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Variational Wavelet Pan-Sharpening
Michael Moeller, Todd Wittman, Andrea L. Bertozzi

Abstract—Pan-sharpening is the process of fusing a low reso-
lution multispectral image with a high resolution panchromatic
image to obtain a high resolution multispectral image. We
propose a new pan-sharpening method called Variational Wavelet
Pan-sharpening (VWP) that combines wavelet fusion and the
edges of the panchromatic image as an energy minimization
problem. Furthermore, we introduce additional energy terms to
explicitly preserve the color information within each band and
the correlation between bands. Numerical results are presented
on Quickbird data and compared to various pan-sharpening
methods with the help of image quality metrics. VWP is shown
to outperform existing methods in the sense that it produceshigh
quality images, whereas the choice of parameter determinesthe
amount of spatial and spectral quality.

Index Terms—image fusion, multispectral, pan-sharpening,
variational, wavelet

I. I NTRODUCTION

M ANY satellite imaging systems, including the Quick-
bird and Landsat-7 satellites, produce a panchromatic

image to accompany the multispectral imagery. This panchro-
matic image has higher spatial resolution than the multispectral
data, but the spectral response spans a wide range. For
example, the Quickbird satellite produces 4-band multispectral
images with 2.4 m resolution and panchromatic images with
0.6 m resolution. The panchromatic image can be used to
enhance the resolution of the multispectral image through a
process called sensor fusion or pan-sharpening.

The goal of pan-sharpening is to combine the high spa-
tial resolution of the panchromatic image with the precise
spectral information of the multispectral image. The resulting
image should have high visual quality to aid in detection
and classification tasks. However, the pan-sharpened image
should also contain the same spectral (color) information as
the original multispectral data for precise identificationof
targets. This becomes especially important as the number of
bands increases, because the spectral signature can be used
for material identification. Therefore, the pan-sharpenedimage
should possess both high spatial quality and spectral quality.

Several methods have been proposed for pan-sharpening
multispectral imagery. Many techniques express the panchro-
matic image as a linear combination of the multispectral bands,
including the Intensity-Hue-Saturation (IHS) [1], [2], [3] and
Brovey methods [4]. Other methods project the images into a
different space like Principal Component Analysis (PCA) [5].
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Several authors have proposed using the wavelet transform
to extract geometric edge information from the panchromatic
image [6], [7], [8]. Recently, Ballester et. al. proposed a
variational method called P+XS image fusion that explicitly
forces the edges of the pan-sharpened image to line up with
those in the panchromatic image [9].

There have been several survey papers comparing the
performance of pan-sharpening methods [10], [11], [4]. The
general conclusion is that there is a trade-off between spatial
and spectral quality. For example, the classical IHS method
produces images with excellent visual quality, but the pan-
sharpened image contains noticeable spectral distortions. Our
goal is to combine ideas from the various methods into a
single variational framework to produce images that have both
high spatial and spectral quality. We refer to our model as
Variational Wavelet Pan-sharpening (VWP).

In Section II, we present an energy model that describes the
desired qualities of the pan-sharpened image. We also present
an alternate energy (AVWP) that allows for faster computation
and produces similar results. We discuss numerical methods
for minimizing the VWP energy in Section III. In Section
IV, we present results on Quickbird data and compare VWP
to existing pan-sharpening methods using a variety of image
quality metrics. Finally, we conclude in Section V by suggest-
ing extensions of VWP and areas for future research.

II. ENERGY FUNCTIONAL

The general idea of variational image processing methods
is to develop an energy functional depending on an image,
where a low value of the energy functional corresponds to
a good quality image. One of the first and most famous
variational methods is the Rudin-Osher-Fatemi Total Variation
(TV) model [12]. A more general description of variational
image processing methods can be found in [13].

Many existing pan-sharpening methods like IHS, Brovey,
and P+XS image fusion assume that the panchromatic image
is a linear combination of the different bands. Looking at
the spectral response of the sensors of the Quickbird satellite
system, this assumption does not seem to be generally true (
[14], Fig. 1). A false linear combination assumption can lead
to spectral distortion and therefore damage the spectral infor-
mation of the original multispectral image. That is the reason
why we propose a variational method that does not depend on
this assumption. Another advantage of avoiding such a linear
combination term is that our method can be extended to an
arbitrary number of bands and is not restricted to those whose
spectral response is covered by the panchromatic image.

The VWP energy functional consists of four parts and
is specifically designed to sharpen images while preserving
spectral quality. In the following we describe each term of our
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energy functional separately. We will refer to the panchromatic
image asP : Ω → R, whereΩ ⊂ R

2 is the image domain.
Mi are the low resolution multispectral image andui are the
desired high resolution multispectral bands.

A. Geometry matching term

The first variational pan-sharpening method was proposed
by Ballester et. al. in 2006 [9]. Their idea for introducing the
geometry of the panchromatic image was to align all level lines
of the high resolution panchromatic and each multispectral
band. The main assumption is that the geometric information
of an image is contained in its level sets, independent of their
actual level. The level sets of an image can be represented
by the vector fieldθ consisting of all unit normal vectors of
those level sets. This vector field can be calculated almost
everywhere under certain general assumptions. In practice
the vector field is implemented asθ(x) = ∇P (x)

|∇P (x)|ǫ
where

|∇P |ǫ =
√

(DxP )2 + (DyP )2 + ǫ2 is a regularization to
avoid division by zero. The panchromatic image P then
satisfiesθ · ∇P = |∇P |. To ensure that each multispectral
band has the same level sets as the panchromatic image, they
align the normal vectors of the level sets. Therefore every band
of the restored image should satisfy|∇un|−θ ·∇un = 0. The
integral over the sum of these terms is added to the energy
functional and integration by parts is applied to the second
part of the integral. The total energy functional minimizedby
the P+XS model is

E(un) =

4
∑

n=1

γn

∫

Ω

(|∇un| + div(θ) · un)dx

+λ

∫

ω

(

4
∑

n=1

αnun − P )2dx

+µ

4
∑

n=1

∫

Ω

ΠS((kn ∗ un) −Mn)2dx, (1)

wherekn is a convolution kernel,ΠS a Dirac comb andγn,
λ, αn andµ parameter to weight the different terms.

Unlike the original P+XS model, we want to be able to
weight both parts of the geometry matching term separately
by introducing parameterγ and η. This leads to the energy
term

Eg =

N
∑

n=1

[γ

∫

Ω

|∇un| dx+ η

∫

Ω

div(θ) · un dx]. (2)

This term does an excellent job enforcing spatial quality.
Notice that the first part of this term is TV regularization [12]
for each band. Furthermore, the idea of aligning the gradient
vectors of an image with a smooth unit normal vector field
was also proposed by [15] and lead to iterative regularization
using the Bregman distance [16].

B. Wavelet matching term

The combination of wavelets and variational methods has
recently been applied to many image processing tasks [17],
[18], [19]. To match the colors of the low resolution multi-
spectral image with sharper edges, we do a two level wavelet

decomposition of the panchromatic image and each multispec-
tral band. Then the high level wavelet coefficients are matched
to the corresponding coefficients of the panchromatic image,
while the low level approximation coefficient are matched to
the low resolution multispectral band. Figure 1 illustrates the
choice of the matching wavelet coefficients.

Fig. 1. Matching wavelet coefficients for a discrete wavelettransform

This choice of wavelet coefficients is well known in the
literature and the same rule is used for wavelet pan-sharpening,
e.g. in [6]. Many author have pointed out that the stationary
(redundant) wavelet transform gives superior fusion results in
comparison to the discrete wavelet transform ( [20], [14], [21],
[22]. The drawback of using stationary wavelets is the slower
speed of the transform and the large increase in data.

To formalize this idea in a mathematical context for our
energy functional we use the following notation: For a one
dimensional wavelet transform, letφ be a scaling function and
ψ the corresponding wavelet generating a wavelet orthonormal
basis ofL2(R). We define the waveletsψ1(x) = ψ(x1)φ(x2),
ψ2(x) = φ(x1)ψ(x2), ψ3(x) = ψ(x1)ψ(x2) and denote for
1 ≤ k ≤ 3, j ∈ Z andn = (n1, n2) ∈ Z2

ψk
j,n(x) =

1

2j
ψk(

x1 − 2jn1

2j
,
x2 − 2jn2

2j
). (3)

Further we define a two dimensional scaling function by

φ2
j,n(x) =

1

2j
φ(
x1 − 2jn1

2j
)φ(

x2 − 2jn2

2j
). (4)

Then the approximation coefficients of a two dimensional
function are give by the scalar product withφ2 and the 3
detail coefficients (which can be seen as horizontal, vertical
and diagonal details) are given by the scalar product with
ψk, k ∈ {1, 2, 3}. We define the approximation matching
coefficients for band i as

ai
j [n] =<↑Mi, φ

2
j,n >, (5)

where↑ Mi denotes upsampling of the low resolution multi-
spectral band. In our experiments we used bilinear interpola-
tion. The matching detail coefficients are taken from the scalar
product with the panchromatic image and are equal for all
different bands:

d{k,j}[n] =< P,ψk
j,n >, for 1 ≤ k ≤ 3. (6)

If we denote the desired approximation coefficients for bandi
by αi

j [n] and the desired detail coefficients byβi
{k,j}[n] then
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we add the following term to our energy functional:

Ew =
∑

n

c0(a
i
L[n] − αi

L[n])2φ2
j,n (7)

+
∑

n

L
∑

j=1

3
∑

k=1

cj(d{k,j}[n] − βi
{k,j}[n])2ψk

j,n,

where c0 is the parameter for the approximation coefficient
matching,cj , 1 ≤ j ≤ L are the parameter for the different
level of detail coefficient matching and L is the level of
decomposition. In our experiments we used L=2. Notice that
we assumed our continuous representations of the images are
elements ofV 2

0 = span(φ2
0,n) since this holds in practice

for the discrete formulation anyways. Forc0 = c1 = c2 this
term would become a least squares match to a wavelet fused
image. In our variational context we choose these parameter
according to the type of image we would like to produce. For
high spatial quality we especially want to introduce the edge
information of the panchromatic image and therefore increase
c1 and c2. Vice-versa we would choose larger values forc0
for higher spectral quality.

C. Color preserving term

Using just the first two terms (2) and (8) gives very good
spatial results, but we also want to enforce spectral quality. To
preserve the spectral information within each band we would
like to preserve the colors of the resized multispectral image
at those parts of the image that have no edges or texture. We
add the following term to our energy functional:

Ec = ν

N
∑

i=1

∫

Ω−Γ

(ui− ↑Mi)
2 dx. (8)

Γ denotes the set of edges and texture in the panchromatic
image which can be determined by any appropriate edge
detector. In our experiments we calculatedΓ = exp(− d

|∇P |2 )
with a suitable constant d. This edge detector has been used
successfully in many image processing applications such as
the Perona-Malik model [23].

D. Spectral correlation preserving term

So far we constrain the colors within each band, but none of
the terms couples the different bands. As mentioned earlier,
a single pixel’s spectral signature can be used for material
classification, if the number of bands is high enough. In this
case it is crucial to preserve the frequency information from
the original low resolution multispectral image. To achieve
this, we propose that every possible ratio of two different
spectral bands of our pan-sharpened high resolution image
should equal the ratio of the same bands of the original
multispectral image. We would like to obtain at every pixel
ui

uj
= ↑Mi

↑Mj
⇒ ui∗ ↑ Mj − uj∗ ↑ Mi = 0, where↑ denotes

upsampling to the high resolution image size. Therefore, we
add the sum of the squares of the correspondingL2 norms to
our energy functional:

Es = µ

N
∑

i,j=1,i<j

∫

Ω

(ui· ↑Mj − uj· ↑Mi)
2 dx. (9)

Another way of looking at this term is that it minimizes the
spectral angle between each pixel frequency vector in the low
resolution and in the sharpened multispectral image. For an
arbitrary but fixed pixel let~a be the frequency vector in the low
resolution and~b the frequency vector in the corresponding high
resolution image. The minimizer of the above energy term is
a(i)·b(j)−a(j)·b(i) = 0 ∀i, j. This can be rewritten asa(i) =
a(j)
b(j) ·b(i) = 0 ∀i, j which proves that~a||~b. This implies that the

spectral anglearccos( <~a,~b>

||~a||·||~b||
) is zero. The spectral angle is

widely used to compare spectral information. Besides the well
known spectral quality metric SAM [24] the spectral angle is
also used in hyperspectral imaging for material comparison
and classification [25].

The fitting terms described in C and D are new whereasEg

is a simple modification of the P+XS method andEw puts the
ideas of wavelet fusion similar to [6] with the ideas of [20] in
a variational setting. The total energy functional can thenbe
written as

E(u) = Ew + Eg + Ec + Es. (10)

This energy functional contains two different types of terms:
three terms in the spatial domain and one matching term in
the wavelet domain. Any minimization method will have to
alternate between the wavelet and the spatial domain each it-
eration. This will slow down the whole algorithm significantly,
especially for stationary wavelets. This is the reason why we
propose an alternate energy, which can be minimized entirely
in the spatial domain.

E. The Alternate Energy

The variational wavelet pan-sharpening method on the al-
ternate energy (AVWP) is based on two ideas. First, if we
choose our wavelet matching coefficientsck equal for each
level k, then the whole term is just a matching to a wavelet
fused image. Second, away from the edges the matching to
the low resolution multispectral image gives us the best color
values we can get for our image. Therefore, we combine
terms B and C to one matching term that matches the low
resolution image away from edges and the wavelet fused image
on the edges. Unlike variational segmentation algorithms like
Mumford-Shah [26] the edgeset does not have to be evolved,
since it is give by the panchromatic image. Again, the edge
detection method we used for our algorithm isexp(− d

|∇P |2 ).
Denoting the wavelet fused image for theqth band withWq

and the new matching image withZq we have

Zq = exp(−
d

|∇P |2
) ·Wq + (1 − exp(−

d

|∇P |2
))· ↑Mq. (11)

The termsIc andIw in our original energy are then replaced
by

Ea = ν

N
∑

n=1

∫

Ω

(un − Zn)2 dx. (12)

AVWP minimizes the energy:

E(u) = Eg + Es + Ea. (13)

This energy can be minimized in the spatial domain only
and will therefore allow for much faster computation.
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III. N UMERICAL METHODS

For each of the two energy functionals (10) and (13)
we implemented an explicit forward Euler gradient descend
method and an alternating directions implicit (ADI) method
[27], [28]. For the sake of simplicity, we only discuss the
numerical details for the methods on our original energy
functional. The implementations for the alternate energy are
very similar.

One can show that minimizing the above energy functional
(10) is equivalent to solving a partial differential equation
(PDE), called the Euler-Langrange equation. We therefore
calculate the first variations of our energy term. For theqth

band we get

δEg

δuq

= −(γdiv(
∇uq

|∇uq|ǫ
) − ηdiv(θ)) (14)

δEs

δuq

= 2µ

N
∑

j=1,j 6=q

(uq· ↑Mj − uj · ↑Mq) ↑Mj (15)

δEc

δuq

= 2νχΩ−Γ(uq− ↑Mq) (16)

δEw

δuq

= −2
∑

n

c0(a
q
L[n] − α

q
L[n])φ2

j,n (17)

− 2
∑

n

L
∑

j

3
∑

k=1

cj(d{k,j}[n] − β
q

{k,j}[n])ψk
j,n,

whereχΩ−Γ denotes the characteristic function ofΩ − Γ or a
similar smooth edgeset indicator likeexp(− d

|∇P |2 ). The first
variation of the energy functional must be zero in the minimum
of the functional:

δE

δuq

= 0. (18)

The corresponding minimizing argument is the pan-sharpened
image and the solution we are looking for. To compute this
solution we introduce an artificial time variablet, replace the
zero on the right hand side by− d

dt
uq and solve the resulting

equation to steady state. This is called gradient descent orthe
method of steepest descent. In the following we present two
different numerical schemes to perform the gradient descent.

A. Explicit Euler method

The time derivatived
dt
uq is discretized explicitly. We then

iteratively compute the solution by

ut+1
q = ut

q + δt ∗ [(γdiv(
∇ut

q

|∇ut
q|ǫ

) − ηdiv(θ))

− 2µ

N
∑

j=1,j 6=q

(ut
q· ↑Mj − ut

j · ↑Mq) ↑Mj

− 2νχΩ−Γ(ut
q− ↑Mq)

+ 2c0(a
q
L[n] − α

q, t
L [n])φ2

j,n

+ 2

L
∑

j

3
∑

k=1

cj(d{k,j}[n] − β
q, t

{k,j}[n])ψk
j,n]. (19)

We consider the iteration to have reached steady state when
the relative change in energy between two iterates is less than
0.05%:

|E(ut+1) − E(ut)|

E(ut)
· 100 ≤ 0.05. (20)

For the wavelet matching term we compute a wavelet de-
composition of our current iteration, calculate2δt[c0(a

q
L[n]−

α
q, t
L [n])+

∑L
j

∑3
k=1 cj(d{k,j}[n]−β

q, t

{k,j}[n])] and transform
the result back to the spatial domain.

B. ADI method

For faster convergence of the numerical method we choose
a different time discretization. First of all we split the wavelet
matching term from the spatial terms by doing an alternating
minimization. The minimization of the wavelet part is easy
since we can directly compute the solution of the problem
and just take one timestep towards it:

α
q, t+1
L [n] = α

q, t
L [n]

+ 2 · δt · c0(a
q
L[n] − α

q, t
L [n]), (21)

β
q, t+1
{k,j} [n] = β

q, t

{k,j}[n]

+ 2 · δt · cj(d{k,j}[n] − β
q, t

{k,j}[n]). (22)

For the minimization of the remaining spatial part, we apply
an alternating directions minimization (ADI) method. This
method is semi-implicit and requires two steps. In the first step
we have to solve a linear equation for each row in the second
for each column of the image. A more detailed description of
the ADI scheme can be found in the appendix.

The numerical costs for calculating one timestep of the
ADI scheme are much higher than for the explicit method,
but the timestep for the ADI method can be chosen larger
and the convergence properties are much better. In the next
section, we show that the ADI method is much faster than the
explicit timestepping scheme for both the original and alternate
energies.

IV. N UMERICAL RESULTS

We implemented the ADI and implicit method as described
above for AVWP and VWP in Matlab. Matlab’s ’sym4’ sta-
tionary wavelet transform was used in a second level wavelet
decomposition.

We ran all methods on an Intel Duo Core processor with
2GHz and 3GB memory. The iteration is considered to have
converged when equation 20 holds, i.e. the change in energy
between two iterates is less than 0.05%. To compare the
advantage in runtime of the ADI and the explicit method we
took a square subsection of a Quickbird image with side length
x for x ∈ {0, 100, 200, ..., 600} and ran the two minimization
schemes. Figure (2) shows the results.

The ADI method is much faster for AVWP as well as for
VWP. For large images, ADI on the original energy is even
faster than the explicit scheme for the AVWP.

A great advantage of VWP and variational methods in
general is their flexibility. PCA and IHS generally require no
parameters and the only choice in wavelet fusion would be the



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, SUBMITTED DECEMBER 19, 2008 5

Fig. 2. Comparison of runtime

level of decomposition. In a variational method, the parameters
have a huge influence on the result and thereby one can choose
which term in the energy functional is more important for a
certain purpose. Putting more weight on spectral terms will
especially enforce spectral quality. On the other hand, using
exactly the same model one can also focus on spatial quality
and get results of spatial quality similar to IHS. Figure IV
shows three different fusion results of the VWP method for
different choices of parameter. This gives images ranging from
very high spectral but low spatial quality to images with very
high spatial but low spectral quality. Generally, there is a
trade-off between spectral and spatial quality, but VWP has
the flexibility to give almost any type of desired combination
of spectral and spatial quality by adjusting the parameters.

Our standard choice of parameter for images with high
spectral quality is given in table I. We will refer to this as

TABLE I
SPECTRAL QUALITY METRICS FOR IMAGEIV

γn ν µ ǫ η c0 c1 c2

VWP 0.5 5 100 10
(−6) 0.5 4 2 2

AVWP 0.5 5 100 10
(−6) 0.5 - - -

parameter choice (1). For images with high spatial quality we
choose the parameters shown in table II. These values will be

TABLE II
SPECTRAL QUALITY METRICS FOR IMAGEIV

γn ν µ ǫ η c0 c1 c2

VWP 0.7 4 100 10
(−3) 1.4 0.5 4 4

AVWP 0.7 4 100 10
(−3) 1.4 - - -

referred to as parameter choice (2).
Figure IV shows the result of the classical IHS, the sta-

tionary wavelet transform and the VWP method for these two
different choices of parameter.

One can see that the spatial quality of the IHS fused images
is very high. All objects have very sharp edges and the whole
image seems to be very close to the panchromatic image in
terms of spatial quality. However, one can also see that the
colors of the IHS fused images slightly changed in comparison

to the original image (e.g. the color of the trees in figure IV).
Color distortion means that the frequency information stored
in the multispectral image is lost or at least greatly damaged.
The VWP image with high spatial quality seems to be closer
to the original multispectral image in terms of colors and also
has spatial quality comparable if not better than IHS. The other
VWP result clearly looks blurry in comparison and is similar
to the wavelet fused image. Unfortunately, spectral quality
is much harder to see than spatial quality. Large spectral
distortion like in the IHS image can be seen in the change
of color, but when the spectral distortion is a little smaller,
it is almost undetectable visually. Therefore, we take several
quality metrics into account to help us with the evaluation.

In [29] the following seven spectral quality metrics were
implemented to judge the performance of pan-sharpening
methods:

• The idea of therelative dimensionless global error in
synthesis (ERGAS)is to take the average mean square
error normalized by the mean of each band [30].

• The Spectral Angle Mapper (SAM) calculates the av-
erage change in angle of all frequency vectors [24].

• TheSpectral Information Divergence (SID)views each
pixel spectrum as a random variable and then measures
the discrepancy of probabilistic behaviors between spec-
tra [31].

• The Universal Image Quality Index (Q-average)mod-
els distortion as a combination of three different factors:
loss of correlation, luminance distortion, and contrast
distortion. The best value for Q-average is 1 [32].

• TheRelative Average Spectral Error (RASE)calculates
the mean error of all bands per radiance of the image [33].

• Mean Change in Correlation Coefficients (MCCC)
is the average of the absolute values of the change in
correlation coefficients between band i and band j∀i, j
before and after the sharpening process [34].

• Root mean squared error (RMSE) is the average
squared difference between the original multispectral and
pan-sharpened image.

The results of the evaluation of all quality metrics for
Intensity-Hue-Saturation Fusion (IHS), Principal Component
Analysis (PCA), discrete wavelet fusion (DWave), stationary
wavelet fusion (SWave), P+XS image fusion, VWP and AVWP
for our testimage IV are shown in table III.

To get more meaningful and less image dependent quality
metric values we ran all methods on five different images
and evaluated each fusion result with the quality metrics. The
average of all five images of all method is shown in table IV.
The best metric quality results are shown in bold print.

To a large extent the quality metrics confirm our visual
analysis. Clearly there is a trade-off between spatial and
spectral quality. The VWP fusion result where we focused
on spatial quality (AVWP+) has low quality metric values but
therefore provides visual quality equal or better than the IHS
fused image. If we look at fig. IV the colors of the AVWP+

seem to be closer to the original low resolution image than the
IHS image. In the IHS image the colors of the trees appear
in a lighter green than the low resolution image shows. VWP
seems to preserve these colors much better.
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Fig. 3. Effect of the choice of parameter in VWP; (a), (b): Copyright DigitalGlobe, NextView liscense, 2003; image (d): parameter choice (1), image (f):
parameter choice (2), image (e): compromise between (d) and(f) for spatial and spectral quality

Fig. 4. Results of different pan-sharpening methods; (a), (b): Copyright DigitalGlobe, NextView liscense, 2003; image (e): parameter choice (2), image (f):
parameter choice (1)
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TABLE III
SPECTRAL QUALITY METRICS FOR IMAGEIV

MCCC∗ ERGAS Qave RASE RMSE SAM SID∗∗

IHS 6.68 3.41 0.992 13.0 53.3 2.02 21.3
PCA 16.5 4.96 0.951 19.6 80.2 4.40 18.3
D. Wav. 3.04 2.49 0.977 10.00 41.0 2.68 17.3
S. Wav. 1.67 1.92 0.991 7.75 31.8 1.39 1.82
P+XS 1.94 2.46 0.986 9.45 38.7 1.54 3.42
VWP 0.998 1.40 0.997 5.63 23.1 0.366 0.401
AVWP 1.12 1.44 0.997 5.82 23.9 0.325 0.336
AVWP+ 6.10 4.342 0.981 13.84 56.74 0.465 4.13

∗: given in 10(−2) ∗∗: given in 10(−3) +: good spatial quality

TABLE IV
AVERAGE SPECTRAL QUALITY METRICS FOR5 IMAGES

MCCC∗ ERGAS Qave RASE RMSE SAM SID∗∗

IHS 5.19 3.31 0.994 12.6 39.3 1.56 7.51
PCA 9.37 3.95 0.968 15.4 49.8 2.99 13.0
D. Wav. 3.73 2.43 0.983 9.66 30.5 2.06 8.87
S. Wav. 2.37 1.99 0.993 7.88 24.5 1.10 1.97
P+XS 2.54 2.92 0.983 10.6 29.9 1.96 5.51
VWP 1.40 1.45 0.997 5.82 18.1 0.464 0.737
AVWP 1.80 1.55 0.997 6.22 19.4 0.338 0.315
AVWP+ 6.80 3.26 0.985 13.10 42.5 0.488 12.2

∗: given in 10(−2) ∗∗: given in 10(−3) +: good spatial quality

The stationary wavelet fusion and P+XS give good quality
metric values, but their visual spatial quality is not as good as
AVWP+. Their fusion results look more blurry.

The different VWP images in fig. IV show the range of
results we can produce. While one of them is providing spatial
quality equal if not better than the IHS method and seemed to
have the colors preserved much better, the other VWP result
shows how much spectral quality we can preserve. The middle
image is a compromise between spatial and spectral quality:
It has sharper edges and more texture than the high spectral
quality VWP and more spectral information than the high
spatial quality VWP. For the high spectral quality VWP, we
obtain the best quality metric values for all 7 spectral quality
metrics. Especially the SAM quality metric which we directly
wanted to minimize in our energy approach is more than 3
times better in AVWP than in any other method. Since SAM
is (as mentioned earlier) also used for material classification
in higher dimensional imagery this choice of parameter seems
to be very well suited for all applications, where the spectrum
of each pixel is important. Even in the the high spatial quality
AVWP+ image the SAM quality metric is still more than
factor of 2 times better than stationary wavelet fusion which
is the second best method in this category.

In summary we can say that VWP can produce a very wide
range of good fusion results. VWP can produce images with
spatial quality equal to IHS while still having more realistic
colors or spectral qualities better than any other fusion method.
There is definitely a trade-off between spectral and spatial
quality, but VWP has the flexibility to give almost any type of
desired combination of spectral and spatial quality by adjusting
the parameters.

V. CONCLUSION

We proposed a variational method based on the ideas of
P+XS and wavelet image fusion for the task of pan-sharpening
multispectral images. The model incorporates the alignment
of all unit normal vectors of the level sets of each band with
the panchromatic image. It includes color and edge match-
ing in the wavelet domain and further preserves frequency
information by keeping the ratio of all bands constant and by
additionally matching the colors away from edges and texture.

VWP can produce a wide range of images where the
user can decide about the importance of spectral and spatial
quality by adjusting the parameter. High spatial and high
spectral quality images were shown. We implemented eight
different quality metrics to evaluate the performance of our
proposed method in comparison to the most common other
pan-sharpening methods. Our method seems to be the best
choice if one wants to preserve the spectral information from
the multispectral image.

Another advantage of our method in comparison to other
methods is that it can be extended to an arbitrary number
of spectral bands. If a panchromatic image was available we
could sharpen hyperspectral images with 100-200 bands. VWP
is particularly well-suited for this situation because it explicitly
preserves spectral information.

For future research one could look into other numerical
schemes for faster minimization, such as graph cuts or operator
splitting methods. Technical information about the satellite
sensors could be incorporated into the variational framework.
Linked to this would be the question about the fusion of other
totally different types of sensor data such as SAR images or
MRI data for medical imagery.
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APPENDIX

ALTERNATING DIRECTIONS IMPLICIT METHOD

The remaining spatial part of the gradient descent after the
splitting is the following:

d

dt
uq = (γdiv(

∇uq

|∇uq|ǫ
) − ηdiv(θ))

− 2µ

N
∑

j=1,j 6=q

(uq· ↑Mj − uj · ↑Mq) ↑Mj

− 2νχΩ−Γ(uq− ↑Mq)

+ 2
∑

n

c0(a
q
L[n] − α

q
L[n])φ2

j,n. (23)

We discretize the derivatives in the numerator of the TV term
implicitly in the x-direction and explicitly in the y-direction
for half of a timestep and vice-versa for another half of a
timestep. We get a linear equation for each row of our image
for the implicit x-discretization and for each column for the
implicit y-discretization both with tridiagonal matrices. For the
step implicit in x direction we get:

ut+1
q = ut

q + δt ∗ [Dx(Ct ·Dxu
t+1
q ) +Dy(Ct ·Dyu

t
q)

− 2µ

N
∑

j=1,j 6=q

(ut+1
q · ↑Mj − ut

j· ↑Mq) ↑Mj

− 2νχΩ−Γ(ut+1
q − ↑Mq) − η ∗ div(θ)]. (24)

With the notationCt = γ
|∇ut

q|ǫ
. We put all terms that include

ut+1 on the left-hand side and all others on the right. Using
backward differences for the firstDx and forward differences
for the secondDx the following equation holds at every pixel:

[Dx(Ct ·Dxu
t+1
q )]i,j = Ct

i,ju
t+1
q; i,j+1

− (Ct
i,j + Ct

i,j−1)u
t+1
q; i,j

+ Ct
i,j−1u

t+1
q; i,j−1. (25)

We can now solve a linear equation for each row of our
image. For an nxm image we define the tridiagonal matrixAi

by

Ai =





















bi1 ci1 0 0 ... 0
ai
2 bi2 ci2 0 ... 0
. . . . . .

. . . . . .

. . . . . .

0 ... 0 ai
m−1 bim−1 cim−1

0 ... 0 0 ai
m bim





















, (26)

with

ai
1 = 0, (27)

ai
j = − δt C(i, j − 1),

cim = 0,

cij = − δt C(i, j + 1),

bij = 1 + 2δtνχΩ−Γ + 2µδt

N
∑

k=1,k 6=q

(Mk(i, j))2 − cij − ai
j .

It is easy to see that each matrixAi is diagonal dominant,
which allows us to solve each linear equation very efficiently

with the Thomas (TDMA) algorithm [35]. The procedure for
the step taken implicitly in the y-direction is similar. Here we
solve a linear equation for each column of the image. For both
steps we assumed zero Neumann boundary conditions for our
image.
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