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Variational Wavelet Pan-Sharpening

Michael Moeller, Todd Wittman, Andrea L. Bertozzi

Abstract—Pan-sharpening is the process of fusing a low reso- Several authors have proposed using the wavelet transform
lution multispectral image with a high resolution panchromatic  to extract geometric edge information from the panchromati
image to obtain a high resolution multispectral image. We image [6], [7], [8]. Recently, Ballester et. al. proposed a

propose a new pan-sharpening method called Variational Waslet S . . _
Pan-sharpening (VWP) that combines wavelet fusion and the variational method called P+XS image fusion that explcitl

edges of the panchromatic image as an energy minimization forces the edges of the pan-sharpened image to line up with
problem. Furthermore, we introduce additional energy terms to  those in the panchromatic image [9].

explicitly preserve the color information within each band and There have been several survey papers comparing the
the correlation between bands. Numerical results are presged performance of pan-sharpening methods [10], [11], [4]. The

on Quickbird data and compared to various pan-sharpening S . .
methods with the help of image quality metrics. VWP is shown general conclusion is that there is a trade-off betweenapat

to outperform existing methods in the sense that it producefigh ~and spectral quality. For example, the classical IHS method
quality images, whereas the choice of parameter determinehe produces images with excellent visual quality, but the pan-

amount of spatial and spectral quality. sharpened image contains noticeable spectral distortus
Index Terms—image fusion, multispectral, pan-sharpening, goal is to combine ideas from the various methods into a
variational, wavelet single variational framework to produce images that hawé bo
high spatial and spectral quality. We refer to our model as
|. INTRODUCTION Variational Wavelet Pan-sharpening (VWP).

ANY satellite imaging systems, including the Quick- Iq Section_l!, we present an energy m.odel that describes the
bird and Landsat-7 satellites, produce a panchromaﬂ@s"ed qualities of the pan-sharpened image. We alsormirese

image to accompany the multispectral imagery. This panchﬁi1 alternate energy (AVWP) that aIIo_ws for faster ‘?Omp“m“
matic image has higher spatial resolution than the multisp and p_rc_:dL_Jc_es similar results. We_dlscus_s numerical me_thods
data, but the spectral response spans a wide range. f@érmlmmamg the VWP energy in Section lll. In Section
example, the Quickbird satellite produces 4-band muldspe 'V We present results on Quickbird data and compare VWP
images with 2.4 m resolution and panchromatic images wilfi €X1Sting pan-sharpening methods using a variety of image
0.6 m resolution. The panchromatic image can be used _OtUa“ty metrics, Finally, we conclude in Section V by sugges
enhance the resolution of the multispectral image through'n.hg extensions of VWP and areas for future research.
process called sensor fusion or pan-sharpening.

The goal of pan-sharpening is to combine the high spa- I[l. ENERGY FUNCTIONAL

tial resolution of the panchromatic image with the precise : . : _

. . . ; : The general idea of variational image processing methods
spectral information of the multispectral image. The résgl is to develon an enerav functional depending on an image
image should have high visual quality to aid in detection P ay P 9 ge,

- “wher low val f the energy functional corr n
and classification tasks. However, the pan-sharpened ima gre a low value o the energy functional corresponds to

. : . good quality image. One of the first and most famous
should also contain the same spectral (color) informaten g_ = - ; ) . .
- : o e variational methods is the Rudin-Osher-Fatemi Total \Vemm
the original multispectral data for precise identificatioh

targets. This becomes especially important as the number.(cT)}/) model [12]' A more general descnp_’uon of variational
|m%ﬁe processing methods can be found in [13].

bands increases, because the spectral signature can be us Any existing pan-sharpening methods like IHS, Brovey,

fS%ronletercl)aslslgsgtg:;ztlﬁin.hTQeerl(taigTrel,Jg}s p:::ga;i?r';ﬁgja”and P+XS image fusion assume that the panchromatic image
P gh sp d y P i is. a linear combination of the different bands. Looking at

Several methods have been proposed for pan-sharpenjn S
multispectral imagery. Many techniques express the pancr:}rh spectral response of the sensors of the Quickbird isatell

matic image as a linear combination of the multispectratisan system, this assumption does not seem to be generally true (

. . ; . 14], Fig. 1). A false linear combination assumption cardlea
including the Intensity-Hue-Saturation (IHS) [1], [2],][@nd [ . . .
Brovey methods [4]. Other methods project the images intot%SpeCtral distortion and therefore damage the specti@-in

. . . . mation of the original multispectral image. That is the teas
different space like Principal Component Analysis (PCA) [5why we propose a variational method that does not depend on
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energy functional separately. We will refer to the panchetten decomposition of the panchromatic image and each multispec
image asP : 2 — R, whereQ2 C R? is the image domain. tral band. Then the high level wavelet coefficients are medch
M; are the low resolution multispectral image amdare the to the corresponding coefficients of the panchromatic image

desired high resolution multispectral bands. while the low level approximation coefficient are matched to
the low resolution multispectral band. Figure 1 illustsathe
A. Geometry matching term choice of the matching wavelet coefficients.

The first variational pan-sharpening method was proposed
by Ballester et. al. in 2006 [9]. Their idea for introducirget

geometry of the panchromatic image was to align all leveldin panchromatic | wavelet
. . . . image R
of the high resolution panchromatic and each multispectral decomposition matching

wavelet
coeffici

band. The main assumption is that the geometric information
of an image is contained in its level sets, independent af the
actual level. The level sets of an image can be representec | upsamplea | wavelet
by the vector fieldd consisting of all unit normal vectors of mutispectral decompaniion
those level sets. This vector field can be calculated almost

everywhere under certain general assumptions. In practice

the vector field is implemented az) = —~=&— where

[VP(z)le

|[VP|c = /(DyP)?>+ (D,P)? +¢€* is a regularization to Fig. 1. Matching wavelet coefficients for a discrete wavélansform

avoid division by zero. The panchromatic image P then

satisfiesd - VP = |VP|. To ensure that each multispectral This choice of wavelet coefficients is well known in the
band has the same level sets as the panchromatic image, titeyature and the same rule is used for wavelet pan-shargen
align the normal vectors of the level sets. Therefore evandb e.g. in [6]. Many author have pointed out that the stationary
of the restored image should satigfyu,,| —0-Vu,, = 0. The (redundant) wavelet transform gives superior fusion tesul
integral over the sum of these terms is added to the enepmparison to the discrete wavelet transform ([20], [121]]
functional and integration by parts is applied to the secoif22]. The drawback of using stationary wavelets is the stowe
part of the integral. The total energy functional minimizgd speed of the transform and the large increase in data.

the P+XS model is To formalize this idea in a mathematical context for our
4 energy functional we use the following notation: For a one
E(u,) = nyn / (|IVun| + div(8) - uy)dx dimensional wavelet transform, lgtbe a scaling function and
n=1 Q 1) the corresponding wavelet generating a wavelet orthonlorma
4 basis of L?(R). We define the wavelets! (z) = o(z1)p(z2),
+>\/(Z ant, — P)?dx V2 (x) = ¢(x1)h(xs), ¥3(z) = ¥(x1)(z2) and denote for
:”=1 1<k<3,jeZandn=(ng,n) € 2>
* - 2 1 1 —2'n1 x9 —2In
JrunZl/QHs((kn Up) — My)dz, (1) ?/}fn(x) _ gd’k( 1 = 1, 2 = 2). 3)

wherek, is a convolution kernelllg a Dirac comb andy,, Further we define a two dimensional scaling function by
A, o, andp parameter to weight the different terms. 1 0 0

Unlike the original P+XS model, we want to be able to @2 (1) = (L) pZ2 202y (4)
weight both parts of the geometry matching term separately ” 2 2 2
by introducing parametey andn. This leads to the energy Then the approximation coefficients of a two dimensional

term function are give by the scalar product witi# and the 3
N detail coefficients (which can be seen as horizontal, \edrtic
E, = Zh/ |V, | dl”rﬂ/ div(9) - uy, dz]. (2) and diagonal details) are given by the scalar product with
n=1 “9 £ ¥*, k € {1,2,3}. We define the approximation matching

This term does an excellent job enforcing spatial qualitgoefficients for band i as
Notice that the first part of this term is TV regularizatior2]1 i 2
. 2 . in] =<1 M, 95, >, 5
for each band. Furthermore, the idea of aligning the gradien alnl =<1 in > ®)
vectors of an image with a smooth unit normal vector fieldthere] M; denotes upsampling of the low resolution multi-
was also proposed by [15] and lead to iterative regulaomatispectral band. In our experiments we used bilinear interpol

using the Bregman distance [16]. tion. The matching detail coefficients are taken from thdasca
product with the panchromatic image and are equal for all
B. Wavelet matching term different bands:
The combination of wavelets and variational methods has dg 3 [n] =< P, ¢f,n >, for1<k<S3. (6)

recently been applied to many image processing tasks [17],
[18], [19]. To match the colors of the low resolution multi-If we denote the desired approximation coefficients for biand

spectral image with sharper edges, we do a two level waveliyt [n] and the desired detail coefficients by, ;, [n] then
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we add the following term to our energy functional: Another way of looking at this term is that it minimizes the
B i i 2.9 spectral angle between each pixel frequency vector in tive lo
By = ) cola[n] - oiln])*s}, () resolution and in the sharpened multispectral image. For an
" I3 arbitrary but fixed pixel le be the frequency vector in the low
i resolution and the frequency vector in the corresponding high
+ Z Z Z ¢;(dgn gy [n] = By )45, g y P gnig

ot resolution image. The minimizer of the above energy term is
. L . a(i)-b(j)—a(j)-b(i) = 0 Vi, j. This can be rewritten agi) =
where_co is the pa_rameter for the approximation co.efnmen#. (i) = 0 Vi, j which proves thaﬁ||5. This implies that the
matching,c;, 1 < j < L are the parameter for the different®?) e .
level of detail coefficient matching and L is the level ofPectral ang"i'lTCCOS(‘;ﬁﬁH%H) is zero. The spectral angle is
decomposition. In our experiments we used L=2. Notice thaidely used to compare spectral information. Besides thié we
we assumed our continuous representations of the imageskirewn spectral quality metric SAM [24] the spectral angle is
elements ofVZ = span(¢Z,,) since this holds in practice also used in hyperspectral imaging for material comparison
for the discrete formulation anyways. Faf = ¢; = ¢, this and classification [25].
term would become a least squares match to a wavelet fusedhe fitting terms described in C and D are new whergas
image. In our variational context we choose these parameie simple modification of the P+XS method afg puts the
according to the type of image we would like to produce. Fd#eas of wavelet fusion similar to [6] with the ideas of [20] i
high spatial quality we especially want to introduce theeedg Variational setting. The total energy functional can then
information of the panchromatic image and therefore irsgeawritten as
c1 and cq. Vice-versa we would choose larger values &gr E(u) = Ey+ E, + B, + E,. (10)
for higher spectral quality.

This energy functional contains two different types of term
three terms in the spatial domain and one matching term in
the wavelet domain. Any minimization method will have to

Using just the first two terms (2) and (8) gives very googternate between the wavelet and the spatial domain each it
spatial results, but we also want to enforce spectral qudlit eration. This will slow down the whole algorithm significhnt
preserve the spectral information within each band we WOU&pecialIy for stationary wavelets. This is the reason wiy w

like to preserve the colors of the resized multispectralgena propose an alternate energy, which can be minimized eptirel
at those parts of the image that have no edges or texture. ﬁVQhe spatial domain.

add the following term to our energy functional:
N E. The Alternate Energy

E,. = I/Z/ (u;— 1 M;)? da. (8) The variational wavelet pan-sharpening method on the al-
i=1 /9T ternate energy (AVWP) is based on two ideas. First, if we
I denotes the set of edges and texture in the panchrom&fi®ose our wavelet matching coefficienjs equal for each
image which can be determined by any appropriate ed¥el k, then the whole term is just a matching to a wavelet
detector. In our experiments we calculaied= exp(— \V%P) fused image. Second, away from the edges the matching to
with a suitable constant d. This edge detector has been u#ei low resolution multispectral image gives us the bestrcol
successfully in many image processing applications such\@ues we can get for our image. Therefore, we combine

C. Color preserving term

the Perona-Malik model [23]. terms B and C to one matching term that matches the low
resolution image away from edges and the wavelet fused image
D. Spectral correlation preserving term on the edges. Unlike variational segmentation algorithies |

Sof train th | ithi h band. but Mﬁmford-Shah [26] the edgeset does not have to be evolved,
0 farwe constrain tn€ colors within €ach band, but NONe gi, .o 1 jq give by the panchromatic image. Again, the edge

the terms couples the different bands. As mentioned earhg tection method we used for our algorithmeisp(— d )
~PE/):

a single pixel's spectral signature can be used for material . . v
cIassificat?on, i the number of bande ic high enough. In this D€NCting the wavelet fused image for tié band with1¥,
case it is crucial to preserve the frequency informatiomnfroand the new matching image wil, we have
the original low resolution multispectral image. To acleiev, _ .« d d
this, we propose that every possible ratio of two different’ [VP|? [VP|?
spectral bands of our pan-sharpened high resolution imagge terms!, and I, in our original energy are then replaced
should equal the ratio of the same bands of the origingy

multispectral image. We would like to obtain at every pixel

) 'WqJF(l*erP(* ) T M, (11)

N
U; Mi —
w = ;Mj = wpx T My —uy+ 1 M; = 0, where| denotes B, — VZ/(un _ Z,)? da. (12)
upsampling to the high resolution image size. Therefore, we e

add the sum of the squares of the correspondingiorms to - a\wP minimizes the energy:
our energy functional:

N E(u) =E4+ E;+ E,. (13)
E,=p Z /(ui. T M; —uj- 1 M;)? da. (9) This energy can be minimized in the spatial domain only
dj=li<j O and will therefore allow for much faster computation.
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I1l. NUMERICAL METHODS We consider the iteration to have reached steady state when
e relative change in energy between two iterates is less th

For each of the two energy functionals (10) and (1:5105%:

we implemented an explicit forward Euler gradient descend 1 .
method and an alternating directions implicit (ADI) method [E@™) - B(u)] -100 < 0.05. (20)
[27], [28]. For the sake of simplicity, we only discuss the E(ut) B

numerical details for the methods on our Original energyor the Wave|et matching term we Compute a Wave'et de_
functional. The implementations for the alternate enengy acomposition of our current iteration, calculatét|c,(a? [n] —

very similar. a® ' n))+ 52 ei(dgrn[n] — 8% [n])] and transform
One can show that minimizing the above energy functiong{Le result back tg_tlhe] Sb{a{% doma{|]r€{.J}
(10) is equivalent to solving a partial differential eqoati

(PDE), called the Euler-Langrange equation. We therefore

calculate the first variations of our energy term. For iffe - ADI method
band we get For faster convergence of the numerical method we choose
a different time discretization. First of all we split the wedet
0, _ —(~div( Vg ) — ndiv(6)) (14) matching term from the spatial terms by doing an alternating
oug [Vug|e minimization. The minimization of the wavelet part is easy
0E, N since we can directly compute the solution of the problem
L. - 2k > (ug T Mj—uy-TMy) T M; (15) and just take one timestep towards it:
6Eq J=1,j#q Ck%’ t+1[n] _ Oé% t[n]
= 2uxa-r(u,— T M,) (16) q q, t
Sug 4 4 + 2-0t-colaf[n] —af "[n]), (21)
0E, ¢ b1 = pot
o~ 23 aolalin] — atln)e, a7) o 11 = Bl t
ta " + 28t ¢i(dg ] - B, 1) (22)
_ 9 cildinln] — BL L [n)wk. For the minimization of the remaining spatial part, we apply
%:XJ:; 1y (] = By v an alternating directions minimization (ADI) method. This

o _ method is semi-implicit and requires two steps. In the fitesp s
wherexq_r denotes the characteristic function@f-T" or a we have to solve a linear equation for each row in the second

similar smooth edgeset indicator "kﬁfp(*ﬁ)- The first  for each column of the image. A more detailed description of
variation of the energy functional must be zero in the mimmuthe ADI scheme can be found in the appendix.

of the functional: The numerical costs for calculating one timestep of the
SE ADI scheme are much higher than for the explicit method,
s =0 (18) put the timestep for the ADI method can be chosen larger

q

and the convergence properties are much better. In the next
The corresponding minimizing argument is the pan-shamgbersection, we show that the ADI method is much faster than the
image and the solution we are looking for. To compute thisxplicit timestepping scheme for both the original andrakige
solution we introduce an artificial time variablereplace the energies.
zero on the right hand side by%uq and solve the resulting
equation to steady state. This is called gradient descethieor IV. NUMERICAL RESULTS
method of steepest descent. In the following we present two

different numerical schemes to perform the gradient descen We implemented the ADI and implicit method as described
P 9 above for AVWP and VWP in Matlab. Matlab’s 'sym4’ sta-

tionary wavelet transform was used in a second level wavelet
A. Explicit Euler method decomposition. _
_ N T _ . We ran all methods on an Intel Duo Core processor with
_ The time derivativeg; u, is discretized explicitly. We then >, and 3GB memory. The iteration is considered to have
iteratively compute the solution by converged when equation 20 holds, i.e. the change in energy

ut between two iterates is less than 0.05%. To compare the
ugtt = ul + 0t [(ydiv( |Vutq| ) — ndiv(0)) advantage in runtime of the ADI and the explicit method we
ale took a square subsection of a Quickbird image with side lengt
N ‘ ‘ x for x € {0, 100, 200, ..., 60¢ and ran the two minimization
- 2 Z (ug T Mj —uj- T Mg) T M schemes. Figure (2) shows the results.
i=Llita The ADI method is much faster for AVWP as well as for
- QVXQ—F(UZ— T M,) VWP. For large images, ADI on the original energy is even
+ 2co(alln] — o 'n])e3, faster than the explicit scheme for the AVWP.

L 3 A great advantage of VWP and variational methods in
+ 233" ei(dggyIn) - B, [))wk, ). (19) general is their flexibility. PCA and IHS generally require n
P ’ 7 " parameters and the only choice in wavelet fusion would be the



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, SUBMIED DECEMBER 19, 2008

Runtime comparison to the original image (e.g. the color of the trees in figure. V)

Color distortion means that the frequency information estior

in the multispectral image is lost or at least greatly dardage
The VWP image with high spatial quality seems to be closer
to the original multispectral image in terms of colors angbal
has spatial quality comparable if not better than IHS. Theiot
VWP result clearly looks blurry in comparison and is similar
to the wavelet fused image. Unfortunately, spectral galit
is much harder to see than spatial quality. Large spectral
distortion like in the IHS image can be seen in the change
of color, but when the spectral distortion is a little smalle

it is almost undetectable visually. Therefore, we take #ve
quality metrics into account to help us with the evaluation.

In [29] the following seven spectral quality metrics were
implemented to judge the performance of pan-sharpening
methods:

« The idea of therelative dimensionless global error in
synthesis (ERGAS)is to take the average mean square
error normalized by the mean of each band [30].

The Spectral Angle Mapper (SAM) calculates the av-
erage change in angle of all frequency vectors [24].
« TheSpectral Information Divergence (SID)views each

250

Explicit method on original energy
Explicit method on alternate energy
ADI method on original energy

ADI method on alternate energy

200

150 -

100 -

Runtime in s

S0+

Sidelength x

Fig. 2. Comparison of runtime

level of decomposition. In a variational method, the parnse
have a huge influence on the result and thereby one can choose
which term in the energy functional is more important for a *
certain purpose. Putting more weight on spectral terms will
especially enforce spectral quality. On the other handhgusi

exactly the same model one can also focus on spatial quality
and get results of spatial quality similar to IHS. Figure IV
shows three different fusion results of the VWP method for
different choices of parameter. This gives images rangiow f
very high spectral but low spatial quality to images withyer
high spatial but low spectral quality. Generally, there is a

pixel spectrum as a random variable and then measures
the discrepancy of probabilistic behaviors between spec-
tra [31].

The Universal Image Quality Index (Q-average)mod-

els distortion as a combination of three different factors:
loss of correlation, luminance distortion, and contrast

distortion. The best value for Q-average is 1 [32].
« TheRelative Average Spectral Error (RASE)calculates
the mean error of all bands per radiance of the image [33].
Mean Change in Correlation Coefficients (MCCC)
is the average of the absolute values of the change in
correlation coefficients between band i and band,j;
before and after the sharpening process [34].
Root mean squared error (RMSE) is the average
squared difference between the original multispectral and

trade-off between spectral and spatial quality, but VWP has
the flexibility to give almost any type of desired combinatio
of spectral and spatial quality by adjusting the parameters
Our standard choice of parameter for images with high*
spectral quality is given in table I. We will refer to this as

TABLE |
SPECTRAL QUALITY METRICS FOR IMAGEIV

In v K € n <] C1 Cc2 .
VWP |05 5 100 1009 05 4 2 2 pan-sharpened image.
AVWP | 05 5 100 109 05 The results of the evaluation of all quality metrics for

Intensity-Hue-Saturation Fusion (IHS), Principal Comeon

parameter choice (1). For images with high spatial qualigy wAnalysis (PCA), discrete wavelet fusion (DWave), statigna

choose the parameters shown in table Il. These values will Wavelet fusion (SWave), P+XS image fusion, VWP and AVWP
for our testimage IV are shown in table IIl.

To get more meaningful and less image dependent quality
metric values we ran all methods on five different images
and evaluated each fusion result with the quality metri¢ge T

TABLE Il
SPECTRAL QUALITY METRICS FOR IMAGEIV

Yn |27 € 7 co C1 Cc2 X . . .
VWP | 07 4 100 103 14 05 4 4 average of all five images of all method is shown in table V.
A/WP | 07 4 100 103 14 - The best metric quality results are shown in bold print.

To a large extent the quality metrics confirm our visual

referred to as parameter choice (2). analysis. Clearly there is a trade-off between spatial and

Figure IV shows the result of the classical IHS, the stapectral quality. The VWP fusion result where we focused
tionary wavelet transform and the VWP method for these twan spatial quality (AVWP) has low quality metric values but
different choices of parameter. therefore provides visual quality equal or better than tH8 |

One can see that the spatial quality of the IHS fused imagiesed image. If we look at fig. IV the colors of the AVWP
is very high. All objects have very sharp edges and the whaleem to be closer to the original low resolution image than th
image seems to be very close to the panchromatic imagellt§ image. In the IHS image the colors of the trees appear
terms of spatial quality. However, one can also see that timea lighter green than the low resolution image shows. VWP
colors of the IHS fused images slightly changed in comparisseems to preserve these colors much better.
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(b) low resolution

(d) VWP high spectralquality (e) VWP high spatial and spectral quality §1) VWP high spatial qality

Fig. 3. Effect of the choice of parameter in VWP; (a), (b): @aght DigitalGlobe, NextView liscense, 2003; image (darameter choice (1), image (f):
parameter choice (2), image (e): compromise between (d)furidr spatial and spectral quality

(a) panchromatic (b) low resolution () stationary wavelet

(d) IHS (e) VWP high spatial quality () VWP high spectral quality

Fig. 4. Results of different pan-sharpening methods; @), Copyright DigitalGlobe, NextView liscense, 2003; inea(e): parameter choice (2), image (f):
parameter choice (1)
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TABLE Il
SPECTRAL QUALITY METRICS FOR IMAGEIV

MCCC* | ERGAS | Qave | RASE | RMSE | SAM | SID**
IHS 6.68 3.41 0.992 | 13.0 53.3 2.02 21.3
PCA 16.5 4.96 0.951 | 19.6 80.2 4.40 18.3
D. Wav. | 3.04 2.49 0.977 | 10.00 | 41.0 2.68 17.3
S. Wav. | 1.67 1.92 0.991 | 7.75 31.8 1.39 1.82
P+XS 1.94 2.46 0.986 | 9.45 38.7 1.54 3.42
VWP 0.998 1.40 0.997 | 5.63 23.1 0.366 | 0.401
AVWP 1.12 1.44 0.997 | 5.82 23.9 0.325 | 0.336
AVWPT |6.10 4.342 0.981 | 13.84 | 56.74 | 0.465 | 4.13

*: given in10(=2 **: given in 10(~3) *: good spatial quality

TABLE IV
AVERAGE SPECTRAL QUALITY METRICS FORS IMAGES

MCCC* | ERGAS | Qave | RASE | RMSE | SAM | SID**
IHS 5.19 3.31 0.994 | 12.6 39.3 1.56 7.51
PCA 9.37 3.95 0.968 | 15.4 49.8 2.99 13.0
D. Wav. | 3.73 2.43 0.983 | 9.66 30.5 2.06 8.87
S. Wav. | 2.37 1.99 0.993 | 7.88 24.5 1.10 1.97
P+XS 2.54 2.92 0.983 | 10.6 29.9 1.96 5.51
VWP 1.40 1.45 0.997 | 5.82 18.1 0.464 | 0.737
AVWP 1.80 1.55 0.997 | 6.22 19.4 0.338 | 0.315
AVWPT | 6.80 3.26 0.985 | 13.10 | 425 0.488 | 12.2

*: given in10(=2 **: given in 10(~3) *+: good spatial quality

The stationary wavelet fusion and P+XS give good quality V. CONCLUSION

metric values, but their visual spatial quality is not asdjas We proposed a variational method based on the ideas of
AVWPT. Their fusion results look more blurry. P+XS and wavelet image fusion for the task of pan-sharpening
multispectral images. The model incorporates the aligrimen
The different VWP images in fig. IV show the range obf all unit normal vectors of the level sets of each band with
results we can produce. While one of them is providing spatige panchromatic image. It includes color and edge match-
quality equal if not better than the IHS method and seemedifg) in the wavelet domain and further preserves frequency
have the colors preserved much better, the other VWP resgformation by keeping the ratio of all bands constant and by
shows how much spectral quality we can preserve. The mid@lgditionally matching the colors away from edges and textur
image is a compromise between spatial and spectral quality\nyp can produce a wide range of images where the
It has sharper edges and more texture than the high spectigdr can decide about the importance of spectral and spatial
quality VWP and more spectral information than the higQuality by adjusting the parameter. High spatial and high
spatial quality VWP. For the high spectral quality VWP, wpectral quality images were shown. We implemented eight
obtain the best quality metric values for all 7 spectral @yal different quality metrics to evaluate the performance of ou
metrics. Especially the SAM quality metric which we dirgctl proposed method in comparison to the most common other
wanted to minimize in our energy approach is more thanghn-sharpening methods. Our method seems to be the best
times better in AVWP than in any other method. Since SAMnoijce if one wants to preserve the spectral informatiomfro
is (as mentioned earlier) also used for material classifioat the multispectral image.
in higher dimensional imagery this choice of parameter seem Another advantage of our method in comparison to other
to be very well suited for all applications, where the sp@tir methods is that it can be extended to an arbitrary number
of each pixel is important. Even in the the high spatial dyali of spectral bands. If a panchromatic image was available we
AVWP™ image the SAM quality metric is still more thancould sharpen hyperspectral images with 100-200 bands. VWP
factor of 2 times better than stationary wavelet fusion Whigs particularly well-suited for this situation becausexplicitly
is the second best method in this Category. preserves Spectra| information.
For future research one could look into other numerical
In summary we can say that VWP can produce a very widgghemes for faster minimization, such as graph cuts or tqrera
range of good fusion results. VWP can produce images wighlitting methods. Technical information about the sieell
spatial quality equal to IHS while still having more redtist sensors could be incorporated into the variational frannkewo
colors or spectral qualities better than any other fusiothoe  Linked to this would be the question about the fusion of other
There is definitely a trade-off between spectral and spatiakally different types of sensor data such as SAR images or
quality, but VWP has the flexibility to give almost any type ofiR| data for medical imagery.
desired combination of spectral and spatial quality by stifjg
the parameters.
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APPENDIX
ALTERNATING DIRECTIONS IMPLICIT METHOD

with the Thomas (TDMA) algorithm [35]. The procedure for
the step taken implicitly in the y-direction is similar. Hewe

The remaining spatial part of the gradient descent after tpalve a linear equation for each column of the image. For both

splitting is the following:

d Vu
_ di q
dtuq (Py Zv(|vuq|6

) — ndiv(0))

N
2p Z (ug- T Mj —uy T Mg) T M;
Jj=1,j#q
2uxa-r(ug— T My)

2) colaln] —afln])é} .

We discretize the derivatives in the numerator of the TV term
implicitly in the x-direction and explicitly in the y-dir¢ion

for half of a timestep and vice-versa for another half of dll
timestep. We get a linear equation for each row of our imagg;
for the implicit x-discretization and for each column foreth
implicit y-discretization both with tridiagonal matricdSor the
step implicit in x direction we get:

ugtt uf 4 6t [Dy(C* - Dyul™) 4 Dy (C* - Dyul)

+

(3]

N [4]
2 Y (ubth1 My -l T M) T M
i=li#q
21/XQ_F(u’;+1— T My) —n*div(9)]. (24)

With the notationC" = r-. We put all terms that include [6]
AP

u!*! on the left-hand side and all others on the right. Using
backward differences for the firgd, and forward differences [7]
for the second),. the following equation holds at every pixel:

(5]

(8]

[Do(C"- Doug™iy = Cfjugliipn
t t t+1
— (Ciy+Cl)ug; [9]
+ O jugijg (25)

We can now solve a linear equation for each row of oUitdl
image. For an nxm image we define the tridiagonal mafix

by [11]

bt 0 0 0
ay by 0 0 [12]
Al = : (26) |13
. . . . [14]
0 0 a’in -1 b?m.— 1 Cin{— 1
0 o 0 a, b
with (ol
ai = 0, (27) [16]
a; = —06tC(i,j—1),
. =0, [17]
s = —6tC(i,j+1),
N
b; = 1+ 28tvxq-r + 2udt Z (My(i,5))* — cj — a;. (18]
k=1,k#q

It is easy to see that each matri¥ is diagonal dominant, [19]

which allows us to solve each linear equation very efficientl

steps we assumed zero Neumann boundary conditions for our
image.
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