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Abstract. In the recent decades the ROF model (total variation (TV)
minimization) has made great successes in image restoration due to its
good edge-preserving property. However, the non-differentiability of the
minimization problem brings computational difficulties. Different tech-
niques have been proposed to overcome this difficulty. Therein methods
regarded to be particularly efficient include dual methods of CGM (Chan,
Golub, and Mulet) [7] Chambolle [6] and split Bregman iteration [14],
as well as splitting-and-penalty based method [28] [29]. In this paper, we
show that most of these methods can be classified under the same frame-
work. The dual methods and split Bregman iteration are just different
iterative procedures to solve the same system resulted from a Lagrangian
and penalty approach. We only show this relationship for the ROF model.
However, it provides a uniform framework to understand these methods
for other models. In addition, we provide some examples to illustrate the
accuracy and efficiency of the proposed algorithm.

1 Introduction

Image restoration such as denoising and deblurring is one of the most funda-
mental task in image processing and is in general based on regularization. To
preserve image edges and features during image regularization procedures is dif-
ficult but very desired. Recently the ROF model [23] has been demonstrated to
be very successful in edge-preserving image restoration; see [9] [11] and refer-
ences therein. Consequently the model attracted much attention and has been
extended to high order models [8] [31] [18] [19] [16] [25] and vectorial models [24]
[2] [10] for color image restoration [17] [27].

However, the computation of the ROF model suffers from serious nonlin-
earity and non-differentiability. In [23], the authors proposed an artificial time
marching strategy to the associated Euler-Lagrange equation. This method is
slow due to strict stability constraints in the time step size. Besides, the artifi-
cial time marching method computes solutions of not the exact ROF model, but
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its approximation, say, regularized ROF model. Different techniques have been
proposed to overcome this difficulty.

There are several methods regarded as particularly efficient. One approach is
the dual methods [7] [5] [6], which is based on various dual formulations of the
model. The other is split Bregman iteration [14], which uses functional splitting
and Bregman iteration for constrained optimization [20] [30]. Similar to split
Bregman iteration, another approach based on splitting and then alternating
minimization of the penalized cost function was proposed in [28] [29]. In this
paper, we present augmented Lagrangian method to solve the model and show
that the dual method and split Bregman iteration can actually be either deduced
from, or equivalent to our method.

2 ROF model and related numerical solvers

Assume Ω ⊂ R2 is a bounded open subset (usually a rectangle in image process-
ing) and f : Ω → R is an observed image. f often contains various degradation
and can be noisy and blurred, which is usually modelled as

f = Ku + n, (1)

where u is the true image, and K, n are the linear operator and noise respectively.
The K operator may stand for the identity operator, or various blur operations
such as Gaussian blur and motion blur. The noise n may denote Gaussian noise
or salt-pepper noise or even others. Image restoration aims to recover u from f
with some information of K and n.

In this paper we assume that n is some Gaussian white noise and K is a
general blur operator. Since the variance of n and the blur kernel of K can
usually be estimated, we further assume we know K and the variance of n
exactly. With these knowledge, it’s still difficult to recover u from f . Even in the
pure denoising case (K = I), it’s not an easy task to get u since we only know
the variance of the random noise n. For pure deblur case in which K 6= I and
n = 0, we cannot directly solve f = Ku to get u due to the compactness of K.
The problem f = Ku is ill-posed, and the solution would be highly oscillatory.
Regularization on the solution should be considered. The restoration problem is
thus presented using some regularity R(u) as

min
u

R(u)

s.t.‖f −Ku‖2 = σ2,
(2)

where σ is the variance of n. The constrained minimization problem is often
solved approximately using Tikhonov regularization as follows

min
u

F (u) = R(u) +
λ

2
‖Ku− f‖2, (3)

for some parameter λ.
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There are many choices for the regularity term R(u). One of the most basic
and successful choice of the regularity is due to Rudin, Osher, and Fatemi [23] in
which R(u) was chosen to be the total variation of u. The so-called ROF model
reads

u = arg min
u

Frof(u) =
∫

Ω

|∇u|+ λ

2
‖Ku− f‖2. (4)

In [23] the authors considered the image denoising problem (K = I) and pre-
sented a gradient descent method to solve (4). (Here the method is described
for general K.) The artificial time marching was introduced to the associated
Euler-Lagrange equation as follows

ut = ∇ · ( ∇u√
|∇u|2+β

) + K∗(f −Ku)

u(0) = f
, (5)

where β is a small positive number to avoid zero division and K∗ is the L2

adjoint of K.
There are mainly two drawbacks for the gradient descent method (5). At

first, the method computes the solution of (4) not exactly, but approximately.
On the second, the method is slow due to strict constraints on the time step size.
The choice of β affects both aspects. Larger the β, more efficient the scheme
is, whereas worse the approximation will be. There is a tradeoff between the
accuracy and efficiency in choosing β.

Many algorithms have been proposed to improve this method. Those regarded
as particularly efficient include dual methods and split Bregman iteration, as well
as splitting-and-penalty based method, as mentioned before.

Before we go on, we present here an obviously equivalent formulation of
the restoration problem (4), which will play an important roll in our deriva-
tion. The difficulty to solve the ROF restoration model (4) is due to the non-
differentiability of the total variation norm. We introduce an auxiliary variable q
for ∇u to separate the calculation of the non-differentiable term and the fidelity
term. The model (4) is thus equivalent to

min
u,q

Grof(u, q) =
∫

Ω
|q|+ λ

2 ‖Ku− f‖2

s.t. q =
(

q1

q2

)
=

(
∂xu
∂yu

)
= ∇u

, (6)

a constrained optimization problem.

2.1 CGM dual method

In [7] Chan et al presented a primal-dual method for the TV minimization. They
introduced a new variable

ω =
∇u

|∇u| (7)

to the Euler-Lagrange equation of the model (4), yielding

−∇ · ω + λK∗(Ku− f) = 0
∇u− ω|∇u| = 0 , (8)
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to remove some of the singularity caused by the non-differentiability of the object
functional.

Different from the original Euler-Lagrange equation for u, this system con-
tains both u and ω variables. In [7], u and ω are called the primal and dual
variables, respectively. Again the authors approximate this primal-dual system
using a regularized TV norm for real calculation. Newton’s linearization tech-
nique for both the primal and dual variables is used to solve the discrete version.

2.2 Chambolle’s dual method

Another work based on dual formulation with a slightly different derivation is
due to Chambolle. In [6] Chambolle used Legendre-Fenchel transform and a key
result from optimization theory to get an original and efficient algorithm for
total variation minimization. The primal variable of the image data is expressed
explicitly with the dual variable and only the dual variable is iteratively com-
puted. The primal variable u is obtained from the final result of the dual variable.
However, the algorithm dose not consider general K operators.

Specifically, Chambolle adopted the following definition of total variation for
general (not necessary to be smooth) function u:

TV(u) = sup{
∫

Ω

u(x)∇ · ξ(x) : ξ ∈ C1
c (Ω;R2), |ξ(x)| ≤ 1, ∀x ∈ Ω}. (9)

Denoting

S = Closure{∇ · ξ(x) : ξ ∈ C1
c (Ω;R2), |ξ(x)| ≤ 1, ∀x ∈ Ω}, (10)

Chambolle showed that the ROF restoration model (4) with K = I (Note the
slight difference between Eqn. (4) and the model in [6] about the parameter λ)
yields

u = f − 1
λ

πS(λf) = f − πS
λ
(f), (11)

where πS(·) is the L2 norm projection operator to S, which reads

πS(·) = arg min
divξ(x)

{‖divξ(x)− ·‖2 : |ξ(x)| ≤ 1,∀x ∈ Ω}. (12)

Since S is not a linear space, this projection is nonlinear. From the KKT con-
ditions and with a careful observation, it was shown in [6] that ξ(x) for πS(λf)
satisfies

−∇(divξ(x)− λf) + |∇(divξ(x)− λf)|ξ(x) = 0, (13)

which can be solved by a semi-implicit gradient descent algorithm. Note here we
present the continuous case instead of the discrete version used in [6].
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2.3 Split Bregman iteration

Recently (split) Bregman iteration attracts much attention in signal recovery and
image processing community. The basic idea is to transform a constrained opti-
mization problem to a series of unconstrained problems. In each unconstrained
problem, the object function is defined by Bregman distance [3] of a convex
functional.

The Bregman distance of a convex functional J(u) is defined as the following
(nonnegative) quantity

Dp
J(u, v) ≡ J(u)− J(v)− < p, u− v >, (14)

where p ∈ ∂J(v).
When J(u) is a continuously differentiable functional, its sub-differential

∂J(v) has a single element for each v, and consequently the Bregman distance
is unique. In this case the distance is just the difference at the point u between
J(·) and its first order approximation at the point v. For non-differentiable func-
tionals, the sub-differential may contain none or multiple values. Therefore, the
Bregman distance between u and v can be ill-defined or multivalued. However,
this poses no difficulty for the iterative algorithms as the algorithms automati-
cally choose a unique sub-gradient in each iteration as long as the fidelity term
for the constraints is differentiable (this condition holds usually). We also want
to emphasis here that Bregman distance of a functional is not a distance in the
usual sense since, in general, Dp

J (u, v) 6= Dp
J(v, u) and the triangle inequality

does not hold. See [20] [30] for more details.
To find the solution of the ROF model (4), or equivalently the constrained

problem (6), split Bregman iteration (In [14] algorithms for K = I, say, TV
denoising are presented) solves a sequence of unconstrained problems taking the
form as

(uk+1, qk+1) = arg min
u,q

D
(pk

u,pk
q )

Grof
((u, q), (uk, qk)) +

r

2

∫

Ω

|q −∇u|2, (15)

where pk
u, pk

q , sometimes written together to be (pk
u, pk

q ), are the sub-gradients of
Grof at (uk, qk) with respect to u and q, respectively. Taking the update of the
sub-gradients into consideration, the iteration procedure can be formulated as
Algorithm 1. For the computation of (uk+1, qk+1), we refer to Algorithm 3 for
more details.

Algorithm 1 Split Bregman iteration for the ROF model
1. Initialization: q0 = 0, u0 = 0, p0

q = 0, p0
u = 0;

2. For k=0, 1, 2, ...: Compute (uk+1, qk+1) using Eqn. (15), and update

pk+1
u = pk

u − rdiv(qk+1 −∇uk+1)

pk+1
q = pk

q − r(qk+1 −∇uk+1)
. (16)
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3 Augmented Lagrangian method, and relations to dual
methods and split Bregman iteration

In this section we present augmented Lagrangian method [15] [21] [22] for the
ROF model, or equivalently the constrained problem (6). Augmented Lagrangian
method has many advantages over other methods such as penalty method [1],
and has been successfully applied to nonlinear PDE and mechanics [13]. We also
show that the dual methods and split Bregman iteration can be either deduced
from, or equivalent to augmented Lagrangian method.

3.1 Augmented Lagrangian method

In augmented Lagrangian method, one solves the constrained optimization prob-
lem (6) by

min
u,q

max
µ

Lrof(u, q, µ) =
∫

Ω

|q|+ λ

2
‖Ku− f‖2 +

∫

Ω

µ · (q−∇u) +
r

2

∫

Ω

|q−∇u|2,
(17)

where µ =
(

µ1

µ2

)
is the Lagrange multiplier and r is a positive constant. That

is, the method is to seek a saddle point of the augmented Lagrangian functional
Lrof(u, q, µ). The system of optimality conditions is thus

∂Lrof

∂u
= λK∗(Ku− f) +∇ · µ + r∇ · (q −∇u) = 0, (18)

∂Lrof

∂q
=

q

|q| + µ + r(q −∇u) = 0, (19)

∂Lrof

∂µ
= q −∇u = 0. (20)

We now have two ways to solve the problem (17). One is using optimization
techniques to directly minimize/maximize corresponding functionals; while the
other is solving the associated system of optimality conditions.

The augmented Lagrangian method uses an iterative procedure to solve (17);
see Algorithm 2. The iterative scheme runs until some stopping condition is
satisfied.

To solve the problem (21), we separate it to the following two sub-problems
([28] [29]):

arg min
u

λ

2
‖Ku− f‖2 −

∫

Ω

µk · ∇u +
r

2

∫

Ω

|q −∇u|2, (23)

for given q, and

arg min
q

∫

Ω

|q|+
∫

Ω

µk · q +
r

2

∫

Ω

|q −∇u|2, (24)
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Algorithm 2 Augmented Lagrangian method for the ROF model
1. Initialization: u0 = 0, q0 = 0, µ0 = 0;
2. For k=0,1,2,...: compute (uk+1, qk+1) as a minimizer of the augmented Lagrangian

method for the Lagrange multiplier µk, i.e.,

(uk+1, qk+1) = arg min
u,q

Lrof(u, q, µk), (21)

where Lrof(u, q, µk) is defined in Eqn. (17); and update

µk+1 = µk + r(qk+1 −∇uk+1). (22)

for given u. Sub-problems (23) and (24) can be efficiently solved. For (23), the
optimality condition gives a linear equation

λK∗(Ku− f) + divµk + rdivq − r4u = 0

for u, which allows us to use Fast Fourier transforms. Denoting F(u) as the
Fourier transform of u, we get u from

u = F−1(
λF(K∗)F(f)−F(div) · F(µk)− rF(div) · F(q)

λF(K∗)F(K)− rF(4)
), (25)

where applying Fourier transform to a vector such as div and µk means applying
Fourier transform to its components, respectively; and Fourier transforms of op-
erators such as K, ∂x, ∂y,4 are regarded as the transforms of their corresponding
convolution kernels (for differential operators, the kernels will be approximated
by kernels of difference operators). For (24), we actually have the following closed
form solution

q =
{ 1

r (1− 1
|w(x,y)| )w(x, y), |w(x, y)| > 1,

0, |w(x, y)| ≤ 1,
(26)

where w = r∇u− µk, since we can reformulate the problem to be

arg min
q

∫

Ω

|rq|+ 1
2

∫

Ω

|rq − (r∇u− µk)|2.

Based on these observation, we can use Algorithm 3 to solve (21). Here N

Algorithm 3 Augmented Lagrangian method for the ROF model – solve the
sub-problem of Eqn. (21)
1. Initialization: uk+1,0 = uk, qk+1,0 = qk;
2. For n = 0, 1, 2, ..., N : Compute uk+1,n+1 from Eqn. (25) for q = qk+1,n; and then

compute qk+1,n+1 from Eqn. (26) for u = uk+1,n+1;
3. uk+1 = uk+1,N , qk+1 = qk+1,N .
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can be chosen using some convergence test techniques. In common augmented
Lagrangian method, one usually sets N = 1.

As for the second approach to solve the problem (17), people can use some
other iterative procedures to solve the corresponding optimality system. Actually
the optimality system naturally infers CGM and the dual method of Chambolle
as shown in the following.

3.2 Relations between augmented Lagrangian method and dual
methods as well as split Bregman iteration

In this sub-section we show that CGM and Chambolle’s dual methods for the
ROF model can be deduced naturally from the augmented Lagrangian method.
This is a much simpler derivation of the dual methods. Also split Bregman
iteration is demonstrated to be equivalent to Algorithm 2.

Connection to CGM dual method We first show that CGM dual method
can be deduced from the augmented Lagrangian method. The optimality condi-
tions for the augmented Lagrangian approach are given in (18)–(20). From Eqn.
(20), we get q = ∇u. Combining this with (19), we see that

µ = − ∇u

|∇u| . (27)

Therefore, the dual variable in CGM dual method is nothing but the Lagrange
multiplier µ with a different sign. Hence, the system of optimality conditions
(18)–(20) is equivalent to

∇ · µ + λK∗(Ku− f) = 0
∇u + µ|∇u| = 0 , (28)

which is just the primal-dual system of CGM dual method if one replaces −µ
with ω.

Connection to Chambolle’s dual method We now further derive Cham-
bolle’s dual method. From the first equation of (28), we get u as:

u = (λK∗K)−1(λK∗f − divµ), (29)

yielding the equation for the dual variable

∇((K∗K)−1(λK∗f − divµ)) + |∇((K∗K)−1(λK∗f − divµ))|µ = 0. (30)

For image denoising problems where K = I, (30) and (29) are just the equa-
tions used by Chambolle in [6] to solve the dual variable and recover the primal
variable u, respectively. The equation (30) for the dual variable in [6] was ob-
tained through a not well-known KKT conditions for inequalities constrained
optimization problems, whereas here we deduce this equation very naturally
from the augmented Lagrangian method. This is a generic formulation and is
not discussed in [6]. We also point out here that some connections between CGM
and Chambolle’s dual methods have been noticed in [32].



Augmented Lagrangian Method, Dual Methods and Split Bregman Iteration 9

Connection to split Bregman iteration The split Bregman iteration is
actually equivalent to the augmented Lagrangian method. Considering the zero
initialization for the sub-gradients and the Lagrange multiplier and letting

(pk
u, pk

q ) = −(divµk, µk) (31)

for each k, we have

(uk+1, qk+1)

= arg min
u,q

D
(pk

u,pk
q )

Grof
((u, q), (uk, qk)) +

r

2

∫

Ω

|q −∇u|2

= arg min
u,q

∫

Ω

|q|+ λ

2
‖Ku− f‖2 +

∫

Ω

udivµk +
∫

Ω

µk · q +
r

2

∫

Ω

|q −∇u|2

= arg min
u,q

∫

Ω

|q|+ λ

2
‖Ku− f‖2 −

∫

Ω

µk · ∇u +
∫

Ω

µk · q +
r

2

∫

Ω

|q −∇u|2

= arg min
u,q

Lrof(u, q, µk),

indicating the equivalence between split Bregman iteration and the iterative
procedure for augmented Lagrangian method. In the context of compressive
sensing, this equivalence has been pointed out in [30].

3.3 Remark

We want to emphasis that our observations can be extended to many other
models including anisotropic TV, high order nonlinear PDE filters (e.g. fourth
order models), vectorial TV, and even general models. Similarly, we can use FFT-
based fast solvers and closed form solutions to solve the sub-problems for the
corresponding algorithms. In addition, one can also derive naturally the dual
methods [12] [26] [4] from the system of optimality conditions of augmented
Lagrangian functionals for these models. Furthermore, the equivalence between
split Bregman iteration and augmented Lagrangian method is also valid for these
models. More details will be given in a forthcoming paper.

4 Examples

Two numerical examples are provided in Fig. 1 and Fig. 2 to illustrate the
accuracy and efficiency of our method. We compare our method with some built-
in Matlab functions, i.e. deconvwnr.m, deconvreg.m and deconvlucy.m in Fig. 1.
As one can see, our method generates much better restoration than these built-in
Matlab functions in comparable (or even less) CPU time costs. We also compare
our method (with increasing parameter r) in Fig. 2 with the recently developed
FTVd package based on pure splitting-and-penalty, which is one of the most
efficient approaches as compared to other existing methods as discussed in [29].
From Fig. 1 and 2 people can also compare FTVd with our method with fixed
parameter r.
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Original 

 SNR:  InfdB

Blurry&Noisy 

 SNR: 6.30dB

ALM(r=10) 

 SNR: 12.99dB, t = 0.86s

deconvwnr 

 SNR: 11.29dB, t = 0.08s

deconvreg 

 SNR: 11.17dB, t = 0.36s

deconvlucy 

 SNR: 9.29dB, t = 1.31s

Fig. 1. Augmented Lagrangian method for ROF restoration, and comparisons to built-
in Matlab functions. In the sub-figures, SNR and t denote signal-noise-ratio and the
CPU time usage, respectively.

FTVd(r0=1, SF=2, r=256) 

 SNR: 12.62dB, t = 1.09s

ALM(r0=1, SF=2, r=128) 

 SNR: 12.52dB, t = 0.75s

ALM(r0=1, SF=1.70, r=69.758) 

 SNR: 12.71dB, t = 0.80s

Fig. 2. Comparisons between FTVd package (splitting-and-penalty) and augmented
Lagrangian method with increasing penalty parameters for ROF restoration. In the
sub-figures, r0, SF, r stand for the initial value, the scaling factor and the final value of
the penalty parameter of methods, respectively; And SNR and t denote signal-noise-
ratio and the CPU time usage, respectively.
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5 Conclusions

In this paper we use an approach based on augmented Lagrangian method for
ROF model. The algorithm benefits from FFT-based fast solvers and closed form
solution. We also show that our method gives a uniform framework to understand
the approaches currently regarded to be particularly efficient for ROF model,
such as dual methods and split Bregman iteration. The CGM and Chambolle’s
dual methods can be naturally derived from our method and the dual variables in
these methods are nothing but the Lagrange multiplier. Split Bregman iteration
is actually equivalent to augmented Lagrangian method. Numerical examples
demonstrate the accuracy and efficiency of our approach. The method can be
extended to many other restoration models.
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