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Abstract

Variational models for image segmentation have many applications,
but can be slow to compute. Recently, globally convex segmentation
models have been introduced which are very reliable, but contain TV-
regularizers, making them difficult to compute. The previously intro-
duced Split Bregman method is a technique for fast minimization of L1
regularized functionals, and has been applied to denoising and compressed
sensing problems. By applying the Split Bregman concept to image seg-
mentation problems, we build fast solvers which can out-perform more
conventional schemes, such as duality based methods and graph-cuts. The
convex segmentation schemes also substantially outperform conventional
level set methods, such as the Chan-Vese level set-based segmentation
algorithm.coupled shrinkage donoho We also consider the related prob-
lem of surface reconstruction from unorganized data points, which is used
for constructing level set representations in 3 dimensions. The primary
purpose of this paper is to examine the effectiveness of “Split Bregman”
techniques for solving these problems, and to compare this scheme with
more conventional methods.

1 Introduction and Motivation

Segmentation and object extraction is one of most important tasks in
image processing and computer vision. Many of the most general and
effective segmentation methods can be written as variational/PDE based
models. This category of variational models has been shown to be very
effective in many applications, especially in the processing and analysis of
medical images [47, 33, 29]. While there are many disparate approaches to
image segmentation, this paper will focus on recently proposed methods
which can be cast in the form of totally convex optimization problems.
This convexity property allows segmentations to be computed using fast
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elliptic solvers. For other state-of-the-art approaches that do not fall into
this framework, see [24, 44, 12]. Several different variational frameworks
for image segmentation have been proposed, most of which fall into one
of two categories.

The first such category we will discuss is the geodesic active contour
(GAC) / snakes model. Originally proposed in [30], snakes based seg-
mentation identifies objects using an edge detector function, which takes
on small values near boundaries (e.g. where the image gradient is large)
and large values (typically near unity) where the image is smooth. Fol-
lowing the GAC method of Caselles, Kimmel, and Sapiro [13], this is
accomplished using a curve evolution procedure by solving

min
C

∫
C

g(∇f)ds, (1)

where C represents the closed boundary curve, ∇f is the image gradient.
The function g is the non-negative edge detector function. Models of
this type have been studied in the context of segmentation and feature
extraction by Klchenassamy et. al [47]. One common choice for the edge
detector is

g(ξ) =
1

1 + β|ξ|2 , (2)

where β is a parameter that determines the detail level of the segmen-
tation. It has been found that, by identifying a curve lying along edges
in an image, model (1) extracts relevant semantic features from an image
[13].

The calculus of variations then allows us to find the Euler-Lagrange
equation for (1) and the minimization is carried out using the following
curvature-minimizing gradient flow:

Ct = (gκ− 〈∇g,N〉) N, (3)

where κ represents the curvature and N is the unit normal to the curve C
[13].

Various numerical schemes have been proposed for computing this gra-
dient flow. One of the most simple and versatile schemes is the level set
method of Osher and Sethian [38, 37, 41]. In this method, the curve C is
represented using an implicit level set function, φ. The curve evolution is
then solved using the flow

φt =

(
g∇ · ∇φ|∇φ| − 〈∇g,∇φ〉

)
|∇φ|. (4)

Models of the form (1) have also been used for the related problem
of reconstructing a surface from unorganized data, where g is replaced by
the distance to the unorganized data set. Given a set of points {xi} lying
on some smooth surface, we wish to reconstruct an approximation of that
surface. This problem is very difficult because it is, in general, ill-posed.
Also, any solution to this problem must be able to handle a wide range of
topological and geometric surface configurations. Explicit representation
methods such as NURBS [39] rely on a parametrization of the surface,
which requires a significant amount of a priori knowledge of the surface
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topology. Methods relying on triangularizations and Voronoi diagrams are
limited to reconstructing piecewise linear surface, and become impractical
if dynamic surface evolution is required [2, 3, 6]. A very nice approach
that does not suffer from these difficulties is to use an implicit level-set
representation [52, 28, 36, 51]. This can be accomplished by defining
g to be the distance function of the set {xi}, and then minimizing the
corresponding energy (1). As a result, this modified GAC model computes
a surface that lies along the minimal contours of this distance function
(i.e. a surface that passes close to the points {xi}). This model has been
applied to 3 dimensional data in [52, 51].

The second approach to segmentation that we shall consider is a tech-
nique based on the Mumford Shah model [34]. In this model, an image is
segmented by finding the best approximation of the image as a piecewise
smooth function. One of the simplest and most successful formulations
of this model is the “active contours without edges” (ACWE) model pro-
posed by Chan and Vese [18]. The ACWE model seeks to approximate an
image by a function taking on two values via the following optimization
problem

min
Ω,c1,c2

Per(Ω) + µ

∫
Ω

(c1 − f)2 + µ

∫
Ωc

(c2 − f)2, (5)

where Ω is the extracted subset of the image, and c1, c2 ∈ R represent the
mean intensity inside and outside of the segmented region, respectively
[18]. The length term Per(Ω) serves as a regularizer, which ensures that
the curve C = ∂Ω has a well behaved boundary. By varying the parameter
µ, the user can control the strength of the regularization, and thus the
level of detail that is to be segmented. To compute the optimal region,
Ω, Chan and Vese chose a level set representation. The energy (5) is then
minimized using an alternating scheme in which the optimal curve C is
computed, after which the mean intensities are updated. Using a level set
function, u, and a regularized Heaviside function, Hε, the optimal curve
can be computed using the gradient flow [18]

∂tu = H ′ε(u)

(
∇ · ∇u|∇u| − µ

(
(c1 − f)2 − (c2 − f)2

))
, (6)

for fixed c1, and c2.
Unfortunately, both the snakes and ACWE approach to segmentation

suffer from substantial difficulties because neither model is convex. If one
examines the snakes model (1), one will observe that the global minimum
of this energy occurs when the curve C collapses into a single point (in
this case the energy is zero). Therefore, any meaningful solution to this
problem will only be a local minima. The ACWE model performs a
minimization over all two-valued functions, which do not form a convex
collection. As a result, the minimization problem (5) is non-convex and
may have local minima. Indeed, it has been observed that the results of
both of these models depend in a crucial way on the initial guess that
is used. Furthermore, the level set evolution methods can sometimes get
“stuck” at undesirable local minima. Note that, unlike the GAC/snakes
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approach, the ACWE model does have a meaningful global minimizer,
although we have no efficient method for finding it in general.

To resolve the problems associated with non-convex models, several
convex models for image segmentation have been proposed. The first of
these models was originally inspired by Chan Esedoglu and Nikolova [17],
and hybridizes the piecewise constant Mumford Shah model [34] with the
globally convex ROF denoising model [40]. The second model we consider
is a hybrid between the GAC model [30, 13] and the ROF model [40],
which allows for fast implicit surface evolution.

In this manuscript, we consider fast numerical methods for computing
the minimizers of these global models. We begin by introducing two con-
vex image segmentation models, both based on total variation regularized
energies. We then introduce the class of Split Bregman methods for L1
regularized problems, and explain how this methodology can be applied
to segmentation problems. Finally, we present numerical examples show-
ing the efficiency of the Split Bregman method for these problems, and
comparisons with other numerical schemes.

1.1 Notation

When discussing discretized problems, we shall frequently use vector norms
to avoid cumbersome summation. Consider a grid function, fα, defined
for all α in some index set Γ (for an M ×N image, we take Γ = {(i, j) ∈
Z × Z : 0 ≤ i ≤ M, 0 ≤ i ≤ N}). We shall use the following norm and
inner product notations:

|f |1 =
∑
α∈Ω

|fα|, ‖f‖ =

(∑
α∈Ω

|fα|2
) 1

2

, 〈f, g〉 =
∑
α∈Ω

fα·gα.

We will also use “∇” in the discrete context to denote the first order
discrete gradient operator and BV norms as follows:

(∇f)i,j = (fi+1,j−fi,j , fi,j+1−fi,j), |∇f |1 =
∑

(i,j)∈Ω

‖(∇f)i,j‖.

In some circumstances, we wish to consider grid functions that are
vector-valued at each pixel. For the sake of clarity, we shall use the “ar-
row” superscript to denote such vector-valued quantities. For example, we
may write ~d = ∇u to emphasize that the value of ~d at each grid location
is an ordered pair.

When working with L1 minimization problems, we will make frequent
use of the “shrink” operator . This operator has been used frequently in
the wavelet literature [22], and was first adapted for use in L1 optimization
in [45]. The shrink operator is defined at each point α ∈ Γ as follows.

shrink(~z, λ)α = max{‖~zα‖ − λ, 0}
~zα
‖~zα‖

.

We also use the “weighted” shrink operator associated with the function
g:

shrinkg(~z, λ)α = max{‖~zα‖ − λ/gα, 0}
~zα
‖~zα‖

.
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Finally, the notation AT will be used to denote the adjoint of the linear
operator A.

2 Convex methods for Image segmenta-
tion

In [17], Chan et. al. eliminate difficulties associated with these non-convex
models by proposing an approach to segmentation that is based on convex
energies. This globally convex segmentation (GCS) method is both easier
to handle numerically, and is more reliable because it does not get “stuck”
at local minima. The GCS formulation is based on the observation that
the steady state solution of the gradient flow (6) coincides with the steady
state of the simplified flow

∂tu =

(
∇ · ∇u|∇u| − µ

(
(c1 − f)2 − (c2 − f)2

))
.

This simplified flow represents the gradient descent for minimizing the
energy

E(u) = |∇u|1 + µ〈u, r〉 (7)

where r = (c1 − f)2 − (c2 − f)2.
Because the energy (7) is only homogeneous of degree 1, it has no

unique global minimizer (this should be expected, as curves do not have
unique level set representations). To make the global minima well defined,
we must constrain the solution to lie e.g. in the interval [0, 1]. This results
in the optimization problem

min
0≤u≤1

|∇u|1 + µ〈u, r〉. (8)

Once this optimization problem is solved, the segmented region is found
by thresholding the level set function to get

Ω = {x : u(x) > α}, (9)

for some α ∈ (0, 1).
In [17], the uniqueness of solutions to (8) is examined. There, it

is found that, with probability 1, the indicator function, χΩ, obtained
through this thresholding procedure is a global minimizer of the energy
(7). Note that, if we take u = χΩ, then the energies (5) and (8) are
equivalent, and so the region obtained through this procedure is a global
minimizer of (5) as well. Furthermore, in the continuous case, the results
of this thresholding procedure are independent of the value of µ, up to
a set of measure zero. For a more precise statement of these results, we
refer the reader to [17]. More theoretical results on this class of scheme
for global minimization are presented by Burger [11].

As we have described it thus far, the GCS segmentation procedure is
merely a convexification of the ACWE approach. In [10] Bresson et. al.
modify the energy (7) to incorporate information from an edge detector,
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and get results that are very similar to those obtained through the classical
snakes/GAC model. This is accomplished using the weighted TV norm

TVg(u) =

∫
g|∇u| = |∇u|g.

By replacing the standard TV norm with this weighted version, we make
the model more likely to favor segmentation along curves where the edge
detector function is minimal. In this sense, the GCS model is an elegant
hybridization of the GAC/snakes model with the ACWE model.

In summary, the GCS approach to segmentation proceeds as follows

1: while “not converged” do
2: Define rk = (ck1 − f)2 − (ck2 − f)2

3: Solve uk = min0≤u≤1 |∇u|g + µ〈u, rk〉
4: Find Ωk = {x : uk(x) > α}
5: Update ck+1

1 =
∫

Ωk fdx, and ck+1
2 =

∫
(Ωk)c fdx

6: end while

The numerical bottleneck of this segmentation algorithm is computa-
tion of the minimizer (8), i.e. step 3 of the above algorithm. In [17],
the authors propose to enforce the inequality constraint using an exact
penalty function. They solve the unconstrained problem

min
u
|∇u|g + µ〈u, r〉+ αν(u), (10)

where ν(u) = max{0, 2|u−0.5|−1}. The authors of [17] show that, for suf-
ficiently large α, this penalty function will exactly enforce the constraint.
The main drawback of the formulation (10) is that the penalty function
being used is non-differentiable. To handle this problem, the authors of
[17] propose to regularize the penalty function, rather than to exactly
enforce the inequality constraint.

In [10] the authors use a splitting/regularization approach to minimize
(8). They minimize

min
u,0≤v≤1

|∇u|g + µ〈u, r〉+
1

2θ
‖u− v‖2,

where the right-most term enforces u ≈ v for sufficiently small θ. Mini-
mization with respect to u corresponds to solving the ROF model, which
is done using a gradient projection method [15, 19, 4], and the minimiza-
tion for v can be solved using an explicit formula. However, this scheme
slows down as the accuracy increases (i.e. as θ → 0). Also, the approx-
imate enforcement of the constraint u ≈ v has the effect of regularizing
the model.

The disadvantage of these regularized schemes is that they “smear” the
values of u near the boundaries of objects. This makes the results more
dependent on the value of the cutoff parameter, α, and can eliminate fine
segmentation details (see figure 5 for an example of this).

In the next section, we show how the GAC energy can be minimized
using a Split Bregman approach. In addition to being able to minimize
this energy without the use of regularization, the proposed method has
the advantage of being a much more efficient solver for (8).
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3 A Convex formulation of snakes/GAC

In this section, we show how the snakes/GAC model can be well approx-
imated using the ROF functional. Conventional techniques for evolving
the GAC contour rely on explicit discretizations of the gradient flow (4).
Because of the vanishing denominator in (4), explicit methods require
regularization, and suffer from stiff time step restrictions [36, 38]. An
efficient alternative is to minimize this energy using a non-regularized
implicit scheme, as introduced by Almgren, Taylor and Wang [1]. This
scheme evolves the GAC contour by solving a non-convex variational prob-
lem at each time step. In [14], Chambolle introduced an implicit scheme
that evolves the contour using a sequence of convex variational problems
involving the ROF functional. The derivation presented here follows the
approach presented in [9], which adapts Chambolle’s mean curvature mo-
tion to the GAC energy.

Given some initial curve, C, let dC be its representation as a signed
distance function. Consider the convex minimization problem

u∗ = min
u
|∇u|g +

1

2h
‖u− dC‖2 (11)

Now, consider the new curve C′ = ∂{x : u∗(x) < 0}. In words, u∗ is the
level set representation of C′.

We will show that this process of obtaining C′ from C is equivalent
to applying a discretized version of (3) to the initial curve C. The Euler-
Lagrange equation for (11) is

−g∇ · ∇u|∇u| − 〈∇g,
∇u
|∇u| 〉+

1

h
(u− dC) = 0.

If we choose x ∈ C′, then u∗(x) = 0 and

dC(x) = −h
[
g∇ · ∇u|∇u| + 〈∇g, ∇u|∇u| 〉

]
(12)

= −h [gκ+ 〈∇g,N〉] (x) (13)

where we have used κ and N to denote the curvature and normal to C′,
respectively. We now denote by x0 the projection of x onto the curve C.
We now have

x = x0 − h [gκ+ 〈∇g,N〉] N(x0).

which is the equivalent to one implicit time step in the evolution of (3).
This result suggests Algorithm 1 for the evolution of the snakes/GAC
model.

Algorithm 1 : ROF based snakes/GAC

1: while ‖uk − uk−1‖ > ε do
2: Define uk+1 = minu |∇u|g + 1

2h‖u− d
k‖2

3: dk+1 = SDF (uk+1)
4: end while
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Here, we use SDF (u) to denotes the signed distance function obtained
by re-initializing u [20, 43, 36] . For a more detailed discussion of this
approach, and some theoretical results, see [14, 9].

The advantages of this formulation are two fold: First, the ROF-based
formulation of the snakes model allows one to use much larger time steps
than the standard explicit discretizations, and does not suffer from the
strict time step restrictions of regularized methods. Second, this method
can be easily and efficiently implemented using a fast ROF solver. Below,
we will discuss the implementation of this snakes model using a fast Split
Bregman ROF solver.

4 The Split Bregman Method: A Gen-
eral l1 Minimization Technique

The Split Bregman method is a technique for solving general L1-regularized
problems of the form

arg min
u
|Φu|1 +

µ

2
‖Au− f‖2, (14)

where Φ and A are (possibly singular) linear operators. For example,
choosing Φ = ∇ and A = I yields the ROF model [40]. There is a large
literature on techniques for solving (14). Many techniques approach the
problem by either solving a regularized form of (14) directly, or by attack-
ing the differentiable “dual formulation” of the problem, which requires
the enforcement of linear inequality constraints.

In [26], the Split Bregman method was introduced for solving (14).
This method has the advantage that it does not require regularization,
continuation, or the enforcement of inequality constraints. Furthermore,
the technique has been shown to be an extremely efficient solver for L1
regularized denoising problems, as well as a large class of problems from
compressed sensing.

The Split Bregman method works by “de-coupling” the L1 and L2
terms in (14), using a splitting originally introduced in [46]. Rather than

solve (14) directly, we introduce the auxiliary variable ~d ← Φu. The
problem (14) then becomes

arg min
u
|~d|1 + µ‖Au− f‖2 such that ~d = Φu. (15)

To solve this constrained problem, we convert it to an unconstrained prob-
lem by introducing a quadratic penalty function:

arg min
u,~d

|~d|1 + µ‖Au− f‖2 +
λ

2
‖~d− Φu‖2. (16)

This formulation of the problem is very advantageous because the
unconstrained problem (16) can be solved using a simple alternating min-
imization scheme. The first step of this alternating scheme is to minimize
with respect to u. This is a differentiable optimization problem and the
solution is obtained by solving

(µATA− λ∆)u∗ = µAT f + λΦ~d. (17)
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We next minimize (16) with respect to ~d. This optimization problem is
element-wise decoupled. In the work [45], it is shown that the solution
can be written explicitly as

~d∗ = shrink(Φu, 1/λ).

Note that the quadratic penalty function in (16) only approximately

enforces the constraint ~d = Φu. We wish to enforce this constraint ex-
actly. A standard approach to this problem is to use a continuation
scheme: solve (16) with an increasing sequence of penalty parameters,
λ1 < λ2 < · · · < λn. This continuation approach was introduced and
applied to deconvolution problems in [46].

This continuation scheme suffers from two deficiencies. First, as λ →
∞, so does the condition number of the system (17). This causes most
iterative solvers for the system (17) to stall. Also, it has been shown
in [46] that for large enough λ, the convergence rate of the alternating
minimization scheme becomes arbitrarily slow.

To avoid these difficulties, the Split Bregman approach uses a fixed
value for λ, and enforces the constraint ~d = Φu using a Bregman iteration
technique [26, 8]. The details of Bregman iteration will not be discussed
here. Rather we refer the reader to the works [35, 49, 27]. Alternately,
Bregman iteration techniques can also be viewed as a special case of the
method of multiplers, which is discussed in detail in [5]. An in-depth de-
scription of the application of this technique to the Split Bregman method
can be found in [26].

To apply Bregman iteration to problem (16), we add a vector, ~bk,
inside of the quadratic penalty function. We then solve a sequence of
unconstrained problems defined by

(uk, ~dk) = arg min
u,~d

|~d|1 + µ‖Au− f‖2 + λ‖~d− Φu−~bk‖2 (18)

~bk+1 = ~bk + Φuk − ~dk. (19)

After the alternating minimization scheme approximately solves each un-
constrained problem, the Bregman vector is updated using the rule (19).
This rule is the analog of the “adding back the noise” technique, which
has been used to enhance image denoising [35].

In [26, 35], it is shown that (under sufficient assumptions) this algo-

rithm converges in the sense that, as k →∞, we have ‖~d− Φu‖ → 0 and
‖uk − u∗‖ → 0 where u∗ is some solution to (14). Furthermore, in [42]
Setzer demonstrates the equivalence between split Bregman schemes and
an alternating-direction-implicit scheme on the dual form of the problem
(14), proving convergence in the case where optimizations sub-problems
are solved exactly. Similar results are proved using the classical augmented
Lagrangian framework in [23].

We have observed that, in general, an exact solution to the uncon-
strained problem (18) is not necessary. Rather, an approximate solution
can be used. Usually, this approximation is obtained using only one itera-
tion of the alternating minimization procedure and/or an inexact solution

to the system (17). For this reason, the iterates (uk, ~dk) can be obtained
very fast for most applications. This observation is in agreement with the
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previous literature on multiplier methods for differentiable problems. The
use of inexact solvers in the context of differentiable problems is discussed
in detail in [5], where conditions are presented under which multiplier
methods can be guaranteed to converge. A discussion of inexact solvers
in the context of Bregman methods for L1 regularized problems can be
found in [50].

5 Split Bregman methods for ROF

One of the simplest applications of the Split Bregman method is for ROF
denoising [26, 35]. We give a brief overview of this technique here, and
refer the reader to [26] for more detail. In this image restoration model,
the goal is to recover a denoised image, u, from a noisy image, f. The
ROF model accomplishes this by solving an optimization problem of the
form:

u∗ = arg min
u
‖u‖BV +

µ

2
‖u− f‖2 = arg min

u
|∇u|1 +

µ

2
‖u− f‖2 (20)

Note that this problem is of the form(14), when the operator A is taken
to be the identity.

To apply the Split Bregman approach to this optimization problem,
we make the substitutions ~d← ∇u. Because this problem is defined on a
two dimensional domain, ~d = (dx, dy) is vector valued at each pixel [26].
To approximately enforce these equality constraints, we add quadratic
penalty functions. This results in the unconstrained problem

(u∗, ~d∗) = arg min
u,~d

|~d|1 +
µ

2
‖u− f‖2 +

λ

2
‖~d−∇u‖2 (21)

We now wish to exactly enforce the equality constraints ~d = ∇u. For
this purpose, we apply Bregman iteration to the unconstrained problem
(21). This results in the following sequence of optimization problems:

1: while not converged do
2: (uk, ~d) = arg minu,~d |~d|1 + µ

2
‖u− f‖2 + λ

2
‖~d−∇u−~bk‖2

3: ~bk+1 = ~bk +∇u− ~dk

4: end while

As described above, it is not necessary to solve the minimization prob-
lem in step 2 of the above scheme exactly. Rather, we generate an ap-
proximate solution using the alternating minimization scheme. For this
purpose, we first minimize with respect to u. The optimal value of u can
be obtained by solving the system

(µI − λ∆)u = µf + λ∇ · (~b− ~d). (22)

To approximately solve this system, we choose a fast, iterative solve.
Because the system is strictly diagonally dominant, the most natural
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choice is a Gauss-Seidel solver. The next step in the alternating minimiza-
tion scheme is to minimize with respect to ~d. This can be done explicitly
using the vector-valued shrinkage operator

~dk+1 = shrink(∇u+~b, 1/λ). (23)

When we put all of these pieces together, we get the following very
simple, yet efficient algorithm

Algorithm 2 Split Bregman ROF
1: while ‖uk+1 − uk‖ > ε do
2: uk+1 = GSROF (f, ~dk,~bk)
3: ~dk+1 = shrink(∇uk +~bk, λ)
4: ~bk+1 = ~bk +∇uk+1 − ~dk+1

5: end while

We have used GSROF (f, ~d,~b) to denote one iteration of the Gauss-
Seidel method applied to the system (22). An explicit formula for the
iteration, as well as more implementation details of this method, is given
in [26]. In the results section of the paper, time trials are also presented,
and the efficiency of this approach is discussed.

6 The Split Bregman Method Applied to
Globally Convex Segmentation

In this section, we discuss the application of the Split Bregman method
to the GCS problem, and prove some elementary convergence results. As
described in algorithm 2, the convexified segmentation can be reduced to
a sequence of problems of the form

min
0≤u≤1

|∇u|g + µ〈u, r〉, (24)

where r = (f − c1)2 − (f − c2)2.
We wish to solve this problem efficiently without the use of regular-

ization [17, 10]. To this end, we will apply the Split Bregman method.
Just as was done for the ROF model, we introduce the auxillary variable,
~d ← ∇u. To weakly enforce the resulting equality constraint, we add a
quadratic penalty function. We get the following unconstrained problem

(u∗, ~d∗) = arg min
0≤u≤1,~d

|~d|g + µ〈u, r〉+
λ

2
‖~d−∇u‖2. (25)

In order to strictly enforce the constraint ~d = ∇u, we apply Bregman
iteration to the problem, just as was done for ROF. The resulting sequence
of optimization problems is

(uk+1, ~dk+1) = arg min
0≤u≤1,~d

|~d|g + µ〈u, r〉+
λ

2
‖~d−∇u−~bk‖2 (26)

~bk+1 = ~bk +∇uk − ~dk. (27)
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As described above, we will solve the problem (26) using the alternat-
ing minimization scheme. We begin by considering the minimization of
(26) with respect to u. As was observed for the ROF problem, the algo-
rithm converges very quickly even when an approximate solution is used.
We will obtain an approximate solution using a Gauss-Seidel method.
This observation is in agreement with the previous literature on multi-
plier methods for differentiable problems. The use of inexact solvers in
the context of differentiable problems is discussed in detail in [5], where
conditions are presented under which multiplier methods can be guaran-
teed to converge. A discussion of inexact solvers in the context of Bregman
methods for L1 regularized problems can be found in [50].

To derive a closed-form expression for the element-wise minimizer,
we begin with the Euler-Lagrange equation of (25). The optimal value
of u must satisfy this Euler-Lagrange equation at every point where the
constraint is not active:

∆u =
µ

λ
r +∇ · (~d−~b) , whenever 0 < u < 1. (28)

Next, consider the problem of minimizing (25) with respect to ui,j while all
other elements of u remain constant. Ignoring the constraints, this energy
is quadratic in ui,j , and the minimum of this quadratic function is found by
solving (28) for ui,j . If the solution to this equation lies in the interval [0, 1]
then this global minimizer coincides with the minimizer of the constrained
problem. If the solution lies outside of this interval, then the energy is
strictly monotonic inside [0, 1], (because the energy is quadratic) and the
minimizer lies at the endpoint closest to the unconstrained minimizer. We
have now arrived at the following element-wise minimization formula:

αi,j = dxi−1,j − dxi,j − bxi−1,j + bxi,j + dyi,j−1 − d
y
i,j − b

y
i,j−1 + byi,j(29)

βi,j =
1

4
(ui−1,j + ui+1,j + ui,j−1 + ui,j+1 −

µ

λ
r + αi,j) (30)

ui,j = max{min{βi,j , 1}, 0} (31)

Minimization with respect to ~d is performed using the following for-
mula:

~dk+1 = shrinkg(~b
k +∇uk+1, 1/λ).

When this Split Bregman minimization scheme is placed into algorithm
2, we get the following scheme for segmentation.

Algorithm 3 Split Bregman for GCS
1: while ‖uk+1 − uk‖ > ε do
2: Define rk = (ck1 − f)2 − (ck2 − f)2

3: uk+1 = GSGCS(rk, ~dk,~bk)
4: ~dk+1 = shrinkg(∇uk+1 +~bk, λ)
5: ~bk+1 = ~bk +∇uk+1 − ~dk+1

6: Find Ωk = {x : uk(x) > µ}
7: Update ck+1

1 =
∫

Ωk fdx, and ck+1
2 =

∫
(Ωk)c fdx

8: end while
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Here, we have used GSGCS(rk, ~dk,~bk) to denote one sweep of the
Gauss-Seidel formula (29).

7 Numerical Results

In the following discussion, we will explore the efficacy of the Split Breg-
man method for the applications discussed above by applying the tech-
niques to several sample problems. All Split Bregman algorithms were
implemented in C, and compiled/called through Matlab using a “mex”
interface and the GCC compiler. All time trails we done on a 3 GHz,
Intel Core 2 Duo processor. All codes used to generate these results are
available for download from the authors’ websites.

7.1 Region-Based Segmentation

To demonstrate the efficiency of the Split-Bregman algorithm for GCS,
the algorithm was applied to a variety of test problems. We begin by com-
paring the GCS algorithm to ACWE using a standard brain segmentation
problem (figure 1). This comparison was done using a Matlab implemen-
tation of ACWE. The ACWE energy was minimized using a gradient
descent method, with time steps adaptively chosen using a backtracking
line search. For all the test problems presented here, the GCS model was
minimized using the above Split Bregman formulation, with λ = 0.5.

Our first example demonstrates the advantages of a convex segmen-
tation model, such as GCS. Because the ACWE algorithm relies on a
non-convex energy (5), gradient descent methods for this problem con-
verge to local minima, resulting in segmentations that depend strongly
on initialization. Two different initialization states, and the resulting seg-
mentations, are presented in (figure 1). The GCS method, in constrast,
produces a segmentation with very smooth contours, and does not depend
on initialization. Note also the Split Bregman algorithm allows us to com-
pute the GCS minimizer in only 0.16 seconds. The ACWE minimizer was
much slower, taking over 20 seconds for some initializations. The image
size is 256 by 256.
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Figure 1: Comparison of GCS to Chan-Vese. (Top) The results of GCS are
independent of initialization. (Center/Bottom) Results of ACWE segmentation
with 2 different initializations. Image size is 256x256.

Our second test problem demonstrates how parameters allows the user
to control the scale of the segmentation. Figure 2 shows segmentation
results for a 256 by 256 image at 3 different levels of coarseness. At the
finest level, each circle in the image is recognized as its own feature. As
the GCS parameter decreases, the segmentation becomes coarser – first
grouping image features together into clusters, and finally recognizing all
circles as one feature. Finally, note how the Split Bregman method slows
down considerably as the segmentation becomes more coarse. This is
largely due the fact that the Gauss-Seidel iteration converges more slowly
for small values of the fidelity parameter. However, even for the most
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Figure 2: Segmentation of a multi-scale test image using the GCS method.
Note how the fidelity parameter, µ, allows the user to control the scale of the
segmentation. Image size is 256x256.

coarse segmentation, computation took only 0.44 seconds, which is quite
reasonable for such a difficult segmentation problem. Note that the GCS
model inherits this level of control from the ACWE model [18] which also
contains a scale parameter.

We now examine how the incorporation of an edge detector enhances
segmentation detail using examples from medical imaging. We first con-
sider a brain segmentation problem, figure 3. Unlike figure 1, this brain
image has many fine scale, narrow details. Without the use of the edge
detector, the regularization prevents the algorithm from recognizing these
details. The use of the edge detector results in much more detailed seg-
mentation while still maintaining smooth contours, and heavy regulariza-
tion away from the edges.

The edge detector can also be used to avoid problems caused by non-
constant regions, as demonstrated in figure 4. In this test problem, the
standard GCS model breaks the main image feature into two sections
because of the heavy intensity gradient in this image. The edge detector
causes the segmentation to break along feature edges. Other approaches
to confront this problem have been proposed using, Laplacian-based edge
detectors [31], but this approach has the advantage of convexity.

Finally, we evaluate the Split Bregman scheme by direct comparison
to another method: the gradient projection method originally proposed
in [10]. This method works by splitting the functional (24) into two parts,
one of which looks like the standard ROF energy, which can subsequently
be minimized using a dual gradient projection method [15, 19, 4] . Note
that this method does not solve the original minimization (24) exactly,
but rather a regularized version of the problem. In figure 5, we display
the level set function, u, computed by each algorithm as a minimizer of
24. A segmentation is produced by thresholding this LSF, as in equation
(9). In addition to the LSF’s, the histogram of each segmentation is
displayed in figure 5. Note that, because of the regularization, the results
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Figure 3: The results of GCS are enhanced by using an edge detector func-
tion. (Left) Segmentation with no edge detector. (Right) Results using an edge
detector, and a weighted TV regularizer. The edge detector allows the segmen-
tation to recognize more fine-scale feature without changing the regularization
parameter. Image size is 218x218.
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Figure 4: Segmentation applied to a non-piecewise constant image. (Left) Seg-
mentation of an MR image without edge detector. (Right) Edge detector en-
hanced segmentation. Image size is 371x392.
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computed by the gradient projection show many small scale features that
were not entirely removed by the segmentation. Also, as can be seen in
the histograms, a much higher fraction of the pixels in the SDF are either
0, or 1 when the results are computed using the Split Bregman method.
Because of this, the Split Bregman results are much less dependent of the
choice of the threshold, α.

7.2 GAC/Snakes

We will examine several application of the GAC model. We first consider
a standard segmentation problem using an edge detector (figure 6). The
edge detector function was gradient based, and of the form (2), with
β = 1. The time step parameter µ was chosen so that the time required
to compute each weighted ROF minimization and SDF re-initialization
was approximately equal. Because the implicit method allows such long
time steps, we were able to compute this segmentation using only 15 time
steps.

Another application of the GAC model (1) is the reconstruction of a
surface from unorganized data points [52]. Given a set of points {xi} lying
on some surface, we wish to reconstruct an approximation of that surface.
This can be accomplished using time steps of the form (11) where the
weight function g is defined to be the distance function of the set {xi}.
As a result, this modified GAC model computes a surface that lies along
the minimal contours of this distance function.

We begin our examination of this algorithm using 2D model problems.
While these model problems are unrealistically simple, they demonstrate
the effect of surface geometry on convergence speed. We apply the algo-
rithm to two data sets in figure 7. Note that for the convex shape in figure
7, the surface reconstruction took only 3 time steps, whereas 9 time steps
were required to segment the “star” shape. The reason for this is that the
curve evolution tends to slow down when it reaches non-convex portions
of the surface because evolution into these regions increases the perimeter
of the curve, and thus this gradient of the energy (1) is not as steep here.
Note that a similar effect occurs in figure 6, where the evolution slows
down as the curve approaches the wings of the plane.

We now consider the more realistic case of 3d data. We apply the sur-
face reconstruction method to three well known 3d data sets: the “Bud-
dha,” “cow” and “bunny.” The unorganized data points are shown in
figure 8. To build an implicit representation for these surfaces, an initial
guess was first chosen using the initialization method of [52]. The surface
was evolved using a 3d implementation of algorithm 2 for weighted ROF.
Re-initialization was performed using a fast-marching method [20, 43, 36].

Running times and number of iterations required for convergence are
shown in table 1. All times are reported in seconds. The reconstructed
surfaces are shown in figure 9. Note that, much like in the 2d case, more
iterations are required to resolve shapes with deeper convexities, such as
the “Buddha” data set. However, even for this difficult test problem,
only 17 iterations were required for convergence. Even thought the ROF
energy was minimized over a 3-dimensional space, the computing times
for these data sets are quite manageable (under 4 minutes for “Buddha”
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Figure 5: Level set representations of the GCS minimizer. (Left) Minimiza-
tion using the regularized dual projection algorithm [10]. (Right) The non-
regularized solution obtained via Split Bregman. Note that the use of reg-
ularization results in artifacts around small features that make results more
dependent on the threshold parameter.
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Figure 6: Segmentation of a test image using GAC/snakes. Results are shown
at 4 different stages of the segmentation.
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Figure 7: GAC/snakes segmentation of two different test images. Note that
more time steps are needed to segment the non-convex regions on the “star”
shape.

21



Figure 8: Three sets of unorganized points. These data sets are the inputs for
the surface reconstruction algorithm in 3 dimensions.
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and under 30 seconds for the “bunny”). It should be noted that these
results could be further accelerated by limiting the ROF computation to
a narrow band around the surface.

Table 1: Results for 3d surface reconstruction.
Data Set Buddha Bunny Cow

Num. Iterations 17 13 15
Num. Data Points 16285 13995 2872

Dimensions 93x205x84 76x76x66 53x119x81
Time for ROF 11.6 2 2.9

Time for Redistance 2.2 0.2 0.4

As a final example, we compare the Split Bregman scheme to the well
known graph-cut algorithm for motion by mean curvature [21, 16]. In this
approach, motion by mean curvature is accomplished using time steps of
the form (11), where the weighted ROF energy is minimized using graph
cuts, as computed using a preflow-push based algorithm [25, 48]. Note
that graph cuts cannot compute the isotropic energy minimizer [32, 7], and
thus this technique computes a motion by “anisotropic curvature” [16].
Results are depicted in figure 10, where contours represent the evolution
after 0, 3, 6, and 9 time steps. Note that the Split Bregman is slightly
more efficient than the graph-cuts based solver. Also, the Split Bregman
method gives us the option of computing the isotropic curvature motion;
something that the anisotropic graph cuts solver does not.
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Figure 9: Implicit surfaces generated by the 3d reconstruction algorithm.
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Figure 10: Evolution of shapes by Mean-Curvature motion (MCM). Contours
represent the results after 0, 3, 6, and 9 time steps. (Left) MCM computed via
graph cuts. Graph-cuts techniques evolve curves by “anisotropic curvature,”
resulting in sharp angles and cusps. (Right) MCM computed via Split Bregman.
This curve evolution is isotropic.

8 Conclusions

Variational Segmentation models have an important place in computer
vision, and have been applied extensively in medical image, tracking, and
robotics applications. Because the GCS and implicit GAC models only
require the solution of convex problems, segmentations can be computed
reliably with minimal user input. In the case of the GCS method, results
are completely independent of initialization, making this technique very
attractive for applications which require full automation.

However, for many applications, particularly when images must be
processed in “real time,” the most important consideration when choosing
a segmentation algorithm is speed. Because most PDE-based segmenta-
tion models require the solution of a non-linear, non-differentiable elliptic
problem, this class of methods can be very slow to compute if conven-
tional numerical schemes (especially those involving regularization) are
used. A very important result of the convexity of the GCS and implicit
GAC models is that it opens the door for fast minimization methods.

In this paper, we first gave a brief introduction to image segmentation
using convex energies. We then gave an introduction to the category of
Split Bregman methods for minimizing L1 regularized energies. Because
the segmentation models considered here rely on TV regularized energies,
they are easily minimized using a Split Bregman approach. Finally, we
presented numerical examples demonstrating the quality of segmentations
produced using convex models, as well as the efficiency of these methods
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when computed using a Split Bregman scheme.
For the mean curvature motion problem considered here, the Split

Bregman approach was found to be more efficient than other proposed
methods, including techniques based on graph-cuts. In addition to its
speed, the Split Bregman approach has the advantage that it can solve
isotropic segmentation problems (rather than the anisotropic approxima-
tions employed by graph-cut strategies), and does not require regulariza-
tion.

Future research will focus on accelerating the Split Bregman scheme
in the case of small fidelity parameters, allowing for faster coarse segmen-
tation of large images, and faster evolution of the GAC contour. Also,
adaptive time stepping for GAC will allow for faster segmentation of non-
convex regions.
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