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Abstract

Bregman methods introduced in [35] to image processing are demonstrated to be an ef-
ficient optimization method for solving sparse reconstruction with convex functionals, such
as l1 and TV norm [45, 28]. In particular, the efficiency of this method relies on the per-
formance of inner solvers for the resulting subproblems. In this paper, we propose a general
algorithm framework for inverse problems regularization with a single forward-backward op-
erator splitting step [12], used to solve the subproblems of the Bregman iteration. We prove
that the proposed algorithm, namely Bregmanized Operator splitting (BOS), converges with-
out fully solving the subproblems. Furthermore, we apply the BOS algorithm and a precon-
ditioned one for solving inverse problems with nonlocal functionals. Our numerical results
on deconvolution and compressive sensing illustrate the efficiency of nonlocal total variation
regularization under the proposed algorithm framework, compared to other regularization
techniques such as the standard total variation method and the wavelet-based regularization
method. For example, the sparse reconstruction of Barbara using nonlocal TV provides a
PSNR of 20.37, whereas standard TV method and wavelet-based method give respectively a
PSNR of 16.41 and 16.21. This shows that the nonlocal TV regularization itself can sparsify
textured images and the Bregman iteration method is an efficient method for sparse signal
recovery.

1 Introduction
We consider a general inverse problem formulation for image restoration. The objective is to
find the unknown true image u ∈ Rn from an observed image (or measurements) f ∈ Rm

defined by the forward model:
f = Au + ε,

where ε is a white Gaussian noise with variance σ2, and A is a m× n linear operator, typically
a convolution operator in the deconvolution problem or a sub-sampling measurement operator
in the compressive sensing problem.
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Since inverse problems are typically ill posed, it is standard to use a regularization technique
to make them well-posed. Regularization methods assume some prior information about the un-
known function u such as sparsity, smoothness, or small total variation. A well-known example
of regularized inverse problems is the Tikhonov regularization model, which consists of solving
the following optimization problem:

min
u∈Rn

(µ

2
||u||2 +

1
2
||Au− f ||2

)
,

where µ > 0 is a scale parameter which balances the trade-off between the regularity of the
restored image u and the fidelity to the observed image f , and finally || · || denotes the l2 norm.
The notation || · || for the l2 norm will be used throughout the paper.

Other examples of regularized inverse problems are image denoising problems, where A
is considered as the identity or an embedding operator. A successful edge preserving image
denoising model is the ROF model proposed in [40]. This model uses the TV regularization
functional since images are assumed to have bounded variation, which is the case for piece-
wise constant images. The generalized ROF model is defined by the following unconstrained
minimization problem [5]:

min
u∈Rn

(
µ|∇u|1 +

1
2
||Au− f ||2

)
,

where ∇u is the weak gradient of u, | · |1 denotes the l1 norm, and |∇u|1 is the total variation
of u.

Regularization based on sparsity properties with respect to a specified basis, such as frames
or dictionaries, has become popular recently. Suppose that an image is formulated as a column
vector (signal) of size n, D ∈ Rm×n is a given frame or a dictionary matrix, there are two
different formulations for solving the problem: analysis based or synthesis based[21]. The
analysis based model is formulated as

u∗ = arg min
u

(
µ|D∗u|1 +

1
2
||Au− f ||2

)
, (1)

where D∗ denotes the conjugate transpose matrix. On the other side, the synthesis based method
consists in solving the problem

α∗ = arg min
α

(
µ

∑
m

|α|1 +
1
2
‖A(Dα)− f‖2

)
, (2)

and the solution is u∗ = Dα∗. If D is an orthogonal basis, then the two models are equivalent.
The analysis based model (1) is largely used for inverse problems, such as the wavelet-vaguelette
decomposition model defined in [13]. Usually, a scale-dependent shrinkage is employed to esti-
mate the image wavelet coefficients. The synthesis based model has been developing in the do-
main of compressive sensing problems [9]. Several efficient algorithms, such as the Iterative Soft
Shrinkage proposed (IST)[16], l1 ls[41] Gradient Projection for Sparse Reconstruction (GPSR)
[23], Fixed-Point Continuation Method(FPC) [29], and linearized Bregman[36, 6, 7, 44], are
proposed for solving this formulation. Compressive sensing, also known as compressed sam-
pling, originates from approximation theory and has recently received a lot of interest in different
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research areas. In a probabilistic setting, compressive sensing argues that if signals can be ex-
pressed with a small support in a proper basis, then they can be reconstructed from a number
of measurements significantly below the Nyquist/Shannon limit by using convex optimization.
Compressive sensing relies on two important principles to reconstruct signals: sparsity, which
restricts the signal of interest, and incoherence, which is usually revealed by irregularly sampled
measurements. The crucial observation is that objects having a sparse representation in a certain
basis must be spread out in the sensing domain, such as Fourier or Gaussian measurements.
Therefore, many efforts are devoted to find the best basis for natural signals/images to fit the
theory of compressive sensing, such as curvelets[8], contourlets[17] and trained dictionaries[1].
The advantage of wavelet methods is that they can efficiently represent classes of signals con-
taining singularities. However, results via shrinkage in the wavelet domain are usually unsat-
isfactory with amplified noise and produce undesirable artifacts. Furthermore, it is difficult to
choose a proper basis for different images.

In this paper, we have two main contributions. First, we propose a general algorithm frame-
work for an equality constrained convex optimization formulation

min
u

J(u) s.t. Au = f. (3)

where J is a general convex functional. This problem (4) is shown to cover a wide range of
signal and image processing task for various choices of the convex functionals J and A, includ-
ing l1 compressive sensing[45] and image restoration by total variation [35]. The algorithms
proposed in this paper are based on the Bregman iteration introduced in [35] and the proximal
forward backward operator splitting method [24, 12, 29]. Note that if there is noise present
in the measurements, we can use a discrepancy stopping criterion as in the original Bregman
iteration[35], that is ‖Auk − f‖ ≤ σ with the same algorithm. The principle of our algorithms
is to maximally decouple the minimization functionals. More specially, the overall algorithms
consist of a two forward (explicit) gradient steps (one is the Bregman iteration step) and an im-
plicit step equivalent to the ROF model [40], which we can often solve efficiently. The proposed
algorithms can be also interpreted as inexact Uzawa methods used for linear saddle point prob-
lems [47, 26]. However, the convergence of our algorithm does not seem to be directly implied
by the classical convergence analysis. Therefore we will present a proof of the convergence
in this paper. The second contribution of this paper is investigating the application of nonlo-
cal total variation for compressive sensing and deconvolution. Our experiments show that the
proposed nonlocal regularization model can recover almost all the details of a textured image
without explicitly choosing a basis compared to above dictionary based sparse representation
algorithms. Our investigation demonstrates that the nonlocal TV regularization itself sparsifies
textured image and the Bregman iteration is an efficient method for sparse recovery.

The paper is organized as follows. In Section 2, we briefly review some related optimization
techniques: Bregman iteration, operator splitting and linearized Bregman. We then present the
general algorithm that we call Bregmanized operator splitting (BOS) with convergence analysis
for solving the problem (3). In Section 4 we present the nonlocal regularization and the appli-
cation of proposed algorithm and a preconditioned one. An updating strategy for the weight
function in the nonlocal TV term is discussed. Finally, we present the numerical results for
deconvolution and compressive sensing reconstruction.
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2 Related work

2.1 Bregman Iteration
In this section, we introduce the Bregman iteration method and some notations. We consider a
general minimization problem as:

min
u

J(u) s.t. H(u) = 0, (4)

where J and H are both convex functionals defined over Rn → R+. It is well-known that
this problem is difficult to be solved numerically when J is non-differentiable. An efficient
method to solve this constrained minimization problem is to use the Bregman iteration, initially
introduced to imaging in [35] to improve the ROF denoising models [40].

The Bregman iteration scheme is based on the Bregman distance. The Bregman distance of
a convex functional J(·) between points u and v is defined as:

Dp
J(u, v) = J(u)− J(v)− 〈p, u− v〉, (5)

where p ∈ ∂J is a subgradient of J at the point v. Bregman distance is not a distance in the
usual sense because it is generally not symmetric. However, it measures the closeness of two
points since Dp

J(u, v) ≥ 0 for any u and v, and Dp
J (u, v) ≥ Dp

J(w, v) for all points w on
the line segment connecting u and v. Using the Bregman distance (5), the original constrained
minimization problem (4) can be solved by the following iterative scheme:

{
uk+1 = minu

(
µDpk

J (u, uk) + H(u)
)

pk+1 = pk − ∂H(uk+1)

where µ > 0 and ∂H(uk+1) denotes a subgradient of H at uk+1. To solve the constrained
minimization problem: (3), we choose H(u) = 1

2 ||Au−f ||2 and we obtain a two-step Bregman
iterative scheme [35]:

{
uk+1 = minu

(
µJ(u) + 1

2 ||Au− fk||2
)

fk+1 = fk + f −Auk+1
(6)

It is shown in [35] that the sequence uk weakly converges to a solution of (3), and the residual
||Auk−f || of the sequence generated by (6) converges to zero monotonically. Bregman iteration
was successfully used in sparse reconstruction problems recently due to its speed, simplicity,
efficiency and stability, see for example [30, 35, 14, 28, 45].

2.2 Forward-backward Operator Splitting
Operator splitting methods have been extensively studied in the optimization community, e.g.
[24, 43, 12, 19, 26]. They aim to minimize the sum of two convex functionals:

min
u

(
µJ(u) + H(u

)
, (7)
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where µ > 0. In [12], Combettes and Wajs introduced the forward-backward technique based
on the proximal operator for general signal recovery tasks. The proximal operator of a convex
functional J of a function v , which was originally introduced by Moreau in [34], is defined as :

ProxJ(v) := min
u

(
J(u) +

1
2
||u− v||2

)
.

By classical arguments of convex analysis, the solution of (7) satisfies the condition:

0 ∈ µ∂J(u) + ∂H(u)

For any positive number δ, we have:

0 ∈ (u + δµ∂J(u))− (u− δ∂H(u)).

This leads to a forward and backward splitting algorithm:

uk+1 = ProxδµJ (uk − δ∂H(uk)), (8)

where the proximal operator ProxδµJ (v) is defined as:

arg min
u

(
µJ(u) +

1
2δ
||u− v||2

)
. (9)

Also in [12], a general convergence is established for the generic problem. More specially,
in the case of H(u) = 1

2 ||Au − f ||2, the algorithm converges when 0 < δ < 2
‖AT A‖ . And the

solution of the minimization problem (7) can be simplified as the following two-step algorithm:
{

vk+1 = uk − δAT (Auk − f)
uk+1 = arg minu

(
µJ(u) + 1

2δ ||u− vk+1||2
) (10)

The main advantage of this algorithm is that the two functionals are decoupled. Furthermore,
the proximal minimization (9) is strictly convex, and then there exists a unique minimizer. In
practice, the proximal operator solution (9) has well known solutions for some models. For
example, when the regularization functional J is the l1 norm of u, i.e. J(u) = |u|1, then the
solution is obtained by a soft shrinkage operator [12, 29, 6] as follows:

u = shrink(v, µδ) = sign(v) max{|v| − µδ, 0}. (11)

When the regularization functional J is the TV norm of u, i.e. J(u) = |∇u|1, then the solution
can be determined e.g. by Chambolle’s projection method [10], the split Bregman method [28]
or by graph cuts in the anisotropic case[30, 15, 14, 27].

2.3 Linearized Bregman
The idea of the linearized Bregman iteration [14, 45] is to combine Bregman iteration and
operator splitting to solve the constrained problem (3) for l1 sparse reconstruction. Given
u0 = 0 = p0, the iterative algorithm of linearized Bregman is defined for k ≥ 0 as:

{
uk+1 = minu

(
µDpk

J (u, uk) + 1
2δ ||u− (uk − δAT (Auk − f))||2

)

pk+1 = pk − 1
δ (uk+1 − uk)−AT (Auk − f)
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where Dpk

J (u, uk) is the Bregman distance if u and uk with relative to pk defined in (5). This
minimization can be rewritten in a simpler formulation as follows:

{
vk+1 = vk − δAT (Auk − f)

uk+1 = arg min
(
µJ(u) +

1
2δ
||u− vk+1||2

) (12)

The difference between linearized Bregman and the operator splitting method (10) is in the
way of we update vk+1. They solve different problems. In fact, Cai et al. proved the following
propositions in [6]:

Proposition 1. If the sequence uk converges and pk is bounded, then the limit of uk is the
unique solution of

min
(
µJ(u) +

1
2δ
||u||2

)
s.t. Au = f. (13)

In the case of l1 sparse approximation, algorithm (12) can be written as follows:
{

vk+1 = vk − δAT (Auk − f)
uk+1 = shrink(vk+1, µδ).

As µ → ∞, the solution of (13) tends to the solution of (3); even better, it was proved in [44]
that, for µ large enough, the limit solution solves the original problem:

min |u|1 s.t. Au = f.

3 General Algorithm Framework

3.1 Bregmanized Operator Splitting (BOS)
In this section, we present the proposed algorithm. Our goal is to solve the general equality
constrained minimization problem (3) by the Bregman iteration and operator splitting introduced
in Section 2.1 and Section 2.2. First of all, the equality constraint in (3) is enforced with the
Bregman iteration process:

{
uk+1 = minu

(
µJ(u) + 1

2 ||Au− fk||2
)

fk+1 = fk + f −Auk+1
(14)

The first subproblem could be sometimes difficult and slow to solve directly, since it involves the
inverse of the operator A and the convex functional J . The forward-backward operator splitting
technique is used to solve the unconstrained subproblem in (14) as follows: for i ≥ 0, uk+1,0 =
uk, {

vk+1,i+1 = uk,i − δAT (Auk+1,i − fk)
uk+1,i+1 = minu

(
µJ(u) + 1

2δ ||u− vk+1,i+1||2
)

for a positive number 0 < δ <
2

||AT A|| . Ideally we need to run infinite inner iterations to

obtain a convergent solution uk+1 for the original subproblem. Nevertheless, the convergence
and error bound with arbitrary finite steps is unclear. Therefore, we propose to use only one
inner iteration, which leads to the algorithm I:
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Algorithm I (Bregmanized Operator Splitting):




vk+1 = uk − δAT (Auk − fk)
uk+1 = arg minu

(
µJ(u) + 1

2δ ||u− vk+1||2
)

fk+1 = fk + f −Auk+1

(15)

and it is equivalent to:
{

uk+1 = arg minu

(
µJ(u) + 1

2δ ||u− ((1− δAT A)uk + δAT fk)||2
)

fk+1 = fk + f −Auk+1
(16)

3.2 Connections with existing methods
The above algorithm can be interpreted as an inexact Uzawa method [47, 26] applied to the
augmented Lagrangian [39] of the original problem as follows:

L(u, p) = µJ(u) +
1
2
‖Au− f‖2 − (Au− f)T (p− f). (17)

where p is a Lagrange multiplier of the original problem (3). Note that we use a change of
variable for the Lagrange multiplier p to get the same formulation as the BOS algorithm. If we
apply an inexact Uzawa method [47] and Moreau-Yosida proximal point iteration [32] on this
formulation, we get the following algorithm:
{

step 1: uk+1 = minu

(
µJ(u) + 1

2 ||Au− f ||2 − 〈Au− f, pk − f〉+ ||u− uk||2D
)

step 2: pk+1 = pk − (Auk+1 − f)
(18)

where D is a positive-definite matrix. The sequence (uk, pk) generated by (18) provides us:
{

µsk+1 + (D + AT A)uk+1 = Duk + AT pk

pk+1 = pk − (Auk − f)

where sk ∈ ∂J(uk). When D = 1
δ − AT A and change the variable pk as fk, we get the BOS

algorithm defined in (38).
Most analysis for inexact Uzawa methods is available for linear saddle point problems with

strong convexity assumptions [47, 26]. Other available analysis based on the augmented La-
grangian methods [26, 39] is also different from ours due to the maximally decoupled structures.
Note that the presented algorithm is different from the split Bregman algorithm [28] in the man-
ner of splitting, for the latter can be recast as a Douglas-Rachford algorithm [18, 19, 42]. On
the other side, this algorithm can be generalized to a large range of convex minimization prob-
lems. A more detailed study of the BOS algorithm framework and theoretical connections with
proximal point algorithms, augmented Lagrangian methods will be presented in a forthcoming
paper.

3.3 Convergence Analysis
In this section, we prove the convergence of the proposed BOS algorithm. In the following, we
assume that the convex function J of (3) is closed, proper, semi-continuous and convex.
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Theorem 1. If 0 < δ < 1
‖AT A‖ , let the sequence (uk, pk) be generated by Algorithm I given in

(16). Then every accumulation point of uk is a solution of (3).

Proof: We first consider a Lagrangian formulation of the original constrained problem (3):

L(u, p) = µJ(u)− 〈Au− f, p− f〉 and Au = f.

Note that we use a change of variable for the Lagrangian multiplier p− f instead of p as above.
If we denote

s = − 1
µ

AT (f − p), (19)

then we can see s is a subgradient of J at u by the Lagrangian function. Therefore, the overall
optimality conditions are as follows:

{
µs + AT (f − p) = 0

Au− f = 0.
(20)

where u is an optimal solution and p is a Lagrangian multiplier respectively.
Start from f0 = 0, let (uk, fk) be the sequence (16) generated by Algorithm I, and as above

write sk+1 = − 1
µAT (f − fk+1), the sequences satisfy:

{
µsk+1 + 1

δ uk+1 = ( 1
δ −AT A)uk + AT fk

fk+1 = fk + f −Auk+1 . (21)

Let L = ( 1
δ − AT A), then L is positive definite since 0 < δ < 1

‖AT A‖ . By rewriting the above
sequence, we get:

{
µsk+1 + Luk+1 −AT fk+1 = Luk −AT f

fk+1 = fk + f −Auk+1 . (22)

On the other side, we can rewrite the sequences in terms of error as follows:

∆sk+1 = sk+1 − s,

∆fk+1 = fk+1 − p,

∆uk+1 = uk+1 − u.

Therefore the equations (22) is rearranged in terms of the error differences as:
{

µ(∆sk+1) + L(∆uk+1)−AT (∆fk+1) = L(∆uk)
∆fk+1 + A∆uk+1 = ∆fk .

Denoting ||v||2L := 〈Lv, v〉, we obtain

‖∆uk+1‖2L + ‖∆fk+1‖2 + ‖uk+1 − uk‖2L + ‖fk+1 − fk‖2 − ‖∆uk‖2L − ‖∆fk‖2
= 2〈L(uk+1 − uk),∆uk+1〉+ 2〈fk+1 − fk, ∆fk+1〉
= 2〈AT ∆fk+1,∆uk+1〉 − 2µ〈∆sk+1, ∆uk+1〉+ 2〈f −Auk+1, ∆fk+1〉
= −2µ〈∆sk+1, ∆uk+1〉. (23)
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Recall that since sk+1 is a subgradient of the convex functional J(u) at uk+1, we have

〈∆sk+1,∆uk+1〉 = 〈sk+1−s, uk+1−uk〉 = Ds
J (uk+1, u)+Dsk+1

J (u, uk+1) ≥ 0, ∀k. (24)

This yields the inequality

‖∆uk+1‖2L + ‖∆fk+1‖2 ≤ ‖∆u0‖2L + ‖∆f0‖2.

Since L is positive-definite, the sequence uk and fk are bounded and there exists a convergent
subsequence of (uk, fk). Secondly, by summing the equality (23), we obtain

∞∑

k=0

‖uk+1 − uk‖2L +
∞∑

k=0

‖fk+1 − fk‖2 +
∞∑

k=0

〈∆sk+1, ∆uk+1〉 ≤ ‖∆u0‖2L + ‖∆f0‖2 ≤ ∞.

Thus
‖uk+1 − uk‖2L → 0, ‖fk+1 − fk‖2 → 0, 〈∆sk+1,∆uk+1〉 → 0.

The first formula implies that ‖uk+1 − uk‖ → 0 since L is positive definite. The second one
yields

lim
k→∞

‖Auk+1 − f‖2 = lim
k→∞

‖fk+1 − fk‖ = 0.

Finally, the third formula together with (24) implies that the non-negative Bregman distance
satisfy

lim
k→∞

Ds
J(uk+1, u) = lim

k→∞

(
J(uk+1)− J(u)− 〈s, uk+1 − u〉

)
= 0

Using (19) and Auk+1 → f = Au, we have

0 = lim
k→∞

(
µJ(uk+1)− µJ(u) + 〈f − p,A(uk+1 − u)〉

)
= lim

k→∞
µJ(uk+1)− µJ(u) (25)

Thus J(uk+1) → J(u).
Hence, for any accumulation point u∞, we have Au∞ = f and J(u∞) = J(u) by the

semi-continuity of J . We conclude directly that u∞ is a solution of (3). ¤

4 Nonlocal regularization
In this section, we first present some notations of the nonlocal regularization introduced in[25],
and then discuss applications for solving inverse problems.

4.1 Background
In [20], Efros and Leung used similarities in natural images to synthesize textures and fill in
holes in images. The basic idea of texture synthesis is to search for similar image patches in the
image and determine the value of the hole using found patches. Texture synthesis also influences
the image denoising task. Buades et al. introduced in [3] an efficient denoising model called
nonlocal means (NL-means). The model consists in denoising a pixel by averaging the other
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pixels with similar structures (patches) to the current one. More precisely, given a reference
image f , we define the NL-means solution NLMf of the function u at point x as

NLMf (u)(x) :=
1

C(x)

∫

Ω

w(f, h0)(x, y)u(y)dy,

where

w(f, h0)(x, y) = exp{−Ga ∗ (||f(x + ·)− f(y + ·)||2)(0)
2h2

0

}, (26)

C(x) =
∫

Ω

exp{−Ga ∗ (||f(x + ·)− f(y + ·)||2)(0)
2h2

0

}dy.

and Ga is the Gaussian kernel with standard deviation a, C(x) is the normalizing factor, and
h0 is a filtering parameter. When the reference image f is known, the non-local means filter
is a linear operator. In the case where the reference image f is chosen to be u, the operator is
non-linear and it is the nonlocal means filter presented by Buades et al. in [3]. The definition
of the weight function (26) shows that this function is significant only if the patch around y
has similar structure as the corresponding patch around x. This filter is very efficient to reduce
noise while preserving textures and contrast of natural images. It is generally better to choose
a reference image as close as possible to the true image to introduce in the weight function
relevant information regarding image structures.

In a discrete formulation, if the images are represented by a column vector u of N elements,
the operator NLMf (u) can be written as matrix multiplications such as

NLMf (u) = D−1
f Wfu

where Wf is the N×N weight matrix defined in (26), and Df (i, i) = C(i) is a N×N diagonal
matrix.

The application of the nonlocal means filter for inverse problems, such as image deblur-
ring is not trivial since the observed image and the original image generally do not have the
same similar distribution and structures. Based on the hypothesis that the deblurred image must
maintain the same coherence as the blurry image, Buades et al. proposed in [4] a NL-means
regularization energy for image deblurring defined as follows:

JNLM (u) := ||u−NLMf (u)||2 (27)

where NLMf := D−1
f Wf is the nonlocal means filter defined above and Wf is the weight

computed from the blurry and noisy image f .
An alternative nonlocal model for texture restoration is introduced in [2]. The authors pro-

pose to minimize the functional:

JNLM (u) := ||u−NLMu(f)||2. (28)

It is a nonlinear model since the weight function depends on the unknown image u. The solution
of (28) is approximated by an iterated scheme:

uk+1 = NLMuk(f).
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This model updates the denoising weight function at each iteration step and keeps averaging
on the original image. The convergence property of this iterative process has not been yet
established.

In order to formulate the nonlocal means filter in a variational framework, Kindermann et
al. in [31] started to investigate the use of regularization functionals with nonlocal correlation
terms for general inverse problems. Also, inspired from the graph Laplacian in [11], Gilboa and
Osher defined a variational framework based nonlocal operators in [25]. Note that Zhou and
Schölkopf in [46] and Elmoataz et al. in [22] also used graph Laplacian in the discrete setting
for image denoising. Finally, the connection between the filtering methods, and spectral bases
of the nonlocal graph Laplacian operator are discussed in [37] by Peyré.

In the following, we give the definitions of the nonlocal functionals introduced in [25]. Let
Ω ⊂ R2, x ∈ Ω, and u(x) be a real function Ω → R. Assume w : Ω× Ω → R is a nonnegative
symmetric weight function defined in (26) from a reference image, then the nonlocal gradient
∇wu(x) is defined as the vector of all partial differences ∇wu(x, ·) at x such that:

∇wu(x, y) := (u(y)− u(x))
√

w(x, y), ∀y ∈ Ω.

A graph divergence of a vector ~p : Ω × Ω → R can be defined by the standard adjoint
relation with the gradient operator as follows:

〈∇wu, p〉 := −〈u, divwp〉, ∀u : Ω → R,∀p : Ω× Ω → R,

which leads to the definition of the graph divergence divw of p : Ω× Ω → R such that:

divwp(x) =
∫

Ω

(p(x, y)− p(y, x))
√

w(x, y)dy.

The graph Laplacian is defined by:

∆wu(x) :=
1
2

divw(∇wu(x)) =
∫

Ω

(u(y)− u(x))w(x, y)dy.

Note that a factor 1
2 is used to get the related standard Laplacian definition.

These operators possess several properties. For example, the Laplacian operator is self-
adjoint:

〈∆wu, u〉 = 〈u, ∆wu〉,
and negative semi-definite:

〈∆wu, u〉 = −〈∇wu,∇wu〉 ≤ 0.

The nonlocal H1 and TV norm are respectively defined to be the L2 and isotropic L1 norm
of the weighted graph gradient ∇wu(x) :

JNL/H1,w(u) :=
1
4

∫
|∇wu(x)|2dx (29)

JNL/TV,w(u) :=
∫

Ω

|∇wu(x)|dx (30)
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The corresponding Euler-Lagrange equation of (29) and (30) are then written as:

−
∫

Ω

(u(y)− u(x)w(x, y)dy = −δwu(x) = 0 (31)

and

−
∫

Ω

(u(y)− u(x))w(x, y)
[

1
|∇wu(x)| +

1
|∇wu(y)|

]
dy = 0. (32)

Note that once the weight function w is fixed, the Euler-Lagrange equation for the nonlocal H1

is linear and can be solved by a gradient descent method. However, analogous to the classical
total variation, the functional (30) is not differentiable when |∇wu| = 0. For this case, a dual
method or a regularized version

√
|∇wu|2 + ε can be used to avoid zero denominator. Finally, if

the function w(x, y) in (32) is chosen to be the nonlocal weight function defined in (26), then the
nonlocal means filter is generalized to a variational framework. Nevertheless, the minimization
of the nonlocal TV functional remains as a difficult optimization problem due to the computation
complexity and the non-differentiability.

4.2 Nonlocal Regularization for Inverse Problems
4.2.1 Weight fixed

The nonlocal regularization for inverse problems is based on the following constrained formu-
lation:

min
u

Jw(u) subject to Au = f, (33)

with Jw being nonlocal regularization term, such as the nonlocal TV or the nonlocal H1 with a
given weight function w, and A is a deconvolution or compressive sensing matrix. By applying
the algorithm (2), we obtain the first algorithm proposed in this paper:





vk+1 = uk − δAT (Auk − fk)
uk+1 = arg minu

(
µJw(u) + 1

2δ ||u− vk+1||2
)

fk+1 = fk + f −Auk+1

(34)

We can see that the key computation of this algorithm relies on the computation of A and
AT , and the ROF like denoising step. In Section 4.2.4, we will present a fast method based on
split bregman iteration for total variation minimization.

4.2.2 Weight Updating

In the previous discussion of nonlocal regularization methods, the weight function w was fixed.
In the denoising case, most of image similarity information can be discovered by the given
noisy image. Unfortunately, a good estimation of the weight w0 ≈ w(u, h0) given in (26) is not
always available, especially in the case of inverse problems, where given data lie in a different
space from the true image. In the case of compressive sensing, due to low sample rate, a weight
function from an initial guess is not good enough and the standard TV compressive sensing
is also not capable of restoring complex textures. This is why it is necessary to update the
weight function w(uk, h0) (26) during the reconstruction of signals. In [38], the authors have
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also proposed to update the graph weight to solve inverse problems using the forward-backward
operator splitting technique [12] to solve the relaxed Lagrangian formulation. Similar to [38],
we consider a more appropriate problem:

min
u

Jw(u) s.t. Au = f and w = w(u, h0).

However, a direct numerical solution of this problem is difficult to compute. Instead, the
simplified algorithm based on Algorithm I (BOS) with weight updating is proposed:





step 1: vk+1 = uk − δAT (Auk − fk)
step 2: wk+1 = w(vk+1, h0)

step 3: uk+1 = minu

(
µJwk+1(u) +

δ

2
||u− vk+1||2

)

step 4: fk+1 = fk + f −Auk+1

.

In practice, we actually do not need to update the weight function at every step. Instead, we
update every M steps, see Section 4.3.

4.2.3 Preconditioned Bregmanized Operator Splitting (PBOS)

As we have mentioned, an important question in nonlocal regularization methods for inverse
problems is how to estimate a correct weight function w. In [33], we estimate the weight func-
tion with the solution of the Tikhonov regularization problem:

v = arg min
v

(1
2
||Av − f ||2 +

ε

2
||v||2

)
, (35)

where ε is a small positive number. It amounts to

v = (AT A + ε)−1AT f.

The operator (AT A + ε)−1AT is a preconditioned generalized inverse of A when A is not
invertible or ill-conditioned. In fact, we have:

lim
ε→0

(AT A + ε)−1AT = lim
ε→0

AT (AAT + ε)−1 = A+,

where A+ is the Moore-Penrose pseudoinverse of A even if (AAT )−1 and/or (AT A)−1 do not
exist. If the columns of A are linearly independent, then AT A is invertible. In this case, an
explicit formula is: A+ = (AT A)−1AT . It follows that A+ is a left inverse of A: A+A = I .
Similarly, if the rows of A are linearly independent, then AAT is invertible. In this case, an
explicit formula is: A+ = AT (AAT )−1. Furthermore, if A has orthonormal columns (AT A =
I) or orthonormal rows (AAT = I), then A+ = AT .

In [33], we show that the weight estimated from the preconditioned image gives a better
result than the one from the blurry image, because the main edge information is kept in the
preconditioned image even when the noise is amplified. Since nonlocal methods are robust to
noise, it is more important to preserve as much edge information as possible. For this reason,
we consider a modified operator splitting algorithm analogous to the operator splitting algorithm
(10): {

vk+1 = uk − δA+(Auk − f)
uk+1 = arg minu

(
µJw(u) + 1

2δ ||u− vk+1||2
)

, (36)
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where A+ is the pseudo-inverse of A and δ > 0. This similar idea is also considered in [7]
for frame based image deblurring. The operator A+A is an orthogonal projector onto the range
space of A+, thus it is positive semi-definite. In the following, we replace A+ by AT (AAT +
ε)−1, then algorithm (36) solves the minimization problem

min
u

(
µJw(u) +

1
2
||Bu− b||2

)
,

where B = PA, b = Pf , and P = (AAT + ε)−
1
2 . In particular,

• If A is full row rank (A+ = AT (AAT )−1), then we set ε = ∞ and

B = (AAT )−
1
2 A, b = (AAT )−

1
2 f.

• If AT A = I , i.e. A+ = AT , then

B = A, b = f.

Then the modified algorithm (36) is consistent with the classical operator splitting (10).
This is the case when A is a row selector of an orthogonal transformation.

• If A is a square matrix diagonalizable in an orthonormal basis, i.e. A = P ∗DP where P
is orthogonal, then

(AT A + ε)−1AT = (P ∗D∗DP + ε)−1P ∗D∗P = P ∗(
D

|D|2 + ε
)P = AT (AAT + ε)−1.

Now we can consider a preconditioned constrained problem:

min
u

Jw(u) subject to Bu = b, (37)

By applying the general Bregmanized Operator splitting algorithm presented in Section 3,
we get: b0 = Pf





vk+1 = uk − δAT PT (PAuk − bk)
uk+1 = arg minu

(
µJw(u) + 1

2δ ||u− vk+1||2
)

bk+1 = bk + b− PAuk+1

(38)

This is equivalent to the algorithm:

Algorithm II (Preconditioned Bregmanized Operator Splitting):




vk+1 = uk − δAT (AAT + ε)−1(Auk − fk)
uk+1 = arg minu

(
µJw(u) + 1

2δ ||u− vk+1||2
)

fk+1 = fk + f −Auk+1

(39)

According to Theorem 1, the condition for the convergence of Algorithm II is 0 < δ <
1

‖BT B‖ , that is,

0 < δ <
1

‖AT (AAT + ε)−1A‖
In the following, we discuss the computation for vk+1 in Algorithm II (PBOS), which is

obtained by inverting the operator (AAT + ε) based on two specific applications.
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• Compressive sensing with partial Fourier measurement : In this case, the operator
A = RF where F represents the Fourier transform matrix (n × n), and R represents
a ”row-selector” matrix (m × n), which could be represented as a binary matrix. Then
AT A = F−1RT RF . And the pseudo-inverse A+ = AT (AAT )−1 is equal to AT . Thus
when ε = 0, the algorithm is equivalent to Algorithm I.

• Deconvolution: We assume that A is an invariant circular convolution matrix, therefore
the matrix A is a diagonalizable in a Fourier basis as

A = F−1Diag(H)F

where H(ω) is the Fourier transform of a kernel function h. In general, the matrix A is not
full row rank. As we mentioned above, the left and right pseudo inverse approximation
are equal:

AT (AAT + ε)−1 = (AT A + ε)−1AT

and the latter is equivalent to solve a Tikhonov regularization:

vk+1 = arg min
v

(
||Av − fk+1||2 +

δ

2
||v − uk||2

)
.

Then the solution vk+1 can be computed via the fast Fourier transform(FFT):

vk+1 = uk − δF−1(
H∗(ω) · (Gk+1(ω)−H(ω) · Uk+1(ω))

|H(ω)|2 + 1
δ

), (40)

where Gk(ω), Uk(ω) are discrete Fourier transform coefficients of fk and uk at frequency
ω. Consequently, implementing (40) requires only O(N2 log N) operations for an N×N
image.

When the operator A is not diagonalizable, a general quadratic minimization algorithm, such
as a preconditioned conjugate-gradient can be applied to solve efficiently for vk+1.

4.2.4 Split Bregman for for Nonlocal TV Denoising

We can see that the efficiency of the BOS and the PBOS algorithms depends on solvers for the
ROF like subproblem. Here we focus on fast algorithms to minimize the nonlocal total variation
functional defined in (30) in the extended nonlocal ROF model [40]:

min
u

(
µJw(u) +

1
2
||u− v||2

)
, (41)

where w is a fixed weight function and µ > 0 for a given image v. Notice that the algorithms for
the nonlocal ROF model are extended from the fast algorithms originally developed for solving
classical TV based regularization problems. In particular, we are interesting in the extension of
the split Bregman method proposed by Goldstein and Osher in [28].

The main idea of the split Bregman algorithm is to transform the total variation minimization
problem onto a l1 norm minimization by introducing an auxiliary variable for the gradient of

15



u, and then an efficient thresholding algorithm can be applied[28]. Here, we extend the split
Bregman algorithm to the nonlocal TV regularization by considering the related problem:

min
u

(
µ|∇wu|1 +

1
2
||u− v||2

)
,

The idea is to reformulate the problem as:

min
u,d

(
µ|d|1 +

1
2
||u− v||2

)
subject to d = ∇wu,

By enforcing the constraint with the Bregman iteration process, the extended nonlocal split
Bregman algorithm uses the nonlocal TV norm instead of the standard TV norm, and the algo-
rithm scheme is given by:

(uk+1, dk+1) = arg min
u,d

(
µ|d|1 +

1
2
||u− v||2 +

λ

2
||d−∇wu− bk||2

)
(42)

bk+1 = bk +∇wuk+1 − dk+1.

The solution of (42) is obtained by performing an alternating minimization process:

uk+1 = arg min
u

(1
2
||u− v||2 +

λ

2
||dk −∇wu− bk||2

)

dk+1 = arg min
d

(
µ|d|1 +

λ

2
||d−∇wuk+1 − bk||2

)

Note that the equivalence of the split Bregman method with classical Douglas-Rachford splitting
method [18, 19] recently shown by Setzer in [42], thus the convergence is clarified.

Now, the subproblem for uk+1 consists in solving the linear equations

(uk+1 − v)− λdivw(∇wuk+1 + bk − dk) = 0, (43)

which provides
uk+1 = (1−∆w)−1(v + λdivw(bk − dk)).

Since the graph Laplacian ∆w is negative semi definite, the operator 1 − ∆w is diagonally
dominant. Therefore we can solve uk+1 by a Gauss-Seidel algorithm. Similarly to [28], the
vector dk+1 is obtained by applying the shrinkage operator (11):

dk+1 = shrink(∇wuk+1 + bk,
µ

λ
).

4.3 Algorithms
To conclude this section, we describe the Split Bregman method for NLTV-ROF model and the
BOS and PBOS algorithms presented above.
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Algorithm 1 Split Bregman Method for Nonlocal TV Denoising
Initialization: : u0 = v0 = 0, µ, λ,K.

for k = 0 to K do
Solve uk+1 = (1−∆w)−1(v + λdivw(bk − dk)) by Gauss-Seidel method.
Solve dk+1 = shrink(∇wuk+1 + bk, µ

λ )
bk+1 = bk +∇wuk+1 − dk+1

end for

Algorithm 2 Bregmanized Nonlocal Regularization for Inverse Problems (Algorithm I/II)
Initialization: : u0 = v0 = 0, f0 = f , h0, µ, δ, nOuter, nUpdate, nInner, btol.

while k < nOuter and ‖Auk − f‖ > btol do
Compute vk+1 according to the method:
if type=’BOS’ then

vk+1 = uk − δAT (Auk − fk)
else if type = ’PBOS’ then

vk+1 = uk −AT (AAT + ε)−1(Auk − fk)
end if
if (nUpdate > 0 and mod (k, nUpdate) = 0) then

(Update weight) Update the nonlocal weight w(k) = w(vk+1, h0) // using the formula
(26)

end if
Inner denoising step: Performing nInner steps of the nonlocal TV denoising iteration with
input vk+1, µδ.
Update fk+1 = fk + f −Auk+1.
Increase k.

end while

5 Experimental Results
We present two applications: compressive sensing with Fourier measurements and image de-
convolution. We compare the nonlocal H1 and TV regularization with the standard TV regular-
ization and wavelet based l1 regularization with the GPSR1 algorithm [23].

In order to improve computational time and storage efficiency, we only compute the ”best”
neighbors, that is, for each pixel x, we only include the K = 10 best neighbors in the semi-
local searching window of 21 × 21 centered at x and the 4 nearest neighbors on comparing
5 × 5 patches with the formula (26). For the TV and the nonlocal regularization, we apply the
BOS(PBOS) algorithm. For the TV-ROF denoising step, we use the split bregman denoising
algorithm2 and we implement the adapted split bregman algorithm above (Algorithm 1) for the
nonlocal TV regularization. Similarly, a Gauss-Seidel method is applied to solve the nonlocal
H1 regularization. A matlab and mex implementation of proposed algorithms is available on-
line3. For all the experiments, the inner denoising steps for both NLTV and NLH1 are fixed as

1http://www.lx.it.pt/∼mtf/GPSR
2http://www.math.ucla.edu/∼tagoldst/public codes/splitBregmanROF mex.zip
3http://www.math.ucla.edu/∼xqzhang/html/code.html
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nInner = 20 steps and the parameter δ = 1.

5.1 Nonlocal TV Deconvolution
We implement both the BOS and PBOS methods on the Cameraman image for image deconvo-
lution problem. As in [33], a fixed weight (nUpdate = 0) computed from a Tikhonov-based
deblurred image u0, see (35), is used for all the nonlocal methods. Using optimal λ and the
noise level σ, we can obtain u0 very efficiently with an estimated noise level σ1[33]. We set
h0 = 2σ1. In [33], a gradient descent algorithm was applied to solve the unconstrained La-
grangian formulation:

min
(
|∇w0u|1 +

λ

2
||Au− f ||2

)
. (44)

This algorithm is generally very slow. Instead, we solve a constrained minimization problem in
this paper:

min |∇w0u|1 s.t. ||Au− f ||2 ≤ σ2,

by using the BOS and the PBOS until the residual noise level is around σ. We set the stopping
criterion btol = 0.99σ and the maximum Bregman iteration nOuter = 30. For the wavelet
based restoration, we use the daubcqf(4) wavelet4 with maximum decomposition level and with
the scale parameter τ = 0.2 as inputs for the GPSR code.

Figure 1 compares different algorithms. For the PBOS algorithm, the regularization pa-
rameter ε = 0.1. The images reconstructed by NLTV (NLTV+gradient descent, NLTV+BOS,
NLTV+PBOS) present better contrasts and edges compared to wavelet, TV and NLH1 based
methods. Compared to the algorithm in [33], the reconstruction results are similar, while the
computation speed is improved. Note that the weight function was computed in the whole
searching window in [33], while here only 10 best and 4 nearest neighbors are used for each
pixel. Furthermore, the algorithm BOS and PBOS takes less than nOuter steps to meet the
stopping criterion. Overall, the NLTV+BOS algorithm stops with 25 steps for 138 seconds, and
the PBOS stopped at 8 steps for 51 seconds including weight computation, compared to 280
seconds with 500 steps with the gradient descent algorithm for solving (44).

We also tested the weight updating scheme, it appears that there is no improvement com-
pared to a fixed weight function. In fact, a simple weight updating scheme tends to recover
a smoother an smoother image. One explanation is that the weight function computed from
a pre-deblurred image is good enough to express structured information in the nonlocal TV
regularization, while weigh updating degrades the image structures.

5.2 Compressive Sensing
In this section, we focus on exploring the sparsity of natural images with non-local regularization
operators. The compressive sensing matrix we choose is A = RF , where R is a row-selector
matrix, and F is Fourier transform matrix. For an N × N image, we randomly choose m
coefficients, then R is a sampling matrix of size m× (N2) with m = 0.3. We only consider the
BOS algorithm since AT = A+, as discussed in Section 4.2.3.

Figures 2 and 3 present the results for the Barbara picture and a composed texture picture.
The weight parameter h0 are empirically chosen as h0 = 20 for the Barbara example (see Figure

4http://dsp.rice.edu/software/rice-wavelet-toolbox
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Original Image Blurry and noisy, PSNR=20.39 Wavelet+GPSR, PSNR=23.90

TV, µ = 5, PSNR= 24.74 NLH1+BOS, µ = 5, PSNR= 24.31 NLH1+PBOS, µ = 10,PSNR=24.44

NLTV+gradient descent[33], λ = 15, PSNR=25.65 NLTV+BOS, µ = 10,PSNR= 25.38 NLTV+PBOS, µ = 20,PSNR= 25.57

Figure 1: Deconvolution example on 256×256 cameraman degraded with the 9×9 box average
kernel and gaussian noise σ = 3. Weight fixed.

2) and h0 = 15 for the patch example respectively (Figure 3). For this application, an initial
guess by setting unknown to be zeros hardly reveals right structures of true images. Hence, the
weight updating strategy is necessary for this application, in particular, we update the weight
every nUpdate = 20 steps. As expected, the standard TV regularization is not capable of re-
covering texture patterns presented in these images. The results based on wavelet are obtained
by using a daubqf(8) wavelet with maximum decomposition level and an empirically optimal
thresholding parameter with GPSR code. Since there is no noise considered in these two exam-
ples, we solve the equality constrained problem by activating the continuation and the debias
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options in the GPSR code. The residual stopping tolerance btol is set as 10−5 for all the BOS
based algorithms. The maximal outer iteration nOuter for TV is set as 100 for both examples
since the algorithm attains a steady state. For NLH1 and NLTV with weight updating, it is harder
to determine a good iterations number. In fact, the PSNR of NLH1 is decreasing after a certain
number of iterations. Empirically we choose nOuter = 100 for NLH1 as optimal results for
both examples, nOuter = 500 for NLTV in Figure 2 (the PSNR is still significantly increasing
after 100 steps) and nOuter = 100 for NLTV in Figure 3, respectively. Surprisingly, with only
few measurements, the image textures are almost perfectly reconstructed by the nonlocal TV
regularization. This is because image structures are expressed implicitly in the nonlocal weight
function, and the nonlocal regularization process with Bregman iteration provides an efficient
way to recover textures without explicitly construct a basis. Note that with a fewer outer itera-
tion for the nonlocal TV, we can still obtain an improved result compared to other regularization
methods, which leads to a faster reconstruction.

6 Discussion
In this paper, we propose a general algorithm framework for convex minimization problems
with equality constraints. This simple algorithm framework overcomes the uncertainty and the
efficiency of inner iterations involved in the Bregman iteration. In particular, we solve the
compressive sensing problem for sparse reconstruction and the image deconvolution problem
using the nonlocal TV functional. Experiments show the nonlocal TV regularization is efficient
to recover natural images with few measurements without using a basis or dictionary learning.
We also have the similar observation as in [28], the edges are quickly set after a small number
of iterations. In the case of deconvolution, the algorithm converges very quickly using a small
number of denoising steps and Bregman iteration. Finally, the proposed algorithms in theory
can be applied for other inverse problems and regularization. We will investigate more carefully
this question in the future. Furthermore, as mentioned in [38], it is also important to better
understand the weight updating strategy in a theoretical framework.
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Original Image Image by setting unknowns to be zeros, PSNR=15.39

TV+BOS, µ = 1, PSNR=16.41 Wavelet+GPSR+Continuation, τ = 0.05, PSNR=16.21

NLH1+BOS, µ = 5,PSNR= 19.39 NLTV+BOS, µ = 10, PSNR= 20.37

Figure 2: Compressive sensing example: Barbara (256 × 256), 30% randomly chosen Fourier
coefficients, noiseless. Weight updating.
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Original Image Image by setting unknowns to be zeros, PSNR=18.86

TV+BOS, µ = 0.5,PSNR= 19.87 Wavelet+GPSR+Continuation, τ = 0.01, PSNR= 19.60

NLH1+BOS, µ = 0.1, PSNR= 20.80 NLTV+BOS, µ = 5,PSNR= 21.48

Figure 3: Compressive sensing example: Textures (256 × 256), 30% randomly chosen Fourier
coefficients, noiseless. Weight updating.
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