortical surfaces with several

sulcal landmarks labeled. Figure 5(A) shows brain surface 1 with several landmarks labeled. It is mapped

to brain surface 2 under the conformal parameterization as shown in Figure 5(B). The sulcal landmarks on

Brain 1 are only mapped approximately to the sulcal regions on Brain 2. Figure 5(C) shows the matching

result under the parameterization we proposed. The corresponding landmarks are mapped exactly. Also,

the correspondence between the landmark curves follows the shape information (corners to corners; see

the black dot).
Using harmonic maps for registration is beneficial as they tend to preserve conformality as much as

possible. They effectively capture the region of conformal deformation and help to identify regions of

non-conformal deformation. By computing the Beltrami coefficient µ of the registration, we can detect

abnormalities. In cases where the deformed surface does not undergo any abnormal (non-conformal)

deformations, the harmonic map obtained will be close to conformal and µ will approximately be zero.
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C. Computing the Beltrami coefficient

Given the conformal parameterizations together with the registration between the conformal parameter

domains, we can detect the abnormal region by computing the Beltrami coefficient. The Beltrami coef-

ficient measures the change in conformality. Suppose the conformal parameterizations of So and Sd are

ϕo : So → D1, ϕd : Sd → D2 respectively. Denote the registration between the parameter domains by

F : D1 → D2. The composition map F̃ = ϕ−1
d ◦F ◦ϕo : So → Sd will give a landmark matching harmonic

registration between the original and deformed surface. By computing the Beltrami coefficient µF̃ of F̃ ,

we can detect which point on the surface undergoes abnormal (non-conformal) deformation. The Beltrami

coefficient is invariant under conformal maps. In other words, |µf◦g| = |µg| and |µg◦f | = |µf | if g is

conformal. Since ϕo and ϕd are both conformal diffeomorphisms, we have:

|µF̃ | = |µϕ−1
d ◦F◦ϕo

| = |µF | (10)

Thus, to compute µF̃ , it suffices to compute µF . Since F is a map defined on the 2D complex plane, we

can compute its Beltrami coefficient easily by:

µF =
Fz

Fz

=

∂F
∂x

+ i∂F
∂y

∂F
∂x

− i∂F
∂y

(11)

The Beltrami coefficient is a complex-valued function. When the deformation near a point p is conformal,

then µF̃ (p) = 0. At the point where abnormal deformation happens around its immediate neighborhood,

µF̃ will be non-zero. We can easily detect regions of abnormality by computing the norm of the Beltrami

coefficient |µF̃ |.
To measure the degree of abnormality quantitatively, we introduce a measure called Beltrami Index

(BI) which measures the average of the Beltrami coefficient over a certain region. Mathematically, it is

defined as:

BI(D) =

∫
D

|µ(z)|dz/
∫
D

|dz| (12)

The Beltrami Index can effectively measure the degree of abnormalities in different regions on the surface

(see Figure 17).

Also, as described in section 3, the argument of µF̃ measures the angle of complex dilation. This can

be used to describe any local rotational change of the abnormal shape. By representing µF̃ as a vector

field V⃗ = (Re(µF̃ ), Im(µF̃ )) on the parameter domain, we can easily visualize the rotational change of

the abnormal shape (see Figure 9).

V. COMPUTER ALGORITHM

The computer algorithm can be summarized as follows:

1 Compute the conformal parameterizations of the original surface So and deformed surface Sd: ϕo :

So → D1 and ϕd : Sd → D2;

2 Compute the landmark-matching harmonic registration between the conformal domains: F̃ : D1 →
D2;
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Fig. 6. (A) shows the original surface. (B) shows the deformed surface with both conformal and non-conformal deformations. (C) shows

the plot of |µ|. (D) shows the plot of the isometric indicator |f∗(ds2E)− Identity|. It is equal to 0 if f is isometric. (E) shows the gradient

norm of the deformation field. Note that both the isometric indicator and the gradient of the deformation field are not good measures for

detecting deformities.

3 Compute the Beltrami coefficient µF̃ of F̃ . Compute |µF̃ | to detect regions of abnormality. The

rotational change of the abnormal shape can be visualized by the vector field V⃗ = (Re(µF̃ ), Im(µF̃ ))

on the parameter domain.

VI. EXPERIMENTAL RESULTS

We tested our proposed algorithm on synthetic surfaces, 3D human face data and MRI-derived models

of human brain cortical surfaces, to detect abnormalities.
In Figure 6, we tested our proposed algorithm using synthetic data. Figure 6(A) shows the original

surface. Figure 6(B) shows the deformed surface with both conformal and non-conformal deformations.

Figure 6(C) shows the plot of |µ|. It effectively detect the deformity on the surface. Figure 6(D) shows

the plot of the isometric indicator |f ∗(ds2E) − Identity|. It is equal to 0 if f is isometric. Figure 6(E)

shows the gradient norm of the deformation field. Note that both the isometric indicator and the gradient

of the deformation field are not good measures for detecting deformities. Figure 7 shows another example

on synthetic surfaces. Figure 7(A) shows the original surface. Figure 7(B) shows the deformed surface

with both conformal and non-conformal deformations. Figure 7(C) shows the plot of |µ|. Figure 7(D)
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Fig. 7. (A) shows the original surface. (B) shows the deformed surface with both conformal and non-conformal deformations. (C) shows

the plot of |µ|. (D) shows the distribution of µ as a complex number. It represents a vector field on the conformal parameter domain. Observe

that µ can be used effectively as an indicator to segment the abnormal regions on the surface.

shows the distribution of µ as a complex number. It represents a vector field on the conformal parameter

domain- this can be used to visualize the rotational change of the abnormal shape. Again, it is observed

that µ can be used effectively as an indicator to segment the abnormal regions on the surface (see the

shaped segmented region on the surface in Figure 7(B)).

In Figure 8, we illustrate our idea on a human face. Figure 8(A) shows the original human face without

abnormality. Figure 8(B) shows the deformed human face with abnormal swollen area. Figure 8(C) shows

the the plot of |µ| versus the conformal parameter domain. Figure 8(D) shows the distribution of |µ| by

color. Observe that µ can effectively reflect the swollen area on the human face.

Figure 9 shows how the complex-valued Beltrami coefficient µ can be used to detect rotational change

of abnormal shape. It is done by visualizing µ as a vector field V⃗ = (Re(µF̃ ), Im(µF̃ )) on the parameter

domain. Figure 9(A) shows a human face with an abnormally swollen area. In Figure 9(B), the swollen

area is rotated. Figure 9(C) plots the complex-valued Beltrami coefficients µ on the parameter domain.

Figure 9(D) shows the same area zoomed in. The green and red colors represent the Beltrami coefficients

for (A) and (B), respectively. Observe that the Beltrami coefficients effectively reflect the rotational change

of the swollen area. The abnormal shape is generally rotated by 90 degrees.

In Figure 10, we test our proposed algorithm on noisy data. Figure 10(A) shows the original clean

human face. Figure 10(B) shows the deformed human face with noise. Figure 10(C) shows the original

human face with noise. (D) shows the plot of µ computed under noise. Note that our method is stable

under noise and can effectively detect deformities on noisy surface data.

In Figure 12, 13 and 14, we illustrate our proposed algorithm on a human brain cortical surface. Figure

12 shows the original brain surface (Brain 1) and the deformed brain surface (Brain 2) with abnormal gyral

thickening. The gyral thickening can be observed inside the circled region. Figure 13 shows a zoom-in of

the abnormal region. Gyral thickening is clearly observed. Figure 13(A) shows the plot of |µ| versus the

parameter domain. Figure 13(B) shows the distribution of |µ| in color. Again, the Beltrami coefficient µ

can effectively detect the gyral thickening region.
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Fig. 8. (A) shows the original human face and (B) shows a deformed version of the human face with an abnormally swollen area. (C)

shows the plot of |µ| versus the parameter domain. (D) shows the distribution of |µ| by color.

Figure 15 shows another example of detecting abnormalities on brain surfaces. Figure 15(A) shows the

original brain surface. Figure 15(B) shows the deformed brain surface with gyral thickening in the circled

regions. Figure 15(C) shows the distribution of |µ|. The Beltrami coefficient µ again clearly reflects the

region of abnormal changes on the human brain cortical surface.
Figure 16 illustrates how we can use Beltrami coefficient to capture the gyrification pattern on the

human brain surface. Figure 16(A) shows a real human brain cortical surface. Figure 16(B) shows the

deformed cortical surface. The brain has undergone different degrees of gyrification at different regions.

Figure 16(C) shows the colormap of the brain determined by the Beltrami coefficient. Red color means

high value of Beltrami coefficient whereas blue color means low value of Beltrami coefficient. Figure

16(C) shows the colormap on the conformal parameter domain. Observe that the colormap of the Beltrami

coefficient effectively captures the gyrification pattern on the brain surface.
Figure 17 shows how we can qualitatively measure the degree of abnormalities using the Beltrami Index

(BI). The top shows a series of brain surfaces which are undergoing more and more gyral thickening.

The bottom shows the plot of the Beltrami Index (BI) of each deformed brain surfaces. Observe that the

value of the Beltrami Index becomes bigger as the gyral thickening becomes more severe. It shows that

the Beltrami Index (BI) can effectively measure the degree of the abnormal changes.

VII. CONCLUSION AND FUTURE WORK

In conclusion, we developed an effective algorithm to detect abnormalities on surfaces using quasi-

conformal geometry. To do this, we computed a landmark-matching harmonic registration between the
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Fig. 9. (A) shows a human face with an abnormal swollen area. In (B), the swollen area is rotated. (C) plots the Beltrami coefficients

µ on the parameter domain. (D) shows a zoomed-in region. The green and red colors represent the Beltrami coefficients for (A) and (B)

respectively. Observe that the Beltrami coefficients effectively reflects the rotational change of the swollen area.

Fig. 10. (A) shows the original clean human face. (B) shows the deformed human face with noise. (C) shows the original human face with

noise. (D) shows the plot of µ computed under noise.
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Fig. 11. (A) shows the original human face. (B) shows the deformed human face. The deformed face is fatter and abnormality is observed.

The local geometry is well preserved (except for the abnormal region), although the face has become fatter. (C) shows the plot of the

isometric indicator. (D) shows the plot of |µ|.

Fig. 12. The figure shows the original brain surface (Brain 1) and the deformed brain surface (Brain 2) with an abnormal thickening of

the gyri, which can be observed inside the circled region.
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Fig. 13. The figure shows a zoomed-in version of the abnormal region. Gyral thickening can be clearly observed.

Fig. 14. (A) shows the plot of |µ| versus the parameter domain of the brain surfaces. (B) shows the distribution of |µ| by color.

original and deformed 3D surfaces, together with its associated Beltrami coefficient, µ. Experimental

results show that the Beltrami coefficient can effectively detect regions with abnormalities, which are

invariant under normal (conformal) deformation. By visualizing µ as a vector field defined on the parameter

domain, we can capture the rotational change of the abnormal shape. In future, we will apply our

algorithm to study human brain diseases such as Williams syndrome, which results from genetically-

mediated developmental abnormalities in cortical folding. We will also develop more efficient numerical

schemes to speed up the computation.
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APPENDIX

Numerical Implementation of the Quasi-conformal Registration Algorithm

We describe how the quasi-conformal registration algorithm can be implemented. In practice, all surfaces

are represented by meshes which consists of vertices, edges and triangular faces. The functions and their

partial derivatives in the iterative scheme are defined on each vertex and linearly interpolated to define

the value on each triangular face. They can be computed as follows:

• Laplacian of a function F can be computed as: ∆F =
∑

[u,v]∈Nv
kuv(F (v)− F (u)), where: Nv is a

set of triangles around v that forms a neighborhood of v; kuv = (cotα + cot β)/2, where α and β
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Fig. 15. The figure shows another example of detecting abnormalities on brain surfaces. (A) shows the original brain surface. (B) shows

the deformed brain surface with gyral thickening inside the circled regions. (C) shows the distribution of |µ|.

Fig. 16. (A) shows a real human brain cortical surface. (B) shows the deformed cortical surface. The brain has undergone different degrees

of gyrification in different regions. (C) shows the colormap of the brain determined by the Beltrami coefficient. Red color indicates a high

value of the Beltrami coefficient, whereas blue colors mean low values of Beltrami coefficient. (C) shows the colormap on the conformal

parameter domain.



20

Fig. 17. The top shows a series of brain surfaces undergoing more and more gyri thickening. The bottom shows how the Beltrami Index

(BI) can effectively measure the gyrification.

are the opposite angles of the edge [u, v]. For detail, please see [13].

• Gradient ∇κi can be computed as: ∇κi =
∑

[u,v,w]∈Nv

∇[u,v,w]κi

n
, where ∇[u,v,w]κi is the gradient of

κi on the triangle [u, v, w]. The value of κi on [u, v, w] is linearly interpolated. n is the number of

faces in Nv.

• Df0,i is defined as Df0,i = (∇f1
0,i,∇f 2

0,i) which is a 2× 2 matrix, where f0,i = (f 1
0,i, f

2
0,i). Similarly,

DYi := (∇Y⃗ 1
i ,∇Y⃗ 2

i ), where Y⃗i = (Y 1
i , Y

2
i )

• The orthogonal fundamental matrix Ψi(x⃗, s) is defined as:

Ψi(x⃗, s) := exp(
∫ s

0
DY⃗i(Φ

Y⃗i(x⃗, t))dt). Suppose the interval [0, 1] is discretized as: s0 = 0 < s1 <

... < sn = 1. Ψi(x⃗, s) can be computed as: Ψi(x⃗, sk) := exp(
∑k

j=1 DY⃗i(Φ
Y⃗i(x⃗, sj))(sj − sj−1)).

• The function δϵ is defined to be a positive function that is compactly supported in (−ϵ, ϵ) and can

be computed mathematically as:

δϵ(x) =
1

a(ϵ)
√
π
exp(− x2

a(ϵ)2
)

• ηep is a smooth function on Ω such that ηep = 0 at the endpoints of the open curves Γk ⊂ C,

k = 1, 2, ..N . It can be computed mathematically as: ηep = 1−
∑2N

i=1 δ
i
ϵ(x), where δiϵ(x) = exp(−(x−

ai)/ϵ
2) and a1, a2, ..., a2N are the set of end points of the landmark curves.

• The initial map f0i maps the landmark curves Ci to the common curve Cstandard,i. It can be computed

as follows: Given a set of landmark curves Ci(t) on the parameter domain and a set of corresponding

common curves Cstandard,i(t). Starting from the initial map f0 = Id, we can iteratively flow the map

to get a diffeomorphism which matches Ci(t) to Cstandard,i(t) as follow. We can define a vector fields

on fn(Ci(t)) as V⃗ n(t) = Cstandard,i(t)− fn(Ci(t)) and smoothly extend to the parameter domain by

Gaussian convolution G∗ V⃗ n(t). The iterative scheme can then be written as: fn+1 = fn+dtV⃗n(f
n).
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