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Abstract 

The parameter identifiability problem for dynamic system ODE models has been extensively studied.  

Nevertheless, except for linear ODE models, the question of establishing identifiable combinations of 

parameters when the model is unidentifiable has not received as much attention and the problem is not 

fully resolved for nonlinear ODEs.  We extend an existing algorithm for finding globally identifiable 

parameters of nonlinear ODE models to generate the ‘simplest’ globally identifiable parameter 

combinations using Gröbner bases.  We also provide sufficient conditions for the method to work, 

demonstrate our algorithm on some models, and find the associated identifiable reparameterizations.  

Key words: Identifiability, Differential Algebra, Gröbner Basis, Reparameterization 

1.  Introduction 

Parameter identifiability analysis addresses the problem of which unknown parameters of an ODE 

model can be quantified from given input/output data.  If all the parameters of the model have a unique 

or finitely many solutions, the model and its parameter vector p are said to be identifiable.  Many 

models, however, yield infinitely many solutions for some parameters, and the model and its parameter 

vector p are then said to be unidentifiable.  This raises the question, given an unidentifiable model, can 

we find combinations of the elements of p that are identifiable, e.g. so the model can be solved?  

Finding these parameter combinations is the main focus of this paper.   

For linear ODE models, the problem of finding identifiable combinations in p when p is not identifiable is 

solved globally using transfer function and other linear algebra methods [1,4,10].  For nonlinear ODE 

models, the problem has been more challenging, with little resolution beyond application to simple 

models [19], most providing computationally-intensive local solutions.  Evans and Chappell [9] and Gunn 

et al [11] adapt the Taylor series approach of Pohjanpalo [16] to find locally identifiable combinations.  

Chappell and Gunn [3] use the similarity transformation approach to generate identifiable 

reparameterizations, but again only locally.  Denis-Vidal and Joly-Blanchard [6] find reparameterizations 

using equivalence of systems based on the straightening out theorem to get global identifiability. 

*Corresponding author: Email address: nmeshkat@math.ucla.edu 
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However, for systems of dimension greater than one, this method does not find a necessary condition 

for identifiability and is not implemented as easily as other methods [6].  Denis-Vidal et al [5,7] and 

Verdiere et al [22] find globally identifiable combinations of parameters in a differential algebraic 

approach similar to Saccomani et al [17] , via an “inspection” method as discussed later.   

In this work, we first establish a ‘simplest’ set (defined below) of globally identifiable parameter 

combinations for a practical class of nonlinear ODE models.  To accomplish this, we extend the method 

of Bellu and coworkers [2] using a variation on the Gröbner basis approach and exemplify our algorithm 

and its application to reparameterization.   

2.  Nonlinear ODE Model 

Our model is of the form: 

𝒙  𝑡,𝒑 =  𝒇 𝒙 𝑡,𝒑 ,𝒖 𝑡 , 𝑡;  𝒑 , 𝑡 ∈ [𝑡0 ,𝑇] 

𝒚 𝑡,𝒑 =  𝒈 𝒙 𝑡,𝒑 ;𝒑                                                                  (2.1) 

𝒙𝟎 = 𝒙(𝑡0 ,𝒑) 

Here 𝒙 is a n-dimensional state variable, 𝒙𝟎 is the initial state at time 𝑡0, 𝒑 is a P-dimensional parameter 

vector, 𝒖 is the r-dimensional input vector, and 𝒚 is the m-dimensional output vector.  As in [2], we 

assume 𝒇 and 𝒈 are rational polynomial functions of their arguments.  Also, constraints reflecting known 

relationships among parameters, states, and/or inputs are assumed to be already included in (2.1), 

because they generally affect identifiability properties [8].  

3.  Identifiability 

The question of a priori structural identifiability concerns finding one or more sets of solutions for the 

unknown parameters of a model from noise-free experimental data.  Structural identifiability is a 

necessary condition for finding solutions to the real “noisy” data problem, often called the numerical 

identifiability problem.   

Mathematically, it is sometimes convenient to express structural identifiability as an injectivity 

condition, as in [17].  Let 𝒚 = 𝚽(𝒑,𝒖) be the input-output map determined from (2.1), by eliminating 

the state variable 𝒙.  Consider the equation 𝚽 𝒑,𝒖 = 𝚽 𝒑∗,𝒖 , where 𝒑∗ is an arbitrary point in 

parameter space and 𝒖 is the input function.  Then one solution 𝒑 = 𝒑∗ corresponds to global 

identifiability, finitely many distinct solutions for 𝒑 to local identifiability, and infinitely many solutions 

for 𝒑 to unidentifiability.    

4.  Differential Algebra Approach 

 A particularly productive approach to the identifiability problem for nonlinear ODE models is the 

differential algebra approach of Saccomani et al [17], following methods developed by Ljung and Glad 

[12] and Ollivier [14,15].  Their most recent contribution is the DAISY (Differential Algebra for 
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Identifiability of SYstems) program [2].  We summarize this approach here, as our work is an extension 

of their algorithm. 

The first step is finding the input-output map in implicit form by reducing the model (2.1) via Ritt’s 

pseudodivision algorithm [2].  The result is called the characteristic set [2]. The characteristic set is in 

general non-unique, but can be made unique by a suitable normalization [2].  

Ritt’s pseudodivision is summarized as follows.  By combining the model equations and derivatives of 

the equations, we transform them symbolically into an equivalent system where one or more equations 

have the state variables eliminated.  Essentially it amounts to finding a Gröbner basis for the model 

equations plus their derivatives, or in other words, performing successive substitutions to eliminate the 

state variables.  An example of the algorithm can be found in [2].   

The first m equations of the characteristic set, i.e. those independent of the state variables, are the 

input-output relations: 

𝚿 𝒚,𝒖,𝒑 = 𝟎      (4.1) 

For example, the ODE model 

𝑥 = 𝑘𝑥 + 𝑢 

𝑦 = 𝑥/𝑉 

with the chosen ranking  𝑥 > 𝑥 > 𝑦 > 𝑦 > 𝑢  yields an input-output equation, Ψ 𝒚,𝒖,𝒑 = 0, of the 

form: 

Ψ 𝒚,𝒖,𝒑 = 𝑉𝑦 − 𝑘𝑉𝑦 − 𝑢 = 0 

𝚿 𝒚,𝒖,𝒑 = 0 are polynomial equations in the variables, 𝒖 ,𝒖  ,𝒖  ,… ,𝒚 ,𝒚  ,𝒚  ,… with rational 

coefficients in the parameter 𝒑.  That is, we can write Ψj 𝒚,𝒖,𝒑 =  𝑐𝑖𝑖  𝒑 𝜓𝑖(𝒖,𝒚), where 𝑐𝑖 𝒑  is a 

rational function in the parameter 𝒑 and 𝜓𝑖(𝒖,𝒚) is a polynomial function in the variables 

𝒖 ,𝒖  ,𝒖  ,… ,𝒚 ,𝒚  ,𝒚  ,…, etc.  We assume the terms 𝒖 ,𝒖  ,𝒖  ,… ,𝒚 ,𝒚  ,𝒚  ,…  are non-vanishing.  Since 

𝜓𝑖(𝒖,𝒚) are linearly independent, global identifiability becomes injectivity of the map 𝒄(𝒑).  That is, the 

model (2.1) is a priori globally identifiable if and only if 𝒄 𝒑 = 𝒄 𝒑∗  implies 𝒑 = 𝒑∗ for arbitrary 𝒑∗ [2].  

The equations 𝒄 𝒑 = 𝒄 𝒑∗  are called the exhaustive summary [2].  These equations are then solved 

for the parameter vector 𝒑 via the Buchberger Algorithm and elimination.  The resulting M equations 

are displayed in the DAISY output as one of the three possible cases: 

A.) unique solution, e.g.  𝑝𝑖 − 𝑝𝑖
∗ = 0  

B.) finite number of solutions, e.g.  𝑝𝑖 − 𝑝𝑖
∗ = 0 𝑜𝑟 𝑝𝑖 − 𝑝𝑗

∗ = 0  

C.) infinite number of solutions , e.g.  𝑝𝑖 = 𝐹(𝒑,𝒑∗)  

This is where DAISY terminates.  Thus, in the case of unidentifiability (case (C.)), nothing more is 

explicitly stated about finding identifiable combinations.  However, there are ways of finding identifiable 

combinations from the DAISY output. 
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One way is by the “inspection” method, which involves simple rearrangements of the coefficients of the 

input-output equations.  There are at least M coefficients of the input-output relations, which are 

always identifiable.  Thus, in our example, V and kV are identifiable, thus k is also identifiable.  This 

process of “inspection” to find identifiable combinations can be done using the input-output relations in 

the DAISY output.  However, one can imagine examples with sufficiently complicated input-output 

equations where the effectiveness of inspection breaks down.  Furthermore, although we may find 

identifiable combinations directly from the input-output relations, we may not be able to find the 

‘simplest’ identifiable combinations.  Another way to find identifiable combinations is through the DAISY 

parameter solution.  Let s be the number of free parameters, defined as the number of total parameters 

P minus the number of equations in the solution, M.  In the case of unidentifiability, the DAISY 

parameter solution contains s free parameters, and thus the solution can sometimes be algebraically 

manipulated to find M=P-s identifiable combinations.  However, this is not always possible, as in the 

two, three, and four compartment model examples below.  Thus, the method employed in the DAISY 

program provides a test for identifiability of parameters, but it doesn’t directly provide the simplest 

globally identifiable parameter combinations in unidentifiable ODE models, or their associated 

reparameterizations.  Our algorithm extends the DAISY approach by finding such combinations. 

5.  Algorithm 

The DAISY parameter solution is found by obtaining Gröbner Bases of the exhaustive summary via the 

Buchberger Algorithm and then using the properties of elimination to solve explicitly for the parameter 

𝒑.  Our algorithm begins one step back and examines the Gröbner Bases themselves, before applying 

them to solve for the parameters.   

From the exhaustive summary, 𝒄 𝒑 = 𝒄 𝒑∗ , we construct a Gröbner Basis in the form 𝑮 =

{𝐺1 𝒑,𝒑∗ ,… ,𝐺𝑘 𝒑,𝒑∗ }, where 𝐺𝑖  is a polynomial function (here k ≥ P-s, depending on the ranking of 

parameters).  In this process, we observe that additional information can be obtained from the Gröbner 

Basis.  In particular, if in the case of unidentifiability we can obtain simplified elements of the Gröbner 

Basis of the form 

  𝑞𝑖 𝒑 − 𝑞𝑖(𝒑
∗)            (5.1) 

where 𝑞𝑖 𝒑  is a polynomial function of 𝒑, then 𝑞𝑖 𝒑  is uniquely identifiable.  In other words, 𝐺𝑖 𝒑,𝒑∗  

is “decoupled” into a polynomial in 𝒑 minus the same polynomial in 𝒑∗. 

Note that we may instead have elements scaled by an arbitrary polynomial function 𝑓 (𝒑∗), 

𝑓 (𝒑∗)𝑞𝑖 𝒑 − 𝑓 (𝒑∗)𝑞𝑖(𝒑
∗) 

whose solution reduces to the simplified form (5.1).  For example, 𝑝1
∗𝑝2𝑝3 − 𝑝1

∗𝑝2
∗𝑝3

∗ reduces to 

𝑝2𝑝3 − 𝑝2
∗𝑝3

∗.  

There is no guarantee of finding elements of this form.  However, even if the elements in the Gröbner 

Basis are not “decoupled” in this form, sometimes the element can be solved for the parameters in 
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order to get an identifiable expression.  For example, an element 𝑝2
∗𝑝1 − 𝑝1

∗𝑝2 implies that 𝑝1/𝑝2 is 

identifiable.  This is demonstrated in the rational coefficients example below.  

As we will see shortly, when the degree of the polynomials in the Gröbner Bases is greater than the 

degree of the coefficients of the input-output equations, we examine factors of elements of the Gröbner 

Bases.  In this case, 𝑞𝑖 𝒑 − 𝑞𝑖(𝒑
∗) may occur as a factor of a Gröbner Basis element.  For example, we 

may have  𝑝2𝑝4 − 𝑝2
∗𝑝4

∗ (𝑝2𝑝4 + 𝑝2
∗𝑝4

∗) as an element.  

Another observation is that the determination of additional expressions of the type (5.1) depend upon 

the choice of ranking of parameters when constructing the Gröbner basis.  

Our algorithm, outlined as follows, combines the results of these observations.   

Step 1: Search through all relevant rankings and determine identifiable combinations, i.e. elements of 

the Gröbner Bases that can be simplified to the decoupled form 𝑞𝑖 𝒑 − 𝑞𝑖(𝒑
∗) when set to zero.  For P 

parameters, we need P! rankings of the parameters.  However, in most cases we can choose up to P 

cyclic permutations of some order of the parameters to generate enough Gröbner Bases.  Group these 

identifiable elements in their decoupled form 𝑞𝑖 𝒑 − 𝑞𝑖(𝒑
∗) together and call this set the identifiable 

set.   

From the examples above, 𝑝2𝑝3 − 𝑝2
∗𝑝3

∗, 
𝑝1

𝑝2
−

𝑝1
∗

𝑝2
∗, 𝑝2𝑝4 − 𝑝2

∗𝑝4
∗, and 𝑝2𝑝4 + 𝑝2

∗𝑝4
∗ could all be elements in 

the identifiable set.  Note that the term 
𝑝1

𝑝2
−

𝑝1
∗

𝑝2
∗ is the decoupled form of the Gröbner Basis element 

𝑝2
∗𝑝1 − 𝑝1

∗𝑝2.  Since a Gröbner Basis is computed by eliminating parameters with the highest ranking 

first, we want each parameter to have a chance at the highest ranking, hence the need to try several 

rankings of parameters.  This permits construction of simpler basis polynomials, involving as few 

parameters as possible, using the elimination properties of Gröbner Bases.  These combinations may not 

all appear in a single Gröbner Basis, hence the need for several rankings of parameters.   

Step 2: Select the M ‘simplest’ combinations from the identifiable set.  By ‘simplest’, we mean the 

elements that have the lowest degree and the fewest terms (in 𝒑).  In practice, this is done by ranking 

the identifiable parameter combinations in the order of their degree multiplied by the number of terms.     

This set may not be unique.  Thus, it may be necessary to try several different sets of combinations 

before choosing an optimal one.   Also, this set should contain at least one function of each parameter 

appearing in the coefficients of the input-output equations, or else Step 4 will fail. 

Definition: We call the set of elements chosen the canonical set, i.e. the canonical set contains the 

simplest elements of the (decoupled) form 𝑞𝑖 𝒑 − 𝑞𝑖(𝒑
∗), which arise either directly from elements of 

the Gröbner Bases, or from factors of elements of Gröbner Bases.   

For example, 𝑝2𝑝3 − 𝑝2
∗𝑝3

∗ , 
𝑝1

𝑝2
−

𝑝1
∗

𝑝2
∗, 𝑝2𝑝4 − 𝑝2

∗𝑝4
∗, and 𝑝2𝑝4 + 𝑝2

∗𝑝4
∗ all have rank 1 (since the term 1/𝑝2 

is treated as a variable, thus of degree 1).  If M=3, we pick the first three terms to be in our canonical 
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set.  Note that the first, second, and fourth terms could also be our canonical set.  However, any other 

choice would leave out some parameter. 

Step 3: Extract only the function of parameters 𝒑 .   

Definition: This set of simplified elements, i.e.  𝑞𝑖 𝒑 , is called the simplified canonical set.   

In our example, 𝑝2𝑝3, 
𝑝1

𝑝2
, and 𝑝2𝑝4 are in the simplified canonical set. 

The parameter combinations in the simplified canonical set become our new parameters.   

One should note that Steps 2 and 3 can be reversed, and in practice this is computationally faster. 

Step 4: Attempt to reparameterize the input-output equations (4.1) in terms of the simplified canonical 

set.   

Step 5: Test if the new parameters satisfy the injectivity condition of the model.  If the chosen canonical 

set contains the simplest identifiable combinations, then identifiability results. 

Step 6: If the new parameter combinations are found to be identifiable, we attempt to reparameterize 

our original system. 

We now examine how and when this algorithm works.  First we examine why Steps 1 and 2 work, i.e. 

why we can pick (at least) M identifiable combinations from the Gröbner Bases.  

Proposition: Let G be the set of all P! Gröbner Bases, for all rankings.  Then G contains at least M 

identifiable parameter combinations.  In other words, we can always decouple at least M combinations 

from the Gröbner Bases, thus rendering these combinations identifiable.   

Proof:  We know there exists at least M=P-s identifiable combinations because there are at least M 

coefficients of the input-output equations, which are known to be identifiable.  So there exists M 

identifiable combinations of the form  𝑞𝑖 𝒑 , where 𝑞𝑖 𝒑  is a rational function in 𝒑.  Since the Gröbner 

Basis contains polynomial equations in 𝒑, 𝒑∗, we claim it must contain 𝑞𝑖 𝒑 − 𝑞𝑖(𝒑
∗) as a factor of one 

of our terms.  Assume, for a contradiction, that it does not.  Since a Gröbner Basis is a solution to our 

exhaustive summary, this means that we do not have 𝑞𝑖 𝒑 = 𝑞𝑖(𝒑
∗) as a solution, which means that 

𝑞𝑖 𝒑  is not identifiable, contradiction.  Thus, each identifiable combination must appear as a factor in 

some Gröbner Basis, for some ranking.  Since we always have the prescribed solution, 𝒑 = 𝒑∗, then a 

decoupled element 𝑞𝑖 𝒑 − 𝑞𝑖 𝒑
∗ = 0 implies identifiability, and vice versa.  Thus we can decouple at 

least M combinations from the Gröbner Bases, thus rendering these combinations identifiable.  ∎ 

This proposition shows we can always find at least M identifiable combinations from the Gröbner Bases.  

For our canonical set, we choose the simplest M identifiable combinations.  We conjecture that we can 

always find M algebraically independent identifiable combinations from the Gröbner Bases.   

Assumption: We further assume the canonical set is a set of algebraically independent elements (over 

𝑅).   
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Algebraic independence means that no element can be written as an algebraic combination of the other 

elements over 𝑅.  In practice, we can establish algebraic independence using polynomial division, for 

example using the PolynomialReduce function in Mathematica, or more generally using a Gröbner Basis.   

Now we examine when Step 4 works.  Let 𝑐𝑖(𝑝1 ,… ,𝑝𝑃) , 𝑖 = 1,… , 𝑙 , 𝑙 ≥ 𝑀, be the parameter-

dependent coefficients of the input-output relations.  The exhaustive summary (and therefore, the 

input-output coefficients) can always be written in terms its Gröbner Basis {𝐺1 ,… ,𝐺𝑘}, in any rank 

ordering, by definition.  In other words, we can always rewrite the coefficients 𝑐𝑖(𝑝1 ,… ,𝑝𝑃) , 𝑖 =

1,… , 𝑙 , in terms of {𝐺1 ,… ,𝐺𝑘}.  The problem is that the coefficients may not be combinations in the 

variables {𝐺1,… ,𝐺𝑘} alone (specifically, our ring 𝑅 𝒑  includes the parameters and real numbers, so we 

may have a reparameterization in terms of {𝐺1,… ,𝐺𝑘} over 𝑅 𝒑  but not over 𝑅).  Thus part of the 

difficulty lies in choosing combinations so that we can reparameterize the coefficients only over the real 

numbers.   

Let the canonical set have the form {𝑞1 𝑝1 ,… ,𝑝𝑃 − 𝑞1 𝑝1
∗,… ,𝑝𝑃

∗  ,… , 𝑞𝑀 𝑝1,… ,𝑝𝑃 − 𝑞𝑀(𝑝1
∗,… ,𝑝𝑃

∗ )}.  

Let the combinations chosen, the simplified canonical set, be denoted {𝑞1(𝑝1,… ,𝑝𝑃),… , 𝑞𝑀(𝑝1 ,… ,𝑝𝑃)}.  

Now we examine when one can reparameterize the coefficients in terms of the simplified canonical set.  

We use a variation of the method from Shannon and Sweedler [21]. Take the Gröbner Basis of the 

following set: 

{𝑐 1 − 𝑐1 𝑝1 ,… ,𝑝𝑃 ,… , 𝑐 𝑙 − 𝑐𝑙 𝑝1 ,… ,𝑝𝑃 , 𝑞 1 − 𝑞1 𝑝1,… ,𝑝𝑃 ,… , 𝑞 𝑀 − 𝑞𝑀 𝑝1 ,… ,𝑝𝑃 }         (5.2) 

with the ranking {𝑝1 ,… ,𝑝𝑃 , 𝑞 1 ,… , 𝑞 𝑀  , 𝑐 1 ,… , 𝑐 𝑙} .  Here 𝑐 1 ,… , 𝑐 𝑙  and 𝑞 1 ,… , 𝑞 𝑀  are tag variables, i.e. 

variables introduced in order to eliminate other variables [21].  We denote this Gröbner Basis 𝑮 .  Then 

we take the elements of 𝑮  involving only 𝑐 1 ,… , 𝑐 𝑙  and 𝑞 1 ,… , 𝑞 𝑀 , set them to zero and solve for 

𝑐 1 ,… , 𝑐 𝑙 .  This gives a solution for the coefficients in terms of the new parameters.  To construct a 

predicate that determines whether a given coefficient can be reparameterized, we do this one step at a 

time, i.e. include only one 𝑐 𝑖 − 𝑐𝑖 𝑝1 ,… ,𝑝𝑃  expression in (5.2).  

{𝑐 𝑖 − 𝑐𝑖 𝑝1 ,… ,𝑝𝑃 , 𝑞 1 − 𝑞1 𝑝1 ,… ,𝑝𝑃 ,… , 𝑞 𝑀 − 𝑞𝑀 𝑝1,… ,𝑝𝑃 }                           (5.3) 

We find the Gröbner Basis of (5.3) for each  𝑐𝑖 𝑝1 ,… ,𝑝𝑃 , 1 ≤ 𝑖 ≤ 𝑙, in order the get the entire solution 

for 𝑐 1 ,… , 𝑐 𝑙  as described above.  We find the following necessary and sufficient conditions for a unique 

rational reparameterization.  

Lemma 1: A unique rational reparameterization for a coefficient 𝑐 𝑖 = 𝑐𝑖 𝑝1 ,… ,𝑝𝑃  in terms of the 

simplified canonical set exists if and only if the Gröbner Basis 𝑮  contains a linear polynomial 

𝑓 𝑞 1 ,… , 𝑞 𝑀 − 𝑔 𝑞 1 ,… , 𝑞 𝑀 𝑐 𝑖  with no dependency on 𝑝1 ,… ,𝑝𝑃, possibly raised to a higher power.  

Proof: → Assume that there exists a unique rational reparameterization for the coefficient 𝑐 𝑖 .  Then 

without loss of generality, 𝑐 𝑖  is of the form 𝑐 𝑖 = 𝑓(𝑞 1,… , 𝑞 𝑀)/𝑔 𝑞 1 ,… , 𝑞 𝑀 , where 𝑓 and 𝑔 are 

polynomials.  Then 𝑓 𝑞 1,… , 𝑞 𝑀 − 𝑔 𝑞 1 ,… , 𝑞 𝑀 𝑐 𝑖 = 0.  Now a Gröbner Basis of the set (5.3) would have 

the following order of terms: terms only in 𝑐 𝑖  , followed by terms in 𝑐 𝑖  and 𝑞 𝑗  , followed by terms in 𝑐 𝑖 , 

𝑞 𝑗  , and 𝑝𝑘 , where 1 ≤ 𝑗 ≤ 𝑀, 1 ≤ 𝑘 ≤ 𝑃.  Since 𝑐 𝑖 = 𝑐𝑖 𝑝1 ,… ,𝑝𝑃 , we will not have terms only in 𝑐 𝑖 .  
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Thus our first elements of the Gröbner Basis will be terms in 𝑐 𝑖  and 𝑞 𝑗 .  Assume, by contradiction, that 

no such term exists in the Gröbner Basis.  However, we know that 𝑓 𝑞 1 ,… , 𝑞 𝑀 − 𝑔 𝑞 1 ,… , 𝑞 𝑀 𝑐 𝑖 = 0.  

Thus, a Gröbner Basis would have to include a function only in 𝑐 𝑖  and 𝑞 𝑗  because this means that the 𝑝𝑘  

can be eliminated.  Thus a term involving only 𝑐 𝑖  and 𝑞 𝑗  , 1 ≤ 𝑗 ≤ 𝑀, does exist in our Gröbner Basis.  

The question is whether the term is precisely 𝑓 𝑞 1 ,… , 𝑞 𝑀 − 𝑔 𝑞 1 ,… , 𝑞 𝑀 𝑐 𝑖.  Let 𝑕(𝑐 𝑖 ,𝒒 ) be the 

polynomial in the Gröbner Basis, where 𝒒 =  𝑞 1 ,… , 𝑞 𝑀 . If 𝑕(𝑐 𝑖 ,𝒒 ) is linear in 𝑐 𝑖  , then we are done.  

Otherwise, 𝑕(𝑐 𝑖 ,𝒒 ) is of higher order in 𝑐 𝑖 .  Then there will be possibly multiple roots in 𝑐 𝑖 .  However, 

there is a unique rational reparameterization for the coefficient 𝑐 𝑖  , so there cannot be multiple distinct 

roots.  Likewise there cannot be an infinite number of solutions in 𝑐 𝑖  , or else a 𝑐 𝑗  would have to appear 

as a free parameter.  If there were no solutions in 𝑐 𝑖  , then 𝑐 𝑖  would not appear in 𝑕(𝑐 𝑖 ,𝒒 ), but we have 

already established that 𝑕 is a function of both 𝑐 𝑖  and 𝒒 .  Thus the only other possibility is that there are 

repeated roots, i.e. that 𝑕(𝑐 𝑖 ,𝒒 ) is of the form (𝑓 𝑞 1 ,… , 𝑞 𝑀 − 𝑔 𝑞 1 ,… , 𝑞 𝑀 𝑐 𝑖)
𝛼 , where 𝛼 is a positive 

integer.  Thus the Gröbner Basis contains a linear polynomial 𝑓 𝑞 1 ,… , 𝑞 𝑀 − 𝑔 𝑞 1 ,… , 𝑞 𝑀 𝑐 𝑖  with no 

dependency on 𝑝1 ,… ,𝑝𝑃, possibly raised to a higher power.    

← Now assume that the Gröbner Basis contains a linear polynomial 𝑓 𝑞 1 ,… , 𝑞 𝑀 − 𝑔 𝑞 1 ,… , 𝑞 𝑀 𝑐 𝑖  , 

possibly raised to a higher power, with no dependency on 𝑝1 ,… ,𝑝𝑝 .  Solving for 𝑐 𝑖 , we get that 

𝑐 𝑖 = 𝑓(𝑞 1 ,… , 𝑞 𝑀)/𝑔 𝑞 1 ,… , 𝑞 𝑀 .  This is a rational reparameterization of 𝑐 𝑖 .  Assume this 

reparameterization is not unique, i.e. there exists another such polynomial 𝑕 (𝑐 𝑖 ,𝒒 ) in the Gröbner Basis.  

If  𝑕 (𝑐 𝑖 ,𝒒 ) is not a power of 𝑓 𝑞 1 ,… , 𝑞 𝑀 − 𝑔 𝑞 1 ,… , 𝑞 𝑀 𝑐 𝑖  , then there are other solutions for 𝑐 𝑖  

appearing in other Gröbner Basis elements.  However, this violates the form of a Gröbner Basis, for if 

there were another solution for 𝑐 𝑖 , it must appear as a product with 𝑓 𝑞 1 ,… , 𝑞 𝑀 − 𝑔 𝑞 1 ,… , 𝑞 𝑀 𝑐 𝑖.  

Thus the reparameterization is unique. ∎  

The lemma just proven is more of a mathematical description of what it means to reparameterize, and 

can be thought of as a test, not an a priori condition on whether a simplified canonical set allows 

reparameterization of the coefficients of the input-output equations.  

Once the coefficients have been reparameterized, we can examine identifiability as in Step 5.  Since we 

have decreased the number of parameters from P to P-s, local or global identifiability will result.  

Lemma 2: Let 𝑠 be the number of free parameters.  Let 𝑝1 ,… ,𝑝𝑃  be the parameters.  If the coefficients 

can be rationally reparameterized in 𝑃 − 𝑠 variables, then global or local identifiability results (one or 

finitely many solutions). 

Proof: We have that the canonical set contains algebraically independent elements.  Since we have 

mapped the coefficients from P algebraically independent parameters to P-s algebraically independent 

parameters, the free parameters have disappeared.   We rule out the case of no solution because we 

always have the prescribed solution (𝑝1
∗,… ,𝑝𝑃

∗ ).  ∎ 

These two lemmas lead us to the following theorem: 

Theorem 1: Suppose we have a model described by (2.1), for which we determine the canonical set 𝑸 

and the associated simplified canonical set 𝒒 as described, such that  𝑸 =P-s. If 𝑮  contains a linear 
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polynomial 𝑓 𝑞 1,… , 𝑞 𝑀 − 𝑔 𝑞 1 ,… , 𝑞 𝑀 𝑐 𝑖  for each 𝑐𝑖 𝑝1 ,… ,𝑝𝑃 ∈ 𝒄(𝒑), possibly raised to a higher 

power, then there exists a unique rational reparameterization of 𝒄(𝒑) in terms of 𝒒 and the simplified 

canonical set 𝒒 is identifiable.  Moreover, if the canonical set 𝑸 corresponds to entire elements from the 

Gröbner Bases, then global identifiability results.  If elements of the canonical set came from factors of 

elements of Gröbner Bases, then local identifiability results.  

Proof: Lemmas 1 and 2 give identifiability. The task is to show that we get a unique solution when only 

entire elements of the Gröbner Bases are used.  The canonical set provides a solution set for 

𝑞1 𝑝1,… ,𝑝𝑃 ,… , 𝑞𝑀 𝑝1 ,… ,𝑝𝑃 .  Moreover, each element in the canonical set is a linear expression in 

𝑞1 𝑝1,… ,𝑝𝑃 ,… , 𝑞𝑀 𝑝1 ,… ,𝑝𝑃 , by construction.  Thus there is only one solution for 

𝑞1 𝑝1,… ,𝑝𝑃 ,… , 𝑞𝑀 𝑝1 ,… ,𝑝𝑃 , since if any other solution existed, it would have to appear as a Gröbner 

Basis element.  In other words, our solution would have to appear as a factor in another Gröbner Basis 

term, which violates our assumption.  Thus the reparameterized coefficients in the exhaustive summary 

must have only one solution for the 𝑞1 𝑝1 ,… ,𝑝𝑃 ,… , 𝑞𝑀 𝑝1 ,… ,𝑝𝑃 .  If we take a factor of a Gröbner 

Basis element in the canonical set, then we see that the 𝑞1 𝑝1,… ,𝑝𝑃 ,… , 𝑞𝑀 𝑝1 ,… ,𝑝𝑃  may have 

multiple roots and thus the reparameterized exhaustive summary should also contain multiple roots.  ∎     

We now focus again on Step 4 of our algorithm, the reparameterization of the coefficients of the input-

output equations by the simplified canonical set.  We would like to examine the mathematical 

properties of a canonical set that permits this reparameterization.  Since the canonical set was formed 

from the Gröbner Bases of the ideal generated by the exhaustive summary, it is natural to then examine 

the ideal generated by the canonical set.  When the canonical set contains simplified decoupled 

elements (not factors) of the Gröbner Bases, then the ideal generated by the canonical set is the same 

as the ideal generated by the exhaustive summary.  To simplify the notation, let  𝒑 =  𝑝1 ,… ,𝑝𝑃 , 

 𝑑1 𝒑,𝒑∗ ,… ,𝑑𝑙 𝒑,𝒑∗   be the exhaustive summary, and 𝑸 =  𝑄1 𝒑,𝒑∗ ,… ,𝑄𝑀 𝒑,𝒑∗   be the 

canonical set.   

Theorem 2: Let 𝑸 =  𝑄1 𝒑,𝒑∗ ,… ,𝑄𝑀 𝒑,𝒑∗   be a canonical set that can rationally reparameterize 

coefficients 𝑐𝑗  𝑝1 ,… , 𝑝𝑃 , 1 ≤  𝑗 ≤ 𝑙.  Further assume that each element of 𝑸 is the decoupled form of 

an element from a Gröbner Basis 𝐺𝑘  of the exhaustive summary. 

Then, the Gröbner Basis of 𝑸 is the same as some Gröbner Basis 𝐺𝑘  of the exhaustive summary for a 

given ranking.  That is, their ideals are congruent:  

 𝑑1 𝒑,𝒑∗ ,… ,𝑑𝑙 𝒑,𝒑∗  =  𝑄1 𝒑,𝒑∗ ,… ,𝑄𝑀 𝒑,𝒑∗   

Proof: Let C and B be the algebraic set of zeros of the exhaustive summary and the canonical set, 

respectively: 

𝐶 = {𝒑 |  𝑑𝑗  𝒑,𝒑∗ = 0 , 1 ≤  𝑗 ≤ 𝑙}, 

𝐵 = {𝒑 |  𝑄𝑖 𝒑,𝒑∗ = 0 , 1 ≤ 𝑖 ≤ 𝑀}, 

Label each element of a Gröbner basis 𝐺𝑘  with two subscripts as 𝐺𝑘𝑠  .  It is clear that the algebraic set of 

each basis element 𝐺𝑘𝑠  contains 𝐶, since 𝐶 is the intersection of algebraic sets of all basis vectors in a 
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Gröbner basis 𝐺𝑘 .  On the other hand, the canonical set 𝑸 contains a subset of elements from the 

Gröbner Bases of the exhaustive summary, so its algebraic set B is an intersection of sets containing C.  

Thus B contains C.  

Now assume there is a root from B that C does not contain, call it 𝒑 =  𝑝 1 ,… ,𝑝 𝑃 .  Then 𝑄𝑖 𝒑 ,𝒑∗ = 0 

for all 𝑄𝑖 ∈ 𝑸.  Let 𝑑𝑗  𝒑,𝒑∗  be the exhaustive summary.  Since the coefficients can be reparameterized, 

we have 𝑑𝑗  𝒑 ,𝒑∗ = 𝑑𝑗  𝑄1 𝒑 ,𝒑∗ ,… ,𝑄𝑖 𝒑 ,𝒑∗ ,… ,𝑄𝑀 𝒑 ,𝒑∗  = 0 for 1 ≤ 𝑗 ≤ 𝑙, thus 𝒑 =  𝑝 1 ,… ,𝑝 𝑃  

is a root of the exhaustive summary, so 𝒑  is in C.  Thus C contains B.  

Therefore, C=B and the Gröbner Basis of 𝑸 is the same as the Gröbner basis of the exhaustive summary.  

It then follows that the ideal spanned by the canonical set is equal to the ideal spanned by the 

exhaustive summary.  ∎ 

Note that reparameterization of the coefficients 𝑐𝑗  𝑝1 ,… ,𝑝𝑃 , 1 ≤  𝑗 ≤ 𝑙, of the input-output equations 

by the simplified canonical set implies reparameterization by the canonical set, hence the use of the 

canonical set in Theorem 2.  If instead, factors of Gröbner Basis elements are used, we have the 

following corollary.  

Corollary: Let 𝑸 =  𝑄1 𝒑,𝒑∗ ,… ,𝑄𝑀 𝒑,𝒑∗   be a canonical set that can rationally reparameterize 

coefficients 𝑐𝑗  𝑝1 ,… , 𝑝𝑃 , 1 ≤  𝑗 ≤ 𝑙 such that some 𝑄𝑖  ∈ 𝑸 is a factor of an element in a Gröbner Basis 

𝐺𝑘  of the exhaustive summary. 

Then the ideal generated by the exhaustive summary is contained in the ideal generated by the 

canonical set:  

 𝑑1 𝒑,𝒑∗ ,… ,𝑑𝑙 𝒑,𝒑∗  ⊂  𝑄1 𝒑,𝒑∗ ,… ,𝑄𝑀 𝒑,𝒑∗   

Proof: In this case, the algebraic set of zeros of the exhaustive summary C contains the algebraic set of 

zeros of the canonical set B.  Thus, the ideal generated by the exhaustive summary is a subset of the 

ideal generated by the canonical set.  ∎  

Thus the reparameterizability of the coefficients of the input-output equations (equivalently, the 

exhaustive summary) by the canonical set implies the ideal generated by the canonical set must be at 

least as big as the ideal generated by the exhaustive summary.     

In summary, we have found sufficient conditions for the local or global identifiability of new parameter 

combinations (Theorem 1).  In addition, we have found necessary conditions for the reparameterizability 

of the coefficients of the input-output equations in terms of the (simplified) canonical set (Theorem 2).  

Since our algorithm is simply extending the functionality of DAISY, it can be used on the same class of 

problems.  Thus it can be used for linear or nonlinear models.  We have provided examples of the 

method for both compartmental models and other types as well.  

6.  Case Study: Classic Unidentifiable 2-Compartment Model 
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𝑥 1 = − 𝑘01 + 𝑘21 𝑥1 + 𝑘12𝑥2 + 𝑢 

𝑥 2 = 𝑘21𝑥1 − (𝑘02 + 𝑘12)𝑥2 

𝑦 =
𝑥1

𝑣
 

 

Definition: 

𝑥1 ,𝑥2   state variables 

𝑢  input 

𝑦  output 

𝑘01  , 𝑘02  ,  𝑘12  ,  𝑘21  , 𝑣    unknown parameters 

 

As in DAISY, we perform Ritt’s pseudodivision algorithm to get an equation purely in terms of 

input/output and parameters: 

𝑣𝑦 +  𝑘01 + 𝑘21 + 𝑘12 + 𝑘02 𝑣𝑦 − (𝑘12𝑘21 −  𝑘12 + 𝑘02 (𝑘01 + 𝑘21))𝑣𝑦 − (𝑘12 + 𝑘02)𝑢 − 𝑢 = 0 

Thus our coefficients are: 

𝑣 

       𝑘01 + 𝑘02 + 𝑘12 + 𝑘21 𝑣      (6.1) 

 𝑘01𝑘02 + 𝑘01𝑘12 + 𝑘02𝑘21 𝑣 

𝑘12 + 𝑘02 

When we run DAISY, these coefficients are set equal to those with {𝑘01  ,𝑘02  ,𝑘12  ,𝑘21  , 𝑣} replaced by 

{8 , 7 , 13 , 12 , 3} to get the exhaustive summary:  

𝑣 − 3 = 0 

                                    𝑘01𝑣 + 𝑘02𝑣 + 𝑘12𝑣 + 𝑘21𝑣 − 120 = 0    (6.2) 

𝑘01𝑘02𝑣 + 𝑘01𝑘12𝑣 + 𝑘02𝑘21𝑣 − 732 = 0 

𝑘02 + 𝑘12 − 20 = 0 

These pseudo-randomly generated numbers are used instead of symbolic values in order to save 

computation time [2].  The Buchberger Algorithm yields an infinite number of solutions for the 

parameters, provided by DAISY in the form: 
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𝑘21 =
−156

𝑘02 − 20
 

𝑘01 =
4(5𝑘02 − 61)

𝑘02 − 20
 

𝑘12 = −𝑘02 + 20 

𝑣 = 3 

Here only 𝑣 is identifiable, so our system is unidentifiable.  This is where DAISY terminates.  We take this 

result a step further and find combinations of parameters that yield a unique solution.  We do this by 

replacing {8 , 7 , 13 , 12 , 3} with symbolic values {𝛼 ,𝛽 , 𝛾 , 𝛿 , 𝜖} in (6.2): 

𝑣 − 𝜖 

𝑘01𝑣 + 𝑘02𝑣 + 𝑘12𝑣 + 𝑘21𝑣 − 𝛼𝜖 − 𝛽𝜖 − 𝛾𝜖 − 𝛿𝜖 

𝑘01𝑘02𝑣 + 𝑘01𝑘12𝑣 + 𝑘02𝑘21𝑣 − 𝛼𝛽𝜖 − 𝛽𝛾𝜖 − 𝛼𝛿𝜖 

𝑘02 + 𝑘12 − 𝛽 − 𝛿 

We choose to use symbolic values instead of numerical values so that we can form the simplified 

canonical set without confusion.  Then we find Gröbner Bases for the system using different rankings.  

To form a complete set of Gröbner Basis elements, we try the following rankings of parameters, found 

by shifting the ordering: {𝑘01  ,𝑘02  ,𝑘12  ,𝑘21  , 𝑣} , {𝑘02  ,𝑘12  ,𝑘21  , 𝑣 ,𝑘01} , … , {𝑣 ,𝑘01  ,𝑘02  ,𝑘12  ,𝑘21} .  

They are: 

{𝑣 − 𝜖 ,−𝑘12𝑘21𝜖 + 𝛾𝛿𝜖 , 𝑘02 + 𝑘12 − 𝛽 − 𝛿 ,𝑘01𝜖 + 𝑘21𝜖 − 𝛼𝜖 − 𝛾𝜖} 

 𝑣 − 𝜖 ,𝑘01𝑘12𝜖 − 𝑘12𝛼𝜖 − 𝑘12𝛾𝜖 + 𝛾𝛿𝜖 ,𝑘01𝜖 + 𝑘21𝜖 − 𝛼𝜖 − 𝛾𝜖 ,𝑘02 + 𝑘12 − 𝛽 − 𝛿  

 −𝑘01𝑘02𝜖 + 𝑘02𝛼𝜖 + 𝑘01𝛽𝜖 − 𝛼𝛽𝜖 + 𝑘02𝛾𝜖 − 𝛽𝛾𝜖 + 𝑘01𝛿𝜖 − 𝛼𝛿𝜖 , 𝑣 − 𝜖 ,𝑘02 + 𝑘12 − 𝛽 − 𝛿 ,𝑘01𝜖

+ 𝑘21𝜖 − 𝛼𝜖 − 𝛾𝜖  

{𝑘02𝑘21𝜖 − 𝑘21𝛽𝜖 − 𝑘21𝛿𝜖 + 𝛾𝛿𝜖 ,𝑘01𝜖 + 𝑘21𝜖 − 𝛼𝜖 − 𝛾𝜖 , 𝑣 − 𝜖 ,𝑘02 + 𝑘12 − 𝛽 − 𝛿} 

{−𝑘12𝑘21𝜖 + 𝛾𝛿𝜖 ,𝑘02 + 𝑘12 − 𝛽 − 𝛿 ,𝑘01𝜖 + 𝑘21𝜖 − 𝛼𝜖 − 𝛾𝜖 , 𝑣 − 𝜖} 

We pick the elements that can be decoupled:  

 𝑣 − 𝜖 ,−𝑘12𝑘21𝜖 + 𝛾𝛿𝜖 ,𝑘02 + 𝑘12 − 𝛽 − 𝛿 , 𝑘01𝜖 + 𝑘21𝜖 − 𝛼𝜖 − 𝛾𝜖  

We then form the canonical set, which in this case contains as many elements as the identifiable set:   

 𝑣 − 𝜖 ,−𝑘12𝑘21 + 𝛾𝛿 ,𝑘02 + 𝑘12 − 𝛽 − 𝛿 ,𝑘01 + 𝑘21 − 𝛼 − 𝛾  

In general, we choose the M ‘simplest’ elements, i.e., with the lowest degree and fewest number of 

terms.  Here M = P-s = 5-1 = 4. 
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Then the simplified canonical set is: 

𝑞1 = 𝑣 

𝑞2 = −𝑘12𝑘21  

𝑞3 = 𝑘02 + 𝑘12  

𝑞4 = 𝑘01 + 𝑘21  

Now we find the Grobner Basis 𝑮  for each coefficient and find the following reparameterization of (6.1):  

𝑞1 

𝑞1𝑞3 + 𝑞1𝑞4 

𝑞1𝑞2 + 𝑞1𝑞3𝑞4 

𝑞3 

This confirms that our original input-output coefficients are spanned by the elements we chose. 

We now test the injectivity condition, i.e. set these new coefficients equal to those with {𝑞1,𝑞2 , 𝑞3 ,𝑞4} 

replaced with symbolic values {𝜃 , 𝜇 ,𝜋 ,𝜌}.  

𝑞1 − 𝜃 

𝑞1𝑞3 + 𝑞1𝑞4 − 𝜃𝜋 − 𝜃𝜌 

𝑞1𝑞2 + 𝑞1𝑞3𝑞4 − 𝜃𝜇 − 𝜃𝜋𝜌 

𝑞3 − 𝜋 

We solve the system via the Buchberger Algorithm and get a unique solution for {𝑞1 ,𝑞2 ,𝑞3 ,𝑞4}.  

Thus, the uniquely identifiable combinations found are: 

𝑣  

  𝑘12𝑘21   

𝑘02 + 𝑘12 

 𝑘01 + 𝑘21 

Notice that these combinations could be obtained from a single Gröbner Basis alone.  This is not true in 

general, as we see in the next example.   

Now, we reparameterize our original system as: 

𝑥 1 = −𝑞4𝑥1 + 𝑘12𝑥2 + 𝑢 
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𝑥 2 =
𝑞2

𝑘12
𝑥1 − 𝑞3𝑥2 

𝑦 =
𝑥1

𝑞1
 

We see that 𝑘12 still appears in our system.  One way to fix this is to introduce a new variable, 

𝑥2
′ = 𝑘12𝑥2, and our system has only uniquely identifiable parameters: 

𝑥 1 = −𝑞4𝑥1 + 𝑥2
′ + 𝑢 

𝑥 2
′ = 𝑞2𝑥1 − 𝑞3𝑥2

′  

𝑦 =
𝑥1

𝑞1
 

 

7.  Examples 

Example: 2-Compartment Nonlinear Model 

The following example is taken from Saccomani et al [17].  

𝑥 1 = − 𝑘21 +
𝑉𝑀

𝐾𝑀 + 𝑥1
 𝑥1 + 𝑘12𝑥2 + 𝑏1𝑢 

𝑥 2 = 𝑘21𝑥1 − (𝑘02 + 𝑘12)𝑥2 

𝑦 = 𝑐1𝑥1 

𝑥1 0 = 0 

𝑥2 0 = 0 

Definition: 

𝑥1 ,𝑥2   state variables 

𝑢  input 

𝑦  output 

𝑘02  , 𝑘12  ,  𝑘21  , 𝑉𝑀  , 𝐾𝑀  , 𝑏1 , 𝑐1    unknown parameters 

 

For a pseudo-random point of  𝑘21 ,𝑘12 ,𝑉𝑀 ,𝐾𝑀 ,𝑘02 , 𝑐1 ,𝑏1 = {8, 7, 13, 12, 3, 6, 13}, DAISY returns the 

following solution: 
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𝑉𝑀 =
78

𝑐1
 

𝑘21 = 8 

𝑘12 = 7 

𝑏1 =
78

𝑐1
 

𝑘02 = 3 

𝐾𝑀 =
72

𝑐1
 

Here, 𝑘21, 𝑘12, 𝑘02, are identifiable, while 𝑉𝑀, 𝑏1, 𝐾𝑀 , 𝑐1 are unidentifiable.  It is easy to see that an 

identifiable set of solutions is formed by cross-multiplying, to obtain {𝑐1𝑉𝑀  ,𝑘21  ,𝑘12  ,𝑏1𝑐1 , 𝑘02  , 𝑐1𝐾𝑀}. 

The input-output equation is of the form: 

−𝑏1𝑐1
3𝐾𝑀

2𝑢 − 2𝑏1𝑐1
2𝐾𝑀𝑢 𝑦 − 𝑏1𝑐1𝑢 𝑦

2 + 𝑐1
2𝐾𝑀

2𝑦 + 2𝑐1𝐾𝑀𝑦 𝑦 + 𝑦 𝑦2

+  𝑐1
2𝑘02𝐾𝑀

2 + 𝑐1
2𝑘12𝐾𝑀

2 + 𝑐1
2𝑘21𝐾𝑀

2 + 𝑐1
2𝐾𝑀𝑉𝑀 𝑦 

+  2𝑐1𝑘02𝐾𝑀 + 2𝑐1𝑘12𝐾𝑀 + 2𝑐1𝑘21𝐾𝑀 𝑦 𝑦 +  𝑘02 + 𝑘12 + 𝑘21 𝑦 𝑦
2

−  𝑏1𝑐1
3𝑘02𝐾𝑀

2 + 𝑏1𝑐1
3𝑘12𝐾𝑀

2  𝑢 −  2𝑏1𝑐1
2𝑘02𝐾𝑀 + 2𝑏1𝑐1

2𝑘12𝐾𝑀 𝑢𝑦

−  𝑏1𝑐1𝑘02 + 𝑏1𝑐1𝑘12 𝑢𝑦
2 +  𝑐1

2𝑘02𝑘21𝐾𝑀
2 + 𝑐1

2𝑘02𝐾𝑀𝑉𝑀 + 𝑐1
2𝑘12𝐾𝑀𝑉𝑀 𝑦

+  2𝑐1𝑘02𝑘21𝐾𝑀 + 𝑐1𝑘02𝑉𝑀 + 𝑐1𝑘12𝑉𝑀 𝑦
2 + 𝑘02𝑘21𝑦

3 = 0 

We now form the exhaustive summary, find the Gröbner Bases in the 7 shifted orderings of 

 𝑘21 ,𝑘12 ,𝑉𝑀 ,𝐾𝑀 ,𝑘02 , 𝑐1 , 𝑏1 .  We pick the simplest combinations, which are {𝑞1 = 𝑐1𝑉𝑀  ,𝑞2 =

𝑘21  ,𝑞3 = 𝑘12  ,𝑞4 = 𝑏1𝑐1 ,𝑞5 = 𝑘02  , 𝑞6 = 𝑐1𝐾𝑀}, reparameterize the input-output coefficients in terms 

of these, form the exhaustive summary, and solve to get a unique solution for 

 𝑐1𝑉𝑀  ,𝑘21  ,𝑘12  , 𝑏1𝑐1 ,𝑘02  , 𝑐1𝐾𝑀 .  Thus we have found our simplified canonical set.   

We then tried to see if the canonical set can be obtained from a single Gröbner Basis.  We wrote a 

computer program to try all 7!=5040 permutations of the parameters (using numerical values for p* to 

speed up computation time [2]) and we found no single Gröbner Basis contained the canonical set.  At 

most, a single Gröbner Basis had 4 of the 6 elements.  

Now we reparameterize our original system. Let 𝑥1
′ = 𝑐1𝑥1 and 𝑥2

′ = 𝑐1𝑥2.  Then our system becomes: 

𝑥 1
′ = − 𝑞2 +

𝑞1

𝑞6 + 𝑥1
′  𝑥1

′ + 𝑞3𝑥2
′ + 𝑞4𝑢 

𝑥 2
′ = 𝑞2𝑥1

′ −  𝑞3 + 𝑞5 𝑥2
′  

𝑦 = 𝑥1
′  

𝑥1
′  0 = 0 
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𝑥2
′  0 = 0 

Example: 3-Compartment Model 

𝑥 1 = 𝑘13𝑥3 + 𝑘12𝑥2 −  𝑘21 + 𝑘31 𝑥1 + 𝑢 

𝑥 2 = 𝑘21𝑥1 −  𝑘12 + 𝑘02 𝑥2 

𝑥 3 = 𝑘31𝑥1 − (𝑘13 + 𝑘03)𝑥3 

𝑦 =
𝑥1

𝑣
 

Definition: 

𝑥1 ,𝑥2 , 𝑥3   state variables 

𝑢   input 

𝑦   output 

𝑘12 ,𝑘21 ,𝑘13 ,𝑘31 ,𝑘02 ,𝑘03 ,𝑣   unknown parameters 

For a pseudo-random point of  𝑘12  ,𝑘21  ,𝑘13  ,𝑘31  ,𝑘02  ,𝑘03  ,𝑣 = {8, 7, 13, 12, 3, 6, 13}, DAISY returns 

the following solutions: 

𝑘21 =
19𝑘03 − 153

𝑘03 − 11
 

𝑘31 = −
56

𝑘03 − 11
 

𝑘12 =
156 𝑘03 − 11 

19𝑘03 − 153
 

𝑘13 = −𝑘03 + 11 

𝑘02 =
205𝑘03 − 1191

19𝑘03 − 153
 

𝑣 = 13 

or 

𝑘21 =
19𝑘03 − 205

𝑘03 − 19
 

𝑘31 = −
156

𝑘03 − 19
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𝑘12 =
56 𝑘03 − 19 

19𝑘03 − 205
 

𝑘13 = −𝑘03 + 19 

𝑘02 =
3(51𝑘03 − 397)

19𝑘03 − 205
 

𝑣 = 13 

Here only 𝑣 is identifiable.  The input-output equation is of the form: 

(𝑘02𝑘03 + 𝑘03𝑘12 + 𝑘02𝑘13 + 𝑘12𝑘13)𝑢 +  𝑘02 + 𝑘03 + 𝑘12 + 𝑘13 𝑢 + 𝑢 

−  𝑘02𝑘03𝑘21 + 𝑘02𝑘13𝑘21 + 𝑘02𝑘03𝑘31 + 𝑘03𝑘12𝑘31 𝑣𝑦

−  𝑘02𝑘03 + 𝑘03𝑘12 + 𝑘02𝑘13 + 𝑘12𝑘13 + 𝑘02𝑘21 + 𝑘03𝑘21 + 𝑘13𝑘21 + 𝑘02𝑘31

+ 𝑘03𝑘31 + 𝑘12𝑘31 𝑣𝑦 −  𝑘02 + 𝑘03 + 𝑘12 + 𝑘13 + 𝑘21 + 𝑘31 𝑣𝑦 − 𝑣𝑦 = 0 

We now form the exhaustive summary and find the Gröbner Bases in the 7 shifted orderings of 

 𝑘12  ,𝑘21  ,𝑘13  ,𝑘31  ,𝑘02  ,𝑘03  ,𝑣 .  Due to the large number of parameters, we choose numerical values 

in the exhaustive summary instead of symbolic values to save computation time.  In this case, most of 

our Gröbner Basis elements are quadratic, but our coefficients of the input-output equation are 

multilinear, thus we take factors of the Gröbner Basis elements.  We pick the simplest combinations, 

which are {𝑞1 = 𝑣 , 𝑞2 = 𝑘12𝑘21  , 𝑞3 = 𝑘13𝑘31  , 𝑞4 = 𝑘02 + 𝑘12  , 𝑞5 = 𝑘03 + 𝑘13 , 𝑞6 = 𝑘21 + 𝑘31}, 

reparameterize the input-output coefficients in terms of these, form the exhaustive summary, and solve 

to get two distinct solutions.  This is due to the symmetry of the problem.  In particular, only 𝑣 and 

𝑘21 + 𝑘31 are globally identifiable.  

Note that the inspection method gives us the following globally identifiable parameter combinations:  

𝑣 

𝑘02𝑘03 + 𝑘03𝑘12 + 𝑘02𝑘13 + 𝑘12𝑘13 

𝑘02 + 𝑘03 + 𝑘12 + 𝑘13   

𝑘02𝑘03𝑘21 + 𝑘02𝑘13𝑘21 + 𝑘02𝑘03𝑘31 + 𝑘03𝑘12𝑘31 

𝑘02𝑘21 + 𝑘03𝑘21 + 𝑘13𝑘21 + 𝑘02𝑘31 + 𝑘03𝑘31 + 𝑘12𝑘31 

𝑘21 + 𝑘31 

Since these are complicated expressions, we cannot reparameterize our original equations over them.  

However, one could reparameterize using the companion matrix form with these parameter 

combinations.  We will see this done in the following example.  

Now we reparameterize our original system using our simplified canonical set. Let 𝑥2
′ = 𝑘12𝑥2 and 

𝑥3
′ = 𝑘13𝑥3.  Then our original system becomes: 
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𝑥 1 = 𝑥3
′ + 𝑥2

′ − 𝑞6𝑥1 + 𝑢 

𝑥 2
′ = 𝑞2𝑥1 − 𝑞4𝑥2

′  

𝑥 3
′ = 𝑞3𝑥1 − 𝑞5𝑥3

′  

𝑦 =
𝑥1

𝑞1
 

 

Example: 4-Compartment Model  

The following example came from Evans and Chappell [9].  It describes the pharmacokinetics of 

bromosulphthalein.  They find a reparameterization to make the model structurally locally identifiable 

[9].  We solve a related problem, with an input rather than an initial condition, and attempt to make the 

model structurally globally identifiable by a reparameterization. 

𝑥 1 = −𝑎31𝑥1 + 𝑎13𝑥3 + 𝑢 

𝑥 2 = −𝑎42𝑥2 + 𝑎24𝑥4 

𝑥 3 = 𝑎31𝑥1 − (𝑎03 + 𝑎13 + 𝑎43)𝑥3 

𝑥 4 = 𝑎42𝑥2 + 𝑎43𝑥3 − (𝑎04 + 𝑎24)𝑥4 

𝑦1 = 𝑥1 

𝑦2 = 𝑥2 

Definition: 

𝑥1 ,𝑥2 , 𝑥3 ,𝑥4    state variables 

𝑢   input 

𝑦1 ,𝑦2    output 

𝑎03  ,𝑎04  ,𝑎13  ,𝑎24  ,𝑎31  ,𝑎42  ,𝑎43      unknown parameters 

For a pseudo-random point of  𝑎03  ,𝑎04  ,𝑎13  ,𝑎24  ,𝑎31  ,𝑎42  ,𝑎43 = {8, 7, 13, 12, 3, 6, 13}, DAISY 

returns the following solutions: 

𝑎04 =
± 457𝑎43

2 − 7800𝑎43 + 24336 + 25𝑎43 − 156

2𝑎43
 

𝑎42 =
∓ 457𝑎43

2 − 7800𝑎43 + 24336 + 25𝑎43 − 156

2𝑎43
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𝑎03 = −𝑎43 + 21 

𝑎24 =
156

𝑎43
 

𝑎31 = 3 

𝑎13 = 13 

Here only 𝑎31  and 𝑎13  are identifiable.  The input-output equations are of the form: 

𝑎13𝑦 2 +  𝑎42𝑎13 + 𝑎13𝑎04 + 𝑎13𝑎24 𝑦 2 + 𝑎13𝑎42𝑎04𝑦2 − 𝑎43𝑎24𝑦 1 − 𝑎43𝑎31𝑎24𝑦1 + 𝑎24𝑎43𝑢 = 0 

𝑦 1 +  𝑎31 + 𝑎03 + 𝑎13 + 𝑎43 𝑦 1 +  𝑎31𝑎03 + 𝑎31𝑎43 𝑦1 − 𝑢 +  𝑎03 + 𝑎13 + 𝑎43 𝑢 = 0 

We now form the exhaustive summary and find the Gröbner Bases in the 7 shifted orderings of 

 𝑎03  ,𝑎04  ,𝑎13  ,𝑎24  ,𝑎31  ,𝑎42  ,𝑎43 .  We pick the simplest combinations, which are {𝑞1 = 𝑎13  , 𝑞2 =

𝑎31  , 𝑞3 = 𝑎04𝑎42  , 𝑞4 = 𝑎24𝑎43  , 𝑞5 = 𝑎03 + 𝑎43  , 𝑞6 = 𝑎04 + 𝑎24 + 𝑎42}, reparameterize the input-

output coefficients in terms of these, form the exhaustive summary, and solve to get a unique solution 

for {𝑎13  ,𝑎31  , 𝑎04𝑎42  , 𝑎24𝑎43  , 𝑎03 + 𝑎43  , 𝑎04 + 𝑎24 + 𝑎42} .  Thus we have found our simplified 

canonical set, which agrees with the identifiable combinations found in [9].  However, our method 

guarentees the global identifiability of these parameter combinations, while Evans and Chappell can 

only show local identifiability using their Taylor Series approach [9].  

Even though the input-output equations can be rationally reparameterized, the original equations 

cannot be rationally reparameterized.  The reparameterization involves the square root function and 

can be found in Evans and Chappell [9].  Thus we see that input-output reparameterization is only a 

necessary condition for the original system to be reparameterized.   

Alternatively, we can always reparameterize our model using the normal canonical form (companion 

matrix).  Let 𝑦1 = 𝑣1 ,𝑦 1 = 𝑣 1 = 𝑣2 ,𝑦2 = 𝑣3 ,𝑦 2 = 𝑣 3 = 𝑣4 ,𝑢 = 𝑢1 ,𝑢 1 = 𝑢2.  Then the input-output 

equations become: 

𝑣 1 = 𝑣2 

𝑣 2 = − 𝑞1 + 𝑞2 + 𝑞5 𝑣2 − 𝑞2𝑞5𝑣1 + 𝑢2 −  𝑞1 + 𝑞5 𝑢1 

𝑣 3 = 𝑣4 

𝑞1𝑣 4 = −𝑞1𝑞6𝑣4 − 𝑞1𝑞3𝑣3 + 𝑞4𝑣2 + 𝑞2𝑞4𝑣1 − 𝑞4𝑢1 

𝑦1 = 𝑣1 

𝑦2 = 𝑣3 

Example: SIR (Susceptible Infected Recovered) model  
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𝑆 = 𝜇𝑁 − 𝑆  𝜇 +
𝛽

𝑁
𝐼  

𝐼 = 𝐼  
𝛽

𝑁
𝑆 −  𝜇 + 𝜈   

𝑦 = 𝑘𝐼 

Definition: 

𝑆, 𝐼   state variables 

𝑦   output 

𝜇, 𝜈,𝛽,𝑁,𝑘   unknown parameters 

For a pseudo-random point of  𝜇, 𝜈,𝛽,𝑁,𝑘 = {8, 7, 13, 12, 3}, DAISY returns the following solution: 

𝑘 =
36

𝑁
 

𝜈 = 7 

𝛽 = 13 

𝜇 = 8 

Here, 𝜈, 𝛽, 𝜇 are identifiable, while 𝑘 and 𝑁 are unidentifiable.  It is easy to see that an identifiable set of 

solutions is formed by cross-multiplying, to obtain {𝑘𝑁, 𝜈 ,𝛽 , 𝜇}. 

The input-output equation is of the form: 

 −𝛽𝑘𝑁𝜇 + 𝑘𝑁𝜇2 + 𝑘𝑁𝜇𝜈 𝑦2 +  𝛽𝜇 + 𝛽𝜈 𝑦3 + 𝑘𝑁𝜇𝑦𝑦 + 𝛽𝑦2𝑦 − 𝑘𝑁𝑦 2 + 𝑘𝑁𝑦𝑦 = 0 

We now form the exhaustive summary and find the Gröbner Bases in the 5 shifted orderings of 

 𝜇, 𝜈,𝛽,𝑁, 𝑘 .  We pick the simplest combinations, which are {𝑞1 = 𝑘𝑁, 𝑞2 =  𝜈 , 𝑞3 = 𝛽 , 𝑞4 =  𝜇}, 

reparameterize the input-output coefficients in terms of these, form the exhaustive summary, and solve 

to get a unique solution for  𝑘𝑁, 𝜈 ,𝛽 , 𝜇 .  Thus we have found our simplified canonical set.  

Now we reparameterize our original equations.  Let 𝐼′ = 𝑘𝐼 and 𝑆 ′ = 𝑘𝑆.  Then our system becomes: 

𝑆′ = 𝑞1𝑞4 − 𝑆′  𝑞4 +
𝑞3

𝑞1
𝐼′  

𝐼′ = 𝐼′  
𝑞3

𝑞1
𝑆 ′ −  𝑞2 + 𝑞4   

𝑦 = 𝐼′ 
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Example: Unknown Initial Conditions 

The following is taken from Saccomani et al [20]. 

𝑥 1 = 𝑝1𝑢𝑥3 

𝑥 2 = 𝑝2𝑥1 

𝑥 3 = 𝑝3𝑥1𝑥2 

𝑦1 = 𝑥1 

𝑦2 = 𝑥2 

𝑥1 0 = 𝑥10 

𝑥2 0 = 𝑥20 

𝑥3 0 = 𝑥30 

Definition: 

𝑥1 ,𝑥2 , 𝑥3   state variables 

𝑢   input  

𝑦1 ,𝑦2   output 

𝑝1 ,𝑝2 ,𝑝3   unknown parameters  

Here we have unknown initial conditions.  This example illustrates how our algorithm can take 

advantage of the full extent of the DAISY program, e.g. incorporating initial conditions. 

For a pseudo-random point of  𝑝1 ,𝑝2 ,𝑝3 = {8, 7, 13}, DAISY returns the following solution: 

𝑝1 =
104

𝑝3
 

𝑝2 = 7 

Here only 𝑝2 is identifiable.  It is easy to see that an identifiable set of solutions is formed by cross-

multiplying, to obtain {𝑝1𝑝3,𝑝2}. 

The input-output equations are: 

𝑦 1𝑢  −𝑢 𝑦 1 + 2𝑢𝑦 1 + 2𝑝2𝑝1𝑝3𝑦 1𝑢
3𝑦1

2 + 𝑢4𝑦1
2𝑝1

2𝑝3 −2𝑝2𝑥30 + 𝑝3𝑥20
2  − 𝑦 1

2𝑢2 = 0 

𝑢 𝑦 1 − 𝑦 1𝑢 + 𝑢2𝑦1𝑦2𝑝1𝑝3 = 0 
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We now form the exhaustive summary and find the Gröbner Bases in the 3 shifted orderings of 

 𝑝1 ,𝑝2 ,𝑝3 .  Note in this case the only coefficients used are 2𝑝2𝑝1𝑝3 and 𝑝1𝑝3, since 𝑝1
2𝑝3 −2𝑝2𝑥30 +

𝑝3𝑥202 cannot be used to test identifiability since 𝒙(0) is not known [20].  We pick the simplest 

combinations, which are {𝑞1 = 𝑝1𝑝3 ,𝑞2 =  𝑝2}, reparameterize the input-output coefficients in terms of 

these (only the coefficients not involving 𝒙(0)), form the exhaustive summary, and solve to get a unique 

solution for  𝑝1𝑝3 ,𝑝2 .  Thus we have found our simplified canonical set. 

Now we reparameterize our original equations.  Let 𝑥3
′ = 𝑝1𝑥3.  Then our system becomes: 

𝑥 1 = 𝑢𝑥3
′  

𝑥 2 = 𝑞2𝑥1 

𝑥 3
′ = 𝑞1𝑥1𝑥2 

𝑦1 = 𝑥1 

𝑦2 = 𝑥2 

𝑥1 0 = 𝑥10 

𝑥2 0 = 𝑥20 

𝑥3
′  0 = 𝑝1𝑥30 

Example: Rational coefficients 

The following is taken from Margaria et al [13].     

𝑥 1 = 𝑝1𝑥1 − 𝑝2𝑥1𝑥2 

𝑥 2 = 𝑝3𝑥2 1 − 𝑝4𝑥2 + 𝑝5𝑥1𝑥2 

𝑦1 = 𝑥1 

Definition: 

𝑥1 ,𝑥2   state variables 

𝑦1   output 

𝑝1 ,𝑝2 ,𝑝3 ,𝑝4 ,𝑝5   unknown parameters  

For a pseudo-random point of  𝑝1 ,𝑝2 ,𝑝3 ,𝑝4 ,𝑝5 = {8, 7, 13, 12, 3}, DAISY returns the following solution: 

𝑝1 = 8 

𝑝3 = 13 

𝑝4 = 12𝑝2/7 
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𝑝5 = 3 

Here 𝑝1 ,𝑝3 ,𝑝5 are identifiable while 𝑝2 ,𝑝4 are unidentifiable.  It is easy to see that an identifiable set of 

solutions is formed by cross-multiplying, to obtain {𝑝1 ,𝑝3 ,𝑝5 ,𝑝4/𝑝2}.  

The input-output equation is of the form: 

𝑝2𝑦𝑦 +  −𝑝2 + 𝑝3𝑝4 𝑦 
2 +  −2𝑝1𝑝3𝑝4 − 𝑝2𝑝3 𝑦 𝑦 − 𝑝2𝑝5𝑦 𝑦

2 +  𝑝1
2𝑝3𝑝4 + 𝑝1𝑝2𝑝3 𝑦

2 + 𝑝1𝑝2𝑝5𝑦
3

= 0 

As discussed in [2], the input-output equation is made monic by dividing by 𝑝2. Now the resulting 

coefficients are thus rational.  We now form the exhaustive summary and find the Gröbner Bases in the 

5 shifted orderings of  𝑝1 ,𝑝2 ,𝑝3 ,𝑝4 ,𝑝5 .  We pick the simplest combinations, which are {𝑞1 = 𝑝1 ,𝑞2 =

𝑝3 , 𝑞3 = 𝑝5 , 𝑞4 = 𝑝4/𝑝2}, reparameterize the input-output coefficients in terms of these, form the 

exhaustive summary, and solve to get a unique solution for  𝑝1 ,𝑝3 ,𝑝5 ,𝑝4/𝑝2 .  Thus we have found our 

simplified canonical set.  Thus we have a case where we can decouple a Gröbner Basis term to get 

𝑞𝑖 𝒑 − 𝑞𝑖 𝒑
∗  where 𝑞𝑖 𝒑  is rational. 

Now we reparameterize our original system. Let 𝑥2
′ = 𝑝2𝑥2. Then our original system becomes: 

𝑥 1 = 𝑞1𝑥1 − 𝑥1𝑥2
′  

𝑥 2
′ = 𝑞2𝑥2

′  1 − 𝑞4𝑥2
′  + 𝑞3𝑥1𝑥2

′  

𝑦1 = 𝑥1 

 

Example: HIV/AIDS Model 

The following four-dimensional HIV/AIDS model is taken from Saccomani and Bellu [18].  

𝑥 1 = −𝛽𝑥1𝑥4 − 𝑑𝑥1 + 𝑠 

𝑥 2 = 𝛽𝑞1𝑥1𝑥4 − 𝑘1𝑥2 − 𝜇1𝑥2 

𝑥 3 = 𝛽𝑞2𝑥1𝑥4 + 𝑘1𝑥2 − 𝜇2𝑥3 

𝑥 4 = −𝑐𝑥4 + 𝑘2𝑥3 

𝑦1 = 𝑥1 

𝑦2 = 𝑥4 

Definition: 

𝑥1 ,𝑥2 , 𝑥3 ,𝑥4   state variables 

𝑦1 ,𝑦2  output 
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𝛽,𝑑, 𝑠, 𝑞1 ,𝑘1 ,𝜇1 ,𝑞2 ,𝑘2 ,𝜇2 , 𝑐    unknown parameters 

For a pseudo-random point of  𝛽,𝑑, 𝑠, 𝑞1 ,𝑘1 ,𝜇1 , 𝑞2,𝑘2, 𝜇2 , 𝑐 = {8, 7, 13,12,3,6,13,16,9,10}, DAISY 

returns the following solutions: 

𝑞1 =
576

𝑘1𝑘2
 ,𝑑 = 7 , 𝑠 = 13 , 𝜇1 = −𝑘1 + 9 , 𝑐 = 9, 𝜇2 = 10, 𝑞2 =

208

𝑘2
,𝛽 = 8 

𝑞1 =
368

𝑘1𝑘2
 ,𝑑 = 7 , 𝑠 = 13 , 𝜇1 = −𝑘1 + 10 , 𝑐 = 9, 𝜇2 = 9, 𝑞2 =

208

𝑘2
,𝛽 = 8 

𝑞1 =
576

𝑘1𝑘2
 ,𝑑 = 7 , 𝑠 = 13 , 𝜇1 = −𝑘1 + 9 , 𝑐 = 10, 𝜇2 = 9, 𝑞2 =

208

𝑘2
,𝛽 = 8 

The model is unidentifiable with only 𝛽,𝑑, 𝑠 globally identifiable and 𝑐, 𝜇2 locally identifiable.  After 

adding initial conditions to the model, Saccomani and Bellu obtain that 𝛽,𝑑, 𝑠 are globally identifiable 

and all the other parameters are locally identifiable.   

It is clear that by moving all the parameters to one side of the equations, we have that 𝑞1𝑘1𝑘2 and 

𝜇1 + 𝑘1 are locally identifiable parameter combinations and 𝑞2𝑘2 is a globally identifiable parameter 

combination.  However, there is no mention of this in [18].  

The input-output equations are of the form: 

𝑦 1 + 𝛽𝑦1𝑦2 + 𝑑𝑦1 − 𝑠 = 0 

𝑦 2 +  𝑐 + 𝑘1 + 𝜇1 + 𝜇2 𝑦 2 − 𝛽𝑞2𝑘2𝑦 2𝑦1 +  𝑐𝑘1 + 𝑐𝜇1 + 𝑐𝜇2 + 𝑘1𝜇2 + 𝜇1𝜇2 𝑦 2 + 𝛽2𝑞2𝑘2𝑦1𝑦2
2

+ 𝛽𝑘2 𝑑𝑞2 − 𝑘1𝑞1 − 𝑘1𝑞2 − 𝜇1𝑞2 𝑦1𝑦2 +  −𝛽𝑞2𝑘2𝑠 + 𝑐𝑘1𝜇2 + 𝑐𝜇1𝜇2 𝑦2 = 0 

We now form the exhaustive summary and find the Gröbner Bases in the 10 shifted orderings of 

 𝛽,𝑑, 𝑠, 𝑞1 ,𝑘1 ,𝜇1 , 𝑞2 ,𝑘2 ,𝜇2 , 𝑐 .  We pick the simplest combinations, which are {𝑞1𝑘1𝑘2, 𝑑, 𝑠, 𝜇1 + 𝑘1 ,

𝑐, 𝜇2 , 𝑞2𝑘2, 𝛽}, reparameterize the input-output coefficients in terms of these, form the exhaustive 

summary, and solve to get a finite number of solutions for  𝑞1𝑘1𝑘2 , 𝑑, 𝑠, 𝜇1 + 𝑘1 , 𝑐, 𝜇2 , 𝑞2𝑘2 , 𝛽 .  

Thus we have found our simplified canonical set.  Note that we found local identifiability without using 

initial conditions.  In particular, we find that  𝑑, 𝑠, 𝑞2𝑘2, 𝛽  are globally identifiable.  

Note that the inspection method gives us the following globally identifiable parameter combinations: 

𝛽,𝑑, 𝑠 

𝑞2𝑘2 

𝑐 + 𝑘1 + 𝜇1 + 𝜇2 

𝑐𝑘1 + 𝑐𝜇1 + 𝑐𝜇2 + 𝑘1𝜇2 + 𝜇1𝜇2 

−𝑘1𝑘2𝑞1 − 𝑘1 − 𝜇1 
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𝑐𝑘1𝜇2 + 𝑐𝜇1𝜇2 

Since these are complicated expressions, we cannot reparameterize our original equations over them.  

However, one could reparameterize using the normal canonical form with these parameter 

combinations.   

Now we reparameterize our original system using our simplified canonical set. Let 𝑥2
′ = 𝑘1𝑘2𝑥2 and 

𝑥3
′ = 𝑥3/𝑞2. Then our original system becomes: 

𝑥 1 = −𝛽𝑥1𝑥4 − 𝑑𝑥1 + 𝑠 

𝑥 2
′ = 𝛽(𝑞1𝑘1𝑘2)𝑥1𝑥4 − (𝑘1 + 𝜇1)𝑥2

′  

𝑥 3
′ = 𝛽𝑥1𝑥4 + (1/𝑞2𝑘2)𝑥2

′ − 𝜇2𝑥3
′  

𝑥 4 = −𝑐𝑥4 + 𝑘2𝑞2𝑥3
′  

𝑦1 = 𝑥1 

𝑦2 = 𝑥4 

We leave the reparameterization in the original parameter 𝒑 to avoid confusion, since 𝑞1 and 𝑞2 are 

elements of 𝒑.  

8.  Discussion  

 In all of the examples, we were able to go from infinitely many solutions (unidentifiability), as returned 

by DAISY, to one or finitely many solutions (identifiability).  The original equations can be 

reparameterized in terms of the simplified canonical set, although sometimes this is not an easy task (as 

shown in Evans and Chappell [9]).  

The reparameterizations of the original equations can sometimes be done by inspection, as 

demonstrated in most of our examples, but there are examples that cannot be rationally 

reparameterized, as demonstrated in the 4-compartment model.  Although we can use the normal 

canonical form (i.e. companion matrix for linear problems), we prefer to use the original state variables, 

thus the inspection method is preferred over the normal canonical form.  

The reparameterizations we found give a compact form where the new parameters in the equations are 

identifiable.  However, since we make a change of variable with an unidentifiable parameter, the new 

state variable may not always be a useful quantity to examine.  There are two cases: either the rescaled 

state variable is in the output (as in cases where both the input and output variables are multiplied by 

parameters in the original equations) or the output does not contain the rescaled variable.  The latter 

condition may be preferable.  However, the former condition can be remedied by a reparameterization 

by the companion matrix method. 

The reparameterization of the input-output equations (Step 4) is not necessary to prove identifiability of 

the simplified canonical set.  As stated above, if our canonical set contains decoupled elements, then the 
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simplified canonical set is by definition identifiable.  The reason the reparameterization of the 

coefficients is done is really to test if the original equations have a chance of being reparameterized in 

terms of the simplified canonical set.  If the coefficients cannot be reparameterized in terms of the 

simplified canonical set, then the original system cannot be either.  Also, we saw that the ability to 

reparameterize the coefficients of the input-output coefficients led to the interesting mathematical fact 

that the ideal generated by the canonical set is the same as the ideal generated by the exhaustive 

summary, when the canonical set contains only entire elements from Gröbner Bases.  Additionally, the 

reparameterization step helps give us a useful set of identifiable combinations.  We conjecture that 

there always exists a simplest set of identifiable combinations that lead to reparameterization of the 

input-output equations. 

The “inspection” method, as discussed in the Differential Algebra Approach section, is the method of 

extracting simpler identifiable combinations from the coefficients of the input-output equations by 

subtracting/dividing the terms.  The advantages of this method are it requires less computationally 

expensive machinery (no Gröbner Basis) and the correct solution can sometimes be found much faster.  

The disadvantages of this method are that, like many rule-based approaches, the procedure is ad hoc 

and may be forced to run through a large number of cases.  In a sense, this method is doing exactly what 

a Gröbner Basis does, however the user/programmer must decide how to simplify the equations.  

The inspection method can be used to easily find the simplest globally identifiable parameter 

combinations of the 2-compartment model, 4-compartment model, the SIR model, the unknown initial 

conditions example, and the rational coefficients example.  The number of coefficients and their degrees 

of the 2-compartment nonlinear model make inspection a bit difficult.  For the HIV/AIDS model, 

inspection can only give us the global identifiability of  𝛽,𝑑, 𝑠, 𝑞2𝑘2 , but we do not get the local 

identifiability of  𝑞1𝑘1𝑘2, 𝜇1 + 𝑘1 , 𝑐, 𝜇2  so easily.  Likewise, in the 3-compartment model, we do not 

easily get the local identifiability of  𝑘12𝑘21  , 𝑘13𝑘31  , 𝑘02 + 𝑘12  , 𝑘03 + 𝑘13  by inspection.  However, 

the inspection method gives us globally identifiable combinations for both the HIV/AIDS model and the 

3-compartment model, but due to their complicated nature, are not as useful since we must use the 

normal canonical form to reparameterize.  In contrast, the combinations found from our algorithm are 

concise and may be useful quantities since we can reparameterize the original system.  Additionally, our 

procedure can be automated whereas the inspection procedure is harder to automate.  

In some cases, we have seen that the canonical set is actually apparent from the individual parameter 

solutions provided by DAISY.  In the 2-compartment nonlinear model, the SIR model, the unknown initial 

conditions example, the rational coefficients example, and the HIV model, one can easily “cross-

multiply” and find identifiable combinations.  However, in the 2-compartment, 3-compartment, and 4-

compartment models, this cannot be done.  If we cross-multiply the equations in the solution and bring 

all the variables to one side, we obtain terms from Gröbner Bases that cannot be decoupled to form 

identifiable combinations.  Thus we do not always obtain all the simplest identifiable parameter 

combinations from DAISY.   Also, this means that not every term in a Gröbner Basis can be decoupled to 

obtain an identifiable combination.  
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Theorem 2 can be verified numerically by using a random numerical 𝒑∗.  If symbolic 𝒑∗ is used, the 

Gröbner Bases will not be exactly the same because of how symbolic packages (like Mathematica) treat 

symbolic variables versus numbers, hence the bases will not be reduced.  Note that Theorem 2 still 

applies in the case of rational coefficients of the input-output equations.  In our example, we treat the 

term 1/𝑝2 as a parameter and thus can still find a Gröbner Basis.  

9.  Conclusion 

We have proposed an algorithm to find identifiable combinations of parameters in nonlinear ODE 

models and have found necessary and sufficient conditions for steps of the algorithm to work.  We hope 

to examine our algorithm further to find what class of problems always give a canonical set that leads to 

reparameterization of the input-output equations.  We are currently preparing a software distribution of 

our extended algorithm. 
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